WO2022004553A1 - Liquid crystalline resin composition for ball bearing anti-sliding wear member, and ball bearing anti-sliding wear member using same - Google Patents

Liquid crystalline resin composition for ball bearing anti-sliding wear member, and ball bearing anti-sliding wear member using same Download PDF

Info

Publication number
WO2022004553A1
WO2022004553A1 PCT/JP2021/023996 JP2021023996W WO2022004553A1 WO 2022004553 A1 WO2022004553 A1 WO 2022004553A1 JP 2021023996 W JP2021023996 W JP 2021023996W WO 2022004553 A1 WO2022004553 A1 WO 2022004553A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball bearing
sliding wear
resin composition
liquid crystal
whiskers
Prior art date
Application number
PCT/JP2021/023996
Other languages
French (fr)
Japanese (ja)
Inventor
真奈 中村
祐政 鄭
不二 酒井
昭宏 長永
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN202180043329.4A priority Critical patent/CN115702206B/en
Priority to JP2022501375A priority patent/JP7200435B2/en
Priority to KR1020227043936A priority patent/KR102545958B1/en
Publication of WO2022004553A1 publication Critical patent/WO2022004553A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics

Definitions

  • the present invention relates to a liquid crystal resin composition for a ball bearing sliding wear resistant member and a ball bearing sliding wear resistant member using the same.
  • Liquid crystal resin represented by liquid crystal polyester resin has excellent mechanical strength, heat resistance, chemical resistance, electrical properties, etc. in a well-balanced manner, and also has excellent dimensional stability, so it is widely used as a high-performance engineering plastic. It's being used. Recently, liquid crystal resins have come to be used for precision equipment parts by taking advantage of these features.
  • Patent Document 1 describes a liquid crystal resin and a talc having a specific volume average particle size as an object of providing a molded product made of a liquid crystal resin composition having an excellent surface appearance and excellent slidability.
  • a liquid crystal resin composition containing a specific ratio of the above is disclosed.
  • Patent Document 2 describes a part for a camera module used in a form of dynamically contacting with a ball bearing.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to have excellent ball bearing sliding wear resistance in a well-balanced manner in terms of surface whitening suppression, mechanical strength, dimensional accuracy, and low dust generation.
  • the present inventors have conducted extensive research to solve the above problems.
  • the liquid crystal resin, the granular filler, and the whiskers are contained, the median diameter of the granular filler is within a predetermined range, and the content of each of the granular filler, the whiskers, and the total of these is within a predetermined range.
  • the present invention provides the following.
  • composition according to (1) wherein the (B) granular filler is at least one selected from the group consisting of silica and barium sulfate.
  • composition according to (1) or (2) further containing (D) an epoxy group-containing copolymer, wherein the content of the (D) epoxy group-containing copolymer is 1 to 5. Compositions that are% by weight.
  • a ball bearing sliding wear resistant member comprising the composition according to any one of (1) to (3).
  • a ball bearing sliding wear resistant member is manufactured using the liquid crystal resin composition for a ball bearing sliding wear resistant member of the present invention as a raw material, the balance between surface whitening suppression, mechanical strength, dimensional accuracy, and low dust generation is achieved. It is possible to obtain a ball bearing sliding wear resistant member which is excellent in quality, has reduced ball bearing sliding wear resistance, and maintains impact resistance.
  • FIG. 1 (a) is a plan view showing a molded body molded for measuring the depth of a dent in an embodiment
  • FIG. 1 (b) is a partial vertical cross section showing a BB cross section of FIG. 1 (a). It is a figure. Unless otherwise specified, the unit of numerical values in the figure is mm.
  • FIG. 2A is a perspective view showing a U-shaped liquid crystal resin molded body used for the evaluation of inward tilt deformation performed in the examples
  • FIG. 2B is a U-shaped liquid crystal resin. It is a side view which shows the molded body.
  • FIG. 3 is a diagram for explaining a method of evaluating the amount of sliding wear.
  • the liquid crystal resin composition for a ball bearing sliding wear resistant member of the present invention contains (A) a liquid crystal resin, (B) a granular filler, and (C) a whiskers.
  • the liquid crystal resin (A) used in the present invention refers to a melt-processable polymer having a property of forming an optically anisotropic molten phase.
  • the properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the confirmation of the anisotropic molten phase can be carried out by observing the molten sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leitz polarizing microscope.
  • the liquid crystalline polymer applicable to the present invention normally transmits polarized light and exhibits optical anisotropy when inspected between orthogonal modulators, even in a molten and resting state.
  • the type of the liquid crystal resin (A) as described above is not particularly limited, and is preferably an aromatic polyester and / or an aromatic polyester amide. Further, polyesters partially containing aromatic polyesters and / or aromatic polyester amides in the same molecular chain are also in the range.
  • the liquid crystal resin (A) is preferably at least about 2.0 dl / g, more preferably 2.0 to 10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by mass. Those having a logarithmic viscosity (IV) of are preferably used.
  • Aromatic polyester or aromatic polyester amide as a liquid crystal resin applicable to the present invention particularly preferably comprises a repeating unit derived from one or more of aromatic hydroxycarboxylic acid and its derivative. It is an aromatic polyester or an aromatic polyester amide having as.
  • Polyester consisting mainly of repeating units derived from one or more of aromatic hydroxycarboxylic acids and their derivatives; (2) Repeating units mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and one of their derivatives. Or polyester consisting of repeating units derived from two or more species; (3) Repeating units mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and their derivatives, and (b) one of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and their derivatives.
  • a polyester consisting of a repeating unit derived from two or more kinds and (c) a repeating unit derived from at least one kind or two or more kinds of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof; (4) Repeating units derived mainly from (a) one or more of aromatic hydroxycarboxylic acids and their derivatives, and (b) one or two of aromatic hydroxyamines, aromatic diamines, and their derivatives.
  • Polyester amides consisting of repeating units derived from species or more and (c) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and repeating units derived from one or more of their derivatives; (5) Repeating units mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and their derivatives, and (b) one or two of aromatic hydroxyamines, aromatic diamines, and their derivatives. Repeating units derived from species or higher, (c) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and repeating units derived from one or more of their derivatives, and (d) aromatic diols, alicyclics.
  • polyesteramides composed of group diols, aliphatic diols, and repeating units derived from at least one or more of the derivatives thereof.
  • a molecular weight adjusting agent may be used in combination with the above-mentioned constituent components, if necessary.
  • Preferred examples of the specific compound constituting the (A) liquid crystal resin applicable to the present invention are aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid; 2,6-dihydroxy.
  • Aromatic diols such as naphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, hydroquinone, resorcin, the compound represented by the following general formula (I), and the compound represented by the following general formula (II).
  • Aromatic compounds such as 1,4-phenylenedicarboxylic acid, 1,3-phenylenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and compounds represented by the following general formula (III).
  • Dicarboxylic acids; aromatic amines such as p-aminophenol, p-phenylenediamine, N-acetyl-p-aminophenol and the like can be mentioned.
  • the liquid crystal resin (A) used in the present invention can be prepared by a known method using a direct polymerization method or an ester exchange method from the above-mentioned monomer compound (or a mixture of monomers), and is usually a melt polymerization method.
  • a melt polymerization method Solution polymerization method, slurry polymerization method, solid phase polymerization method, etc., or a combination of two or more thereof is used, and a melt polymerization method or a combination of a melt polymerization method and a solid phase polymerization method is preferably used.
  • the above compounds having an ester-forming ability may be used in the polymerization as they are, or may be modified from a precursor to a derivative having the ester-forming ability in the pre-polymerization stage.
  • Various catalysts can be used in these polymerizations, and typical ones are potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris (2). , 4-Pentandionato) Metal salt-based catalysts such as cobalt (III), and organic compound-based catalysts such as N-methylimidazole and 4-dimethylaminopyridine.
  • the amount of the catalyst used is generally preferably about 0.001 to 1% by mass, particularly preferably about 0.01 to 0.2% by mass, based on the total mass of the monomers. If necessary, the polymer produced by these polymerization methods can be further increased in molecular weight by a solid phase polymerization method in which the polymer is heated under reduced pressure or in an inert gas.
  • the melt viscosity of the liquid crystal resin (A) obtained by the above method is not particularly limited. Generally, those having a melt viscosity at a molding temperature of 1000 sec -1 and a shear rate of 3 Pa ⁇ s or more and 500 Pa ⁇ s or less can be used. However, the one having a very high viscosity by itself is not preferable because the fluidity is very deteriorated.
  • the liquid crystal resin (A) may be a mixture of two or more kinds of liquid crystal resins.
  • the content of the liquid crystal resin (A) is preferably 67.5 to 87.5% by mass or 66.5 to 82.5% by mass, and more preferably 69 to 82.5% by mass. It is 84% by mass or 67-80% by mass.
  • the content of the component (A) is within the above range, it is preferable in terms of fluidity, heat resistance and the like.
  • the component (B) is a granular filler, and the median diameter of the component (B) is 0.3 to 5.0 ⁇ m.
  • the median diameter is preferably 0.5 to 5.0 ⁇ m, more preferably 0.5 to 4.0 ⁇ m.
  • the median diameter of the component (B) means the median value of the volume standard measured by the laser diffraction / scattering type particle size distribution measurement method.
  • the median diameter of the component (B) in the liquid crystal resin composition was measured by applying the above method to the component (B) remaining after incineration of the liquid crystal resin composition by heating at 600 ° C. for 2 hours.
  • the component (B) may be used alone or in combination of two or more.
  • Examples of the granular filler of the component (B) include metal oxides such as silica, quartz powder, glass beads, glass powder, potassium aluminum silicate, diatomaceous earth, iron oxide, titanium oxide, zinc oxide, and alumina; calcium carbonate, Examples thereof include metal carbonates such as magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; phosphates such as calcium pyrophosphate and anhydrous dicalcium phosphate; fluorocarbons; silicon nitride; boron nitride and the like.
  • metal oxides such as silica, quartz powder, glass beads, glass powder, potassium aluminum silicate, diatomaceous earth, iron oxide, titanium oxide, zinc oxide, and alumina
  • calcium carbonate examples thereof include metal carbonates such as magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; phosphates such as calcium pyrophosphate and anhydrous dicalcium phosphate; fluor
  • the present invention from the viewpoint of suppressing surface whitening of the molded body and low dust generation of the molded body, it is preferable to use one or more selected from the group consisting of silica and barium sulfate as the component (B). It is more preferable to use silica.
  • the content of the component (B) is 7.5 to 22.5% by mass in the liquid crystal composition of the present invention.
  • the content of the component (B) is 7.5% by mass or more, the dimensional accuracy of the molded body tends to be high, and it is easy to obtain a molded body having reduced ball bearing sliding wear resistance.
  • the content of the component (B) is 22.5% by mass or less, the effect of suppressing surface whitening of the molded product is likely to be high, and the impact resistance of the molded product is likely to be maintained.
  • the preferable content of the component (B) is 8.5 to 21% by mass.
  • the liquid crystal resin composition according to the present invention includes whiskers. By containing the whiskers in the liquid crystal resin composition according to the present invention, it is easy to improve the mechanical strength of the molded body and to obtain a molded body having reduced ball bearing sliding wear resistance.
  • whiskers refer to mineral fibers, and more specifically, needle-like single crystals. Whiskers can be used alone or in combination of two or more.
  • the average fiber length of the whiskers is preferably 5 to 200 ⁇ m, more preferably 7 to 170 ⁇ m, and even more preferably 9 to 150 ⁇ m. When the average fiber length is within the above range, the mechanical strength of the molded product is likely to be improved.
  • the average fiber length of (C) whiskers is 100 for each body microscope image by taking 10 whiskers body microscope images from a CCD camera into a PC and using an image processing method with an image measuring machine. The average of the measured fiber lengths of the book whiskers, that is, a total of 1000 whiskers, is adopted.
  • the average fiber length of the (C) whiskers in the liquid crystal resin composition is measured by applying the above method to the whiskers remaining after incineration of the liquid crystal resin composition by heating at 600 ° C. for 2 hours.
  • the average fiber diameter of the whiskers is preferably 0.2 to 15 ⁇ m or less, and more preferably 0.25 to 10 ⁇ m. When the average fiber diameter is within the above range, the mechanical strength of the molded product is likely to be improved.
  • the average fiber diameter of (C) whiskers the average of the values obtained by observing the whiskers with a scanning electron microscope and measuring the fiber diameters of 30 whiskers is adopted. The average fiber diameter of the (C) whiskers in the liquid crystal resin composition is measured by applying the above method to the whiskers remaining after incineration of the liquid crystal resin composition by heating at 600 ° C. for 2 hours.
  • the aspect ratio of the whiskers that is, the value of the average fiber length / the average fiber diameter is from the viewpoint of the mechanical strength of a molded body such as a ball bearing sliding wear resistant member made of the liquid crystal resin composition according to the present invention. Therefore, it is preferably 8 or more, more preferably 10 to 100, and even more preferably 15 to 75.
  • the whiskers are not particularly limited, and are, for example, potassium titanate whiskers, calcium silicate whiskers (wollastonite), calcium carbonate whiskers, zinc oxide whiskers, aluminum borate whiskers, silicon nitride whiskers, silicon trinitride whiskers. , Basic magnesium sulfate whiskers, barium whiskers titanate, silicon carbide whiskers, boron whiskers, and in terms of availability, potassium titanate whiskers, calcium silicate whiskers (wollastonite), calcium carbonate whiskers, zinc oxide. Whiskers, aluminum borate whiskers and the like are preferable, and potassium titanate whiskers, calcium silicate whiskers (wollastonite) and the like are more preferable.
  • the content of the component (C) is 2.5 to 17.5% by mass in the liquid crystal resin composition of the present invention.
  • the content of the component (C) is 2.5% by mass or more, it is easy to improve the mechanical strength and to obtain a molded product having reduced ball bearing sliding wear resistance.
  • the content of the component (C) is 17.5% by mass or less, the impact resistance of the molded product is likely to be maintained.
  • the content of the component (C) is preferably 4.5 to 14% by mass.
  • the total content of the component (B) and the component (C) is 12.5 to 32.5% by mass, preferably 16 to 31% by mass in the liquid crystal resin composition of the present invention. ..
  • the total content is 12.5% by mass or more, the dimensional accuracy of the molded body tends to be high, and it is easy to obtain a molded body having reduced ball bearing sliding wear resistance.
  • the total content is 32.5% by mass or less, the effect of suppressing surface whitening of the molded product and the low dust generation property of the molded product are likely to be high, and the impact resistance of the molded product is likely to be maintained.
  • the liquid crystal composition of the present invention may contain (D) an epoxy group-containing copolymer.
  • the epoxy group-containing copolymer can be used alone or in combination of two or more.
  • the (D) epoxy group-containing copolymer is not particularly limited, and is at least selected from the group consisting of (D1) an epoxy group-containing olefin-based copolymer and (D2) an epoxy group-containing styrene-based copolymer. One type can be mentioned.
  • the epoxy group-containing copolymer contributes to reducing the ball bearing sliding wear property of the molded product obtained from the liquid crystal resin composition of the present invention.
  • Examples of the (D1) epoxy group-containing olefin-based copolymer include a copolymer composed of a repeating unit derived from an ⁇ -olefin and a repeating unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid. Be done.
  • the ⁇ -olefin is not particularly limited, and examples thereof include ethylene, propylene, butene and the like, and ethylene is preferably used.
  • the glycidyl ester of ⁇ , ⁇ -unsaturated acid is represented by the following general formula (IV).
  • the glycidyl ester of ⁇ , ⁇ -unsaturated acid is, for example, acrylic acid glycidyl ester, methacrylic acid glycidyl ester, etacrylic acid glycidyl ester, itaconic acid glycidyl ester and the like, and methacrylic acid glycidyl ester is particularly preferable.
  • the content of the repeating unit derived from ⁇ -olefin is 87 to 98% by mass, and the content of the repeating unit derived from the glycidyl ester of ⁇ , ⁇ -unsaturated acid is contained.
  • the amount is preferably 13 to 2% by mass.
  • the (D1) epoxy group-containing olefin-based copolymer used in the present invention has acrylonitrile, acrylic acid ester, methacrylic acid ester, ⁇ -methylstyrene, and malean anhydride as a third component in addition to the above two components as long as the present invention is not impaired.
  • Repeating units derived from one or more of olefinically unsaturated esters such as acids may be contained in an amount of 0 to 48 parts by mass with respect to 100 parts by mass of the above two components.
  • the epoxy group-containing olefin-based copolymer which is the component (D1) of the present invention can be easily prepared by a usual radical polymerization method using a monomer corresponding to each component and a radical polymerization catalyst. More specifically, usually, the presence of a suitable solvent or chain transfer agent for ⁇ -olefin and glycidyl ester of ⁇ , ⁇ -unsaturated acid at 500 to 4000 atm and 100 to 300 ° C. in the presence of a radical generator. It can be produced by a method of copolymerizing under or in the absence. It can also be produced by a method in which an ⁇ -olefin, an ⁇ , ⁇ -unsaturated acid glycidyl ester and a radical generator are mixed and melt-grafted in an extruder.
  • Examples of the epoxy group-containing styrene-based copolymer (D2) include a copolymer composed of a repeating unit derived from styrenes and a repeating unit derived from a glycidyl ester of ⁇ , ⁇ -unsaturated acid. Be done. Since the glycidyl ester of ⁇ , ⁇ -unsaturated acid is the same as that described in the component (D1), the description thereof will be omitted.
  • styrenes examples include styrene, ⁇ -methylstyrene, brominated styrene, divinylbenzene and the like, and styrene is preferably used.
  • the (D2) epoxy group-containing styrene-based copolymer used in the present invention is a multidimensional copolymer containing a repeating unit derived from one or more of other vinyl monomers as a third component in addition to the above two components. There may be.
  • a suitable third component is a repeating unit derived from one or more of olefin unsaturated esters such as acrylonitrile, acrylic acid ester, methacrylic acid ester, and maleic anhydride.
  • An epoxy group-containing styrene-based copolymer containing 40% by mass or less of these repeating units in the copolymer is preferable as the component (D2).
  • the content of the repeating unit derived from the glycidyl ester of ⁇ , ⁇ -unsaturated acid is 2 to 20% by mass, and the content of the repeating unit derived from styrenes is high. Is preferably 80 to 98% by mass.
  • the epoxy group-containing styrene-based copolymer can be prepared by a usual radical polymerization method using a monomer corresponding to each component and a radical polymerization catalyst. More specifically, styrenes and glycidyl esters of ⁇ , ⁇ -unsaturated acids are usually mixed in the presence of a radical generator at 500 to 4000 atm and 100 to 300 ° C. in the presence of a suitable solvent or chain transfer agent. Alternatively, it can be produced by a method of copolymerizing in the absence. It can also be produced by a method in which styrenes, an ⁇ , ⁇ -unsaturated acid glycidyl ester and a radical generator are mixed and melt-grafted in an extruder.
  • the (D) epoxy group-containing copolymer the (D1) epoxy group-containing olefin-based copolymer is preferable in terms of heat resistance.
  • the ratio of these components can be appropriately selected according to the required characteristics.
  • the content of the (D) epoxy group-containing copolymer may be, for example, 0 to 5% by mass, preferably 1 to 5% by mass in the liquid crystal resin composition of the present invention.
  • the content of the component (D) is within the above range, it is easy to obtain a molded product having reduced ball bearing sliding wearability without impairing the fluidity of the liquid crystal resin composition.
  • a more preferable content is 2 to 4% by mass.
  • the carbon black (E) used as an optional component in the present invention is not particularly limited as long as it is generally available and is used for resin coloring. Normally, (E) carbon black contains lumps formed by agglomeration of primary particles, but unless a large amount of lumps having a size of 50 ⁇ m or more are contained, the resin composition of the present invention is molded. Many bumps (fine bumpy protrusions (fine irregularities) in which carbon black is aggregated) are unlikely to occur on the surface of the molded product. When the content of the particles having a mass particle diameter of 50 ⁇ m or more is 20 ppm or less, the effect of suppressing the raising of the surface of the molded product tends to be high. The preferred content is 5 ppm or less.
  • the component (E) may be used alone or in combination of two or more.
  • the blending amount of (E) carbon black may be, for example, 0 to 5% by mass, preferably 0.5 to 5% by mass in the liquid crystal resin composition.
  • the blending amount of carbon black is 0.5% by mass or more, the jet-blackness of the obtained resin composition is less likely to deteriorate, and the light-shielding property is less likely to be anxious. If the blending amount of carbon black is 5% by mass or less, it is less likely to be uneconomical and less likely to cause lumps.
  • the (F) mold release agent used as an optional component in the present invention is not particularly limited as long as it is generally available, and is, for example, fatty acid esters, fatty acid metal salts, fatty acid amides, and low. Examples thereof include molecular weight polyolefins, and fatty acid esters of pentaerythritol (for example, pentaerythritol tetrastearate) are preferable.
  • the component (F) may be used alone or in combination of two or more.
  • the amount of the release agent (F) to be blended may be, for example, 0 to 3% by mass, preferably 0.1 to 3% by mass in the liquid crystal resin composition.
  • the compounding amount of the mold release agent is 0.1% by mass or more, it is easy to obtain a molded product having improved mold releasability during molding and reduced ball bearing sliding wear resistance.
  • the blending amount of the mold release agent is 3% by mass or less, the mold deposit (that is, the deposit on the mold in molding, hereinafter also referred to as “MD”) is likely to be reduced.
  • the liquid crystal resin composition of the present invention contains other polymers, other fillers, and known substances generally added to synthetic resins, that is, antioxidants and ultraviolet absorbers, as long as the effects of the present invention are not impaired.
  • Other components such as stabilizers such as agents, antistatic agents, flame retardants, colorants such as dyes and pigments, lubricants, crystallization accelerators, and crystal nucleating agents can also be appropriately added depending on the required performance.
  • Other components may be used alone or in combination of two or more.
  • the other fillers are fillers other than (B) granular fillers, (C) whiskers, and (E) carbon black, for example, granular fillers other than the component (B); plate-like fillers; ( C) Examples include fibrous fillers other than the components. Other fillers may be used alone or in combination of two or more. Examples of the granular filler other than the component (B) include granular fillers having a median diameter of less than 0.3 ⁇ m or more than 5.0 ⁇ m. Examples of the plate-shaped filler include mica and talc. Examples of the fibrous filler other than the component (C) include glass fiber.
  • the liquid crystal resin composition of the present invention preferably does not contain a plate-like filler. Further, from the viewpoint of impact resistance of the molded body, low dust generation property of the molded body, and the like, the liquid crystal resin composition of the present invention preferably does not contain a fibrous filler other than the component (C).
  • the method for preparing the liquid crystal resin composition for a ball bearing sliding wear resistant member of the present invention is not particularly limited. For example, at least one of the above components (A) to (C), and optionally at least one of the above (D) to (F) components and other components is blended, and these are blended using a single-screw or twin-screw extruder. By melt-kneading, a liquid crystal resin composition for a ball bearing sliding wear resistant member is prepared.
  • the liquid crystal resin composition of the present invention obtained as described above preferably has a melt viscosity of 90 Pa ⁇ sec or less, preferably 80 Pa ⁇ sec or less, from the viewpoint of fluidity at the time of melting and moldability. It is more preferable to have.
  • the melt viscosity a value obtained by a measuring method based on ISO 11443 is adopted under the conditions of a cylinder temperature 10 to 20 ° C. higher than the melting point of the liquid crystal resin and a shear rate of 1000 sec -1.
  • a ball bearing sliding wear resistant member is manufactured using the liquid crystal resin composition of the present invention.
  • the ball bearing sliding wear resistant member of the present invention has excellent surface whitening suppression, mechanical strength, dimensional accuracy, and low dust generation in a well-balanced manner, while reducing ball bearing sliding wear resistance and impact resistance. It is maintained.
  • the ball bearing sliding wear resistant member of the present invention can be used for a component that dynamically contacts the ball bearing during use, and specifically, for example, is used in a form that dynamically contacts the ball bearing. It can be used for camera module parts such as lens holders.
  • the stirring torque reached a predetermined value
  • nitrogen was introduced to bring the mixture from a reduced pressure state to a pressurized state through normal pressure
  • the polymer was discharged from the lower part of the polymerization vessel, and the strands were pelletized to obtain pellets.
  • the obtained pellets were heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain the desired polymer.
  • the melting point of the obtained polymer was 336 ° C, and the melt viscosity at 350 ° C was 19.0 Pa ⁇ s.
  • the melt viscosity of the polymer was measured in the same manner as the method for measuring the melt viscosity described later.
  • HBA 4-Hydroxybenzoic acid
  • HNA 2-Hydroxy-6-naphthoic acid
  • TA 1,4-phenylenedicarboxylic acid
  • BP 4,4'-dihydroxybiphenyl
  • APAP N-Acetyl-p-Aminophenol
  • APAP N-Acetyl-p-Aminophenol
  • Metal catalyst potassium acetate catalyst
  • 110 mg Acylating agent acetic anhydride
  • ⁇ Bending test> The pellets of Examples and Comparative Examples were molded using a molding machine (“SE100DU” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions to obtain ISO test piece A type. This test piece was cut out to obtain a measurement test piece (80 mm ⁇ 10 mm ⁇ 4 mm). Using this measurement test piece, bending strength, bending strain, and flexural modulus were measured according to ISO 178. Of these, the measurement results of bending strength were evaluated according to the following criteria. The results are shown in Tables 1 to 3. ⁇ (good): The bending strength was 150 MPa or more. X (defective): The bending strength was less than 150 MPa. ⁇ Molding condition ⁇ Cylinder temperature: 350 ° C Mold temperature: 90 ° C Injection speed: 33 mm / sec
  • ⁇ Ball bearing sliding wear resistance> The pellets of Examples and Comparative Examples were molded using a molding machine (“SE100DU” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions to obtain a test piece for measurement (80 mm ⁇ 80 mm ⁇ 1 mm). .. Using a light load reciprocating tester, as shown in FIG. 3, a load is applied to the ball 4 (diameter 5 mm, made of SUS) at the tip of the arm 3 on the measurement test piece 1 via the grease 2, and the following After performing the reciprocating sliding test under the reciprocating sliding conditions, the width of the ball bearing sliding marks remaining on the measurement test piece 1 is measured using a stereoscopic microscope, and the ball bearing sliding wear resistance is determined according to the following criteria. evaluated.
  • SE100DU manufactured by Sumitomo Heavy Industries, Ltd.
  • the molded product of the example has excellent ball bearing sliding wear resistance in a well-balanced manner in terms of surface whitening suppression, mechanical strength, dimensional accuracy, and low dust generation. It was confirmed that the impact was reduced and the impact resistance was maintained.

Abstract

Provided are: a liquid crystalline resin composition for a ball bearing anti-sliding wear member, said liquid crystalline resin composition being for use in the production of a ball bearing anti-sliding wear member in which sliding wear of a ball bearing is reduced and impact resistance is maintained while obtaining an excellent balance between surface whitening suppression, mechanical strength, dimensional precision, and low dust generation; and a ball bearing anti-sliding wear member using the liquid crystalline resin composition for a ball bearing anti-sliding wear member. The liquid crystalline resin composition for a ball bearing anti-sliding wear member according to the present invention includes a liquid crystalline resin (A), a particulate filler (B), and whiskers (C). The median diameter of the particulate filler (B) is 0.3-5.0 µm, the content of the particulate filler (B) is 7.5-22.5 mass%, the content of the whiskers (C) is 2.5-17.5 mass%, and the total content of the particulate filler (B) and the whiskers (C) is 12.5-32.5 mass%.

Description

耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材Liquid crystal resin composition for ball bearing sliding wear resistant member and ball bearing sliding wear resistant member using it
 本発明は、耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材に関する。 The present invention relates to a liquid crystal resin composition for a ball bearing sliding wear resistant member and a ball bearing sliding wear resistant member using the same.
 液晶性ポリエステル樹脂に代表される液晶性樹脂は、優れた機械的強度、耐熱性、耐薬品性、電気的性質等をバランス良く有し、優れた寸法安定性も有するため高機能エンジニアリングプラスチックとして広く利用されている。最近では、液晶性樹脂は、これらの特長を生かして、精密機器部品に使用されるようになっている。 Liquid crystal resin represented by liquid crystal polyester resin has excellent mechanical strength, heat resistance, chemical resistance, electrical properties, etc. in a well-balanced manner, and also has excellent dimensional stability, so it is widely used as a high-performance engineering plastic. It's being used. Recently, liquid crystal resins have come to be used for precision equipment parts by taking advantage of these features.
 液晶性樹脂が使用される部品としては、例えば、FPCコネクター等のコネクター;メモリーカードソケット等のソケット;レンズホルダー等のカメラモジュール用部品;リレーが挙げられる。これらの部品は、表面白化抑制、機械的強度、寸法精度、及び低発塵性に優れることが求められ、また、2つ以上の部材が動的に接触するような形態で用いられる場合があるため、摺動摩耗性(即ち、2つ以上の部材が動的に接触したときの摩耗のしやすさ)が低減されていることも求められる。例えば、特許文献1には、表面外観に優れかつ摺動性に優れた液晶性樹脂組成物からなる成形品を提供することを課題として、液晶性樹脂と特定の体積平均粒子径を有するタルクとを特定の比で含有する液晶性樹脂組成物が開示されている。 Examples of parts in which liquid crystal resin is used include connectors such as FPC connectors; sockets such as memory card sockets; camera module parts such as lens holders; relays. These parts are required to be excellent in surface whitening suppression, mechanical strength, dimensional accuracy, and low dust generation, and may be used in such a form that two or more members are in dynamic contact with each other. Therefore, it is also required that the sliding wear property (that is, the ease of wear when two or more members are dynamically contacted) is reduced. For example, Patent Document 1 describes a liquid crystal resin and a talc having a specific volume average particle size as an object of providing a molded product made of a liquid crystal resin composition having an excellent surface appearance and excellent slidability. A liquid crystal resin composition containing a specific ratio of the above is disclosed.
 上述した部品の中でも、液晶性樹脂組成物からなる成形体とボールベアリングとが動的に接するような形態で用いられる部品の場合には、特に、ボールベアリング摺動摩耗性(即ち、ボールベアリングと動的に接触したときの摩耗のしやすさ)が低減されていることが求められる。また、当該部品が衝撃を受けて、上記成形体に凹みが生じた際に、元に戻りにくいと、上記成形体とボールベアリングとの動的な接触に不具合が生じる恐れがある。よって、上記部品は、耐衝撃性、即ち、衝撃を受けて、凹みが生じても元に戻りやすい特性を有することも求められる。なお、特許文献2には、ボールベアリングと動的に接するような形態で用いられるカメラモジュール用部品が記載されている。 Among the above-mentioned parts, especially in the case of a part used in such a form that a molded body made of a liquid crystal resin composition and a ball bearing are in dynamic contact with each other, the ball bearing has sliding wear resistance (that is, the ball bearing). Ease of wear when dynamically contacted) is required to be reduced. Further, when the component is impacted and a dent is formed in the molded body, if it is difficult to return to the original shape, there is a possibility that a problem may occur in the dynamic contact between the molded body and the ball bearing. Therefore, the above-mentioned parts are also required to have impact resistance, that is, characteristics that are easily restored even if a dent is generated due to an impact. In addition, Patent Document 2 describes a part for a camera module used in a form of dynamically contacting with a ball bearing.
特許第5087958号公報Japanese Patent No. 5087958 欧州特許第2938063号明細書European Patent No. 2938063
 しかし、本発明者らの検討によれば、従来の液晶性樹脂組成物では、ボールベアリング摺動摩耗性は低減されているが、耐衝撃性はむしろ悪化している。本発明は、上記課題を解決するためになされたものであり、その目的は、表面白化抑制、機械的強度、寸法精度、及び低発塵性にバランスよく優れつつ、ボールベアリング摺動摩耗性が低減され、かつ、耐衝撃性が維持された耐ボールベアリング摺動摩耗部材を製造するために用いられる耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物並びにそれを用いた耐ボールベアリング摺動摩耗部材を提供することにある。 However, according to the study by the present inventors, in the conventional liquid crystal resin composition, the ball bearing sliding wear resistance is reduced, but the impact resistance is rather deteriorated. The present invention has been made to solve the above-mentioned problems, and an object thereof is to have excellent ball bearing sliding wear resistance in a well-balanced manner in terms of surface whitening suppression, mechanical strength, dimensional accuracy, and low dust generation. A liquid crystal resin composition for a ball bearing sliding wear resistant member used for manufacturing a ball bearing sliding wear resistant member with reduced impact resistance and impact resistance, and a ball bearing sliding wear resistant member using the same. The purpose is to provide the members.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、液晶性樹脂と粒状充填剤とウィスカーとを含有し、粒状充填剤のメディアン径が所定の範囲であり、粒状充填剤、ウィスカー、及びこれらの合計の各々の含有量が所定の範囲である液晶性樹脂組成物を用いることで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。 The present inventors have conducted extensive research to solve the above problems. As a result, the liquid crystal resin, the granular filler, and the whiskers are contained, the median diameter of the granular filler is within a predetermined range, and the content of each of the granular filler, the whiskers, and the total of these is within a predetermined range. We have found that the above problems can be solved by using a certain liquid crystal resin composition, and have completed the present invention. More specifically, the present invention provides the following.
 (1) (A)液晶性樹脂、(B)粒状充填剤、及び(C)ウィスカーを含有し、前記(B)粒状充填剤のメディアン径は、0.3~5.0μmであり、前記(B)粒状充填剤の含有量は、7.5~22.5質量%であり、前記(C)ウィスカーの含有量は、2.5~17.5質量%であり、前記(B)粒状充填剤と前記(C)ウィスカーとの合計の含有量は、12.5~32.5質量%である耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物。 (1) It contains (A) a liquid crystal resin, (B) a granular filler, and (C) a whisker, and the median diameter of the (B) granular filler is 0.3 to 5.0 μm. B) The content of the granular filler is 7.5 to 22.5% by mass, the content of the (C) whiskers is 2.5 to 17.5% by mass, and the content of the (B) granular filler is A liquid crystal resin composition for a ball bearing sliding wear resistant member having a total content of the agent and the whiskers (C) of 12.5 to 32.5% by mass.
 (2) 前記(B)粒状充填剤は、シリカ及び硫酸バリウムからなる群より選択される1種以上である(1)に記載の組成物。 (2) The composition according to (1), wherein the (B) granular filler is at least one selected from the group consisting of silica and barium sulfate.
 (3) 更に(D)エポキシ基含有共重合体を含有する(1)又は(2)に記載の組成物であって、前記(D)エポキシ基含有共重合体の含有量は、1~5質量%である組成物。 (3) The composition according to (1) or (2) further containing (D) an epoxy group-containing copolymer, wherein the content of the (D) epoxy group-containing copolymer is 1 to 5. Compositions that are% by weight.
 (4) (1)から(3)のいずれかに記載の組成物からなる耐ボールベアリング摺動摩耗部材。 (4) A ball bearing sliding wear resistant member comprising the composition according to any one of (1) to (3).
 本発明の耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物を原料として、耐ボールベアリング摺動摩耗部材を製造すれば、表面白化抑制、機械的強度、寸法精度、及び低発塵性にバランスよく優れつつ、ボールベアリング摺動摩耗性が低減され、かつ、耐衝撃性が維持された耐ボールベアリング摺動摩耗部材が得られる。 If a ball bearing sliding wear resistant member is manufactured using the liquid crystal resin composition for a ball bearing sliding wear resistant member of the present invention as a raw material, the balance between surface whitening suppression, mechanical strength, dimensional accuracy, and low dust generation is achieved. It is possible to obtain a ball bearing sliding wear resistant member which is excellent in quality, has reduced ball bearing sliding wear resistance, and maintains impact resistance.
図1(a)は、実施例で凹みの深さを計測するために成形した成形体を示す平面図であり、図1(b)は、図1(a)のBB断面を示す部分縦断面図である。なお、特に記載がない限り図中の数値の単位はmmである。1 (a) is a plan view showing a molded body molded for measuring the depth of a dent in an embodiment, and FIG. 1 (b) is a partial vertical cross section showing a BB cross section of FIG. 1 (a). It is a figure. Unless otherwise specified, the unit of numerical values in the figure is mm. 図2(a)は、実施例で行った内倒れ変形評価に用いたコの字型液晶性樹脂成形体を示す斜視図であり、図2(b)は、上記コの字型液晶性樹脂成形体を示す側面図である。FIG. 2A is a perspective view showing a U-shaped liquid crystal resin molded body used for the evaluation of inward tilt deformation performed in the examples, and FIG. 2B is a U-shaped liquid crystal resin. It is a side view which shows the molded body. 図3は、摺動摩耗量評価の方法を説明するための図である。FIG. 3 is a diagram for explaining a method of evaluating the amount of sliding wear.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.
<耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物>
 本発明の耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物は、(A)液晶性樹脂、(B)粒状充填剤、及び、(C)ウィスカーを含有する。
<Liquid crystal resin composition for ball bearing sliding wear member>
The liquid crystal resin composition for a ball bearing sliding wear resistant member of the present invention contains (A) a liquid crystal resin, (B) a granular filler, and (C) a whiskers.
[(A)液晶性樹脂]
 本発明で使用する(A)液晶性樹脂とは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することが出来る。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性ポリマーは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
[(A) Liquid crystal resin]
The liquid crystal resin (A) used in the present invention refers to a melt-processable polymer having a property of forming an optically anisotropic molten phase. The properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the confirmation of the anisotropic molten phase can be carried out by observing the molten sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leitz polarizing microscope. The liquid crystalline polymer applicable to the present invention normally transmits polarized light and exhibits optical anisotropy when inspected between orthogonal modulators, even in a molten and resting state.
 上記のような(A)液晶性樹脂の種類としては特に限定されず、芳香族ポリエステル及び/又は芳香族ポリエステルアミドであることが好ましい。また、芳香族ポリエステル及び/又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。(A)液晶性樹脂としては、60℃でペンタフルオロフェノールに濃度0.1質量%で溶解したときに、好ましくは少なくとも約2.0dl/g、更に好ましくは2.0~10.0dl/gの対数粘度(I.V.)を有するものが好ましく使用される。 The type of the liquid crystal resin (A) as described above is not particularly limited, and is preferably an aromatic polyester and / or an aromatic polyester amide. Further, polyesters partially containing aromatic polyesters and / or aromatic polyester amides in the same molecular chain are also in the range. The liquid crystal resin (A) is preferably at least about 2.0 dl / g, more preferably 2.0 to 10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by mass. Those having a logarithmic viscosity (IV) of are preferably used.
 本発明に適用できる(A)液晶性樹脂としての芳香族ポリエステル又は芳香族ポリエステルアミドは、特に好ましくは、芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位を構成成分として有する芳香族ポリエステル又は芳香族ポリエステルアミドである。 (A) Aromatic polyester or aromatic polyester amide as a liquid crystal resin applicable to the present invention particularly preferably comprises a repeating unit derived from one or more of aromatic hydroxycarboxylic acid and its derivative. It is an aromatic polyester or an aromatic polyester amide having as.
 より具体的には、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上に由来する繰り返し単位、とからなるポリエステル;
(4)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位、とからなるポリエステルアミド;
(5)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上に由来する繰り返し単位、とからなるポリエステルアミド等が挙げられる。更に上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
More specifically
(1) Polyester consisting mainly of repeating units derived from one or more of aromatic hydroxycarboxylic acids and their derivatives;
(2) Repeating units mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and one of their derivatives. Or polyester consisting of repeating units derived from two or more species;
(3) Repeating units mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and their derivatives, and (b) one of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and their derivatives. Or a polyester consisting of a repeating unit derived from two or more kinds and (c) a repeating unit derived from at least one kind or two or more kinds of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof;
(4) Repeating units derived mainly from (a) one or more of aromatic hydroxycarboxylic acids and their derivatives, and (b) one or two of aromatic hydroxyamines, aromatic diamines, and their derivatives. Polyester amides consisting of repeating units derived from species or more and (c) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and repeating units derived from one or more of their derivatives;
(5) Repeating units mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and their derivatives, and (b) one or two of aromatic hydroxyamines, aromatic diamines, and their derivatives. Repeating units derived from species or higher, (c) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and repeating units derived from one or more of their derivatives, and (d) aromatic diols, alicyclics. Examples thereof include polyesteramides composed of group diols, aliphatic diols, and repeating units derived from at least one or more of the derivatives thereof. Further, a molecular weight adjusting agent may be used in combination with the above-mentioned constituent components, if necessary.
 本発明に適用できる(A)液晶性樹脂を構成する具体的化合物の好ましい例としては、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸;2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)で表される化合物、及び下記一般式(II)で表される化合物等の芳香族ジオール;1,4-フェニレンジカルボン酸、1,3-フェニレンジカルボン酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、及び下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p-アミノフェノール、p-フェニレンジアミン、N-アセチル-p-アミノフェノール等の芳香族アミン類が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(X:アルキレン(C~C)、アルキリデン、-O-、-SO-、-SO-、-S-、及び-CO-より選ばれる基である)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(Y:-(CH-(n=1~4)及び-O(CHO-(n=1~4)より選ばれる基である。)
Preferred examples of the specific compound constituting the (A) liquid crystal resin applicable to the present invention are aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid; 2,6-dihydroxy. Aromatic diols such as naphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, hydroquinone, resorcin, the compound represented by the following general formula (I), and the compound represented by the following general formula (II). Aromatic compounds such as 1,4-phenylenedicarboxylic acid, 1,3-phenylenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and compounds represented by the following general formula (III). Dicarboxylic acids; aromatic amines such as p-aminophenol, p-phenylenediamine, N-acetyl-p-aminophenol and the like can be mentioned.
Figure JPOXMLDOC01-appb-C000001
(X: A group selected from alkylene (C 1 to C 4 ), alkylidene, -O-, -SO-, -SO 2- , -S-, and -CO-)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(Y:-(CH 2 ) n- (n = 1 to 4) and -O (CH 2 ) n O- (n = 1 to 4).)
 本発明に用いられる(A)液晶性樹脂の調製は、上記のモノマー化合物(又はモノマーの混合物)から直接重合法やエステル交換法を用いて公知の方法で行うことができ、通常は溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。エステル形成能を有する上記化合物類はそのままの形で重合に用いてもよく、また、重合の前段階で前駆体から該エステル形成能を有する誘導体に変性されたものでもよい。これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、N-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒が挙げられる。触媒の使用量は一般にはモノマーの全質量に対して約0.001~1質量%、特に約0.01~0.2質量%が好ましい。これらの重合方法により製造されたポリマーは更に必要があれば、減圧又は不活性ガス中で加熱する固相重合法により分子量の増加を図ることができる。 The liquid crystal resin (A) used in the present invention can be prepared by a known method using a direct polymerization method or an ester exchange method from the above-mentioned monomer compound (or a mixture of monomers), and is usually a melt polymerization method. , Solution polymerization method, slurry polymerization method, solid phase polymerization method, etc., or a combination of two or more thereof is used, and a melt polymerization method or a combination of a melt polymerization method and a solid phase polymerization method is preferably used. The above compounds having an ester-forming ability may be used in the polymerization as they are, or may be modified from a precursor to a derivative having the ester-forming ability in the pre-polymerization stage. Various catalysts can be used in these polymerizations, and typical ones are potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris (2). , 4-Pentandionato) Metal salt-based catalysts such as cobalt (III), and organic compound-based catalysts such as N-methylimidazole and 4-dimethylaminopyridine. The amount of the catalyst used is generally preferably about 0.001 to 1% by mass, particularly preferably about 0.01 to 0.2% by mass, based on the total mass of the monomers. If necessary, the polymer produced by these polymerization methods can be further increased in molecular weight by a solid phase polymerization method in which the polymer is heated under reduced pressure or in an inert gas.
 上記のような方法で得られた(A)液晶性樹脂の溶融粘度は特に限定されない。一般には成形温度での溶融粘度が剪断速度1000sec-1で3Pa・s以上500Pa・s以下のものが使用可能である。しかし、それ自体あまり高粘度のものは流動性が非常に悪化するため好ましくない。なお、上記(A)液晶性樹脂は2種以上の液晶性樹脂の混合物であってもよい。 The melt viscosity of the liquid crystal resin (A) obtained by the above method is not particularly limited. Generally, those having a melt viscosity at a molding temperature of 1000 sec -1 and a shear rate of 3 Pa · s or more and 500 Pa · s or less can be used. However, the one having a very high viscosity by itself is not preferable because the fluidity is very deteriorated. The liquid crystal resin (A) may be a mixture of two or more kinds of liquid crystal resins.
 本発明の液晶性樹脂組成物において、(A)液晶性樹脂の含有量は、好ましくは67.5~87.5質量%又は66.5~82.5質量%であり、より好ましくは69~84質量%又は67~80質量%である。(A)成分の含有量が上記範囲内であると、流動性、耐熱性等の点で好ましい。 In the liquid crystal resin composition of the present invention, the content of the liquid crystal resin (A) is preferably 67.5 to 87.5% by mass or 66.5 to 82.5% by mass, and more preferably 69 to 82.5% by mass. It is 84% by mass or 67-80% by mass. When the content of the component (A) is within the above range, it is preferable in terms of fluidity, heat resistance and the like.
[(B)粒状充填剤]
 (B)成分は粒状充填剤であり、(B)成分のメディアン径は0.3~5.0μmである。上記メディアン径が0.3μm以上であると、成形体の耐衝撃性が維持されやすい。上記メディアン径が5.0μm以下であると、成形体の表面白化抑制効果が高くなりやすい。上記メディアン径は、好ましくは0.5~5.0μmであり、より好ましくは0.5~4.0μmである。なお、本明細書において、(B)成分のメディアン径とは、レーザー回折/散乱式粒度分布測定法で測定した体積基準の中央値をいう。液晶性樹脂組成物中の(B)成分のメディアン径は、液晶性樹脂組成物を600℃で2時間の加熱により灰化して残存した(B)成分について、上記方法を適用することで測定される。(B)成分は1種単独で用いても2種以上を組み合わせて用いてもよい。
[(B) Granular filler]
The component (B) is a granular filler, and the median diameter of the component (B) is 0.3 to 5.0 μm. When the median diameter is 0.3 μm or more, the impact resistance of the molded product is likely to be maintained. When the median diameter is 5.0 μm or less, the effect of suppressing surface whitening of the molded product tends to be high. The median diameter is preferably 0.5 to 5.0 μm, more preferably 0.5 to 4.0 μm. In the present specification, the median diameter of the component (B) means the median value of the volume standard measured by the laser diffraction / scattering type particle size distribution measurement method. The median diameter of the component (B) in the liquid crystal resin composition was measured by applying the above method to the component (B) remaining after incineration of the liquid crystal resin composition by heating at 600 ° C. for 2 hours. To. The component (B) may be used alone or in combination of two or more.
 (B)成分の粒状充填剤としては、例えば、シリカ、石英粉末、ガラスビーズ、ガラス粉、硅酸カリウムアルミニウム、珪藻土、酸化鉄、酸化チタン、酸化亜鉛、アルミナ等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;硫酸カルシウム、硫酸バリウム等の金属硫酸塩;ピロリン酸カルシウム、無水リン酸二カルシウム等のリン酸塩;炭化硅素;窒化硅素;窒化硼素等が挙げられる。本発明においては、成形体の表面白化抑制及び成形体の低発塵性の観点から、(B)成分として、シリカ及び硫酸バリウムからなる群より選択される1種以上を使用することが好ましく、シリカを使用することがより好ましい。 Examples of the granular filler of the component (B) include metal oxides such as silica, quartz powder, glass beads, glass powder, potassium aluminum silicate, diatomaceous earth, iron oxide, titanium oxide, zinc oxide, and alumina; calcium carbonate, Examples thereof include metal carbonates such as magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; phosphates such as calcium pyrophosphate and anhydrous dicalcium phosphate; fluorocarbons; silicon nitride; boron nitride and the like. In the present invention, from the viewpoint of suppressing surface whitening of the molded body and low dust generation of the molded body, it is preferable to use one or more selected from the group consisting of silica and barium sulfate as the component (B). It is more preferable to use silica.
 (B)成分の含有量は、本発明の液晶性組成物において、7.5~22.5質量%である。(B)成分の含有量が7.5質量%以上であると、成形体の寸法精度が高くなりやすいとともに、ボールベアリング摺動摩耗性が低減された成形体を得やすい。(B)成分の含有量が22.5質量%以下であると、成形体の表面白化抑制効果が高くなりやすく、成形体の耐衝撃性が維持されやすい。(B)成分の好ましい含有量は、8.5~21質量%である。 The content of the component (B) is 7.5 to 22.5% by mass in the liquid crystal composition of the present invention. When the content of the component (B) is 7.5% by mass or more, the dimensional accuracy of the molded body tends to be high, and it is easy to obtain a molded body having reduced ball bearing sliding wear resistance. When the content of the component (B) is 22.5% by mass or less, the effect of suppressing surface whitening of the molded product is likely to be high, and the impact resistance of the molded product is likely to be maintained. The preferable content of the component (B) is 8.5 to 21% by mass.
[(C)ウィスカー]
 本発明に係る液晶性樹脂組成物には、ウィスカーが含まれる。本発明に係る液晶性樹脂組成物にウィスカーが含まれることにより、成形体の機械的強度が向上しやすいとともに、ボールベアリング摺動摩耗性が低減された成形体を得やすい。本明細書において、ウィスカーとは、鉱物繊維を指し、より具体的には、針状単結晶を指す。ウィスカーは、1種単独で又は2種以上組み合わせて使用することができる。
[(C) Whiskers]
The liquid crystal resin composition according to the present invention includes whiskers. By containing the whiskers in the liquid crystal resin composition according to the present invention, it is easy to improve the mechanical strength of the molded body and to obtain a molded body having reduced ball bearing sliding wear resistance. As used herein, whiskers refer to mineral fibers, and more specifically, needle-like single crystals. Whiskers can be used alone or in combination of two or more.
 (C)ウィスカーの平均繊維長は、好ましくは5~200μmであり、より好ましくは7~170μmであり、更により好ましくは9~150μmである。上記平均繊維長が上記範囲内であると、成形体の機械的強度がより向上しやすい。なお、本明細書において、(C)ウィスカーの平均繊維長としては、ウィスカーの実体顕微鏡画像10枚をCCDカメラからPCに取り込み、画像測定機によって画像処理手法により、実体顕微鏡画像1枚ごとに100本のウィスカー、即ち、合計1000本のウィスカーについて繊維長を測定した値の平均を採用する。液晶性樹脂組成物中の(C)ウィスカーの平均繊維長は、液晶性樹脂組成物を600℃で2時間の加熱により灰化して残存したウィスカーについて、上記方法を適用することで測定される。 (C) The average fiber length of the whiskers is preferably 5 to 200 μm, more preferably 7 to 170 μm, and even more preferably 9 to 150 μm. When the average fiber length is within the above range, the mechanical strength of the molded product is likely to be improved. In the present specification, the average fiber length of (C) whiskers is 100 for each body microscope image by taking 10 whiskers body microscope images from a CCD camera into a PC and using an image processing method with an image measuring machine. The average of the measured fiber lengths of the book whiskers, that is, a total of 1000 whiskers, is adopted. The average fiber length of the (C) whiskers in the liquid crystal resin composition is measured by applying the above method to the whiskers remaining after incineration of the liquid crystal resin composition by heating at 600 ° C. for 2 hours.
 (C)ウィスカーの平均繊維径は、好ましくは0.2~15μm以下であり、より好ましくは0.25~10μmである。上記平均繊維径が上記範囲内であると、成形体の機械的強度がより向上しやすい。なお、本明細書において、(C)ウィスカーの平均繊維径としては、ウィスカーを走査型電子顕微鏡で観察し、30本のウィスカーについて繊維径を測定した値の平均を採用する。液晶性樹脂組成物中の(C)ウィスカーの平均繊維径は、液晶性樹脂組成物を600℃で2時間の加熱により灰化して残存したウィスカーについて、上記方法を適用することで測定される。 (C) The average fiber diameter of the whiskers is preferably 0.2 to 15 μm or less, and more preferably 0.25 to 10 μm. When the average fiber diameter is within the above range, the mechanical strength of the molded product is likely to be improved. In this specification, as the average fiber diameter of (C) whiskers, the average of the values obtained by observing the whiskers with a scanning electron microscope and measuring the fiber diameters of 30 whiskers is adopted. The average fiber diameter of the (C) whiskers in the liquid crystal resin composition is measured by applying the above method to the whiskers remaining after incineration of the liquid crystal resin composition by heating at 600 ° C. for 2 hours.
 (C)ウィスカーのアスペクト比、即ち、平均繊維長/平均繊維径の値は、本発明に係る液晶性樹脂組成物からなる耐ボールベアリング摺動摩耗部材等の成形体の機械的強度等の観点から、好ましくは8以上であり、より好ましくは10~100であり、更により好ましくは15~75である。 (C) The aspect ratio of the whiskers, that is, the value of the average fiber length / the average fiber diameter is from the viewpoint of the mechanical strength of a molded body such as a ball bearing sliding wear resistant member made of the liquid crystal resin composition according to the present invention. Therefore, it is preferably 8 or more, more preferably 10 to 100, and even more preferably 15 to 75.
 (C)ウィスカーとしては、特に限定されず、例えば、チタン酸カリウムウィスカー、ケイ酸カルシウムウィスカー(ウォラストナイト)、炭酸カルシウムウィスカー、酸化亜鉛ウィスカー、ホウ酸アルミニウムウィスカー、窒化珪素ウィスカー、三窒化珪素ウィスカー、塩基性硫酸マグネシウムウィスカー、チタン酸バリウムウィスカー、炭化珪素ウィスカー、ボロンウィスカーが挙げられ、入手性等の点で、チタン酸カリウムウィスカー、ケイ酸カルシウムウィスカー(ウォラストナイト)、炭酸カルシウムウィスカー、酸化亜鉛ウィスカー、ホウ酸アルミニウムウィスカー等が好ましく、チタン酸カリウムウィスカー、ケイ酸カルシウムウィスカー(ウォラストナイト)等がより好ましい。 (C) The whiskers are not particularly limited, and are, for example, potassium titanate whiskers, calcium silicate whiskers (wollastonite), calcium carbonate whiskers, zinc oxide whiskers, aluminum borate whiskers, silicon nitride whiskers, silicon trinitride whiskers. , Basic magnesium sulfate whiskers, barium whiskers titanate, silicon carbide whiskers, boron whiskers, and in terms of availability, potassium titanate whiskers, calcium silicate whiskers (wollastonite), calcium carbonate whiskers, zinc oxide. Whiskers, aluminum borate whiskers and the like are preferable, and potassium titanate whiskers, calcium silicate whiskers (wollastonite) and the like are more preferable.
 (C)成分の含有量は、本発明の液晶性樹脂組成物において、2.5~17.5質量%である。(C)成分の含有量が2.5質量%以上であると、機械的強度が向上しやすいとともに、ボールベアリング摺動摩耗性が低減された成形体を得やすい。(C)成分の含有量が17.5質量%以下であると、成形体の耐衝撃性が維持されやすい。(C)成分の含有量は、好ましくは4.5~14質量%である。 The content of the component (C) is 2.5 to 17.5% by mass in the liquid crystal resin composition of the present invention. When the content of the component (C) is 2.5% by mass or more, it is easy to improve the mechanical strength and to obtain a molded product having reduced ball bearing sliding wear resistance. When the content of the component (C) is 17.5% by mass or less, the impact resistance of the molded product is likely to be maintained. The content of the component (C) is preferably 4.5 to 14% by mass.
 更に、(B)成分と(C)成分との合計の含有量は、本発明の液晶性樹脂組成物において、12.5~32.5質量%であり、好ましくは16~31質量%である。上記合計の含有量が12.5質量%以上であると、成形体の寸法精度が高くなりやすいとともに、ボールベアリング摺動摩耗性が低減された成形体を得やすい。上記合計の含有量が32.5質量%以下であると、成形体の表面白化抑制効果及び成形体の低発塵性が高くなりやすく、成形体の耐衝撃性が維持されやすい。 Further, the total content of the component (B) and the component (C) is 12.5 to 32.5% by mass, preferably 16 to 31% by mass in the liquid crystal resin composition of the present invention. .. When the total content is 12.5% by mass or more, the dimensional accuracy of the molded body tends to be high, and it is easy to obtain a molded body having reduced ball bearing sliding wear resistance. When the total content is 32.5% by mass or less, the effect of suppressing surface whitening of the molded product and the low dust generation property of the molded product are likely to be high, and the impact resistance of the molded product is likely to be maintained.
[(D)エポキシ基含有共重合体]
 本発明の液晶性組成物は、(D)エポキシ基含有共重合体を含有してもよい。(D)エポキシ基含有共重合体は、1種単独で又は2種以上組み合わせて使用することができる。(D)エポキシ基含有共重合体としては、特に限定されず、例えば、(D1)エポキシ基含有オレフィン系共重合体及び(D2)エポキシ基含有スチレン系共重合体からなる群より選択される少なくとも1種が挙げられる。(D)エポキシ基含有共重合体は、本発明の液晶性樹脂組成物から得られる成形体のボールベアリング摺動摩耗性を低減させることに
寄与する。
[(D) Epoxy group-containing copolymer]
The liquid crystal composition of the present invention may contain (D) an epoxy group-containing copolymer. (D) The epoxy group-containing copolymer can be used alone or in combination of two or more. The (D) epoxy group-containing copolymer is not particularly limited, and is at least selected from the group consisting of (D1) an epoxy group-containing olefin-based copolymer and (D2) an epoxy group-containing styrene-based copolymer. One type can be mentioned. (D) The epoxy group-containing copolymer contributes to reducing the ball bearing sliding wear property of the molded product obtained from the liquid crystal resin composition of the present invention.
 (D1)エポキシ基含有オレフィン系共重合体としては、例えば、α-オレフィンに由来する繰り返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰り返し単位とから構成される共重合体が挙げられる。 Examples of the (D1) epoxy group-containing olefin-based copolymer include a copolymer composed of a repeating unit derived from an α-olefin and a repeating unit derived from a glycidyl ester of an α, β-unsaturated acid. Be done.
 α-オレフィンは特に限定されず、例えば、エチレン、プロピレン、ブテン等が挙げられ、中でもエチレンが好ましく用いられる。α,β-不飽和酸のグリシジルエステルは下記一般式(IV)で示されるものである。α,β-不飽和酸のグリシジルエステルは、例えばアクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル、イタコン酸グリシジルエステル等であり、特にメタクリル酸グリシジルエステルが好ましい。
Figure JPOXMLDOC01-appb-C000004
The α-olefin is not particularly limited, and examples thereof include ethylene, propylene, butene and the like, and ethylene is preferably used. The glycidyl ester of α, β-unsaturated acid is represented by the following general formula (IV). The glycidyl ester of α, β-unsaturated acid is, for example, acrylic acid glycidyl ester, methacrylic acid glycidyl ester, etacrylic acid glycidyl ester, itaconic acid glycidyl ester and the like, and methacrylic acid glycidyl ester is particularly preferable.
Figure JPOXMLDOC01-appb-C000004
 (D1)エポキシ基含有オレフィン系共重合体において、α-オレフィンに由来する繰り返し単位の含有量は87~98質量%であり、α,β-不飽和酸のグリシジルエステルに由来する繰り返し単位の含有量は13~2質量%であることが好ましい。 (D1) In the epoxy group-containing olefin-based copolymer, the content of the repeating unit derived from α-olefin is 87 to 98% by mass, and the content of the repeating unit derived from the glycidyl ester of α, β-unsaturated acid is contained. The amount is preferably 13 to 2% by mass.
 本発明で用いる(D1)エポキシ基含有オレフィン系共重合体は、本発明を損なわない範囲で上記2成分以外に第3成分としてアクリロニトリル、アクリル酸エステル、メタクリル酸エステル、α-メチルスチレン、無水マレイン酸等のオレフィン系不飽和エステルの1種又は2種以上に由来する繰り返し単位を、上記2成分100質量部に対し0~48質量部含有してもよい。 The (D1) epoxy group-containing olefin-based copolymer used in the present invention has acrylonitrile, acrylic acid ester, methacrylic acid ester, α-methylstyrene, and malean anhydride as a third component in addition to the above two components as long as the present invention is not impaired. Repeating units derived from one or more of olefinically unsaturated esters such as acids may be contained in an amount of 0 to 48 parts by mass with respect to 100 parts by mass of the above two components.
 本発明の(D1)成分であるエポキシ基含有オレフィン系共重合体は、各成分に対応するモノマー及びラジカル重合触媒を用いて通常のラジカル重合法により容易に調製することができる。より具体的には、通常、α-オレフィンとα,β-不飽和酸のグリシジルエステルとをラジカル発生剤の存在下、500~4000気圧、100~300℃で適当な溶媒や連鎖移動剤の存在下又は不存在下に共重合させる方法により製造できる。また、α-オレフィンとα,β-不飽和酸のグリシジルエステル及びラジカル発生剤とを混合し、押出機の中で溶融グラフト共重合させる方法によっても製造できる。 The epoxy group-containing olefin-based copolymer which is the component (D1) of the present invention can be easily prepared by a usual radical polymerization method using a monomer corresponding to each component and a radical polymerization catalyst. More specifically, usually, the presence of a suitable solvent or chain transfer agent for α-olefin and glycidyl ester of α, β-unsaturated acid at 500 to 4000 atm and 100 to 300 ° C. in the presence of a radical generator. It can be produced by a method of copolymerizing under or in the absence. It can also be produced by a method in which an α-olefin, an α, β-unsaturated acid glycidyl ester and a radical generator are mixed and melt-grafted in an extruder.
 (D2)のエポキシ基含有スチレン系共重合体としては、例えば、スチレン類に由来する繰り返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰り返し単位とから構成される共重合体が挙げられる。α,β-不飽和酸のグリシジルエステルについては、(D1)成分で説明したものと同様であるため説明を省略する。 Examples of the epoxy group-containing styrene-based copolymer (D2) include a copolymer composed of a repeating unit derived from styrenes and a repeating unit derived from a glycidyl ester of α, β-unsaturated acid. Be done. Since the glycidyl ester of α, β-unsaturated acid is the same as that described in the component (D1), the description thereof will be omitted.
 スチレン類としては、スチレン、α-メチルスチレン、ブロム化スチレン、ジビニルベンゼン等が挙げられ、スチレンが好ましく用いられる。 Examples of styrenes include styrene, α-methylstyrene, brominated styrene, divinylbenzene and the like, and styrene is preferably used.
 本発明で用いる(D2)エポキシ基含有スチレン系共重合体は、上記2成分以外に第3成分として他のビニルモノマーの1種又は2種以上に由来する繰り返し単位を含有する多元共重合体であってもよい。第3成分として好適なものは、アクリロニトリル、アクリル酸エステル、メタクリル酸エステル、無水マレイン酸等のオレフィン系不飽和エステルの1種又は2種以上に由来する繰り返し単位である。これらの繰り返し単位を共重合体中に40質量%以下含有するエポキシ基含有スチレン系共重合体が(D2)成分として好ましい。 The (D2) epoxy group-containing styrene-based copolymer used in the present invention is a multidimensional copolymer containing a repeating unit derived from one or more of other vinyl monomers as a third component in addition to the above two components. There may be. A suitable third component is a repeating unit derived from one or more of olefin unsaturated esters such as acrylonitrile, acrylic acid ester, methacrylic acid ester, and maleic anhydride. An epoxy group-containing styrene-based copolymer containing 40% by mass or less of these repeating units in the copolymer is preferable as the component (D2).
 (D2)エポキシ基含有スチレン系共重合体において、α,β-不飽和酸のグリシジルエステルに由来する繰り返し単位の含有量は2~20質量%であり、スチレン類に由来する繰り返し単位の含有量は80~98質量%であることが好ましい。 (D2) In the epoxy group-containing styrene-based copolymer, the content of the repeating unit derived from the glycidyl ester of α, β-unsaturated acid is 2 to 20% by mass, and the content of the repeating unit derived from styrenes is high. Is preferably 80 to 98% by mass.
 (D2)エポキシ基含有スチレン系共重合体は、各成分に対応するモノマー及びラジカル重合触媒を用いて通常のラジカル重合法により調製することができる。より具体的には、通常、スチレン類とα,β-不飽和酸のグリシジルエステルとをラジカル発生剤の存在下、500~4000気圧、100~300℃で適当な溶媒や連鎖移動剤の存在下又は不存在下に共重合させる方法により製造できる。また、スチレン類とα,β-不飽和酸のグリシジルエステル及びラジカル発生剤とを混合し、押出機の中で溶融グラフト共重合させる方法によっても製造できる。 (D2) The epoxy group-containing styrene-based copolymer can be prepared by a usual radical polymerization method using a monomer corresponding to each component and a radical polymerization catalyst. More specifically, styrenes and glycidyl esters of α, β-unsaturated acids are usually mixed in the presence of a radical generator at 500 to 4000 atm and 100 to 300 ° C. in the presence of a suitable solvent or chain transfer agent. Alternatively, it can be produced by a method of copolymerizing in the absence. It can also be produced by a method in which styrenes, an α, β-unsaturated acid glycidyl ester and a radical generator are mixed and melt-grafted in an extruder.
 なお、(D)エポキシ基含有共重合体としては、(D1)エポキシ基含有オレフィン系共重合体が耐熱性の点で好ましい。(D1)成分と(D2)成分とを併用する場合、これら成分同士の割合は、適宜、要求される特性に沿って選択することができる。 As the (D) epoxy group-containing copolymer, the (D1) epoxy group-containing olefin-based copolymer is preferable in terms of heat resistance. When the component (D1) and the component (D2) are used in combination, the ratio of these components can be appropriately selected according to the required characteristics.
 (D)エポキシ基含有共重合体の含有量は、本発明の液晶性樹脂組成物において、例えば、0~5質量%でよく、好ましくは1~5質量%である。(D)成分の含有量が上記範囲内であると、液晶性樹脂組成物の流動性を損なわず、ボールベアリング摺動摩耗性が低減された成形体を得やすい。より好ましい上記含有量は2~4質量%である。 The content of the (D) epoxy group-containing copolymer may be, for example, 0 to 5% by mass, preferably 1 to 5% by mass in the liquid crystal resin composition of the present invention. When the content of the component (D) is within the above range, it is easy to obtain a molded product having reduced ball bearing sliding wearability without impairing the fluidity of the liquid crystal resin composition. A more preferable content is 2 to 4% by mass.
[(E)カーボンブラック]
 本発明に任意成分として用いる(E)カーボンブラックは、樹脂着色に用いられる一般的に入手可能なものであれば、特に限定されるものではない。通常、(E)カーボンブラックには一次粒子が凝集して出来上がる塊状物が含まれているが、50μm以上の大きさの塊状物が著しく多く含まれていない限り、本発明の樹脂組成物を成形してなる成形体の表面に多くのブツ(カーボンブラックが凝集した細かいブツブツ状突起物(細かい凹凸))は発生しにくい。上記塊状物粒子径が50μm以上の粒子の含有率が20ppm以下であると、成形体表面の起毛抑制効果が高くなりやすい。好ましい含有率は5ppm以下である。(E)成分は1種単独で用いても2種以上を組み合わせて用いてもよい。
[(E) Carbon Black]
The carbon black (E) used as an optional component in the present invention is not particularly limited as long as it is generally available and is used for resin coloring. Normally, (E) carbon black contains lumps formed by agglomeration of primary particles, but unless a large amount of lumps having a size of 50 μm or more are contained, the resin composition of the present invention is molded. Many bumps (fine bumpy protrusions (fine irregularities) in which carbon black is aggregated) are unlikely to occur on the surface of the molded product. When the content of the particles having a mass particle diameter of 50 μm or more is 20 ppm or less, the effect of suppressing the raising of the surface of the molded product tends to be high. The preferred content is 5 ppm or less. The component (E) may be used alone or in combination of two or more.
 (E)カーボンブラックの配合量としては、液晶性樹脂組成物において、例えば、0~5質量%でよく、0.5~5質量%の範囲が好ましい。カーボンブラックの配合量が0.5質量%以上であると、得られる樹脂組成物の漆黒性が低下しにくく、遮光性に不安が出にくい。カーボンブラックの配合量が5質量%以下であると不経済となりにくく、またブツが発生しにくい。 The blending amount of (E) carbon black may be, for example, 0 to 5% by mass, preferably 0.5 to 5% by mass in the liquid crystal resin composition. When the blending amount of carbon black is 0.5% by mass or more, the jet-blackness of the obtained resin composition is less likely to deteriorate, and the light-shielding property is less likely to be anxious. If the blending amount of carbon black is 5% by mass or less, it is less likely to be uneconomical and less likely to cause lumps.
[(F)離型剤]
 本発明に任意成分として用いる(F)離型剤としては、一般的に入手可能なものであれば、特に限定されるものではなく、例えば、脂肪酸エステル類、脂肪酸金属塩類、脂肪酸アミド類、低分子量ポリオレフィン等が挙げられ、ペンタエリスリトールの脂肪酸エステル(例えば、ペンタエリスリトールテトラステアレート)が好ましい。(F)成分は1種単独で用いても2種以上を組み合わせて用いてもよい。
[(F) Release agent]
The (F) mold release agent used as an optional component in the present invention is not particularly limited as long as it is generally available, and is, for example, fatty acid esters, fatty acid metal salts, fatty acid amides, and low. Examples thereof include molecular weight polyolefins, and fatty acid esters of pentaerythritol (for example, pentaerythritol tetrastearate) are preferable. The component (F) may be used alone or in combination of two or more.
 (F)離型剤の配合量としては、液晶性樹脂組成物において、例えば、0~3質量%でよく、0.1~3質量%の範囲が好ましい。離型剤の配合量が0.1質量%以上であると、成形時の離型性が向上するとともに、ボールベアリング摺動摩耗性が低減された成形体を得やすい。離型剤の配合量が3質量%以下であるとモールドデポジット(即ち、成形における金型への付着物をいう。以下、「MD」ともいう。)が低減しやすい。 The amount of the release agent (F) to be blended may be, for example, 0 to 3% by mass, preferably 0.1 to 3% by mass in the liquid crystal resin composition. When the compounding amount of the mold release agent is 0.1% by mass or more, it is easy to obtain a molded product having improved mold releasability during molding and reduced ball bearing sliding wear resistance. When the blending amount of the mold release agent is 3% by mass or less, the mold deposit (that is, the deposit on the mold in molding, hereinafter also referred to as “MD”) is likely to be reduced.
[その他の成分]
 本発明の液晶性樹脂組成物には、本発明の効果を害さない範囲で、その他の重合体、その他の充填剤、一般に合成樹脂に添加される公知の物質、即ち、酸化防止剤や紫外線吸収剤等の安定剤、帯電防止剤、難燃剤、染料や顔料等の着色剤、潤滑剤、結晶化促進剤、結晶核剤等のその他の成分も要求性能に応じ適宜添加することができる。その他の成分は1種単独で用いても2種以上を組み合わせて用いてもよい。
[Other ingredients]
The liquid crystal resin composition of the present invention contains other polymers, other fillers, and known substances generally added to synthetic resins, that is, antioxidants and ultraviolet absorbers, as long as the effects of the present invention are not impaired. Other components such as stabilizers such as agents, antistatic agents, flame retardants, colorants such as dyes and pigments, lubricants, crystallization accelerators, and crystal nucleating agents can also be appropriately added depending on the required performance. Other components may be used alone or in combination of two or more.
 その他の充填剤とは、(B)粒状充填剤、(C)ウィスカー、及び(E)カーボンブラック以外の充填剤をいい、例えば、(B)成分以外の粒状充填剤;板状充填剤;(C)成分以外の繊維状充填剤が挙げられる。その他の充填剤は1種単独で用いても2種以上を組み合わせて用いてもよい。(B)成分以外の粒状充填剤としては、例えば、メディアン径が0.3μm未満又は5.0μm超である粒状充填剤が挙げられる。板状充填剤としては、例えば、マイカ、タルクが挙げられる。(C)成分以外の繊維状充填剤としては、例えば、ガラス繊維が挙げられる。但し、成形体の耐衝撃性等の観点から、本発明の液晶性樹脂組成物は、板状充填剤を含有しないことが好ましい。また、成形体の耐衝撃性、成形体の低発塵性等の観点から、本発明の液晶性樹脂組成物は、(C)成分以外の繊維状充填剤を含有しないことが好ましい。 The other fillers are fillers other than (B) granular fillers, (C) whiskers, and (E) carbon black, for example, granular fillers other than the component (B); plate-like fillers; ( C) Examples include fibrous fillers other than the components. Other fillers may be used alone or in combination of two or more. Examples of the granular filler other than the component (B) include granular fillers having a median diameter of less than 0.3 μm or more than 5.0 μm. Examples of the plate-shaped filler include mica and talc. Examples of the fibrous filler other than the component (C) include glass fiber. However, from the viewpoint of impact resistance of the molded product, the liquid crystal resin composition of the present invention preferably does not contain a plate-like filler. Further, from the viewpoint of impact resistance of the molded body, low dust generation property of the molded body, and the like, the liquid crystal resin composition of the present invention preferably does not contain a fibrous filler other than the component (C).
[耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物の調製方法]
 本発明の耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物の調製方法は特に限定されない。例えば、上記(A)~(C)成分、並びに、任意に、上記(D)~(F)成分及びその他の成分の少なくとも1種を配合して、これらを1軸又は2軸押出機を用いて溶融混練処理することで、耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物の調製が行われる。
[Method for preparing liquid crystal resin composition for ball bearing sliding wear member]
The method for preparing the liquid crystal resin composition for a ball bearing sliding wear resistant member of the present invention is not particularly limited. For example, at least one of the above components (A) to (C), and optionally at least one of the above (D) to (F) components and other components is blended, and these are blended using a single-screw or twin-screw extruder. By melt-kneading, a liquid crystal resin composition for a ball bearing sliding wear resistant member is prepared.
[耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物]
 上記のようにして得られた本発明の液晶性樹脂組成物は、溶融時の流動性の観点、成形性の観点から、溶融粘度が90Pa・sec以下であることが好ましく、80Pa・sec以下であることがより好ましい。本明細書において、溶融粘度としては、液晶性樹脂の融点よりも10~20℃高いシリンダー温度、剪断速度1000sec-1の条件で、ISO 11443に準拠した測定方法で得られた値を採用する。
[Liquid crystal resin composition for ball bearing sliding wear member]
The liquid crystal resin composition of the present invention obtained as described above preferably has a melt viscosity of 90 Pa · sec or less, preferably 80 Pa · sec or less, from the viewpoint of fluidity at the time of melting and moldability. It is more preferable to have. In the present specification, as the melt viscosity, a value obtained by a measuring method based on ISO 11443 is adopted under the conditions of a cylinder temperature 10 to 20 ° C. higher than the melting point of the liquid crystal resin and a shear rate of 1000 sec -1.
<耐ボールベアリング摺動摩耗部材>
 本発明の液晶性樹脂組成物を用いて、耐ボールベアリング摺動摩耗部材を製造する。本発明の耐ボールベアリング摺動摩耗部材は、表面白化抑制、機械的強度、寸法精度、及び低発塵性にバランスよく優れつつ、ボールベアリング摺動摩耗性が低減され、かつ、耐衝撃性が維持されている。本発明の耐ボールベアリング摺動摩耗部材は、使用時にボールベアリングと動的に接触するような部品に用いることができ、具体的には、例えば、ボールベアリングと動的に接するような形態で用いられる、レンズホルダー等のカメラモジュール用部品等に用いることができる。
<Ball bearing sliding wear resistant member>
A ball bearing sliding wear resistant member is manufactured using the liquid crystal resin composition of the present invention. The ball bearing sliding wear resistant member of the present invention has excellent surface whitening suppression, mechanical strength, dimensional accuracy, and low dust generation in a well-balanced manner, while reducing ball bearing sliding wear resistance and impact resistance. It is maintained. The ball bearing sliding wear resistant member of the present invention can be used for a component that dynamically contacts the ball bearing during use, and specifically, for example, is used in a form that dynamically contacts the ball bearing. It can be used for camera module parts such as lens holders.
 以下に実施例を挙げて、本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
<液晶性樹脂>
・液晶性ポリエステルアミド樹脂
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に340℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレットを得た。得られたペレットについて、窒素気流下、300℃で2時間の熱処理を行って、目的のポリマーを得た。得られたポリマーの融点は336℃、350℃における溶融粘度は19.0Pa・sであった。なお、上記ポリマーの溶融粘度は、後述する溶融粘度の測定方法と同様にして測定した。
 (I)4-ヒドロキシ安息香酸(HBA);1380g(60モル%)
 (II)2-ヒドロキシ-6-ナフトエ酸(HNA);157g(5モル%)
 (III)1,4-フェニレンジカルボン酸(TA);484g(17.5モル%)
 (IV)4,4’-ジヒドロキシビフェニル(BP);388g(12.5モル%)
 (V)N-アセチル-p-アミノフェノール(APAP);126g(5モル%)
 金属触媒(酢酸カリウム触媒);110mg
 アシル化剤(無水酢酸);1659g
<Liquid crystal resin>
-After charging the following raw materials into a liquid crystal polyesteramide resin polymerization vessel, the temperature of the reaction system was raised to 140 ° C., and the reaction was carried out at 140 ° C. for 1 hour. Then, the temperature is further raised to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (that is, 1330 Pa) over 15 minutes while distilling acetic acid, excess acetic anhydride, and other low boiling points. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to bring the mixture from a reduced pressure state to a pressurized state through normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strands were pelletized to obtain pellets. The obtained pellets were heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain the desired polymer. The melting point of the obtained polymer was 336 ° C, and the melt viscosity at 350 ° C was 19.0 Pa · s. The melt viscosity of the polymer was measured in the same manner as the method for measuring the melt viscosity described later.
(I) 4-Hydroxybenzoic acid (HBA); 1380 g (60 mol%)
(II) 2-Hydroxy-6-naphthoic acid (HNA); 157 g (5 mol%)
(III) 1,4-phenylenedicarboxylic acid (TA); 484 g (17.5 mol%)
(IV) 4,4'-dihydroxybiphenyl (BP); 388 g (12.5 mol%)
(V) N-Acetyl-p-Aminophenol (APAP); 126 g (5 mol%)
Metal catalyst (potassium acetate catalyst); 110 mg
Acylating agent (acetic anhydride); 1659 g
<液晶性樹脂以外の材料>
・シリカ1:アドマファインSO-C2((株)アドマテックス製、シリカ、メディアン径0.5μm)
・シリカ2:アドマファインSO-C6((株)アドマテックス製、シリカ、メディアン径2.0μm)
・シリカ3:デンカ溶融シリカFB-5SDC(デンカ(株)製、シリカ、メディアン径4.0μm)
・マイカ:AB-25S((株)ヤマグチマイカ製、マイカ、メディアン径25.0μm)
・タルク:クラウンタルクPP(松村産業(株)製、タルク、メディアン径14.6μm)
・チタン酸カリウム:ティスモN-102(大塚化学(株)製、チタン酸カリウムウィスカー(チタン酸カリウム繊維)、平均繊維径0.3~0.6μm、平均繊維長10~20μm)
・ウォラストナイト:NYGLOS 8(NYCO Materials社製、ケイ酸カルシウムウィスカー(ウォラストナイト)、平均繊維長136μm、平均繊維径8μm)
・ガラス繊維:ECS03T-786H(日本電気硝子(株)製、チョプドストランド、繊維径10μm、長さ3mm)
・エポキシ基含有オレフィン系共重合体:ボンドファースト2C(住友化学(株)製、エチレン-グリシジルメタクリレート共重合体、グリシジルメタクリレートの含有量6質量%)
・カーボンブラック:VULCAN XC305(キャボットジャパン(株)製、平均粒子径20nm、粒子径50μm以上の粒子の割合が20ppm以下)
・離型剤:ペンタエリスリトールテトラステアレート(エメリーオレオケミカルズジャパン(株)製)
<Materials other than liquid crystal resin>
・ Silica 1: Admafine SO-C2 (manufactured by Admatex Co., Ltd., silica, median diameter 0.5 μm)
-Silica 2: Admafine SO-C6 (manufactured by Admatex Co., Ltd., silica, median diameter 2.0 μm)
-Silica 3: Denka fused silica FB-5SDC (manufactured by Denka Co., Ltd., silica, median diameter 4.0 μm)
・ Mica: AB-25S (manufactured by Yamaguchi Mica Co., Ltd., mica, median diameter 25.0 μm)
・ Talc: Crown talc PP (manufactured by Matsumura Sangyo Co., Ltd., talc, median diameter 14.6 μm)
-Potassium titanate: Tismo N-102 (manufactured by Otsuka Chemical Co., Ltd., potassium titanate whiskers (potassium titanate fiber), average fiber diameter 0.3 to 0.6 μm, average fiber length 10 to 20 μm)
-Wollastonite: NYGLOS 8 (manufactured by NYCO Materials, calcium silicate whiskers (Wollastonite), average fiber length 136 μm, average fiber diameter 8 μm)
-Glass fiber: ECS03T-786H (manufactured by Nippon Electric Glass Co., Ltd., chopped strand, fiber diameter 10 μm, length 3 mm)
-Epoxy group-containing olefin copolymer: Bond First 2C (manufactured by Sumitomo Chemical Co., Ltd., ethylene-glycidyl methacrylate copolymer, content of glycidyl methacrylate 6% by mass)
-Carbon black: VULCAN XC305 (manufactured by Cabot Japan Co., Ltd., average particle diameter 20 nm, proportion of particles with a particle diameter of 50 μm or more is 20 ppm or less)
-Release agent: Pentaerythritol tetrastearate (manufactured by Emery Oreo Chemicals Japan Co., Ltd.)
<耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物の製造>
 上記成分を、表1、表2、又は表3に示す割合(単位:質量%)で二軸押出機((株)日本製鋼所製TEX30α型)を用いて、シリンダー温度350℃にて溶融混練し、耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物ペレットを得た。
<Manufacturing of liquid crystal resin composition for ball bearing sliding wear member>
The above components are melt-kneaded at a cylinder temperature of 350 ° C. using a twin-screw extruder (TEX30α type manufactured by Japan Steel Works, Ltd.) at the ratio (unit: mass%) shown in Table 1, Table 2, or Table 3. Then, pellets of a liquid crystal resin composition for a ball bearing sliding wear resistant member were obtained.
<表面白化>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE30DUZ」)を用いて、以下の成形条件で成形し、測定用試験片(12.5mm×120mm×0.8mm)を得た。測定用試験片を3分間、室温の水中(80ml)で超音波洗浄機(出力300W、周波数45kHz)にかけた。その後、測定用試験片の表面を目視で観察した。測定用試験片の表面白化を下記の基準で評価した。結果を表1~3に示す。
 ○(良好):試験片の全面で白化が認められない。
 ×(不良):試験片の平滑部に明らかな白化が認められる。
〔成形条件〕
シリンダー温度:350℃
金型温度:80℃
射出速度:100mm/sec
<Surface whitening>
The pellets of Examples and Comparative Examples were molded using a molding machine (“SE30DUZ” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions, and a test piece for measurement (12.5 mm × 120 mm × 0.8 mm). ) Was obtained. The test piece for measurement was subjected to an ultrasonic cleaner (output 300 W, frequency 45 kHz) in water (80 ml) at room temperature for 3 minutes. Then, the surface of the test piece for measurement was visually observed. The surface whitening of the test piece for measurement was evaluated according to the following criteria. The results are shown in Tables 1 to 3.
○ (Good): No whitening is observed on the entire surface of the test piece.
× (Defective): Clear whitening is observed on the smooth part of the test piece.
〔Molding condition〕
Cylinder temperature: 350 ° C
Mold temperature: 80 ° C
Injection speed: 100 mm / sec
<曲げ試験>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE100DU」)を用いて、以下の成形条件で成形し、ISO試験片A形を得た。この試験片を切り出し、測定用試験片(80mm×10mm×4mm)を得た。この測定用試験片を用いて、ISO 178に準拠し、曲げ強度、曲げ歪、及び曲げ弾性率を測定した。このうち、曲げ強度の測定結果を下記の基準で評価した。結果を表1~3に示す。
 ○(良好):曲げ強度が150MPa以上であった。
 ×(不良):曲げ強度が150MPa未満であった。
 〔成形条件〕
 シリンダー温度:350℃
 金型温度:90℃
 射出速度:33mm/sec
<Bending test>
The pellets of Examples and Comparative Examples were molded using a molding machine (“SE100DU” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions to obtain ISO test piece A type. This test piece was cut out to obtain a measurement test piece (80 mm × 10 mm × 4 mm). Using this measurement test piece, bending strength, bending strain, and flexural modulus were measured according to ISO 178. Of these, the measurement results of bending strength were evaluated according to the following criteria. The results are shown in Tables 1 to 3.
◯ (good): The bending strength was 150 MPa or more.
X (defective): The bending strength was less than 150 MPa.
〔Molding condition〕
Cylinder temperature: 350 ° C
Mold temperature: 90 ° C
Injection speed: 33 mm / sec
<ボールベアリング摺動摩耗性>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE100DU」)を用いて、以下の成形条件で成形し、測定用試験片(80mm×80mm×1mm)を得た。軽荷重往復動試験機を用いて、図3に示す通り、測定用試験片1上で、グリース2を介して、アーム3先端のボール4(直径5mm、SUS製)に荷重をかけ、下記の往復摺動条件で往復摺動試験を行った後、測定用試験片1に残ったボールベアリング摺動痕の幅を、実体顕微鏡を用いて計測し、ボールベアリング摺動摩耗性を下記の基準で評価した。結果を表1~3に示す。
 ○(良好):ボールベアリング摺動痕の幅が540μm以下であった。
 ×(不良):ボールベアリング摺動痕の幅が540μm超であった。
〔成形条件〕
シリンダー温度:350℃
金型温度:80℃
射出速度:33mm/sec
〔往復摺動条件〕
すべり速度:5cm/sec
ストローク:20mm
荷重:29.6N(3kg重)
往復回数:1000回
グリース:東レ・ダウコーニング(株)製、モリコートEM-30L
<Ball bearing sliding wear resistance>
The pellets of Examples and Comparative Examples were molded using a molding machine (“SE100DU” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions to obtain a test piece for measurement (80 mm × 80 mm × 1 mm). .. Using a light load reciprocating tester, as shown in FIG. 3, a load is applied to the ball 4 (diameter 5 mm, made of SUS) at the tip of the arm 3 on the measurement test piece 1 via the grease 2, and the following After performing the reciprocating sliding test under the reciprocating sliding conditions, the width of the ball bearing sliding marks remaining on the measurement test piece 1 is measured using a stereoscopic microscope, and the ball bearing sliding wear resistance is determined according to the following criteria. evaluated. The results are shown in Tables 1 to 3.
◯ (good): The width of the ball bearing sliding marks was 540 μm or less.
X (defective): The width of the ball bearing sliding mark was more than 540 μm.
〔Molding condition〕
Cylinder temperature: 350 ° C
Mold temperature: 80 ° C
Injection speed: 33 mm / sec
[Reciprocating sliding conditions]
Slip speed: 5 cm / sec
Stroke: 20mm
Load: 29.6N (3kg weight)
Number of round trips: 1000 times Grease: Toray Dow Corning Co., Ltd., Moricoat EM-30L
<凹みの深さ>
 下記成形条件で、液晶性樹脂組成物を射出成形し(ゲート:ピンゲート、ゲートサイズ:φ0.3mm)、図1(a)及び図1(b)に示すような成形体を得た。
〔成形条件〕
 成形機:住友重機械工業(株)、SE30DUZ
 シリンダー温度:350℃
 金型温度:90℃
 射出速度:200mm/sec
<Deepness of dent>
The liquid crystal resin composition was injection-molded under the following molding conditions (gate: pin gate, gate size: φ0.3 mm) to obtain molded bodies as shown in FIGS. 1 (a) and 1 (b).
〔Molding condition〕
Molding machine: Sumitomo Heavy Industries, Ltd., SE30DUZ
Cylinder temperature: 350 ° C
Mold temperature: 90 ° C
Injection speed: 200 mm / sec
 デュポン式落下衝撃試験機((株)安田精機製作所)を用いて、下記の条件で上記成形体の天面におもりを落下させた後、当該成形体に残った凹みの深さを、レーザー顕微鏡を用いて計測した。凹みの深さを成形体の耐衝撃性を表す指標として用いた。結果を表1~3に示す。
〔試験条件〕
 落下高さ:15mm
 落下おもり:75g
 撃ち型:直径0.75mm
Using a DuPont type drop impact tester (Yasuda Seiki Seisakusho Co., Ltd.), after dropping a weight on the top surface of the molded product under the following conditions, the depth of the dent remaining in the molded product is measured with a laser microscope. Was measured using. The depth of the dent was used as an index showing the impact resistance of the molded product. The results are shown in Tables 1 to 3.
〔Test condition〕
Drop height: 15 mm
Falling weight: 75g
Shooting type: 0.75 mm in diameter
<内倒れ変形評価>
 下記成形条件で、液晶性樹脂組成物を射出成形して、図2(a)及び図2(b)に示すコの字型液晶性樹脂成形体(厚み:0.5mm)を得、(株)キーエンス製画像寸法測定器IM-6020を使用し、図2(b)に示す角A(ゲート側)及び角B(反ゲート側)を測定した。角Aと角Bとの平均を計算し、成形体の寸法精度を表す指標として用いた。結果を表1~3に示す。
 [成形条件]
 成形機:住友重機械工業、SE30DUZ
 シリンダー温度:350℃
 金型温度:90℃
 射出速度:100mm/sec
<Evaluation of inward collapse deformation>
The liquid crystal resin composition was injection-molded under the following molding conditions to obtain a U-shaped liquid crystal resin molded body (thickness: 0.5 mm) shown in FIGS. 2 (a) and 2 (b). ) Using the KEYENCE image dimension measuring instrument IM-6020, the angle A (gate side) and the angle B (anti-gate side) shown in FIG. 2 (b) were measured. The average of the angle A and the angle B was calculated and used as an index showing the dimensional accuracy of the molded product. The results are shown in Tables 1 to 3.
[Molding condition]
Molding machine: Sumitomo Heavy Industries, SE30DUZ
Cylinder temperature: 350 ° C
Mold temperature: 90 ° C
Injection speed: 100 mm / sec
<ダスト発生数>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE30DUZ」)を用いて、以下の成形条件で成形し、12.5mm×120mm×0.8mmの成形体を得た。この成形体を試験片として使用した。
〔成形条件〕
シリンダー温度:350℃
金型温度:80℃
射出速度:100mm/sec
〔評価〕
 上記試験片を3分間、室温の水中(80ml)で超音波洗浄機(出力300W、周波数45kHz)にかけた。その後、パーティクルカウンター(RION(株)製 液中微粒子計数器KL-11A(PARTICLECOUNTER))にて、上記水中に存在する2μm以上の粒子数を測定し、ダスト発生数として下記の基準で評価した。結果を表1~3に示す。
 ○(良好):ダスト発生数が60000個/80ml以下であった。
 ×(不良):ダスト発生数が60000個/80ml超であった。
<Number of dust generated>
The pellets of Examples and Comparative Examples were molded using a molding machine (“SE30DUZ” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions to obtain a molded product having a size of 12.5 mm × 120 mm × 0.8 mm. rice field. This molded product was used as a test piece.
〔Molding condition〕
Cylinder temperature: 350 ° C
Mold temperature: 80 ° C
Injection speed: 100 mm / sec
〔evaluation〕
The test piece was subjected to an ultrasonic cleaner (output 300 W, frequency 45 kHz) in water (80 ml) at room temperature for 3 minutes. Then, the number of particles of 2 μm or more present in the water was measured with a particle counter (RION Co., Ltd. liquid particle counter KL-11A (PARTICLECOUNTER)), and the number of dust generated was evaluated according to the following criteria. The results are shown in Tables 1 to 3.
◯ (good): The number of dust generated was 60,000 / 80 ml or less.
X (defective): The number of dust generated was 60,000 / more than 80 ml.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1~3に記載の結果から明らかなように、実施例の成形体は、表面白化抑制、機械的強度、寸法精度、及び低発塵性にバランスよく優れつつ、ボールベアリング摺動摩耗性が低減され、かつ、衝撃性が維持されていることが確認された。 As is clear from the results shown in Tables 1 to 3, the molded product of the example has excellent ball bearing sliding wear resistance in a well-balanced manner in terms of surface whitening suppression, mechanical strength, dimensional accuracy, and low dust generation. It was confirmed that the impact was reduced and the impact resistance was maintained.

Claims (4)

  1.  (A)液晶性樹脂、
     (B)粒状充填剤、及び
     (C)ウィスカー
    を含有し、
     前記(B)粒状充填剤のメディアン径は、0.3~5.0μmであり、
     前記(B)粒状充填剤の含有量は、7.5~22.5質量%であり、
     前記(C)ウィスカーの含有量は、2.5~17.5質量%であり、
     前記(B)粒状充填剤と前記(C)ウィスカーとの合計の含有量は、12.5~32.5質量%である耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物。
    (A) Liquid crystal resin,
    Contains (B) granular filler and (C) whiskers,
    The median diameter of the (B) granular filler is 0.3 to 5.0 μm.
    The content of the granular filler (B) is 7.5 to 22.5% by mass.
    The content of the (C) whiskers is 2.5 to 17.5% by mass.
    A liquid crystal resin composition for a ball bearing sliding wear resistant member, wherein the total content of the (B) granular filler and the (C) whiskers is 12.5 to 32.5% by mass.
  2.  前記(B)粒状充填剤は、シリカ及び硫酸バリウムからなる群より選択される1種以上である請求項1に記載の組成物。 The composition according to claim 1, wherein the (B) granular filler is at least one selected from the group consisting of silica and barium sulfate.
  3.  更に(D)エポキシ基含有共重合体を含有する請求項1又は2に記載の組成物であって、
     前記(D)エポキシ基含有共重合体の含有量は、1~5質量%である組成物。
    The composition according to claim 1 or 2, further comprising (D) an epoxy group-containing copolymer.
    The composition in which the content of the (D) epoxy group-containing copolymer is 1 to 5% by mass.
  4.  請求項1から3のいずれかに記載の組成物からなる耐ボールベアリング摺動摩耗部材。 A ball bearing sliding wear resistant member comprising the composition according to any one of claims 1 to 3.
PCT/JP2021/023996 2020-06-30 2021-06-24 Liquid crystalline resin composition for ball bearing anti-sliding wear member, and ball bearing anti-sliding wear member using same WO2022004553A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180043329.4A CN115702206B (en) 2020-06-30 2021-06-24 Liquid crystalline resin composition for ball bearing sliding wear member and ball bearing sliding wear member using same
JP2022501375A JP7200435B2 (en) 2020-06-30 2021-06-24 Liquid crystalline resin composition for ball bearing sliding wear resistant member and ball bearing sliding wear resistant member using the same
KR1020227043936A KR102545958B1 (en) 2020-06-30 2021-06-24 Liquid crystalline resin composition for ball bearing sliding wear resistance and ball bearing sliding wear resistance using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-112583 2020-06-30
JP2020112583 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004553A1 true WO2022004553A1 (en) 2022-01-06

Family

ID=79316285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023996 WO2022004553A1 (en) 2020-06-30 2021-06-24 Liquid crystalline resin composition for ball bearing anti-sliding wear member, and ball bearing anti-sliding wear member using same

Country Status (5)

Country Link
JP (1) JP7200435B2 (en)
KR (1) KR102545958B1 (en)
CN (1) CN115702206B (en)
TW (1) TW202204522A (en)
WO (1) WO2022004553A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202225A (en) * 1991-01-25 1993-08-10 Nippon Petrochem Co Ltd Bearing
WO1995025770A1 (en) * 1994-03-18 1995-09-28 Mitsubishi Denki Kabushiki Kaisha Resin composition for molding precision parts, and sleeve and ferrule produced therefrom
JP2005239754A (en) * 2004-02-24 2005-09-08 Otsuka Chemical Co Ltd Slidable resin composition
JP2008063498A (en) * 2006-09-08 2008-03-21 Toray Ind Inc Liquid crystalline polyester composition
JP2012193343A (en) * 2011-02-28 2012-10-11 Sumitomo Chemical Co Ltd Liquid crystal polyester composition
WO2015016370A1 (en) * 2013-07-31 2015-02-05 住友化学株式会社 Liquid crystalline polyester composition
JP2015028181A (en) * 2012-11-19 2015-02-12 三井化学株式会社 Polyester resin composition and camera module containing the same
JP2015108036A (en) * 2013-12-03 2015-06-11 Jx日鉱日石エネルギー株式会社 All aromatic liquid crystal polyester resin composition and camera module component containing injection molded article thereof as constitutional member
JP2015108037A (en) * 2013-12-03 2015-06-11 Jx日鉱日石エネルギー株式会社 Liquid crystal polyester amide resin composition and camera module component containing injection molded article thereof as constitutional member
JP2018104527A (en) * 2016-12-26 2018-07-05 東レ株式会社 Liquid crystal polyester resin composition and molded article made of the same
JP2020007394A (en) * 2018-07-03 2020-01-16 ポリプラスチックス株式会社 Liquid crystalline resin composition for sliding wear-resistant members, and sliding wear-resistant member including the same
WO2020071495A1 (en) * 2018-10-05 2020-04-09 ポリプラスチックス株式会社 Liquid crystalline resin composition for ball bearing anti-sliding-abrasion member, and ball bearing anti-sliding-abrasion member using same
WO2021065416A1 (en) * 2019-10-03 2021-04-08 ポリプラスチックス株式会社 Liquid crystalline resin composition for ball bearing anti-sliding abrasion member, and ball bearing anti-sliding abrasion member using same
WO2021117607A1 (en) * 2019-12-11 2021-06-17 大塚化学株式会社 Liquid crystal polymer composition, liquid crystal polymer molded body, and camera module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087958B2 (en) 2007-03-07 2012-12-05 東レ株式会社 Molded product comprising liquid crystalline resin composition
US9618770B2 (en) 2014-04-11 2017-04-11 Samsung Electro-Mechanics Co., Ltd. Camera module with function of auto-focus and image stabilize
KR20180077187A (en) * 2015-10-30 2018-07-06 도레이 카부시키가이샤 Liquid crystalline polyester resin composition for camera module and molded article for camera module comprising the same
JP6513322B1 (en) * 2017-09-12 2019-05-15 ポリプラスチックス株式会社 Liquid crystalline resin composition for sliding wear resistant member and sliding wear resistant member using the same
JP6643516B1 (en) * 2019-05-17 2020-02-12 住友化学株式会社 Pellet mixture and injection molding

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202225A (en) * 1991-01-25 1993-08-10 Nippon Petrochem Co Ltd Bearing
WO1995025770A1 (en) * 1994-03-18 1995-09-28 Mitsubishi Denki Kabushiki Kaisha Resin composition for molding precision parts, and sleeve and ferrule produced therefrom
JP2005239754A (en) * 2004-02-24 2005-09-08 Otsuka Chemical Co Ltd Slidable resin composition
JP2008063498A (en) * 2006-09-08 2008-03-21 Toray Ind Inc Liquid crystalline polyester composition
JP2012193343A (en) * 2011-02-28 2012-10-11 Sumitomo Chemical Co Ltd Liquid crystal polyester composition
JP2015028181A (en) * 2012-11-19 2015-02-12 三井化学株式会社 Polyester resin composition and camera module containing the same
WO2015016370A1 (en) * 2013-07-31 2015-02-05 住友化学株式会社 Liquid crystalline polyester composition
JP2015108036A (en) * 2013-12-03 2015-06-11 Jx日鉱日石エネルギー株式会社 All aromatic liquid crystal polyester resin composition and camera module component containing injection molded article thereof as constitutional member
JP2015108037A (en) * 2013-12-03 2015-06-11 Jx日鉱日石エネルギー株式会社 Liquid crystal polyester amide resin composition and camera module component containing injection molded article thereof as constitutional member
JP2018104527A (en) * 2016-12-26 2018-07-05 東レ株式会社 Liquid crystal polyester resin composition and molded article made of the same
JP2020007394A (en) * 2018-07-03 2020-01-16 ポリプラスチックス株式会社 Liquid crystalline resin composition for sliding wear-resistant members, and sliding wear-resistant member including the same
WO2020071495A1 (en) * 2018-10-05 2020-04-09 ポリプラスチックス株式会社 Liquid crystalline resin composition for ball bearing anti-sliding-abrasion member, and ball bearing anti-sliding-abrasion member using same
WO2021065416A1 (en) * 2019-10-03 2021-04-08 ポリプラスチックス株式会社 Liquid crystalline resin composition for ball bearing anti-sliding abrasion member, and ball bearing anti-sliding abrasion member using same
WO2021117607A1 (en) * 2019-12-11 2021-06-17 大塚化学株式会社 Liquid crystal polymer composition, liquid crystal polymer molded body, and camera module

Also Published As

Publication number Publication date
CN115702206A (en) 2023-02-14
CN115702206B (en) 2023-12-12
TW202204522A (en) 2022-02-01
JPWO2022004553A1 (en) 2022-01-06
JP7200435B2 (en) 2023-01-06
KR20230008223A (en) 2023-01-13
KR102545958B1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP5680788B2 (en) Liquid crystalline resin composition for camera modules
JP6823760B2 (en) Liquid crystal resin composition for ball bearing sliding wear member and ball bearing sliding wear member using it
JP6581659B2 (en) Liquid crystalline resin composition for camera module and camera module using the same
JP6762228B2 (en) Liquid crystal resin composition for camera module and camera module using it
KR101907100B1 (en) Liquid crystalline resin composition for camera module, production method thereof, and camera module using the composition
WO2014087842A1 (en) Liquid crystal resin composition for camera module and camera module using same
JP6906123B1 (en) Liquid crystal resin composition for ball bearing sliding wear member and ball bearing sliding wear member using it
TWI762713B (en) Liquid crystalline resin composition for sliding wear-resistant member and sliding wear-resistant member using the same
JP6545416B1 (en) Liquid crystalline resin composition for sliding wear resistant member and sliding wear resistant member using the same
JP7199853B2 (en) Liquid crystalline resin composition for sliding wear resistant member and sliding wear resistant member using the same
WO2022004553A1 (en) Liquid crystalline resin composition for ball bearing anti-sliding wear member, and ball bearing anti-sliding wear member using same
JP7101323B1 (en) Liquid crystal resin composition for ball bearing sliding wear resistant member and ball bearing sliding wear resistant member using it
JP7373080B2 (en) Conductive liquid crystal resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022501375

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227043936

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21831909

Country of ref document: EP

Kind code of ref document: A1