WO2021065416A1 - Liquid crystalline resin composition for ball bearing anti-sliding abrasion member, and ball bearing anti-sliding abrasion member using same - Google Patents

Liquid crystalline resin composition for ball bearing anti-sliding abrasion member, and ball bearing anti-sliding abrasion member using same Download PDF

Info

Publication number
WO2021065416A1
WO2021065416A1 PCT/JP2020/034340 JP2020034340W WO2021065416A1 WO 2021065416 A1 WO2021065416 A1 WO 2021065416A1 JP 2020034340 W JP2020034340 W JP 2020034340W WO 2021065416 A1 WO2021065416 A1 WO 2021065416A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball bearing
filler
mass
resin composition
liquid crystal
Prior art date
Application number
PCT/JP2020/034340
Other languages
French (fr)
Japanese (ja)
Inventor
不二 酒井
博樹 深津
昭宏 長永
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to KR1020227010813A priority Critical patent/KR102506289B1/en
Priority to JP2021503930A priority patent/JP6906123B1/en
Priority to CN202080068805.3A priority patent/CN114502657B/en
Publication of WO2021065416A1 publication Critical patent/WO2021065416A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/48Liquid crystal polymers [LCP]

Definitions

  • the present invention relates to a liquid crystal resin composition for a ball bearing sliding wear resistant member and a ball bearing sliding wear resistant member using the same.
  • Liquid crystal resins represented by liquid crystal polyester resins have excellent mechanical strength, heat resistance, chemical resistance, electrical properties, etc. in a well-balanced manner, and also have excellent dimensional stability, so they are widely used as high-performance engineering plastics. It's being used. Recently, liquid crystal resins have come to be used for precision equipment parts by taking advantage of these features.
  • liquid crystal resin examples include connectors such as FPC connectors; sockets such as memory card sockets; camera module parts such as lens holders; relays. These parts are required to be excellent in surface whitening suppression, low warpage, wear strength, and low dust generation, and may be used in a form in which two or more members dynamically contact each other. Therefore, it is also required that the sliding wear property (that is, the ease of wear when two or more members are dynamically contacted) is reduced.
  • Patent Document 1 describes a liquid crystal resin and a talc having a specific volume average particle size as an object of providing a molded product made of a liquid crystal resin composition having excellent surface appearance and excellent slidability. A liquid crystal resin composition containing a specific ratio of the above is disclosed.
  • Patent Document 2 describes a part for a camera module used in a form of dynamically contacting a ball bearing.
  • the conventional liquid crystal resin composition is insufficient in reducing the ball bearing sliding wear resistance and improving the impact resistance.
  • the present invention has been made to solve the above problems, and an object of the present invention is to have a well-balanced excellent surface whitening suppression, low warpage property, weld strength, and low dust generation property, and to have ball bearing sliding wear resistance.
  • a liquid crystal resin composition for a ball bearing sliding wear member used for manufacturing a ball bearing sliding wear member with reduced and improved impact resistance, and a ball bearing sliding wear member using the liquid crystal resin composition. Is to provide.
  • the present inventors have conducted extensive research to solve the above problems.
  • a liquid crystal resin, a granular filler having a specific median diameter and a specific Mohs hardness, and a plate-shaped filler having a specific Mohs hardness are contained, and the granular filler, the plate-shaped filler, and the total of these are contained. It has been found that the above-mentioned problems can be solved by using a liquid crystal resin composition in which the content of each of the above is in a predetermined range, and the present invention has been completed. More specifically, the present invention provides the following.
  • (1) Contains (A) liquid crystal resin, (B) granular filler, and (C) plate-like filler, and the median diameter of the (B) granular filler is 0.3 to 5.0 ⁇ m.
  • the moth hardness of the (B) granular filler is 2.5 or more
  • the moth hardness of the (C) plate-shaped filler is 2.0 or more
  • the content of the (B) silica is
  • the content of the (C) plate-shaped filler is 2.5 to 22.5% by mass
  • the content of the (B) granular filler and the (C) plate is 2.5 to 32.5% by mass.
  • a liquid crystal resin composition for a ball bearing sliding wear resistant member having a total content of 22.5 to 37.5% by mass with the filler.
  • composition according to (1) wherein the (C) plate-like filler is mica.
  • composition according to (1) or (2), wherein the (B) granular filler is at least one selected from the group consisting of silica and barium sulfate.
  • a ball bearing sliding wear resistant member made of the composition according to any one of (1) to (4).
  • a ball bearing sliding wear member is manufactured using the liquid crystal resin composition for a ball bearing sliding wear member of the present invention as a raw material, a balance between surface whitening suppression, low warpage, weld strength, and low dust generation is achieved. It is possible to obtain a ball bearing sliding wear resistant member which is excellent, has reduced ball bearing sliding wear resistance, and has improved impact resistance.
  • FIG. 1 is a diagram for explaining a method of evaluating the amount of sliding wear.
  • FIG. 2A is a diagram showing a camera module type molded product used for the warp deformation evaluation
  • FIG. 2B is a diagram showing a measurement point in the warp deformation evaluation.
  • the unit of the numerical value in the figure is mm.
  • FIG. 3 is a diagram showing a molded product used in the weld strength evaluation.
  • the unit of the numerical value in the figure is mm.
  • the liquid crystal resin composition for a ball bearing sliding wear resistant member of the present invention contains (A) a liquid crystal resin, (B) a granular filler, and (C) a plate-like filler.
  • the liquid crystal resin (A) used in the present invention refers to a melt-processable polymer having a property of forming an optically anisotropic molten phase.
  • the properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the anisotropic molten phase can be confirmed by observing the molten sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leitz polarizing microscope.
  • Liquid crystalline polymers applicable to the present invention normally transmit polarized light and are optically anisotropy when inspected between orthogonal polarizers, even in the molten and resting state.
  • the type of the liquid crystal resin (A) as described above is not particularly limited, and is preferably an aromatic polyester and / or an aromatic polyester amide.
  • the range also includes polyesters that partially contain aromatic polyesters and / or aromatic polyester amides in the same molecular chain.
  • the liquid crystal resin (A) preferably at least about 2.0 dl / g, more preferably 2.0 to 10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by mass. Those having a logarithmic viscosity (IV) of are preferably used.
  • the aromatic polyester or aromatic polyesteramide as the (A) liquid crystal resin applicable to the present invention is particularly preferably at least one selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic hydroxyamines, and aromatic diamines.
  • Polyester composed of repeating units mainly derived from one or more aromatic hydroxycarboxylic acids and their derivatives; (2) Repeating units mainly derived from (a) one or more aromatic hydroxycarboxylic acids and their derivatives, and (b) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and one of their derivatives. Or polyester consisting of repeating units derived from two or more species; (3) Repeating units mainly derived from (a) one or more kinds of aromatic hydroxycarboxylic acids and their derivatives, and (b) one kind of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and their derivatives.
  • a polyester consisting of a repeating unit derived from two or more kinds and (c) a repeating unit derived from at least one kind or two or more kinds of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof; (4) Repeating units mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and their derivatives, and (b) one or two of aromatic hydroxyamines, aromatic diamines, and their derivatives.
  • Polyester amides consisting of repeating units derived from species or higher and (c) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and repeating units derived from one or more of their derivatives; (5) Repeating units mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and their derivatives, and (b) one or two of aromatic hydroxyamines, aromatic diamines, and their derivatives. Repeating units derived from species or higher, (c) aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and repeating units derived from one or more of their derivatives, and (d) aromatic diols, alicyclics.
  • polyesteramides composed of group diols, aliphatic diols, and repeating units derived from at least one or more of the derivatives thereof.
  • a molecular weight adjusting agent may be used in combination with the above-mentioned constituent components, if necessary.
  • Preferred examples of the specific compound constituting the (A) liquid crystal resin applicable to the present invention are aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid; 2,6-dihydroxy.
  • Aromatic diols such as naphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, hydroquinone, resorcin, a compound represented by the following general formula (I), and a compound represented by the following general formula (II).
  • Aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and compounds represented by the following general formula (III); p-aminophenol, p- Examples include aromatic amines such as phenylenediamine.
  • X A group selected from alkylene (C 1 to C 4 ), alkylidene, -O-, -SO-, -SO 2- , -S-, and -CO-)
  • the liquid crystal resin (A) used in the present invention can be prepared from the above-mentioned monomer compound (or mixture of monomers) by a known method using a direct polymerization method or a transesterification method, and is usually a melt polymerization method.
  • a melt polymerization method Solution polymerization method, slurry polymerization method, solid phase polymerization method, etc., or a combination of two or more of these is used, and a melt polymerization method or a combination of a melt polymerization method and a solid phase polymerization method is preferably used.
  • the above compounds having an ester-forming ability may be used in the polymerization as they are, or may be modified from a precursor to a derivative having the ester-forming ability in the pre-polymerization step.
  • Various catalysts can be used for these polymerizations, and typical ones are potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris (2). , 4-Pentandionato) Metal salt-based catalysts such as cobalt (III), and organic compound-based catalysts such as N-methylimidazole and 4-dimethylaminopyridine.
  • the amount of the catalyst used is generally preferably about 0.001 to 1% by mass, particularly preferably about 0.01 to 0.2% by mass, based on the total mass of the monomer. If necessary, the polymer produced by these polymerization methods can be further increased in molecular weight by a solid phase polymerization method in which the polymer is heated under reduced pressure or in an inert gas.
  • the melt viscosity of the liquid crystal resin (A) obtained by the above method is not particularly limited. Generally, those having a melt viscosity at a molding temperature of 1000 sec -1 and a shear rate of 3 Pa ⁇ s or more and 500 Pa ⁇ s or less can be used. However, the one having a very high viscosity by itself is not preferable because the fluidity is very deteriorated.
  • the liquid crystal resin (A) may be a mixture of two or more kinds of liquid crystal resins.
  • the content of the liquid crystal resin (A) is preferably 62.5 to 77.5% by mass or 61.5 to 72.5% by mass, and more preferably 65 to 72.5% by mass. It is 75% by mass or 63.5 to 72.5% by mass.
  • the content of the component (A) is within the above range, it is preferable in terms of fluidity, heat resistance and the like.
  • the component (B) is a granular filler
  • the median diameter of the component (B) is 0.3 to 5.0 ⁇ m
  • the Mohs hardness of the component (B) is 2.5 or more.
  • the median diameter is preferably 0.5 to 5.0 ⁇ m, more preferably 0.5 to 4.0 ⁇ m.
  • the median diameter means the median value of the volume standard measured by the laser diffraction / scattering type particle size distribution measurement method.
  • the Mohs hardness is preferably 2.7 or more, more preferably 3.0 or more.
  • the Mohs hardness is 2.5 or more, the surface hardness of the molded product tends to be high, so that the molded product is less likely to be scratched, cracked, dented or the like even when subjected to an impact, and the impact resistance is likely to be improved.
  • the upper limit of the Mohs hardness is not particularly limited, and may be 10 or less, 8 or less, or 7 or less.
  • the component (B) may be used alone or in combination of two or more.
  • Examples of the granular filler of the component (B) include silica (Mohs hardness 6), quartz powder (Mohs hardness 7), glass beads (Mohs hardness 5), glass powder (Mohs hardness 5), and potassium aluminum silicate (Mohs).
  • Mohs scales such as hardness 6), Mohs clay (Mohs hardness 6-7), Mohs scale (Mohs hardness 4.5-5); iron oxide (Mohs hardness 6), titanium oxide (Mohs hardness 6.5), oxidation Metal oxides such as zinc (Mohs hardness 4) and alumina (Mohs hardness 9); metal carbonates such as calcium carbonate (Mohs hardness 3) and magnesium carbonate (Mohs hardness 3.5); calcium sulfate (Mohs hardness 3.5) ), Metal sulfates such as barium sulfate (Mohs hardness 3 to 3.5); phosphates such as calcium pyrophosphate (Mohs hardness 5) and anhydrous dicalcium phosphate (Mohs hardness 3.5); 9); Mohs hardness (Mohs hardness 9); Mohs hardness 9) and the like (Mohs hardness 9).
  • the content of the component (B) is 2.5 to 22.5% by mass in the liquid crystal composition of the present invention.
  • the content of the component (B) is 2.5% by mass or more, the weld strength of the molded product tends to be high, and the molded product having reduced ball bearing sliding wear resistance can be easily obtained.
  • the content of the component (B) is 22.5% by mass or less, the effect of suppressing surface whitening of the molded product tends to be high.
  • the preferable content of the component (B) is 5 to 20% by mass.
  • the component (C) is a plate-like filler, and the Mohs hardness of the component (C) is 2.0 or more, preferably 2.2 or more, and more preferably 2.5 or more.
  • the Mohs hardness of the component (C) is 2.0 or more, the surface hardness of the molded product tends to be high, so that the molded product is less likely to be scratched, cracked, dented, etc. even when subjected to an impact, and has impact resistance. Easy to improve.
  • the upper limit of the Mohs hardness is not particularly limited, and may be 10 or less, 8 or less, or 7 or less.
  • the component (C) can be used alone or in combination of two or more.
  • the content of the (C) plate-like filler is 2.5 to 32.5% by mass.
  • the content of the component (C) is 2.5% by mass or more, firstly, the surface hardness of the molded product tends to be high, so that the molded product is scratched, cracked, dented or the like even when it receives an impact. It is difficult and the impact resistance is easily improved, and secondly, it is easy to obtain a molded product having reduced ball bearing sliding wear resistance.
  • the content of the component (C) is 32.5% by mass or less, the effect of suppressing surface whitening of the molded product and the low dust generation property of the molded product tend to be high.
  • the content of the component (C) is preferably 5 to 30% by mass.
  • Examples of the component (C) include mica (Mohs hardness 2 to 3), glass flakes (Mohs hardness 5), and various metal foils.
  • Mica is preferable in that it suppresses warpage deformation of the molded product obtained from the liquid crystal resin composition without deteriorating the fluidity of the liquid crystal resin composition.
  • the median diameter of the plate-shaped filler is not particularly limited, and a smaller diameter is desirable in consideration of the fluidity of the liquid crystal resin composition.
  • Mica is a pulverized product of silicate minerals containing aluminum, potassium, magnesium, sodium, iron and the like.
  • Examples of mica that can be used in the present invention include muscovite, phlogopite, biotite, and artificial mica. Of these, muscovite is preferable because it has a good hue and is inexpensive.
  • a wet pulverization method and a dry pulverization method are known as methods for pulverizing minerals.
  • the wet pulverization method is a method in which rough mica is roughly pulverized by a dry pulverizer, water is added, and the main pulverization is performed by wet pulverization in a slurry state, and then dehydration and drying are performed.
  • the dry pulverization method is a low-cost and general method as compared with the wet pulverization method, it is easier to pulverize the mineral thinly and finely by using the wet pulverization method.
  • the present invention it is preferable to use a thin and fine pulverized product because mica having a preferable average particle size and thickness described later can be obtained. Therefore, in the present invention, it is preferable to use mica produced by the wet pulverization method.
  • a coagulation sedimentation agent and / or a sedimentation aid is added to the object to be pulverized in order to improve the dispersion efficiency of the object to be pulverized.
  • a coagulation sedimentation agent and sedimentation aid that can be used in the present invention include polyaluminum chloride, aluminum sulfate, ferrous sulfate, ferric sulfate, copper chloride, polyiron sulfate, ferric chloride, and iron-silica inorganic high.
  • coagulation sedimentation agents and sedimentation aids have an alkaline or acidic pH.
  • the mica used in the present invention is preferably one that does not use a coagulation sedimentation agent and / or a sedimentation aid during wet pulverization.
  • the median diameter of mica that can be used in the present invention is preferably 10 to 100 ⁇ m, particularly preferably 20 to 80 ⁇ m.
  • the median diameter of mica is 10 ⁇ m or more, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable.
  • the median diameter of mica is 100 ⁇ m or less, the rigidity of the molded product is likely to be sufficiently improved, and the weld strength is also likely to be sufficient, which is preferable. Further, when the median diameter of mica is 100 ⁇ m or less, it is easy to secure sufficient fluidity for molding the molded product.
  • the thickness of mica that can be used in the present invention is preferably 0.01 to 1 ⁇ m, particularly preferably 0.03 to 0.3 ⁇ m, as measured by observation with an electron microscope.
  • the thickness of the mica is 0.01 ⁇ m or more, the mica is less likely to crack during the melt processing of the liquid crystal resin composition, and the rigidity of the molded product may be easily improved, which is preferable.
  • the thickness of mica is 1 ⁇ m or less, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable.
  • the mica that can be used in the present invention may be surface-treated with a silane coupling agent or the like, and / or may be granulated with a binder to form granules.
  • the total content of the component (B) and the component (C) is 22.5 to 37.5% by mass, preferably 25 to 35% by mass in the liquid crystal resin composition of the present invention. ..
  • the total content of the above is 22.5% by mass or more, firstly, the low warpage property of the molded body tends to be high, and secondly, the surface hardness of the molded body tends to be high. Even if it receives an impact, scratches, cracks, dents, etc. are less likely to occur, the impact resistance is likely to be improved, and thirdly, it is easy to obtain a molded product having reduced ball bearing sliding wear resistance.
  • the total content is 37.5% by mass or less, the effect of suppressing surface whitening of the molded product and the low dust generation property of the molded product tend to be high.
  • the liquid crystal composition of the present invention may contain (D) an epoxy group-containing copolymer.
  • the epoxy group-containing copolymer can be used alone or in combination of two or more.
  • the (D) epoxy group-containing copolymer is not particularly limited, and is at least selected from the group consisting of (D1) epoxy group-containing olefin-based copolymer and (D2) epoxy group-containing styrene-based copolymer. One type can be mentioned.
  • the epoxy group-containing copolymer contributes to reducing the ball bearing sliding wear property of the molded product obtained from the liquid crystal resin composition of the present invention.
  • Examples of the (D1) epoxy group-containing olefin-based copolymer include a copolymer composed of a repeating unit derived from an ⁇ -olefin and a repeating unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid. Be done.
  • the ⁇ -olefin is not particularly limited, and examples thereof include ethylene, propylene, butene, etc. Among them, ethylene is preferably used.
  • the glycidyl ester of ⁇ , ⁇ -unsaturated acid is represented by the following general formula (IV).
  • the glycidyl ester of ⁇ , ⁇ -unsaturated acid is, for example, acrylic acid glycidyl ester, methacrylic acid glycidyl ester, etacrylic acid glycidyl ester, itaconic acid glycidyl ester and the like, and methacrylic acid glycidyl ester is particularly preferable.
  • the content of the repeating unit derived from ⁇ -olefin is 87 to 98% by mass, and the content of the repeating unit derived from the glycidyl ester of ⁇ , ⁇ -unsaturated acid is contained.
  • the amount is preferably 13 to 2% by mass.
  • the (D1) epoxy group-containing olefin-based copolymer used in the present invention has acrylonitrile, acrylic acid ester, methacrylic acid ester, ⁇ -methylstyrene, and malean anhydride as a third component in addition to the above two components as long as the present invention is not impaired.
  • Repeating units derived from one or more olefinically unsaturated esters such as acids may be contained in an amount of 0 to 48 parts by mass with respect to 100 parts by mass of the above two components.
  • the epoxy group-containing olefin-based copolymer which is the component (D1) of the present invention can be easily prepared by a usual radical polymerization method using a monomer and a radical polymerization catalyst corresponding to each component. More specifically, usually, the presence of a suitable solvent or chain transfer agent for ⁇ -olefin and glycidyl ester of ⁇ , ⁇ -unsaturated acid at 500 to 4000 atm and 100 to 300 ° C. in the presence of a radical generator. It can be produced by a method of copolymerizing under or in the absence. It can also be produced by a method in which an ⁇ -olefin, an ⁇ , ⁇ -unsaturated acid glycidyl ester and a radical generator are mixed and melt-grafted in an extruder.
  • Examples of the epoxy group-containing styrene-based copolymer (D2) include a copolymer composed of a repeating unit derived from styrenes and a repeating unit derived from a glycidyl ester of ⁇ , ⁇ -unsaturated acid. Be done. The description of the glycidyl ester of ⁇ , ⁇ -unsaturated acid is omitted because it is the same as that described in the component (D1).
  • styrenes examples include styrene, ⁇ -methylstyrene, brominated styrene, divinylbenzene and the like, and styrene is preferably used.
  • the (D2) epoxy group-containing styrene-based copolymer used in the present invention is a multidimensional copolymer containing a repeating unit derived from one or more of other vinyl monomers as a third component in addition to the above two components. There may be.
  • a suitable third component is a repeating unit derived from one or more olefinically unsaturated esters such as acrylonitrile, acrylic acid ester, methacrylic acid ester, and maleic anhydride.
  • An epoxy group-containing styrene-based copolymer containing 40% by mass or less of these repeating units in the copolymer is preferable as the component (D2).
  • the content of the repeating unit derived from the glycidyl ester of ⁇ , ⁇ -unsaturated acid is 2 to 20% by mass, and the content of the repeating unit derived from styrenes. Is preferably 80 to 98% by mass.
  • the epoxy group-containing styrene-based copolymer can be prepared by a usual radical polymerization method using a monomer corresponding to each component and a radical polymerization catalyst. More specifically, styrenes and glycidyl esters of ⁇ , ⁇ -unsaturated acids are usually mixed in the presence of a radical generator at 500 to 4000 atm and 100 to 300 ° C. in the presence of a suitable solvent or chain transfer agent. Alternatively, it can be produced by a method of copolymerizing in the absence. It can also be produced by a method in which styrenes, an ⁇ , ⁇ -unsaturated acid glycidyl ester and a radical generator are mixed and melt-grafted in an extruder.
  • the (D) epoxy group-containing copolymer the (D1) epoxy group-containing olefin-based copolymer is preferable in terms of heat resistance.
  • the ratio of these components can be appropriately selected according to the required characteristics.
  • the content of the epoxy group-containing copolymer (D) may be, for example, 0 to 5% by mass, preferably 1 to 5% by mass in the liquid crystal resin composition of the present invention.
  • the content is more preferably 1.5 to 4.5% by mass, and even more preferably 3.5 to 4.5% by mass.
  • the carbon black (E) used as an optional component in the present invention is not particularly limited as long as it is generally available and is used for resin coloring. Normally, (E) carbon black contains lumps formed by agglomeration of primary particles, but unless a large amount of lumps having a size of 50 ⁇ m or more is contained, the resin composition of the present invention is molded. Many bumps (fine bumpy protrusions (fine irregularities) in which carbon black is agglomerated) are unlikely to occur on the surface of the molded product. When the content of the particles having a particle size of 50 ⁇ m or more is 20 ppm or less, the effect of suppressing the raising of the surface of the molded product tends to be high. The preferred content is 5 ppm or less.
  • the blending amount of the carbon black (E) may be, for example, 0 to 5% by mass, preferably 0.5 to 5% by mass in the liquid crystal resin composition.
  • the release agent (F) used as an optional component in the present invention is not particularly limited as long as it is generally available, and is, for example, fatty acid esters, fatty acid metal salts, fatty acid amides, and low. Examples thereof include molecular weight polyolefins, and fatty acid esters of pentaerythritol (for example, pentaerythritol tetrastearate) are preferable.
  • the amount of the release agent (F) to be blended in the liquid crystal resin composition may be, for example, 0 to 3% by mass, preferably 0.1 to 3% by mass.
  • amount of the release agent compounded is 0.1% by mass or more, it is easy to obtain a molded product having improved mold releasability during molding and reduced ball bearing sliding wear resistance.
  • the blending amount of the release agent is 3% by mass or less, the mold deposit (that is, the deposit on the mold in molding; hereinafter, also referred to as “MD”) is likely to be reduced.
  • the liquid crystal resin composition of the present invention includes other polymers, other fillers, and known substances generally added to synthetic resins, that is, antioxidants and ultraviolet absorbers, as long as the effects of the present invention are not impaired.
  • Other components such as stabilizers such as agents, antistatic agents, flame retardants, colorants such as dyes and pigments, lubricants, crystallization accelerators, and crystal nucleating agents can also be appropriately added depending on the required performance.
  • Other components may be used alone or in combination of two or more.
  • the other fillers are (B) granular fillers, (C) plate-shaped fillers, and (E) fillers other than carbon black, for example, granular fillers other than the component (B); Plate-like fillers less than 2.0; fibrous fillers can be mentioned.
  • Other fillers may be used alone or in combination of two or more.
  • Examples of the granular filler other than the component (B) include gypsum (calcium sulfate / dihydrate) and the like.
  • Examples of the plate-like filler having a Mohs hardness of less than 2.0 include talc.
  • the fibrous filler include whiskers.
  • the liquid crystal resin composition of the present invention preferably does not contain a plate-like filler having a Mohs hardness of less than 2.0, such as talc.
  • the liquid crystal resin composition of the present invention preferably does not contain a granular filler other than the component (B) such as gypsum.
  • the liquid crystal resin composition of the present invention preferably does not contain a fibrous filler.
  • the method for preparing the liquid crystal resin composition for a ball bearing sliding wear member of the present invention is not particularly limited.
  • the above-mentioned components (A) to (C), and optionally at least one of the above-mentioned (D) to (F) components and other components are blended, and these are blended using a single-screw or twin-screw extruder.
  • the liquid crystal resin composition for a ball bearing sliding wear member is prepared by melt-kneading.
  • the liquid crystal resin composition of the present invention obtained as described above preferably has a melt viscosity of 90 Pa ⁇ sec or less, preferably 80 Pa ⁇ sec or less, from the viewpoint of fluidity at the time of melting and moldability. More preferably.
  • the melt viscosity a value obtained by a measuring method based on ISO 11443 is adopted under the conditions of a cylinder temperature 10 to 20 ° C. higher than the melting point of the liquid crystal resin and a shear rate of 1000 sec -1.
  • a ball bearing sliding wear resistant member is manufactured using the liquid crystal resin composition of the present invention.
  • the ball bearing sliding wear member of the present invention has excellent surface whitening suppression, low warpage, weld strength, and low dust generation in a well-balanced manner, while reducing ball bearing sliding wear resistance and impact resistance. It is improving.
  • the ball bearing sliding wear resistant member of the present invention can be used for a component that dynamically contacts the ball bearing during use, and specifically, for example, it is used in a form that dynamically contacts the ball bearing. It can be used for camera module parts such as lens holders.
  • the stirring torque reached a predetermined value
  • nitrogen was introduced to bring the mixture from a reduced pressure state to a pressurized state through normal pressure
  • the polymer was discharged from the lower part of the polymerization vessel, and the strands were pelletized to obtain pellets.
  • the obtained pellets were heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain the desired polymer.
  • the melting point of the obtained polymer was 336 ° C., and the melt viscosity at 350 ° C. was 19.0 Pa ⁇ s.
  • the melt viscosity of the polymer was measured in the same manner as the method for measuring the melt viscosity described later.
  • HBA 4-Hydroxybenzoic acid
  • HNA 2-Hydroxy-6-naphthoic acid
  • TA Terephthalic acid
  • BP 4,4'-dihydroxybiphenyl
  • APAP 4-acetoxyaminophenol
  • APAP 126 g (5 mol%)
  • Metal catalyst potassium acetate catalyst
  • 110 mg Acylating agent acetic anhydride
  • -Silica 1 Admafine SO-C2 (manufactured by Admatex Co., Ltd., silica, median diameter 0.5 ⁇ m, Mohs hardness 6)
  • -Silica 2 Admafine SO-C6 (manufactured by Admatex Co., Ltd., silica, median diameter 2.0 ⁇ m, Mohs hardness 6)
  • -Silica 3 Denka fused silica FB-5SDC (manufactured by Denka Co., Ltd., silica, median diameter 4.0 ⁇ m, Mohs hardness 6)
  • -Silica 4 Denka fused silica FB-7SDC (manufactured by Denka Co., Ltd., silica, median diameter 7.0 ⁇ m, Mohs hardness 6)
  • -Glass beads EGB731 (manufactured by Potters Barotini Co., Ltd., glass beads, median diameter 20.0
  • ⁇ Ball bearing sliding wear resistance> The pellets of Examples and Comparative Examples were molded using a molding machine (“SE100DU” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions to obtain a test piece for measurement (80 mm ⁇ 80 mm ⁇ 1 mm). .. Using a light load reciprocating tester, as shown in FIG. 1, a load is applied to the ball 4 (diameter 5 mm, made of SUS) at the tip of the arm 3 via the grease 2 on the measurement test piece 1, and the following After performing the reciprocating sliding test under the reciprocating sliding conditions, the width of the ball bearing sliding marks remaining on the measurement test piece 1 is measured using a stereomicroscope, and the ball bearing sliding wear resistance is determined according to the following criteria. evaluated.
  • SE100DU manufactured by Sumitomo Heavy Industries, Ltd.
  • the warpability was evaluated according to the following criteria. The results are shown in Tables 1-5. ⁇ (Good): The warp deformation was 0.020 mm or less. ⁇ (Slightly good): The warp deformation was more than 0.020 mm and 0.025 mm or less. X (defective): The warp deformation was more than 0.025 mm. ⁇ Molding condition ⁇ Cylinder temperature: 350 °C Mold temperature: 80 ° C Injection speed: 100 mm / sec Holding pressure: 50 MPa
  • ⁇ Weld strength> The pellets of Examples and Comparative Examples were injection-molded under the following molding conditions, and as shown in FIG. 3, a perforated test piece 10 having a film gate 11 and a hole 12 (perforated flat plate 30 mm ⁇ 30 mm ⁇ 0.3 mm, hole diameter). 7 mm) was obtained. From the obtained perforated test piece 10, a portion having a width of 4.5 mm on the gate side and a portion having a width of 4.5 mm on the anti-gate side were cut out with the hole 12 in between to obtain test pieces 13a and 13b for measurement, respectively.
  • the bending strength of each of the measurement test pieces 13a and 13b was measured under the following measurement conditions, and the value obtained by dividing the bending strength of the measurement test piece 13b on the opposite side by the bending strength of the measurement test piece 13a on the gate side was obtained by welding.
  • the strength retention rate the weld strength was evaluated according to the following criteria. The results are shown in Tables 1-5. ⁇ (Good): The weld strength retention rate was 55% or more. ⁇ (Slightly good): The weld strength retention rate was 45% or more and less than 55%. X (defective): Weld strength retention rate was less than 45%.
  • Molding machine Sumitomo Heavy Industries SE30DUZ Cylinder temperature; 350 ° C-350 ° C-350 ° C-340 ° C-330 ° C Mold temperature; 90 ° C Injection speed; 200 mm / sec Holding pressure; 50 MPa Holding time; 2 sec Cooling time; 8 sec Screw rotation speed; 150 rpm Screw back pressure; 1 MPa
  • Molding machine RTM-100 manufactured by Orientec Tencilon Universal Testing Machine Load cell; 100 kg Span: 4.8 mm Bending speed: 2 mm / min
  • ⁇ Surface hardness> The pellets of Examples and Comparative Examples were molded using a molding machine (“SE30DUZ” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions, and a test piece for measurement (12.5 mm ⁇ 120 mm ⁇ 0.8 mm). ) was obtained.
  • a Rockwell hardness tester Toyo Seiki Seisakusho Co., Ltd.
  • the surface hardness was 60 or more.
  • ⁇ Molding condition Cylinder temperature: 350 °C Mold temperature: 80 ° C Injection speed: 100 mm / sec
  • the molded product of the example has excellent ball bearing sliding wear resistance in a well-balanced manner in terms of surface whitening suppression, low warpage, weld strength, and low dust generation. It was confirmed that it was reduced and the impact resistance was improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a liquid crystalline resin composition for a ball bearing anti-sliding abrasion member, the composition being used to produce a ball bearing anti-sliding abrasion member which has reduced sliding abrasiveness of a ball bearing and improved impact resistance while ensuring excellent surface whitening suppression, low warpage properties, weld strength, and low dust generation in a good balance; and a ball bearing anti-sliding abrasion member using said liquid crystalline resin composition. The liquid crystalline resin composition for a ball bearing anti-sliding abrasion member according to the present invention contains (A) a liquid crystalline resin, (B) a particulate filler, and (C) a plate-like filler, wherein the median diameter of (B) the particulate filler is 0.3-5.0 μm, the Mohs hardness of (B) the particulate filler is at least 2.5, the Mohs hardness of the plate-like filler is at least 2.0, the content of (B) the particulate filler is 2.5-22.5 mass%, the content of (C) the plate-like filler is 2.5-32.5 mass%, and the total content of (B) the particulate filler and (C) the plate-like filler is 22.5-37.5 mass%.

Description

耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材Liquid crystal resin composition for ball bearing sliding wear member and ball bearing sliding wear member using it
 本発明は、耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材に関する。 The present invention relates to a liquid crystal resin composition for a ball bearing sliding wear resistant member and a ball bearing sliding wear resistant member using the same.
 液晶性ポリエステル樹脂に代表される液晶性樹脂は、優れた機械的強度、耐熱性、耐薬品性、電気的性質等をバランス良く有し、優れた寸法安定性も有するため高機能エンジニアリングプラスチックとして広く利用されている。最近では、液晶性樹脂は、これらの特長を生かして、精密機器部品に使用されるようになっている。 Liquid crystal resins represented by liquid crystal polyester resins have excellent mechanical strength, heat resistance, chemical resistance, electrical properties, etc. in a well-balanced manner, and also have excellent dimensional stability, so they are widely used as high-performance engineering plastics. It's being used. Recently, liquid crystal resins have come to be used for precision equipment parts by taking advantage of these features.
 液晶性樹脂が使用される部品としては、例えば、FPCコネクター等のコネクター;メモリーカードソケット等のソケット;レンズホルダー等のカメラモジュール用部品;リレーが挙げられる。これらの部品は、表面白化抑制、低そり性、ウェルド強度、及び低発塵性に優れることが求められ、また、2つ以上の部材が動的に接触するような形態で用いられる場合があるため、摺動摩耗性(即ち、2つ以上の部材が動的に接触したときの摩耗のしやすさ)が低減されていることも求められる。例えば、特許文献1には、表面外観に優れかつ摺動性に優れた液晶性樹脂組成物からなる成形品を提供することを課題として、液晶性樹脂と特定の体積平均粒子径を有するタルクとを特定の比で含有する液晶性樹脂組成物が開示されている。 Examples of parts in which liquid crystal resin is used include connectors such as FPC connectors; sockets such as memory card sockets; camera module parts such as lens holders; relays. These parts are required to be excellent in surface whitening suppression, low warpage, wear strength, and low dust generation, and may be used in a form in which two or more members dynamically contact each other. Therefore, it is also required that the sliding wear property (that is, the ease of wear when two or more members are dynamically contacted) is reduced. For example, Patent Document 1 describes a liquid crystal resin and a talc having a specific volume average particle size as an object of providing a molded product made of a liquid crystal resin composition having excellent surface appearance and excellent slidability. A liquid crystal resin composition containing a specific ratio of the above is disclosed.
 上述した部品の中でも、液晶性樹脂組成物からなる成形体とボールベアリングとが動的に接するような形態で用いられる部品の場合には、特に、ボールベアリング摺動摩耗性(即ち、ボールベアリングと動的に接触したときの摩耗のしやすさ)が低減されていることが求められる。また、当該部品が衝撃を受けた際、上記成形体に傷、割れ、凹み等が生じやすいと、上記成形体とボールベアリングとの動的な接触に不具合が生じる恐れがある。よって、上記部品は、耐衝撃性、即ち、衝撃を受けても傷、割れ、凹み等が生じにくい特性が向上していることも求められる。なお、特許文献2には、ボールベアリングと動的に接するような形態で用いられるカメラモジュール用部品が記載されている。 Among the above-mentioned parts, in the case of a part used in a form in which a molded body made of a liquid crystal resin composition and a ball bearing are in dynamic contact with each other, the ball bearing has sliding wear resistance (that is, the ball bearing). Ease of wear when dynamically contacted) is required to be reduced. Further, when the component is impacted, if the molded body is easily scratched, cracked, dented or the like, there is a possibility that a problem may occur in the dynamic contact between the molded body and the ball bearing. Therefore, it is also required that the above-mentioned parts have improved impact resistance, that is, characteristics that scratches, cracks, dents, etc. are unlikely to occur even when subjected to an impact. In addition, Patent Document 2 describes a part for a camera module used in a form of dynamically contacting a ball bearing.
特許第5087958号公報Japanese Patent No. 5087958 欧州特許第2938063号明細書European Patent No. 2938063
 しかし、本発明者らの検討によれば、従来の液晶性樹脂組成物では、ボールベアリング摺動摩耗性の低減及び耐衝撃性の向上が不十分である。本発明は、上記課題を解決するためになされたものであり、その目的は、表面白化抑制、低そり性、ウェルド強度、及び低発塵性にバランスよく優れつつ、ボールベアリング摺動摩耗性が低減され、かつ、耐衝撃性が向上した耐ボールベアリング摺動摩耗部材を製造するために用いられる耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物並びにそれを用いた耐ボールベアリング摺動摩耗部材を提供することにある。 However, according to the studies by the present inventors, the conventional liquid crystal resin composition is insufficient in reducing the ball bearing sliding wear resistance and improving the impact resistance. The present invention has been made to solve the above problems, and an object of the present invention is to have a well-balanced excellent surface whitening suppression, low warpage property, weld strength, and low dust generation property, and to have ball bearing sliding wear resistance. A liquid crystal resin composition for a ball bearing sliding wear member used for manufacturing a ball bearing sliding wear member with reduced and improved impact resistance, and a ball bearing sliding wear member using the liquid crystal resin composition. Is to provide.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、液晶性樹脂と特定のメディアン径及び特定のモース硬度を有する粒状充填剤と特定のモース硬度を有する板状充填剤とを含有し、粒状充填剤、板状充填剤、及びこれらの合計の各々の含有量が所定の範囲である液晶性樹脂組成物を用いることで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。 The present inventors have conducted extensive research to solve the above problems. As a result, a liquid crystal resin, a granular filler having a specific median diameter and a specific Mohs hardness, and a plate-shaped filler having a specific Mohs hardness are contained, and the granular filler, the plate-shaped filler, and the total of these are contained. It has been found that the above-mentioned problems can be solved by using a liquid crystal resin composition in which the content of each of the above is in a predetermined range, and the present invention has been completed. More specifically, the present invention provides the following.
 (1) (A)液晶性樹脂、(B)粒状充填剤、及び(C)板状充填剤を含有し、前記(B)粒状充填剤のメディアン径は、0.3~5.0μmであり、前記(B)粒状充填剤のモース硬度は、2.5以上であり、前記(C)板状充填剤のモース硬度は、2.0以上であり、前記(B)シリカの含有量は、2.5~22.5質量%であり、前記(C)板状充填剤の含有量は、2.5~32.5質量%であり、前記(B)粒状充填剤と前記(C)板状充填剤との合計の含有量は、22.5~37.5質量%である耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物。 (1) Contains (A) liquid crystal resin, (B) granular filler, and (C) plate-like filler, and the median diameter of the (B) granular filler is 0.3 to 5.0 μm. The moth hardness of the (B) granular filler is 2.5 or more, the moth hardness of the (C) plate-shaped filler is 2.0 or more, and the content of the (B) silica is The content of the (C) plate-shaped filler is 2.5 to 22.5% by mass, and the content of the (B) granular filler and the (C) plate is 2.5 to 32.5% by mass. A liquid crystal resin composition for a ball bearing sliding wear resistant member having a total content of 22.5 to 37.5% by mass with the filler.
 (2) 前記(C)板状充填剤は、マイカである(1)に記載の組成物。 (2) The composition according to (1), wherein the (C) plate-like filler is mica.
 (3) 前記(B)粒状充填剤は、シリカ及び硫酸バリウムからなる群より選択される1種以上である(1)又は(2)に記載の組成物。 (3) The composition according to (1) or (2), wherein the (B) granular filler is at least one selected from the group consisting of silica and barium sulfate.
 (4) 更に(D)エポキシ基含有共重合体を含有する(1)から(3)のいずれかに記載の組成物であって、前記(D)エポキシ基含有共重合体の含有量は、1~5質量%である組成物。 (4) The composition according to any one of (1) to (3) further containing (D) an epoxy group-containing copolymer, wherein the content of the (D) epoxy group-containing copolymer is A composition which is 1 to 5% by mass.
 (5) (1)から(4)のいずれかに記載の組成物からなる耐ボールベアリング摺動摩耗部材。 (5) A ball bearing sliding wear resistant member made of the composition according to any one of (1) to (4).
 本発明の耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物を原料として、耐ボールベアリング摺動摩耗部材を製造すれば、表面白化抑制、低そり性、ウェルド強度、及び低発塵性にバランスよく優れつつ、ボールベアリング摺動摩耗性が低減され、かつ、耐衝撃性が向上した耐ボールベアリング摺動摩耗部材が得られる。 If a ball bearing sliding wear member is manufactured using the liquid crystal resin composition for a ball bearing sliding wear member of the present invention as a raw material, a balance between surface whitening suppression, low warpage, weld strength, and low dust generation is achieved. It is possible to obtain a ball bearing sliding wear resistant member which is excellent, has reduced ball bearing sliding wear resistance, and has improved impact resistance.
図1は、摺動摩耗量評価の方法を説明するための図である。FIG. 1 is a diagram for explaining a method of evaluating the amount of sliding wear. 図2(a)は、そり変形評価に使用したカメラモジュール型成形品を示す図であり、図2(b)は、そり変形評価における測定箇所を示す図である。なお、図中の数値の単位はmmである。FIG. 2A is a diagram showing a camera module type molded product used for the warp deformation evaluation, and FIG. 2B is a diagram showing a measurement point in the warp deformation evaluation. The unit of the numerical value in the figure is mm. 図3は、ウェルド強度評価で用いた成形品を示す図である。なお、図中の数値の単位はmmである。FIG. 3 is a diagram showing a molded product used in the weld strength evaluation. The unit of the numerical value in the figure is mm.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.
<耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物>
 本発明の耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物は、(A)液晶性樹脂、(B)粒状充填剤、及び、(C)板状充填剤を含有する。
<Liquid crystal resin composition for ball bearing sliding wear member>
The liquid crystal resin composition for a ball bearing sliding wear resistant member of the present invention contains (A) a liquid crystal resin, (B) a granular filler, and (C) a plate-like filler.
[(A)液晶性樹脂]
 本発明で使用する(A)液晶性樹脂とは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することが出来る。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性ポリマーは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
[(A) Liquid crystal resin]
The liquid crystal resin (A) used in the present invention refers to a melt-processable polymer having a property of forming an optically anisotropic molten phase. The properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the anisotropic molten phase can be confirmed by observing the molten sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leitz polarizing microscope. Liquid crystalline polymers applicable to the present invention normally transmit polarized light and are optically anisotropy when inspected between orthogonal polarizers, even in the molten and resting state.
 上記のような(A)液晶性樹脂の種類としては特に限定されず、芳香族ポリエステル及び/又は芳香族ポリエステルアミドであることが好ましい。また、芳香族ポリエステル及び/又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。(A)液晶性樹脂としては、60℃でペンタフルオロフェノールに濃度0.1質量%で溶解したときに、好ましくは少なくとも約2.0dl/g、更に好ましくは2.0~10.0dl/gの対数粘度(I.V.)を有するものが好ましく使用される。 The type of the liquid crystal resin (A) as described above is not particularly limited, and is preferably an aromatic polyester and / or an aromatic polyester amide. The range also includes polyesters that partially contain aromatic polyesters and / or aromatic polyester amides in the same molecular chain. The liquid crystal resin (A) preferably at least about 2.0 dl / g, more preferably 2.0 to 10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by mass. Those having a logarithmic viscosity (IV) of are preferably used.
 本発明に適用できる(A)液晶性樹脂としての芳香族ポリエステル又は芳香族ポリエステルアミドは、特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、及び芳香族ジアミンからなる群より選ばれる少なくとも1種の化合物に由来する繰り返し単位を構成成分として有する芳香族ポリエステル又は芳香族ポリエステルアミドである。 The aromatic polyester or aromatic polyesteramide as the (A) liquid crystal resin applicable to the present invention is particularly preferably at least one selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic hydroxyamines, and aromatic diamines. An aromatic polyester or aromatic polyester amide having a repeating unit derived from a species compound as a constituent.
 より具体的には、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上に由来する繰り返し単位、とからなるポリエステル;
(4)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位、とからなるポリエステルアミド;
(5)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上に由来する繰り返し単位、とからなるポリエステルアミド等が挙げられる。更に上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
More specifically
(1) Polyester composed of repeating units mainly derived from one or more aromatic hydroxycarboxylic acids and their derivatives;
(2) Repeating units mainly derived from (a) one or more aromatic hydroxycarboxylic acids and their derivatives, and (b) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and one of their derivatives. Or polyester consisting of repeating units derived from two or more species;
(3) Repeating units mainly derived from (a) one or more kinds of aromatic hydroxycarboxylic acids and their derivatives, and (b) one kind of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and their derivatives. Or a polyester consisting of a repeating unit derived from two or more kinds and (c) a repeating unit derived from at least one kind or two or more kinds of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof;
(4) Repeating units mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and their derivatives, and (b) one or two of aromatic hydroxyamines, aromatic diamines, and their derivatives. Polyester amides consisting of repeating units derived from species or higher and (c) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and repeating units derived from one or more of their derivatives;
(5) Repeating units mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and their derivatives, and (b) one or two of aromatic hydroxyamines, aromatic diamines, and their derivatives. Repeating units derived from species or higher, (c) aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and repeating units derived from one or more of their derivatives, and (d) aromatic diols, alicyclics. Examples thereof include polyesteramides composed of group diols, aliphatic diols, and repeating units derived from at least one or more of the derivatives thereof. Further, a molecular weight adjusting agent may be used in combination with the above-mentioned constituent components, if necessary.
 本発明に適用できる(A)液晶性樹脂を構成する具体的化合物の好ましい例としては、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸;2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)で表される化合物、及び下記一般式(II)で表される化合物等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、及び下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p-アミノフェノール、p-フェニレンジアミン等の芳香族アミン類が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(X:アルキレン(C~C)、アルキリデン、-O-、-SO-、-SO-、-S-、及び-CO-より選ばれる基である)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(Y:-(CH-(n=1~4)及び-O(CHO-(n=1~4)より選ばれる基である。)
Preferred examples of the specific compound constituting the (A) liquid crystal resin applicable to the present invention are aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid; 2,6-dihydroxy. Aromatic diols such as naphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, hydroquinone, resorcin, a compound represented by the following general formula (I), and a compound represented by the following general formula (II). Aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and compounds represented by the following general formula (III); p-aminophenol, p- Examples include aromatic amines such as phenylenediamine.
Figure JPOXMLDOC01-appb-C000001
(X: A group selected from alkylene (C 1 to C 4 ), alkylidene, -O-, -SO-, -SO 2- , -S-, and -CO-)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(Y:-(CH 2 ) n- (n = 1 to 4) and -O (CH 2 ) n O- (n = 1 to 4).)
 本発明に用いられる(A)液晶性樹脂の調製は、上記のモノマー化合物(又はモノマーの混合物)から直接重合法やエステル交換法を用いて公知の方法で行うことができ、通常は溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。エステル形成能を有する上記化合物類はそのままの形で重合に用いてもよく、また、重合の前段階で前駆体から該エステル形成能を有する誘導体に変性されたものでもよい。これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、N-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒が挙げられる。触媒の使用量は一般にはモノマーの全質量に対して約0.001~1質量%、特に約0.01~0.2質量%が好ましい。これらの重合方法により製造されたポリマーは更に必要があれば、減圧又は不活性ガス中で加熱する固相重合法により分子量の増加を図ることができる。 The liquid crystal resin (A) used in the present invention can be prepared from the above-mentioned monomer compound (or mixture of monomers) by a known method using a direct polymerization method or a transesterification method, and is usually a melt polymerization method. , Solution polymerization method, slurry polymerization method, solid phase polymerization method, etc., or a combination of two or more of these is used, and a melt polymerization method or a combination of a melt polymerization method and a solid phase polymerization method is preferably used. The above compounds having an ester-forming ability may be used in the polymerization as they are, or may be modified from a precursor to a derivative having the ester-forming ability in the pre-polymerization step. Various catalysts can be used for these polymerizations, and typical ones are potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris (2). , 4-Pentandionato) Metal salt-based catalysts such as cobalt (III), and organic compound-based catalysts such as N-methylimidazole and 4-dimethylaminopyridine. The amount of the catalyst used is generally preferably about 0.001 to 1% by mass, particularly preferably about 0.01 to 0.2% by mass, based on the total mass of the monomer. If necessary, the polymer produced by these polymerization methods can be further increased in molecular weight by a solid phase polymerization method in which the polymer is heated under reduced pressure or in an inert gas.
 上記のような方法で得られた(A)液晶性樹脂の溶融粘度は特に限定されない。一般には成形温度での溶融粘度が剪断速度1000sec-1で3Pa・s以上500Pa・s以下のものが使用可能である。しかし、それ自体あまり高粘度のものは流動性が非常に悪化するため好ましくない。なお、上記(A)液晶性樹脂は2種以上の液晶性樹脂の混合物であってもよい。 The melt viscosity of the liquid crystal resin (A) obtained by the above method is not particularly limited. Generally, those having a melt viscosity at a molding temperature of 1000 sec -1 and a shear rate of 3 Pa · s or more and 500 Pa · s or less can be used. However, the one having a very high viscosity by itself is not preferable because the fluidity is very deteriorated. The liquid crystal resin (A) may be a mixture of two or more kinds of liquid crystal resins.
 本発明の液晶性樹脂組成物において、(A)液晶性樹脂の含有量は、好ましくは62.5~77.5質量%又は61.5~72.5質量%であり、より好ましくは65~75質量%又は63.5~72.5質量%である。(A)成分の含有量が上記範囲内であると、流動性、耐熱性等の点で好ましい。 In the liquid crystal resin composition of the present invention, the content of the liquid crystal resin (A) is preferably 62.5 to 77.5% by mass or 61.5 to 72.5% by mass, and more preferably 65 to 72.5% by mass. It is 75% by mass or 63.5 to 72.5% by mass. When the content of the component (A) is within the above range, it is preferable in terms of fluidity, heat resistance and the like.
[(B)粒状充填剤]
 (B)成分は粒状充填剤であり、(B)成分のメディアン径は0.3~5.0μmであり、(B)成分のモース硬度は2.5以上である。上記メディアン径が0.3μm以上であると、成形体のウェルド強度が高くなりやすい。上記メディアン径が5.0μm以下であると、成形体の表面白化抑制効果が高くなりやすい。上記メディアン径は、好ましくは0.5~5.0μmであり、より好ましくは0.5~4.0μmである。なお、本明細書において、メディアン径とは、レーザ回折/散乱式粒度分布測定法で測定した体積基準の中央値をいう。上記モース硬度は、好ましくは2.7以上、より好ましくは3.0以上である。上記モース硬度が2.5以上であると、成形体の表面硬度が高くなりやすいため、成形体は、衝撃を受けても傷、割れ、凹み等が生じにくく、耐衝撃性が向上しやすい。上記モース硬度の上限は、特に限定されず、10以下でよく、8以下でもよく、7以下でもよい。(B)成分は1種単独で用いても2種以上を組み合わせて用いてもよい。
[(B) Granular filler]
The component (B) is a granular filler, the median diameter of the component (B) is 0.3 to 5.0 μm, and the Mohs hardness of the component (B) is 2.5 or more. When the median diameter is 0.3 μm or more, the weld strength of the molded product tends to be high. When the median diameter is 5.0 μm or less, the effect of suppressing surface whitening of the molded product tends to be high. The median diameter is preferably 0.5 to 5.0 μm, more preferably 0.5 to 4.0 μm. In the present specification, the median diameter means the median value of the volume standard measured by the laser diffraction / scattering type particle size distribution measurement method. The Mohs hardness is preferably 2.7 or more, more preferably 3.0 or more. When the Mohs hardness is 2.5 or more, the surface hardness of the molded product tends to be high, so that the molded product is less likely to be scratched, cracked, dented or the like even when subjected to an impact, and the impact resistance is likely to be improved. The upper limit of the Mohs hardness is not particularly limited, and may be 10 or less, 8 or less, or 7 or less. The component (B) may be used alone or in combination of two or more.
 (B)成分の粒状充填剤としては、例えば、シリカ(モース硬度6)、石英粉末(モース硬度7)、ガラスビーズ(モース硬度5)、ガラス粉(モース硬度5)、硅酸カリウムアルミニウム(モース硬度6)、珪藻土(モース硬度6~7)、ウォラストナイト(モース硬度4.5~5)等の硅酸塩;酸化鉄(モース硬度6)、酸化チタン(モース硬度6.5)、酸化亜鉛(モース硬度4)、アルミナ(モース硬度9)等の金属酸化物;炭酸カルシウム(モース硬度3)、炭酸マグネシウム(モース硬度3.5)等の金属炭酸塩;硫酸カルシウム(モース硬度3.5)、硫酸バリウム(モース硬度3~3.5)等の金属硫酸塩;ピロリン酸カルシウム(モース硬度5)、無水リン酸二カルシウム(モース硬度3.5)等のリン酸塩;炭化硅素(モース硬度9);窒化硅素(モース硬度9);窒化硼素等(モース硬度9)が挙げられる。本発明においては、成形体の表面白化抑制、成形体の低発塵性、及び成形体のウェルド強度の観点から、(B)成分として、シリカ及び硫酸バリウムからなる群より選択される1種以上を使用することが好ましく、シリカを使用することがより好ましい。 Examples of the granular filler of the component (B) include silica (Mohs hardness 6), quartz powder (Mohs hardness 7), glass beads (Mohs hardness 5), glass powder (Mohs hardness 5), and potassium aluminum silicate (Mohs). Mohs scales such as hardness 6), Mohs clay (Mohs hardness 6-7), Mohs scale (Mohs hardness 4.5-5); iron oxide (Mohs hardness 6), titanium oxide (Mohs hardness 6.5), oxidation Metal oxides such as zinc (Mohs hardness 4) and alumina (Mohs hardness 9); metal carbonates such as calcium carbonate (Mohs hardness 3) and magnesium carbonate (Mohs hardness 3.5); calcium sulfate (Mohs hardness 3.5) ), Metal sulfates such as barium sulfate (Mohs hardness 3 to 3.5); phosphates such as calcium pyrophosphate (Mohs hardness 5) and anhydrous dicalcium phosphate (Mohs hardness 3.5); 9); Mohs hardness (Mohs hardness 9); Mohs hardness 9) and the like (Mohs hardness 9). In the present invention, one or more selected from the group consisting of silica and barium sulfate as the component (B) from the viewpoints of suppressing surface whitening of the molded product, low dust generation of the molded product, and weld strength of the molded product. It is preferable to use, and it is more preferable to use silica.
 (B)成分の含有量は、本発明の液晶性組成物において、2.5~22.5質量%である。(B)成分の含有量が2.5質量%以上であると、成形体のウェルド強度が高くなりやすく、かつ、ボールベアリング摺動摩耗性が低減された成形体を得やすい。(B)成分の含有量が22.5質量%以下であると、成形体の表面白化抑制効果が高くなりやすい。(B)成分の好ましい含有量は、5~20質量%である。 The content of the component (B) is 2.5 to 22.5% by mass in the liquid crystal composition of the present invention. When the content of the component (B) is 2.5% by mass or more, the weld strength of the molded product tends to be high, and the molded product having reduced ball bearing sliding wear resistance can be easily obtained. When the content of the component (B) is 22.5% by mass or less, the effect of suppressing surface whitening of the molded product tends to be high. The preferable content of the component (B) is 5 to 20% by mass.
[(C)板状充填剤]
 (C)成分は板状充填剤であり、(C)成分のモース硬度は2.0以上、好ましくは2.2以上、より好ましくは2.5以上である。(C)成分のモース硬度が2.0以上であると、成形体の表面硬度が高くなりやすいため、成形体は、衝撃を受けても傷、割れ、凹み等が生じにくく、耐衝撃性が向上しやすい。上記モース硬度の上限は、特に限定されず、10以下でよく、8以下でもよく、7以下でもよい。(C)成分は、1種単独で又は2種以上組み合わせて使用することができる。
[(C) Plate-shaped filler]
The component (C) is a plate-like filler, and the Mohs hardness of the component (C) is 2.0 or more, preferably 2.2 or more, and more preferably 2.5 or more. When the Mohs hardness of the component (C) is 2.0 or more, the surface hardness of the molded product tends to be high, so that the molded product is less likely to be scratched, cracked, dented, etc. even when subjected to an impact, and has impact resistance. Easy to improve. The upper limit of the Mohs hardness is not particularly limited, and may be 10 or less, 8 or less, or 7 or less. The component (C) can be used alone or in combination of two or more.
 本発明の液晶性樹脂組成物において、(C)板状充填剤の含有量は、2.5~32.5質量%である。(C)成分の含有量が2.5質量%以上であると、第一に、成形体の表面硬度が高くなりやすいため、成形体は、衝撃を受けても傷、割れ、凹み等が生じにくく、耐衝撃性が向上しやすくなり、第二に、ボールベアリング摺動摩耗性が低減された成形体を得やすい。(C)成分の含有量が32.5質量%以下であると、成形体の表面白化抑制効果及び成形体の低発塵性が高くなりやすい。(C)成分の含有量は、好ましくは5~30質量%である。 In the liquid crystal resin composition of the present invention, the content of the (C) plate-like filler is 2.5 to 32.5% by mass. When the content of the component (C) is 2.5% by mass or more, firstly, the surface hardness of the molded product tends to be high, so that the molded product is scratched, cracked, dented or the like even when it receives an impact. It is difficult and the impact resistance is easily improved, and secondly, it is easy to obtain a molded product having reduced ball bearing sliding wear resistance. When the content of the component (C) is 32.5% by mass or less, the effect of suppressing surface whitening of the molded product and the low dust generation property of the molded product tend to be high. The content of the component (C) is preferably 5 to 30% by mass.
 (C)成分としては、マイカ(モース硬度2~3)、ガラスフレーク(モース硬度5)、各種の金属箔等が挙げられる。液晶性樹脂組成物の流動性を悪化させることなく、液晶性樹脂組成物から得られる成形体のそり変形を抑制させるという点で、マイカが好ましい。板状充填剤のメディアン径については、特に限定されず、液晶性樹脂組成物の流動性を考慮すると小さい方が望ましい。一方、液晶性樹脂組成物から得られる成形体のそり変形を小さくするためには、一定の大きさを維持している必要がある。具体的には、1~100μmが好ましく、5~50μmがより好ましい。 Examples of the component (C) include mica (Mohs hardness 2 to 3), glass flakes (Mohs hardness 5), and various metal foils. Mica is preferable in that it suppresses warpage deformation of the molded product obtained from the liquid crystal resin composition without deteriorating the fluidity of the liquid crystal resin composition. The median diameter of the plate-shaped filler is not particularly limited, and a smaller diameter is desirable in consideration of the fluidity of the liquid crystal resin composition. On the other hand, in order to reduce the warp deformation of the molded product obtained from the liquid crystal resin composition, it is necessary to maintain a constant size. Specifically, 1 to 100 μm is preferable, and 5 to 50 μm is more preferable.
 〔マイカ〕
 マイカとは、アルミニウム、カリウム、マグネシウム、ナトリウム、鉄等を含んだケイ酸塩鉱物の粉砕物である。本発明において使用できるマイカとしては、白雲母、金雲母、黒雲母、人造雲母等が挙げられるが、これらのうち色相が良好であり、低価格であるという点で白雲母が好ましい。
[Mica]
Mica is a pulverized product of silicate minerals containing aluminum, potassium, magnesium, sodium, iron and the like. Examples of mica that can be used in the present invention include muscovite, phlogopite, biotite, and artificial mica. Of these, muscovite is preferable because it has a good hue and is inexpensive.
 また、マイカの製造において、鉱物を粉砕する方法としては、湿式粉砕法及び乾式粉砕法が知られている。湿式粉砕法とは、マイカ原石を乾式粉砕機にて粗粉砕した後、水を加えてスラリー状態にて湿式粉砕で本粉砕し、その後、脱水、乾燥を行う方法である。湿式粉砕法と比較して、乾式粉砕法は低コストで一般的な方法であるが、湿式粉砕法を用いると、鉱物を薄く細かく粉砕することがより容易である。後述する好ましい平均粒径及び厚みを有するマイカが得られるという理由で、本発明においては薄く細かい粉砕物を使用することが好ましい。したがって、本発明においては、湿式粉砕法により製造されたマイカを使用するのが好ましい。 Further, in the production of mica, a wet pulverization method and a dry pulverization method are known as methods for pulverizing minerals. The wet pulverization method is a method in which rough mica is roughly pulverized by a dry pulverizer, water is added, and the main pulverization is performed by wet pulverization in a slurry state, and then dehydration and drying are performed. Although the dry pulverization method is a low-cost and general method as compared with the wet pulverization method, it is easier to pulverize the mineral thinly and finely by using the wet pulverization method. In the present invention, it is preferable to use a thin and fine pulverized product because mica having a preferable average particle size and thickness described later can be obtained. Therefore, in the present invention, it is preferable to use mica produced by the wet pulverization method.
 また、湿式粉砕法においては、被粉砕物を水に分散させる工程が必要であるため、被粉砕物の分散効率を高めるために、被粉砕物に凝集沈降剤及び/又は沈降助剤を加えることが一般的である。本発明において使用できる凝集沈降剤及び沈降助剤としては、ポリ塩化アルミニウム、硫酸アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化コッパラス、ポリ硫酸鉄、ポリ塩化第二鉄、鉄-シリカ無機高分子凝集剤、塩化第二鉄-シリカ無機高分子凝集剤、消石灰(Ca(OH))、苛性ソーダ(NaOH)、ソーダ灰(NaCO)等が挙げられる。これらの凝集沈降剤及び沈降助剤は、pHがアルカリ性又は酸性である。本発明で使用するマイカは、湿式粉砕する際に凝集沈降剤及び/又は沈降助剤を使用していないものが好ましい。凝集沈降剤及び/又は沈降助剤で処理されていないマイカを使用すると、液晶性樹脂組成物中のポリマーの分解が生じにくく、多量のガス発生やポリマーの分子量低下等が起きにくいため、成形体の性能をより良好に維持するのが容易である。 Further, since the wet pulverization method requires a step of dispersing the object to be crushed in water, a coagulation sedimentation agent and / or a sedimentation aid is added to the object to be pulverized in order to improve the dispersion efficiency of the object to be pulverized. Is common. Examples of the coagulation sedimentation agent and sedimentation aid that can be used in the present invention include polyaluminum chloride, aluminum sulfate, ferrous sulfate, ferric sulfate, copper chloride, polyiron sulfate, ferric chloride, and iron-silica inorganic high. Examples thereof include ferric chloride-silica inorganic polymer flocculant, slaked lime (Ca (OH) 2 ), caustic soda (NaOH), soda ash (Na 2 CO 3 ) and the like. These coagulation sedimentation agents and sedimentation aids have an alkaline or acidic pH. The mica used in the present invention is preferably one that does not use a coagulation sedimentation agent and / or a sedimentation aid during wet pulverization. When mica that has not been treated with a coagulation sedimentation agent and / or a sedimentation aid is used, decomposition of the polymer in the liquid crystal resin composition is unlikely to occur, and a large amount of gas is less likely to be generated or the molecular weight of the polymer is less likely to decrease. It is easy to maintain better performance.
 本発明において使用できるマイカのメディアン径は、10~100μmであることが好ましく、20~80μmであることが特に好ましい。マイカのメディアン径が10μm以上であると、成形体の剛性に対する改良効果が十分となりやすいため好ましい。マイカのメディアン径が100μm以下であると、成形体の剛性の向上が十分となりやすく、ウェルド強度も十分となりやすいため好ましい。更に、マイカのメディアン径が100μm以下であると、成形体を成形するのに十分な流動性を確保しやすい。 The median diameter of mica that can be used in the present invention is preferably 10 to 100 μm, particularly preferably 20 to 80 μm. When the median diameter of mica is 10 μm or more, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable. When the median diameter of mica is 100 μm or less, the rigidity of the molded product is likely to be sufficiently improved, and the weld strength is also likely to be sufficient, which is preferable. Further, when the median diameter of mica is 100 μm or less, it is easy to secure sufficient fluidity for molding the molded product.
 本発明において使用できるマイカの厚みは、電子顕微鏡の観察により実測した厚みが0.01~1μmであることが好ましく、0.03~0.3μmであることが特に好ましい。マイカの厚みが0.01μm以上であると、液晶性樹脂組成物の溶融加工の際にマイカが割れにくくなるため、成形体の剛性が向上しやすい可能性があるため好ましい。マイカの厚みが1μm以下であると、成形体の剛性に対する改良効果が十分となりやすいため好ましい。 The thickness of mica that can be used in the present invention is preferably 0.01 to 1 μm, particularly preferably 0.03 to 0.3 μm, as measured by observation with an electron microscope. When the thickness of the mica is 0.01 μm or more, the mica is less likely to crack during the melt processing of the liquid crystal resin composition, and the rigidity of the molded product may be easily improved, which is preferable. When the thickness of mica is 1 μm or less, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable.
 本発明において使用できるマイカは、シランカップリング剤等で表面処理されていてもよく、かつ/又は、結合剤で造粒し顆粒状とされていてもよい。 The mica that can be used in the present invention may be surface-treated with a silane coupling agent or the like, and / or may be granulated with a binder to form granules.
 更に、(B)成分と(C)成分との合計の含有量は、本発明の液晶性樹脂組成物において、22.5~37.5質量%であり、好ましくは25~35質量%である。上記合計の含有量が22.5質量%以上であると、第一に、成形体の低そり性が高くなりやすく、第二に、成形体の表面硬度が高くなりやすいため、成形体は、衝撃を受けても傷、割れ、凹み等が生じにくく、耐衝撃性が向上しやすくなり、第三に、ボールベアリング摺動摩耗性が低減された成形体を得やすい。上記合計の含有量が37.5質量%以下であると、成形体の表面白化抑制効果及び成形体の低発塵性が高くなりやすい。 Further, the total content of the component (B) and the component (C) is 22.5 to 37.5% by mass, preferably 25 to 35% by mass in the liquid crystal resin composition of the present invention. .. When the total content of the above is 22.5% by mass or more, firstly, the low warpage property of the molded body tends to be high, and secondly, the surface hardness of the molded body tends to be high. Even if it receives an impact, scratches, cracks, dents, etc. are less likely to occur, the impact resistance is likely to be improved, and thirdly, it is easy to obtain a molded product having reduced ball bearing sliding wear resistance. When the total content is 37.5% by mass or less, the effect of suppressing surface whitening of the molded product and the low dust generation property of the molded product tend to be high.
[(D)エポキシ基含有共重合体]
 本発明の液晶性組成物は、(D)エポキシ基含有共重合体を含有してもよい。(D)エポキシ基含有共重合体は、1種単独で又は2種以上組み合わせて使用することができる。(D)エポキシ基含有共重合体としては、特に限定されず、例えば、(D1)エポキシ基含有オレフィン系共重合体及び(D2)エポキシ基含有スチレン系共重合体からなる群より選択される少なくとも1種が挙げられる。(D)エポキシ基含有共重合体は、本発明の液晶性樹脂組成物から得られる成形体のボールベアリング摺動摩耗性を低減させることに寄与する。
[(D) Epoxy group-containing copolymer]
The liquid crystal composition of the present invention may contain (D) an epoxy group-containing copolymer. (D) The epoxy group-containing copolymer can be used alone or in combination of two or more. The (D) epoxy group-containing copolymer is not particularly limited, and is at least selected from the group consisting of (D1) epoxy group-containing olefin-based copolymer and (D2) epoxy group-containing styrene-based copolymer. One type can be mentioned. (D) The epoxy group-containing copolymer contributes to reducing the ball bearing sliding wear property of the molded product obtained from the liquid crystal resin composition of the present invention.
 (D1)エポキシ基含有オレフィン系共重合体としては、例えば、α-オレフィンに由来する繰り返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰り返し単位とから構成される共重合体が挙げられる。 Examples of the (D1) epoxy group-containing olefin-based copolymer include a copolymer composed of a repeating unit derived from an α-olefin and a repeating unit derived from a glycidyl ester of an α, β-unsaturated acid. Be done.
 α-オレフィンは特に限定されず、例えば、エチレン、プロピレン、ブテン等が挙げられ、中でもエチレンが好ましく用いられる。α,β-不飽和酸のグリシジルエステルは下記一般式(IV)で示されるものである。α,β-不飽和酸のグリシジルエステルは、例えばアクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル、イタコン酸グリシジルエステル等であり、特にメタクリル酸グリシジルエステルが好ましい。
Figure JPOXMLDOC01-appb-C000004
The α-olefin is not particularly limited, and examples thereof include ethylene, propylene, butene, etc. Among them, ethylene is preferably used. The glycidyl ester of α, β-unsaturated acid is represented by the following general formula (IV). The glycidyl ester of α, β-unsaturated acid is, for example, acrylic acid glycidyl ester, methacrylic acid glycidyl ester, etacrylic acid glycidyl ester, itaconic acid glycidyl ester and the like, and methacrylic acid glycidyl ester is particularly preferable.
Figure JPOXMLDOC01-appb-C000004
 (D1)エポキシ基含有オレフィン系共重合体において、α-オレフィンに由来する繰り返し単位の含有量は87~98質量%であり、α,β-不飽和酸のグリシジルエステルに由来する繰り返し単位の含有量は13~2質量%であることが好ましい。 (D1) In the epoxy group-containing olefin-based copolymer, the content of the repeating unit derived from α-olefin is 87 to 98% by mass, and the content of the repeating unit derived from the glycidyl ester of α, β-unsaturated acid is contained. The amount is preferably 13 to 2% by mass.
 本発明で用いる(D1)エポキシ基含有オレフィン系共重合体は、本発明を損なわない範囲で上記2成分以外に第3成分としてアクリロニトリル、アクリル酸エステル、メタクリル酸エステル、α-メチルスチレン、無水マレイン酸等のオレフィン系不飽和エステルの1種又は2種以上に由来する繰り返し単位を、上記2成分100質量部に対し0~48質量部含有してもよい。 The (D1) epoxy group-containing olefin-based copolymer used in the present invention has acrylonitrile, acrylic acid ester, methacrylic acid ester, α-methylstyrene, and malean anhydride as a third component in addition to the above two components as long as the present invention is not impaired. Repeating units derived from one or more olefinically unsaturated esters such as acids may be contained in an amount of 0 to 48 parts by mass with respect to 100 parts by mass of the above two components.
 本発明の(D1)成分であるエポキシ基含有オレフィン系共重合体は、各成分に対応するモノマー及びラジカル重合触媒を用いて通常のラジカル重合法により容易に調製することができる。より具体的には、通常、α-オレフィンとα,β-不飽和酸のグリシジルエステルとをラジカル発生剤の存在下、500~4000気圧、100~300℃で適当な溶媒や連鎖移動剤の存在下又は不存在下に共重合させる方法により製造できる。また、α-オレフィンとα,β-不飽和酸のグリシジルエステル及びラジカル発生剤とを混合し、押出機の中で溶融グラフト共重合させる方法によっても製造できる。 The epoxy group-containing olefin-based copolymer which is the component (D1) of the present invention can be easily prepared by a usual radical polymerization method using a monomer and a radical polymerization catalyst corresponding to each component. More specifically, usually, the presence of a suitable solvent or chain transfer agent for α-olefin and glycidyl ester of α, β-unsaturated acid at 500 to 4000 atm and 100 to 300 ° C. in the presence of a radical generator. It can be produced by a method of copolymerizing under or in the absence. It can also be produced by a method in which an α-olefin, an α, β-unsaturated acid glycidyl ester and a radical generator are mixed and melt-grafted in an extruder.
 (D2)のエポキシ基含有スチレン系共重合体としては、例えば、スチレン類に由来する繰り返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰り返し単位とから構成される共重合体が挙げられる。α,β-不飽和酸のグリシジルエステルについては、(D1)成分で説明したものと同様であるため説明を省略する。 Examples of the epoxy group-containing styrene-based copolymer (D2) include a copolymer composed of a repeating unit derived from styrenes and a repeating unit derived from a glycidyl ester of α, β-unsaturated acid. Be done. The description of the glycidyl ester of α, β-unsaturated acid is omitted because it is the same as that described in the component (D1).
 スチレン類としては、スチレン、α-メチルスチレン、ブロム化スチレン、ジビニルベンゼン等が挙げられ、スチレンが好ましく用いられる。 Examples of styrenes include styrene, α-methylstyrene, brominated styrene, divinylbenzene and the like, and styrene is preferably used.
 本発明で用いる(D2)エポキシ基含有スチレン系共重合体は、上記2成分以外に第3成分として他のビニルモノマーの1種又は2種以上に由来する繰り返し単位を含有する多元共重合体であってもよい。第3成分として好適なものは、アクリロニトリル、アクリル酸エステル、メタクリル酸エステル、無水マレイン酸等のオレフィン系不飽和エステルの1種又は2種以上に由来する繰り返し単位である。これらの繰り返し単位を共重合体中に40質量%以下含有するエポキシ基含有スチレン系共重合体が(D2)成分として好ましい。 The (D2) epoxy group-containing styrene-based copolymer used in the present invention is a multidimensional copolymer containing a repeating unit derived from one or more of other vinyl monomers as a third component in addition to the above two components. There may be. A suitable third component is a repeating unit derived from one or more olefinically unsaturated esters such as acrylonitrile, acrylic acid ester, methacrylic acid ester, and maleic anhydride. An epoxy group-containing styrene-based copolymer containing 40% by mass or less of these repeating units in the copolymer is preferable as the component (D2).
 (D2)エポキシ基含有スチレン系共重合体において、α,β-不飽和酸のグリシジルエステルに由来する繰り返し単位の含有量は2~20質量%であり、スチレン類に由来する繰り返し単位の含有量は80~98質量%であることが好ましい。 (D2) In the epoxy group-containing styrene-based copolymer, the content of the repeating unit derived from the glycidyl ester of α, β-unsaturated acid is 2 to 20% by mass, and the content of the repeating unit derived from styrenes. Is preferably 80 to 98% by mass.
 (D2)エポキシ基含有スチレン系共重合体は、各成分に対応するモノマー及びラジカル重合触媒を用いて通常のラジカル重合法により調製することができる。より具体的には、通常、スチレン類とα,β-不飽和酸のグリシジルエステルとをラジカル発生剤の存在下、500~4000気圧、100~300℃で適当な溶媒や連鎖移動剤の存在下又は不存在下に共重合させる方法により製造できる。また、スチレン類とα,β-不飽和酸のグリシジルエステル及びラジカル発生剤とを混合し、押出機の中で溶融グラフト共重合させる方法によっても製造できる。 (D2) The epoxy group-containing styrene-based copolymer can be prepared by a usual radical polymerization method using a monomer corresponding to each component and a radical polymerization catalyst. More specifically, styrenes and glycidyl esters of α, β-unsaturated acids are usually mixed in the presence of a radical generator at 500 to 4000 atm and 100 to 300 ° C. in the presence of a suitable solvent or chain transfer agent. Alternatively, it can be produced by a method of copolymerizing in the absence. It can also be produced by a method in which styrenes, an α, β-unsaturated acid glycidyl ester and a radical generator are mixed and melt-grafted in an extruder.
 なお、(D)エポキシ基含有共重合体としては、(D1)エポキシ基含有オレフィン系共重合体が耐熱性の点で好ましい。(D1)成分と(D2)成分とを併用する場合、これら成分同士の割合は、適宜、要求される特性に沿って選択することができる。 As the (D) epoxy group-containing copolymer, the (D1) epoxy group-containing olefin-based copolymer is preferable in terms of heat resistance. When the component (D1) and the component (D2) are used in combination, the ratio of these components can be appropriately selected according to the required characteristics.
 (D)エポキシ基含有共重合体の含有量は、本発明の液晶性樹脂組成物において、例えば、0~5質量%でよく、好ましくは1~5質量%である。(D)成分の含有量が上記範囲内であると、液晶性樹脂組成物の流動性を損なわず、ボールベアリング摺動摩耗性が低減された成形体を得やすい。上記含有量は、より好ましくは1.5~4.5質量%であり、更により好ましくは3.5~4.5質量%である。 The content of the epoxy group-containing copolymer (D) may be, for example, 0 to 5% by mass, preferably 1 to 5% by mass in the liquid crystal resin composition of the present invention. When the content of the component (D) is within the above range, it is easy to obtain a molded product having reduced ball bearing sliding wear without impairing the fluidity of the liquid crystal resin composition. The content is more preferably 1.5 to 4.5% by mass, and even more preferably 3.5 to 4.5% by mass.
[(E)カーボンブラック]
 本発明に任意成分として用いる(E)カーボンブラックは、樹脂着色に用いられる一般的に入手可能なものであれば、特に限定されるものではない。通常、(E)カーボンブラックには一次粒子が凝集して出来上がる塊状物が含まれているが、50μm以上の大きさの塊状物が著しく多く含まれていない限り、本発明の樹脂組成物を成形してなる成形体の表面に多くのブツ(カーボンブラックが凝集した細かいブツブツ状突起物(細かい凹凸))は発生しにくい。上記塊状物粒子径が50μm以上の粒子の含有率が20ppm以下であると、成形体表面の起毛抑制効果が高くなりやすい。好ましい含有率は5ppm以下である。
[(E) Carbon Black]
The carbon black (E) used as an optional component in the present invention is not particularly limited as long as it is generally available and is used for resin coloring. Normally, (E) carbon black contains lumps formed by agglomeration of primary particles, but unless a large amount of lumps having a size of 50 μm or more is contained, the resin composition of the present invention is molded. Many bumps (fine bumpy protrusions (fine irregularities) in which carbon black is agglomerated) are unlikely to occur on the surface of the molded product. When the content of the particles having a particle size of 50 μm or more is 20 ppm or less, the effect of suppressing the raising of the surface of the molded product tends to be high. The preferred content is 5 ppm or less.
 (E)カーボンブラックの配合量としては、液晶性樹脂組成物において、例えば、0~5質量%でよく、0.5~5質量%の範囲が好ましい。カーボンブラックの配合量が0.5質量%以上であると、樹脂組成物の漆黒性が低下しにくく、遮光性に不安が出にくい。カーボンブラックの配合量が5質量%以下であると不経済となりにくく、またブツが発生しにくい。
[(F)離型剤]
 本発明に任意成分として用いる(F)離型剤としては、一般的に入手可能なものであれば、特に限定されるものではなく、例えば、脂肪酸エステル類、脂肪酸金属塩類、脂肪酸アミド類、低分子量ポリオレフィン等が挙げられ、ペンタエリスリトールの脂肪酸エステル(例えば、ペンタエリスリトールテトラステアレート)が好ましい。
The blending amount of the carbon black (E) may be, for example, 0 to 5% by mass, preferably 0.5 to 5% by mass in the liquid crystal resin composition. When the blending amount of carbon black is 0.5% by mass or more, the jet-blackness of the resin composition is unlikely to decrease, and the light-shielding property is less likely to be anxious. If the blending amount of carbon black is 5% by mass or less, it is unlikely to be uneconomical and lumps are unlikely to occur.
[(F) Release agent]
The release agent (F) used as an optional component in the present invention is not particularly limited as long as it is generally available, and is, for example, fatty acid esters, fatty acid metal salts, fatty acid amides, and low. Examples thereof include molecular weight polyolefins, and fatty acid esters of pentaerythritol (for example, pentaerythritol tetrastearate) are preferable.
 (F)離型剤の配合量としては、液晶性樹脂組成物において、例えば、0~3質量%でよく、0.1~3質量%の範囲が好ましい。離型剤の配合量が0.1質量%以上であると、成形時の離型性が向上するとともに、ボールベアリング摺動摩耗性が低減された成形体を得やすい。離型剤の配合量が3質量%以下であるとモールドデポジット(即ち、成形における金型への付着物をいう。以下、「MD」ともいう。)が低減しやすい。 The amount of the release agent (F) to be blended in the liquid crystal resin composition may be, for example, 0 to 3% by mass, preferably 0.1 to 3% by mass. When the amount of the release agent compounded is 0.1% by mass or more, it is easy to obtain a molded product having improved mold releasability during molding and reduced ball bearing sliding wear resistance. When the blending amount of the release agent is 3% by mass or less, the mold deposit (that is, the deposit on the mold in molding; hereinafter, also referred to as “MD”) is likely to be reduced.
[その他の成分]
 本発明の液晶性樹脂組成物には、本発明の効果を害さない範囲で、その他の重合体、その他の充填剤、一般に合成樹脂に添加される公知の物質、即ち、酸化防止剤や紫外線吸収剤等の安定剤、帯電防止剤、難燃剤、染料や顔料等の着色剤、潤滑剤、結晶化促進剤、結晶核剤等のその他の成分も要求性能に応じ適宜添加することができる。その他の成分は1種単独で用いても2種以上を組み合わせて用いてもよい。
[Other ingredients]
The liquid crystal resin composition of the present invention includes other polymers, other fillers, and known substances generally added to synthetic resins, that is, antioxidants and ultraviolet absorbers, as long as the effects of the present invention are not impaired. Other components such as stabilizers such as agents, antistatic agents, flame retardants, colorants such as dyes and pigments, lubricants, crystallization accelerators, and crystal nucleating agents can also be appropriately added depending on the required performance. Other components may be used alone or in combination of two or more.
 その他の充填剤とは、(B)粒状充填剤、(C)板状充填剤、及び(E)カーボンブラック以外の充填剤をいい、例えば、(B)成分以外の粒状充填剤;モース硬度が2.0未満の板状充填剤;繊維状充填剤が挙げられる。その他の充填剤は1種単独で用いても2種以上を組み合わせて用いてもよい。(B)成分以外の粒状充填剤としては、例えば、石膏(硫酸カルシウム・二水和物)等が挙げられる。モース硬度が2.0未満の板状充填剤としては、例えば、タルクが挙げられる。繊維状充填剤としては、例えば、ウィスカーが挙げられる。但し、成形体の耐衝撃性等の観点から、本発明の液晶性樹脂組成物は、タルク等の、モース硬度が2.0未満の板状充填剤を含有しないことが好ましい。同様に、成形体の耐衝撃性等の観点から、本発明の液晶性樹脂組成物は、石膏等の、(B)成分以外の粒状充填剤を含有しないことが好ましい。また、成形体のウェルド強度等の観点から、本発明の液晶性樹脂組成物は、繊維状充填剤を含有しないことが好ましい。 The other fillers are (B) granular fillers, (C) plate-shaped fillers, and (E) fillers other than carbon black, for example, granular fillers other than the component (B); Plate-like fillers less than 2.0; fibrous fillers can be mentioned. Other fillers may be used alone or in combination of two or more. Examples of the granular filler other than the component (B) include gypsum (calcium sulfate / dihydrate) and the like. Examples of the plate-like filler having a Mohs hardness of less than 2.0 include talc. Examples of the fibrous filler include whiskers. However, from the viewpoint of impact resistance of the molded product, the liquid crystal resin composition of the present invention preferably does not contain a plate-like filler having a Mohs hardness of less than 2.0, such as talc. Similarly, from the viewpoint of impact resistance of the molded product and the like, the liquid crystal resin composition of the present invention preferably does not contain a granular filler other than the component (B) such as gypsum. Further, from the viewpoint of the weld strength of the molded product and the like, the liquid crystal resin composition of the present invention preferably does not contain a fibrous filler.
[耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物の調製方法]
 本発明の耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物の調製方法は特に限定されない。例えば、上記(A)~(C)成分、並びに、任意に、上記(D)~(F)成分及びその他の成分の少なくとも1種を配合して、これらを1軸又は2軸押出機を用いて溶融混練処理することで、耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物の調製が行われる。
[Method of preparing liquid crystal resin composition for ball bearing sliding wear member]
The method for preparing the liquid crystal resin composition for a ball bearing sliding wear member of the present invention is not particularly limited. For example, the above-mentioned components (A) to (C), and optionally at least one of the above-mentioned (D) to (F) components and other components are blended, and these are blended using a single-screw or twin-screw extruder. The liquid crystal resin composition for a ball bearing sliding wear member is prepared by melt-kneading.
[耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物]
 上記のようにして得られた本発明の液晶性樹脂組成物は、溶融時の流動性の観点、成形性の観点から、溶融粘度が90Pa・sec以下であることが好ましく、80Pa・sec以下であることがより好ましい。本明細書において、溶融粘度としては、液晶性樹脂の融点よりも10~20℃高いシリンダー温度、せん断速度1000sec-1の条件で、ISO 11443に準拠した測定方法で得られた値を採用する。
[Liquid crystal resin composition for ball bearing sliding wear member]
The liquid crystal resin composition of the present invention obtained as described above preferably has a melt viscosity of 90 Pa · sec or less, preferably 80 Pa · sec or less, from the viewpoint of fluidity at the time of melting and moldability. More preferably. In the present specification, as the melt viscosity, a value obtained by a measuring method based on ISO 11443 is adopted under the conditions of a cylinder temperature 10 to 20 ° C. higher than the melting point of the liquid crystal resin and a shear rate of 1000 sec -1.
<耐ボールベアリング摺動摩耗部材>
 本発明の液晶性樹脂組成物を用いて、耐ボールベアリング摺動摩耗部材を製造する。本発明の耐ボールベアリング摺動摩耗部材は、表面白化抑制、低そり性、ウェルド強度、及び低発塵性にバランスよく優れつつ、ボールベアリング摺動摩耗性が低減され、かつ、耐衝撃性が向上している。本発明の耐ボールベアリング摺動摩耗部材は、使用時にボールベアリングと動的に接触するような部品に用いることができ、具体的には、例えば、ボールベアリングと動的に接するような形態で用いられる、レンズホルダー等のカメラモジュール用部品等に用いることができる。
<Ball bearing sliding wear resistant member>
A ball bearing sliding wear resistant member is manufactured using the liquid crystal resin composition of the present invention. The ball bearing sliding wear member of the present invention has excellent surface whitening suppression, low warpage, weld strength, and low dust generation in a well-balanced manner, while reducing ball bearing sliding wear resistance and impact resistance. It is improving. The ball bearing sliding wear resistant member of the present invention can be used for a component that dynamically contacts the ball bearing during use, and specifically, for example, it is used in a form that dynamically contacts the ball bearing. It can be used for camera module parts such as lens holders.
 以下に実施例を挙げて、本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
<液晶性樹脂>
・液晶性ポリエステルアミド樹脂
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に340℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレットを得た。得られたペレットについて、窒素気流下、300℃で2時間の熱処理を行って、目的のポリマーを得た。得られたポリマーの融点は336℃、350℃における溶融粘度は19.0Pa・sであった。なお、上記ポリマーの溶融粘度は、後述する溶融粘度の測定方法と同様にして測定した。
 (I)4-ヒドロキシ安息香酸(HBA);1380g(60モル%)
 (II)2-ヒドロキシ-6-ナフトエ酸(HNA);157g(5モル%)
 (III)テレフタル酸(TA);484g(17.5モル%)
 (IV)4,4’-ジヒドロキシビフェニル(BP);388g(12.5モル%)
 (V)4-アセトキシアミノフェノール(APAP);126g(5モル%)
 金属触媒(酢酸カリウム触媒);110mg
 アシル化剤(無水酢酸);1659g
<Liquid crystal resin>
-After charging the following raw materials into a liquid crystal polyesteramide resin polymerization vessel, the temperature of the reaction system was raised to 140 ° C., and the reaction was carried out at 140 ° C. for 1 hour. Then, the temperature is further raised to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (that is, 1330 Pa) over 15 minutes while distilling acetic acid, excess acetic anhydride, and other low boiling points. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to bring the mixture from a reduced pressure state to a pressurized state through normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strands were pelletized to obtain pellets. The obtained pellets were heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain the desired polymer. The melting point of the obtained polymer was 336 ° C., and the melt viscosity at 350 ° C. was 19.0 Pa · s. The melt viscosity of the polymer was measured in the same manner as the method for measuring the melt viscosity described later.
(I) 4-Hydroxybenzoic acid (HBA); 1380 g (60 mol%)
(II) 2-Hydroxy-6-naphthoic acid (HNA); 157 g (5 mol%)
(III) Terephthalic acid (TA); 484 g (17.5 mol%)
(IV) 4,4'-dihydroxybiphenyl (BP); 388 g (12.5 mol%)
(V) 4-acetoxyaminophenol (APAP); 126 g (5 mol%)
Metal catalyst (potassium acetate catalyst); 110 mg
Acylating agent (acetic anhydride); 1659 g
<液晶性樹脂以外の材料>
・シリカ1:アドマファインSO-C2((株)アドマテックス製、シリカ、メディアン径0.5μm、モース硬度6)
・シリカ2:アドマファインSO-C6((株)アドマテックス製、シリカ、メディアン径2.0μm、モース硬度6)
・シリカ3:デンカ溶融シリカFB-5SDC(デンカ(株)製、シリカ、メディアン径4.0μm、モース硬度6)
・シリカ4:デンカ溶融シリカFB-7SDC(デンカ(株)製、シリカ、メディアン径7.0μm、モース硬度6)
・ガラスビーズ:EGB731(ポッターズ・バロティーニ(株)製、ガラスビーズ、メディアン径20.0μm、モース硬度5)
・マイカ:AB-25S((株)ヤマグチマイカ製、マイカ、メディアン径25.0μm、モース硬度2.8)
・タルク:クラウンタルクPP(松村産業(株)製、タルク、メディアン径14.6μm、モース硬度1)
・チタン酸カリウム:ティスモN-102(大塚化学(株)製、チタン酸カリウム繊維、平均繊維径0.3~0.6μm、平均繊維長10~20μm)
・ウォラストナイト:NYGLOS 8(NYCO Materials社製、ケイ酸カルシウムウィスカー(ウォラストナイト)、数平均繊維長136μm、平均繊維径8μm)
・エポキシ基含有オレフィン系共重合体:ボンドファースト2C(住友化学(株)製、エチレン-グリシジルメタクリレート共重合体、グリシジルメタクリレートの含有量6質量%)
・カーボンブラック:VULCAN XC305(キャボットジャパン(株)製、平均粒子径20nm、粒子径50μm以上の粒子の割合が20ppm以下)
・離型剤:ペンタエリスリトールテトラステアレート(エメリーオレオケミカルズジャパン(株)製)
<Materials other than liquid crystal resin>
-Silica 1: Admafine SO-C2 (manufactured by Admatex Co., Ltd., silica, median diameter 0.5 μm, Mohs hardness 6)
-Silica 2: Admafine SO-C6 (manufactured by Admatex Co., Ltd., silica, median diameter 2.0 μm, Mohs hardness 6)
-Silica 3: Denka fused silica FB-5SDC (manufactured by Denka Co., Ltd., silica, median diameter 4.0 μm, Mohs hardness 6)
-Silica 4: Denka fused silica FB-7SDC (manufactured by Denka Co., Ltd., silica, median diameter 7.0 μm, Mohs hardness 6)
-Glass beads: EGB731 (manufactured by Potters Barotini Co., Ltd., glass beads, median diameter 20.0 μm, Mohs hardness 5)
-Mica: AB-25S (manufactured by Yamaguchi Mica Co., Ltd., mica, median diameter 25.0 μm, Mohs hardness 2.8)
-Talc: Crown talc PP (manufactured by Matsumura Sangyo Co., Ltd., talc, median diameter 14.6 μm, Mohs hardness 1)
-Potato titanate: Tismo N-102 (manufactured by Otsuka Chemical Co., Ltd., potassium titanate fiber, average fiber diameter 0.3-0.6 μm, average fiber length 10-20 μm)
-Wollastonite: NYGLOS 8 (manufactured by NYCO Materials, calcium silicate whiskers (Wollastonite), number average fiber length 136 μm, average fiber diameter 8 μm)
-Epoxy group-containing olefin copolymer: Bond First 2C (manufactured by Sumitomo Chemical Co., Ltd., ethylene-glycidyl methacrylate copolymer, glycidyl methacrylate content 6% by mass)
-Carbon black: VULCAN XC305 (manufactured by Cabot Japan Co., Ltd., average particle size 20 nm, proportion of particles with a particle size of 50 μm or more is 20 ppm or less)
-Release agent: Pentaerythritol tetrastearate (manufactured by Emery Oleo Chemicals Japan Co., Ltd.)
<耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物の製造>
 上記成分を、表1~5に示す割合(単位:質量%)で二軸押出機((株)日本製鋼所製TEX30α型)を用いて、シリンダー温度350℃にて溶融混練し、耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物ペレットを得た。
<Manufacturing of liquid crystal resin composition for ball bearing sliding wear member>
The above components are melt-kneaded at a cylinder temperature of 350 ° C. using a twin-screw extruder (TEX30α type manufactured by Japan Steel Works, Ltd.) at the ratios (unit: mass%) shown in Tables 1 to 5, and ball bearing resistance. Liquid crystal resin composition pellets for sliding wear members were obtained.
<表面白化>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE30DUZ」)を用いて、以下の成形条件で成形し、測定用試験片(12.5mm×120mm×0.8mm)を得た。測定用試験片を3分間、室温の水中(80ml)で超音波洗浄機(出力300W、周波数45kHz)にかけた。その後、測定用試験片の表面を目視で観察した。測定用試験片の表面白化を下記の基準で評価した。結果を表1~5に示す。
 ○(良好):試験片の全面で白化が認められない。
 ○-(やや良好):ゲート付近及び/又はエジェクタピン痕付近にわずかな白化が認められる。
 ×(不良):試験片の平滑部に明らかな白化が認められる。
〔成形条件〕
シリンダー温度: 350℃
金型温度: 80℃
射出速度: 100mm/sec
<Surface whitening>
The pellets of Examples and Comparative Examples were molded using a molding machine (“SE30DUZ” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions, and a test piece for measurement (12.5 mm × 120 mm × 0.8 mm). ) Was obtained. The test piece for measurement was subjected to an ultrasonic cleaner (output 300 W, frequency 45 kHz) in water (80 ml) at room temperature for 3 minutes. Then, the surface of the test piece for measurement was visually observed. The surface whitening of the test piece for measurement was evaluated according to the following criteria. The results are shown in Tables 1-5.
○ (Good): No whitening is observed on the entire surface of the test piece.
◯-(Slightly good): Slight whitening is observed near the gate and / or near the ejector pin marks.
X (defective): Clear whitening is observed on the smooth part of the test piece.
〔Molding condition〕
Cylinder temperature: 350 ℃
Mold temperature: 80 ° C
Injection speed: 100 mm / sec
<ボールベアリング摺動摩耗性>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE100DU」)を用いて、以下の成形条件で成形し、測定用試験片(80mm×80mm×1mm)を得た。軽荷重往復動試験機を用いて、図1に示す通り、測定用試験片1上で、グリース2を介して、アーム3先端のボール4(直径5mm、SUS製)に荷重をかけ、下記の往復摺動条件で往復摺動試験を行った後、測定用試験片1に残ったボールベアリング摺動痕の幅を、実体顕微鏡を用いて計測し、ボールベアリング摺動摩耗性を下記の基準で評価した。結果を表1~5に示す。
 ○(良好):ボールベアリング摺動痕の幅が540μm以下であった。
 ×(不良):ボールベアリング摺動痕の幅が540μm超であった。
〔成形条件〕
シリンダー温度: 350℃
金型温度: 80℃
射出速度: 33mm/sec
〔往復摺動条件〕
すべり速度:5cm/sec
ストローク:20mm
荷重:29.6N(3kg重)
往復回数:1000回
グリース:東レ・ダウコーニング(株)製、モリコートEM-30L
<Ball bearing sliding wear resistance>
The pellets of Examples and Comparative Examples were molded using a molding machine (“SE100DU” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions to obtain a test piece for measurement (80 mm × 80 mm × 1 mm). .. Using a light load reciprocating tester, as shown in FIG. 1, a load is applied to the ball 4 (diameter 5 mm, made of SUS) at the tip of the arm 3 via the grease 2 on the measurement test piece 1, and the following After performing the reciprocating sliding test under the reciprocating sliding conditions, the width of the ball bearing sliding marks remaining on the measurement test piece 1 is measured using a stereomicroscope, and the ball bearing sliding wear resistance is determined according to the following criteria. evaluated. The results are shown in Tables 1-5.
◯ (Good): The width of the ball bearing sliding marks was 540 μm or less.
X (defective): The width of the ball bearing sliding mark was more than 540 μm.
〔Molding condition〕
Cylinder temperature: 350 ℃
Mold temperature: 80 ° C
Injection speed: 33 mm / sec
[Reciprocating sliding conditions]
Slip speed: 5 cm / sec
Stroke: 20mm
Load: 29.6N (3kg weight)
Number of round trips: 1000 times Grease: Made by Toray Dow Corning Co., Ltd., Moricoat EM-30L
<そり性>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE30DUZ」)を用いて、以下の成形条件で成形し、図2(a)に示すような、10.0mm×10.0mm×1.0mmのカメラモジュール型成形品を得た。得られたカメラモジュール型成形品を水平な机の上に静置し、カメラモジュール型成形品の高さをミツトヨ製クイックビジョン404PROCNC画像測定機により測定した。その際、図2(b)において黒丸で示す複数の位置で高さを測定し、最小二乗平面からの最大高さと最小高さとの差をそり変形とした。そり性を下記の基準で評価した。結果を表1~5に示す。
 ○(良好):そり変形が0.020mm以下であった。
 △(やや良好):そり変形が0.020mm超0.025mm以下であった。
 ×(不良):そり変形が0.025mm超であった。
〔成形条件〕
シリンダー温度: 350℃
金型温度: 80℃
射出速度: 100mm/sec
保圧: 50MPa
<Sledding>
The pellets of Examples and Comparative Examples were molded using a molding machine (“SE30DUZ” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions, and 10.0 mm × as shown in FIG. 2 (a). A camera module type molded product having a size of 10.0 mm × 1.0 mm was obtained. The obtained camera module type molded product was allowed to stand on a horizontal desk, and the height of the camera module type molded product was measured by a Mitutoyo Quick Vision 404PROCNC image measuring machine. At that time, the heights were measured at a plurality of positions indicated by black circles in FIG. 2B, and the difference between the maximum height and the minimum height from the least squares plane was defined as the warp deformation. The warpability was evaluated according to the following criteria. The results are shown in Tables 1-5.
◯ (Good): The warp deformation was 0.020 mm or less.
Δ (Slightly good): The warp deformation was more than 0.020 mm and 0.025 mm or less.
X (defective): The warp deformation was more than 0.025 mm.
〔Molding condition〕
Cylinder temperature: 350 ℃
Mold temperature: 80 ° C
Injection speed: 100 mm / sec
Holding pressure: 50 MPa
<ウェルド強度>
 実施例及び比較例のペレットを下記成形条件で射出成形して、図3に示す通り、フィルムゲート11及び穴12を有する穴あき試験片10(穴あき平板30mm×30mm×0.3mm、穴径7mm)を得た。得られた穴あき試験片10から、穴12を挟んで、ゲート側4.5mm幅の部分と、反ゲート側4.5mm幅の部分とを切り出し、それぞれ測定用試験片13a及び13bとした。測定用試験片13a及び13b各々の曲げ強度を下記測定条件で測定し、反ゲート側の測定用試験片13bの曲げ強度をゲート側の測定用試験片13aの曲げ強度で除した値を、ウェルド強度保持率として、ウェルド強度を下記の基準で評価した。結果を表1~5に示す。
 ○(良好):ウェルド強度保持率が55%以上であった。
 △(やや良好):ウェルド強度保持率が45%以上55%未満であった。
 ×(不良):ウェルド強度保持率が45%未満であった。
[成形条件]
 成形機;住友重機械工業SE30DUZ
 シリンダー温度;350℃-350℃-350℃-340℃-330℃
 金型温度;90℃
 射出速度;200mm/sec
 保圧力;50MPa
 保圧時間;2sec
 冷却時間;8sec
 スクリュー回転数;150rpm
 スクリュー背圧;1MPa
[測定条件]
測定機;オリエンテック社テンシロン万能試験機製RTM-100
ロードセル;100kg
スパン:4.8mm
曲げ速度:2mm/min
<Weld strength>
The pellets of Examples and Comparative Examples were injection-molded under the following molding conditions, and as shown in FIG. 3, a perforated test piece 10 having a film gate 11 and a hole 12 (perforated flat plate 30 mm × 30 mm × 0.3 mm, hole diameter). 7 mm) was obtained. From the obtained perforated test piece 10, a portion having a width of 4.5 mm on the gate side and a portion having a width of 4.5 mm on the anti-gate side were cut out with the hole 12 in between to obtain test pieces 13a and 13b for measurement, respectively. The bending strength of each of the measurement test pieces 13a and 13b was measured under the following measurement conditions, and the value obtained by dividing the bending strength of the measurement test piece 13b on the opposite side by the bending strength of the measurement test piece 13a on the gate side was obtained by welding. As the strength retention rate, the weld strength was evaluated according to the following criteria. The results are shown in Tables 1-5.
◯ (Good): The weld strength retention rate was 55% or more.
Δ (Slightly good): The weld strength retention rate was 45% or more and less than 55%.
X (defective): Weld strength retention rate was less than 45%.
[Molding condition]
Molding machine; Sumitomo Heavy Industries SE30DUZ
Cylinder temperature; 350 ° C-350 ° C-350 ° C-340 ° C-330 ° C
Mold temperature; 90 ° C
Injection speed; 200 mm / sec
Holding pressure; 50 MPa
Holding time; 2 sec
Cooling time; 8 sec
Screw rotation speed; 150 rpm
Screw back pressure; 1 MPa
[Measurement condition]
Measuring machine: RTM-100 manufactured by Orientec Tencilon Universal Testing Machine
Load cell; 100 kg
Span: 4.8 mm
Bending speed: 2 mm / min
<表面硬度>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE30DUZ」)を用いて、以下の成形条件で成形し、測定用試験片(12.5mm×120mm×0.8mm)を得た。測定用試験片について、ロックウェル硬度計((株)東洋精機製作所)を用いて、Mスケール条件(基準荷重:10kg、試験荷重:100kg、鋼球圧子径:1/2in)にて表面硬度を測定し、下記の基準で評価した。結果を表1~5に示す。
 ○(良好):表面硬度が60以上であった。
 △(やや良好):表面硬度が55以上60未満であった。
 ×(不良):表面硬度が55未満であった。
〔成形条件〕
シリンダー温度: 350℃
金型温度: 80℃
射出速度: 100mm/sec
<Surface hardness>
The pellets of Examples and Comparative Examples were molded using a molding machine (“SE30DUZ” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions, and a test piece for measurement (12.5 mm × 120 mm × 0.8 mm). ) Was obtained. For the test piece for measurement, use a Rockwell hardness tester (Toyo Seiki Seisakusho Co., Ltd.) to determine the surface hardness under M scale conditions (reference load: 10 kg, test load: 100 kg, steel ball indenter diameter: 1/2 in). It was measured and evaluated according to the following criteria. The results are shown in Tables 1-5.
◯ (Good): The surface hardness was 60 or more.
Δ (Slightly good): The surface hardness was 55 or more and less than 60.
X (defective): The surface hardness was less than 55.
〔Molding condition〕
Cylinder temperature: 350 ℃
Mold temperature: 80 ° C
Injection speed: 100 mm / sec
<ダスト発生数>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE30DUZ」)を用いて、以下の成形条件で成形し、12.5mm×120mm×0.8mmの成形体を得た。この成形体を試験片として使用した。
〔成形条件〕
シリンダー温度: 350℃
金型温度: 80℃
射出速度: 100mm/sec
〔評価〕
 上記試験片を3分間、室温の水中(80ml)で超音波洗浄機(出力300W、周波数45kHz)にかけた。その後、パーティクルカウンター(RION(株)製 液中微粒子計数器KL-11A(PARTICLECOUNTER))にて、上記水中に存在する2μm以上の粒子数を測定し、ダスト発生数として評価した。結果を表1~5に示す。
<Number of dust generated>
The pellets of Examples and Comparative Examples were molded using a molding machine (“SE30DUZ” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions to obtain a molded product of 12.5 mm × 120 mm × 0.8 mm. It was. This molded product was used as a test piece.
〔Molding condition〕
Cylinder temperature: 350 ℃
Mold temperature: 80 ° C
Injection speed: 100 mm / sec
[Evaluation]
The test piece was subjected to an ultrasonic cleaner (output 300 W, frequency 45 kHz) in water (80 ml) at room temperature for 3 minutes. Then, the number of particles of 2 μm or more present in the water was measured with a particle counter (RION Co., Ltd. liquid particle counter KL-11A (PARTICLE COUNTER)) and evaluated as the number of dust generated. The results are shown in Tables 1-5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1~5に記載の結果から明らかなように、実施例の成形体は、表面白化抑制、低そり性、ウェルド強度、及び低発塵性にバランスよく優れつつ、ボールベアリング摺動摩耗性が低減され、かつ、耐衝撃性が向上していることが確認された。 As is clear from the results shown in Tables 1 to 5, the molded product of the example has excellent ball bearing sliding wear resistance in a well-balanced manner in terms of surface whitening suppression, low warpage, weld strength, and low dust generation. It was confirmed that it was reduced and the impact resistance was improved.
 1 測定用試験片
 2 グリース
 3 アーム
 4 ボール
 10 穴あき試験片
 11 フィルムゲート11
 12 穴
 13a、13b 測定用試験片
1 Measurement test piece 2 Grease 3 Arm 4 Ball 10 Perforated test piece 11 Film gate 11
12 holes 13a, 13b Measurement test piece

Claims (5)

  1.  (A)液晶性樹脂、
     (B)粒状充填剤、及び
     (C)板状充填剤
    を含有し、
     前記(B)粒状充填剤のメディアン径は、0.3~5.0μmであり、
     前記(B)粒状充填剤のモース硬度は、2.5以上であり、
     前記(C)板状充填剤のモース硬度は、2.0以上であり、
     前記(B)粒状充填剤の含有量は、2.5~22.5質量%であり、
     前記(C)板状充填剤の含有量は、2.5~32.5質量%であり、
     前記(B)粒状充填剤と前記(C)板状充填剤との合計の含有量は、22.5~37.5質量%である耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物。
    (A) Liquid crystal resin,
    Contains (B) granular filler and (C) plate-like filler,
    The median diameter of the granular filler (B) is 0.3 to 5.0 μm.
    The Mohs hardness of the granular filler (B) is 2.5 or more.
    The Mohs hardness of the plate-shaped filler (C) is 2.0 or more.
    The content of the granular filler (B) is 2.5 to 22.5% by mass.
    The content of the plate-shaped filler (C) is 2.5 to 32.5% by mass.
    A liquid crystal resin composition for a ball bearing sliding wear member, wherein the total content of the (B) granular filler and the (C) plate-shaped filler is 22.5 to 37.5% by mass.
  2.  前記(C)板状充填剤は、マイカである請求項1に記載の組成物。 The composition according to claim 1, wherein the (C) plate-shaped filler is mica.
  3.  前記(B)粒状充填剤は、シリカ及び硫酸バリウムからなる群より選択される1種以上である請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the (B) granular filler is at least one selected from the group consisting of silica and barium sulfate.
  4.  更に(D)エポキシ基含有共重合体を含有する請求項1から3のいずれかに記載の組成物であって、
     前記(D)エポキシ基含有共重合体の含有量は、1~5質量%である組成物。
    The composition according to any one of claims 1 to 3, further comprising (D) an epoxy group-containing copolymer.
    The composition in which the content of the epoxy group-containing copolymer (D) is 1 to 5% by mass.
  5.  請求項1から4のいずれかに記載の組成物からなる耐ボールベアリング摺動摩耗部材。 A ball bearing sliding wear resistant member comprising the composition according to any one of claims 1 to 4.
PCT/JP2020/034340 2019-10-03 2020-09-10 Liquid crystalline resin composition for ball bearing anti-sliding abrasion member, and ball bearing anti-sliding abrasion member using same WO2021065416A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227010813A KR102506289B1 (en) 2019-10-03 2020-09-10 Liquid crystalline resin composition for ball bearing sliding wear resistance and ball bearing sliding wear resistance using the same
JP2021503930A JP6906123B1 (en) 2019-10-03 2020-09-10 Liquid crystal resin composition for ball bearing sliding wear member and ball bearing sliding wear member using it
CN202080068805.3A CN114502657B (en) 2019-10-03 2020-09-10 Liquid crystalline resin composition for ball bearing sliding wear member and ball bearing sliding wear member using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-183247 2019-10-03
JP2019183247 2019-10-03

Publications (1)

Publication Number Publication Date
WO2021065416A1 true WO2021065416A1 (en) 2021-04-08

Family

ID=75337190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034340 WO2021065416A1 (en) 2019-10-03 2020-09-10 Liquid crystalline resin composition for ball bearing anti-sliding abrasion member, and ball bearing anti-sliding abrasion member using same

Country Status (5)

Country Link
JP (1) JP6906123B1 (en)
KR (1) KR102506289B1 (en)
CN (1) CN114502657B (en)
TW (1) TWI836143B (en)
WO (1) WO2021065416A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004553A1 (en) * 2020-06-30 2022-01-06 ポリプラスチックス株式会社 Liquid crystalline resin composition for ball bearing anti-sliding wear member, and ball bearing anti-sliding wear member using same
WO2022070695A1 (en) * 2020-09-29 2022-04-07 ポリプラスチックス株式会社 Liquid crystalline resin composition for ball bearing anti-sliding wear member, and ball bearing anti-sliding wear member using same
WO2023136196A1 (en) * 2022-01-12 2023-07-20 住友化学株式会社 Liquid crystal polyester composition and molded body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040121088A1 (en) * 2002-12-18 2004-06-24 Bloom Joy Sawyer High temperature LCP for wear resistance
JP2005239754A (en) * 2004-02-24 2005-09-08 Otsuka Chemical Co Ltd Slidable resin composition
JP2011068831A (en) * 2009-09-28 2011-04-07 Jx Nippon Oil & Energy Corp Liquid crystal polyester resin composition
WO2015016370A1 (en) * 2013-07-31 2015-02-05 住友化学株式会社 Liquid crystalline polyester composition
WO2017179474A1 (en) * 2016-04-15 2017-10-19 ポリプラスチックス株式会社 Liquid-crystalline resin composition
WO2020071495A1 (en) * 2018-10-05 2020-04-09 ポリプラスチックス株式会社 Liquid crystalline resin composition for ball bearing anti-sliding-abrasion member, and ball bearing anti-sliding-abrasion member using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2938063B1 (en) 1998-09-03 1999-08-23 九州日本電気株式会社 TAB lead bonding method
JP5087958B2 (en) 2007-03-07 2012-12-05 東レ株式会社 Molded product comprising liquid crystalline resin composition
JP6762228B2 (en) * 2016-12-26 2020-09-30 ポリプラスチックス株式会社 Liquid crystal resin composition for camera module and camera module using it
JP6898163B2 (en) * 2017-07-04 2021-07-07 住友化学株式会社 Liquid crystal polyester resin composition and molded article
CN110997820B (en) * 2017-09-12 2021-05-11 宝理塑料株式会社 Liquid crystalline resin composition for sliding wear resistant member and sliding wear resistant member using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040121088A1 (en) * 2002-12-18 2004-06-24 Bloom Joy Sawyer High temperature LCP for wear resistance
JP2005239754A (en) * 2004-02-24 2005-09-08 Otsuka Chemical Co Ltd Slidable resin composition
JP2011068831A (en) * 2009-09-28 2011-04-07 Jx Nippon Oil & Energy Corp Liquid crystal polyester resin composition
WO2015016370A1 (en) * 2013-07-31 2015-02-05 住友化学株式会社 Liquid crystalline polyester composition
WO2017179474A1 (en) * 2016-04-15 2017-10-19 ポリプラスチックス株式会社 Liquid-crystalline resin composition
WO2020071495A1 (en) * 2018-10-05 2020-04-09 ポリプラスチックス株式会社 Liquid crystalline resin composition for ball bearing anti-sliding-abrasion member, and ball bearing anti-sliding-abrasion member using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004553A1 (en) * 2020-06-30 2022-01-06 ポリプラスチックス株式会社 Liquid crystalline resin composition for ball bearing anti-sliding wear member, and ball bearing anti-sliding wear member using same
WO2022070695A1 (en) * 2020-09-29 2022-04-07 ポリプラスチックス株式会社 Liquid crystalline resin composition for ball bearing anti-sliding wear member, and ball bearing anti-sliding wear member using same
JP7101323B1 (en) * 2020-09-29 2022-07-14 ポリプラスチックス株式会社 Liquid crystal resin composition for ball bearing sliding wear resistant member and ball bearing sliding wear resistant member using it
WO2023136196A1 (en) * 2022-01-12 2023-07-20 住友化学株式会社 Liquid crystal polyester composition and molded body

Also Published As

Publication number Publication date
JP6906123B1 (en) 2021-07-21
TWI836143B (en) 2024-03-21
CN114502657A (en) 2022-05-13
CN114502657B (en) 2023-05-26
KR20220045082A (en) 2022-04-12
TW202116893A (en) 2021-05-01
KR102506289B1 (en) 2023-03-06
JPWO2021065416A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP5680788B2 (en) Liquid crystalline resin composition for camera modules
JP6906123B1 (en) Liquid crystal resin composition for ball bearing sliding wear member and ball bearing sliding wear member using it
JP6823760B2 (en) Liquid crystal resin composition for ball bearing sliding wear member and ball bearing sliding wear member using it
JP6581659B2 (en) Liquid crystalline resin composition for camera module and camera module using the same
WO2017110424A1 (en) Liquid-crystalline resin composition for camera module, process for producing same, and camera module obtained using said composition
JP7199853B2 (en) Liquid crystalline resin composition for sliding wear resistant member and sliding wear resistant member using the same
CN110997820B (en) Liquid crystalline resin composition for sliding wear resistant member and sliding wear resistant member using same
KR102545958B1 (en) Liquid crystalline resin composition for ball bearing sliding wear resistance and ball bearing sliding wear resistance using the same
CN116490572B (en) Liquid crystalline resin composition for ball bearing sliding wear member and ball bearing sliding wear member using same
JP7026842B2 (en) Liquid crystal resin composition and molded article using it
WO2024122582A1 (en) Liquid crystal resin composition and camera module using same
JP2023123057A (en) Liquid crystalline resin composition for camera module, and camera module using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021503930

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227010813

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871407

Country of ref document: EP

Kind code of ref document: A1