WO2022004235A1 - Thermoplastic resin composition, member, method for producing same, and method for imparting electroconductivity to thermoplastic resin composition - Google Patents

Thermoplastic resin composition, member, method for producing same, and method for imparting electroconductivity to thermoplastic resin composition Download PDF

Info

Publication number
WO2022004235A1
WO2022004235A1 PCT/JP2021/020683 JP2021020683W WO2022004235A1 WO 2022004235 A1 WO2022004235 A1 WO 2022004235A1 JP 2021020683 W JP2021020683 W JP 2021020683W WO 2022004235 A1 WO2022004235 A1 WO 2022004235A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
mass
resin
parts
Prior art date
Application number
PCT/JP2021/020683
Other languages
French (fr)
Japanese (ja)
Inventor
裕基 神田
智宏 門間
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN202180046675.8A priority Critical patent/CN115885017A/en
Priority to JP2022533758A priority patent/JP7510504B2/ja
Publication of WO2022004235A1 publication Critical patent/WO2022004235A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a thermoplastic resin composition, a member formed by molding the thermoplastic resin composition, a method for producing the same, and a method for developing conductivity of the thermoplastic resin composition.
  • Polyacetal resin (hereinafter, also referred to as "POM resin”) is widely used as an engineering plastic because of its excellent various physical and mechanical properties, chemical resistance, and slidability.
  • the POM resin is inferior in conductivity because it is an electric insulator like most other resins. Therefore, it is known to add a conductive filler such as carbon black or carbon fiber in order to impart conductivity to the POM resin (see Patent Documents 1 and 2).
  • a conductive filler such as carbon black or carbon fiber in order to impart conductivity to the POM resin.
  • Patent Documents 1 and 2 As described above, it is possible to impart conductivity by adding a conductive filler to the POM resin, and the addition of the conductive filler is effective not only for the purpose of making the conductive member but also for antistatic.
  • the present inventor has confirmed that the impact resistance and tensile fracture strain are inferior when carbon black or carbon fiber is added as a conductive filler in the POM resin composition. That is, although it is possible to impart conductivity by adding carbon black or carbon fiber, there is a problem that impact resistance and breaking elongation are greatly reduced. Such a problem may also occur in a thermoplastic resin composition containing a thermoplastic resin other than the POM resin.
  • the present invention has been made in view of the above-mentioned conventional problems, and the problems thereof are a thermoplastic resin composition and a member to which conductivity is imparted without significantly reducing impact resistance and tensile fracture strain, and a member thereof. It is an object of the present invention to provide a manufacturing method and a method for developing conductivity of a thermoplastic resin composition.
  • thermoplastic resin composition obtained by melt-kneading at least 0.3 to 2.5 parts by mass of carbon nanostructures with respect to 100 parts by mass of the thermoplastic resin.
  • thermoplastic resin composition obtained by melt-kneading at least 0.3 to 2.5 parts by mass of carbon nanostructures with respect to 100 parts by mass of the thermoplastic resin, and the thermoplastic resin composition.
  • a method for manufacturing a conductive member which comprises a step of forming an object into a predetermined shape.
  • thermoplastic resin composition A method for developing conductivity of a thermoplastic resin composition, wherein at least 0.3 to 2.5 parts by mass of carbon nanostructure is added to 100 parts by mass of the thermoplastic resin and melt-kneaded.
  • thermoplastic resin composition to which conductivity is imparted a member and a method for producing the same, and a method for developing conductivity of the thermoplastic resin composition are provided without significantly reducing impact resistance and tensile fracture strain. Can be provided.
  • thermoplastic resin composition In the thermoplastic resin composition of the present embodiment, at least 0.3 to 2.5 parts by mass of carbon nanostructure (hereinafter, also referred to as “CNS”) is melt-kneaded with 100 parts by mass of the thermoplastic resin. It is characterized by being obtained.
  • carbon nanostructure hereinafter, also referred to as “CNS”.
  • thermoplastic resin composition of the present embodiment by adding a predetermined amount of CNS to the thermoplastic resin and melt-kneading it, conductivity is imparted without significantly reducing impact resistance and tensile fracture strain. To.
  • each component of the thermoplastic resin composition of the present embodiment will be described.
  • the thermoplastic resin includes a crystalline thermoplastic resin, for example, a polyacetal resin (hereinafter, also referred to as “POM resin”), a polyarylene sulfide resin (hereinafter, also referred to as “PAS resin”), and polybutylene.
  • POM resin polyacetal resin
  • PAS resin polyarylene sulfide resin
  • PBT resin terephthalate resin
  • the thermoplastic resin is preferably one selected from the group consisting of polyacetal resin, polyarylene sulfide resin, polybutylene terephthalate resin, polyethylene terephthalate resin, and polyamide resin.
  • the thermoplastic resin will be described with reference to POM resin, PAS resin, and PBT resin, but the present embodiment is not limited thereto.
  • the polyacetal resin is a polymer compound having an oxymethylene group (-CH 2 O-) as a main constituent unit, and includes polyoxymethylene homopolymers and oximethylene copolymers, and any of these may be used.
  • the oxymethylene copolymer has an oxymethylene group as the main repeating unit, and also contains other structural units such as ethylene oxide, 1,3-dioxolane, and 1,4-butanediol formal in a small amount.
  • the polyacetal resin may be one in which the molecule is not only linear but also has a branched or crosslinked structure, or may be a known modified polyoxymethylene into which another organic group is introduced. Further, the polyacetal resin is not particularly limited in terms of the degree of polymerization, and has melt molding processability (for example, a melt flow value (MFR) of 1.0 g / 10 minutes or more under a load of 190 ° C. and 2160 g / 100 g / It may be 10 minutes or less). The polyacetal resin is produced by a known production method.
  • MFR melt flow value
  • the PBT resin is a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (such as an alkyl ester of C1-6 or an acid halide) and an alkylene glycol (1,4-butanediol) having at least 4 carbon atoms. It is a resin obtained by polycondensing with a glycol component containing the ester-forming derivative (acetylated acid or the like).
  • the PBT resin is not limited to homopolybutylene terephthalate, and may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of butylene terephthalate units.
  • the amount of terminal carboxyl groups in the PBT resin is not particularly limited as long as it does not inhibit the effect of the thermoplastic resin of the present embodiment.
  • the amount of the terminal carboxyl group of the PBT resin is preferably 30 meq / kg or less, more preferably 25 meq / kg or less.
  • the intrinsic viscosity of the PBT resin is preferably 0.65 to 1.20 dL / g.
  • the obtained resin composition is particularly excellent in mechanical properties and fluidity.
  • the intrinsic viscosity is less than 0.65 dL / g, excellent mechanical properties cannot be obtained, and if it exceeds 1.20 dL / g, excellent fluidity may not be obtained.
  • the PBT resin having the above-mentioned intrinsic viscosity can be blended with PBT resins having different intrinsic viscosities to adjust the intrinsic viscosity.
  • a PBT resin having an intrinsic viscosity of 0.8 dL / g can be prepared by blending a PBT resin having an intrinsic viscosity of 0.9 dL / g and a PBT resin having an intrinsic viscosity of 0.7 dL / g.
  • the intrinsic viscosity of the PBT resin is, for example, a value measured in o-chlorophenol under the condition of a temperature of 35 ° C.
  • examples of the dicarboxylic acid component (comonomer component) other than terephthalic acid and its ester-forming derivative include isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-dicarboxydiphenyl ether and the like.
  • C4-16 alcandicarboxylic acid such as succinic acid, adipic acid, azelaic acid, sebacic acid;
  • C5-10 cycloalkandicarboxylic acid such as cyclohexanedicarboxylic acid;
  • Examples thereof include ester-forming derivatives (C1-6 alkyl ester derivatives, acid halides, etc.).
  • These dicarboxylic acid components can be used alone or in combination of two or more.
  • C8-12 aromatic dicarboxylic acids such as isophthalic acid and C6-12 arcandicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferable.
  • examples of the glycol component (comonomer component) other than 1,4-butanediol include ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neopentyl glycol, and 1, C2-10 alkylene glycols such as 3-octanediol; polyoxyalkylene glycols such as diethylene glycol, triethylene glycol and dipropylene glycol; alicyclic diols such as cyclohexanedimethanol and hydride bisphenol A; bisphenol A, 4,4 Aromatic diols such as'-dihydroxybiphenyl; alkylene oxide adducts of C2-4 of bisphenol A such as ethylene oxide 2 mol adducts of bisphenol A, propylene oxide 3 mol adducts of bisphenol A; or esters of these glycols. Examples thereof include formable derivatives (acetylated products, etc.
  • C2-6 alkylene glycols such as ethylene glycol and trimethylene glycol
  • polyoxyalkylene glycols such as diethylene glycol
  • alicyclic diols such as cyclohexanedimethanol are more preferable.
  • Examples of the comonomer component that can be used in addition to the dicarboxylic acid component and the glycol component include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4'-hydroxybiphenyl and the like.
  • Examples thereof include sex derivatives (C1-6 alkyl ester derivatives, acid halides, acetylates, etc.).
  • PAS resin Polyarylene sulfide resin
  • the PAS resin is characterized by being excellent in mechanical properties, electrical properties, heat resistance and other physical and chemical properties, and having good processability.
  • the PAS resin is a polymer compound mainly composed of-(Ar-S)-(where Ar is an arylene group) as a repeating unit, and is a PAS resin having a molecular structure generally known in the present embodiment. Can be used.
  • arylene group examples include a p-phenylene group, an m-phenylene group, an o-phenylene group, a substituted phenylene group, a p, p'-diphenylene sulphon group, a p, p'-biphenylene group, p, p'-.
  • Examples thereof include a diphenylene ether group, a p, p'-diphenylene carbonyl group and a naphthalene group.
  • the PAS resin may be a homopolymer composed of only the above-mentioned repeating units, or a copolymer containing the following different kinds of repeating units may be preferable from the viewpoint of processability and the like.
  • a polyphenylene sulfide resin (hereinafter, also referred to as “PPS resin”) using a p-phenylene group as an arylene group and having a p-phenylene sulfide group as a repeating unit is preferably used.
  • PPS resin polyphenylene sulfide resin
  • the copolymer among the above-mentioned allylene sulfide groups consisting of allylene groups, two or more different combinations can be used, and among them, the combination containing the p-phenylene sulfide group and the m-phenylene sulfide group is particularly preferably used. Be done.
  • those containing 70 mol% or more, preferably 80 mol% or more of the p-phenylene sulfide group are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties.
  • a high molecular weight polymer having a substantially linear structure obtained by polycondensation from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used.
  • the PAS resin used in this embodiment may be a mixture of two or more different molecular weight PAS resins.
  • a small amount of a monomer such as a polyhalo aromatic compound having three or more halogen substituents is used to partially form a branched structure or a crosslinked structure during polycondensation.
  • a monomer such as a polyhalo aromatic compound having three or more halogen substituents
  • examples thereof include a polymer obtained by heating a low molecular weight linear structure polymer at a high temperature in the presence of oxygen and the like to increase the melt viscosity by oxidative crosslinking or thermal crosslinking to improve molding processability.
  • the melt viscosity (310 ° C., shear rate 1200 sec -1 ) of the PAS resin as the substrate resin used in the present embodiment is preferably 5 to 500 Pa ⁇ s, including the case of the above mixed system.
  • CNS Carbon Nanostructure
  • FIG. 1 schematically shows the CNS used in the present embodiment
  • (A) is a state before melt-kneading with a thermoplastic resin
  • (B) is a state immediately after the start of melt-kneading
  • (C) is a state immediately after melt-kneading. Indicates the later state.
  • the CNS 10 before melt-kneading forms a structure in which a large number of branched carbon nanotubes 12 are entangled and bonded.
  • the CNS 10 is poured into the thermoplastic resin 20 and melt-kneaded, the CNS 10 is divided into a large number as shown in FIG.
  • each of the carbon nanotubes 12 is in contact with each other via the contact point 14. That is, in the state of FIG. 1C, in the thermoplastic resin, a large number of carbon nanotubes 12 are in contact with each other over a wide range to form a conductive path, so that conductivity is exhibited. Further, since the carbon nanotubes 12 are randomly entangled to form a three-dimensional network structure, it is considered that the impact resistance and the decrease in tensile fracture strain can be suppressed.
  • the CNS used in this embodiment may be a commercially available product.
  • ATHLOS 200, ATHLOS 100, etc. manufactured by CABOT can be used.
  • CNS is contained in an amount of 0.3 to 2.5 parts by mass with respect to 100 parts by mass of the thermoplastic resin. If the content of the CNS is less than 0.3 parts by mass, the conductivity is inferior, and if it exceeds 2.5 parts by mass, the impact resistance and the tensile fracture strain are lowered.
  • the content of the CNS is preferably 0.5 to 2.0 parts by mass, more preferably 0.6 to 1.8 parts by mass, and even more preferably 0.8 to 1.5 parts by mass.
  • thermoplastic resin composition of the present embodiment examples include one or more of hindered phenol compounds, nitrogen-containing compounds, hydroxides of alkaline or alkaline earth metals, inorganic salts, carboxylates and the like. can. Further, as long as the above-mentioned effects are not impaired, general additives to thermoplastic resins such as colorants such as dyes and pigments, lubricants, nucleating agents, mold release agents, antistatic agents and surfactants are required. One or two or more kinds of agents, organic polymer materials, inorganic or organic fibrous, powdery, plate-like fillers and the like can be added.
  • the method for producing a molded product using the thermoplastic resin composition of the present embodiment is not particularly limited, and a known method can be adopted.
  • the thermoplastic resin composition of the present embodiment is put into an extruder, melt-kneaded and pelletized, and the pellets are put into an injection molding machine equipped with a predetermined mold and injection-molded. Can be done.
  • thermoplastic resin composition of the present embodiment may be a conductive member described later, or may be a molded product having an antistatic function.
  • the member of the present embodiment is formed by molding the above-mentioned thermoplastic resin composition of the present embodiment. Therefore, the member of the present embodiment has conductivity, and has sufficient impact resistance and tensile fracture strain, like the thermoplastic resin composition of the present embodiment.
  • the member of the present embodiment for example, it can be suitably used for an automobile part such as a fuel piping part and an electric / electronic part such as a printer part.
  • the member of the present embodiment can be manufactured by the method of manufacturing the conductive member of the present embodiment described below.
  • thermoplastic resin composition obtained by melt-kneading at least 0.3 to 2.5 parts by mass of a carbon nanostructure with 100 parts by mass of a thermoplastic resin is prepared. It is characterized by including a step of forming the thermoplastic resin composition into a predetermined shape (hereinafter referred to as “step B”). Each process will be described below.
  • thermoplastic resin composition obtained by melt-kneading at least 0.3 to 2.5 parts by mass of carbon nanostructures with respect to 100 parts by mass of the thermoplastic resin is prepared.
  • Preferred components in the thermoplastic resin composition, preferred contents thereof, and other components are as described above.
  • the thermoplastic resin composition is obtained by melt-kneading each of the above components and, if necessary, other components according to a conventional method. For example, it can be obtained by putting the thermoplastic resin composition of the present embodiment into an extruder, melt-kneading it, and pelletizing it.
  • CNS may be set as a masterbatch in advance, and this masterbatch may be used when CNS is added.
  • the masterbatch is a thermoplastic resin composition containing a high concentration of CNS, which is prepared in advance.
  • CNS thermoplastic resin composition
  • step B the thermoplastic resin composition is molded into a predetermined shape.
  • the pellets obtained as described above are put into an injection molding machine equipped with a predetermined mold for injection molding.
  • the above-mentioned manufacturing method of the present embodiment can manufacture a conductive member having conductivity and sufficient impact resistance and tensile fracture strain.
  • the method for expressing conductivity of the thermoplastic resin composition of the present embodiment is a method for exhibiting conductivity with respect to the thermoplastic resin composition, and the carbon nanostructure is 0.3 with respect to 100 parts by mass of the thermoplastic resin. It is characterized by adding up to 2.5 parts by mass and melt-kneading.
  • the conductive member obtained by molding the thermoplastic resin composition of the present embodiment has conductivity, and has sufficient impact resistance and tensile fracture strain. That is, by using the thermoplastic resin composition of the present embodiment, the conductivity of the thermoplastic resin composition can be exhibited, and sufficient impact resistance and tensile fracture strain can also be exhibited.
  • the preferable content of CNS with respect to the thermoplastic resin and other components are as described in the above-mentioned thermoplastic resin composition of the present embodiment.
  • Examples 1 to 8 Comparative Examples 1 to 7
  • the raw material components shown in Tables 1 and 2 were dry-blended, then put into a twin-screw extruder having a cylinder temperature of 200 ° C., melt-kneaded, and pelletized.
  • Tables 1 and 2 the numerical values of each component indicate parts by mass. The details of each raw material component used are shown below.
  • Thermoplastic resin-Polyacetal resin (POM resin) Polyacetal resin
  • Polyacetal copolymer obtained by copolymerizing 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane melt flow rate (measured at 190 ° C.
  • Carbon nanostructure ATHLOS 200 manufactured by CABOT (3) Glass fiber Owens Corning Japan GK, chopped strand Fiber diameter: 10.5 ⁇ m, length 3 mm (4) Carbon fiber manufactured by Toho Tenax Co., Ltd., HT C443 6 mm (5) Carbon Black Lion Corporation, Ketjen Black EC300J (6) Stabilizer (hindered phenol-based oxidation stabilizer) Irganox1010 manufactured by BASF Japan Ltd.
  • the ISO TYPE1A test piece is molded by injection molding with an injection molding machine (EC40, manufactured by Toshiba Machine Co., Ltd.) (the cylinder temperature of the molding machine is POM resin: 200 ° C, PBT resin: 260 ° C, PPS resin: 320. ° C., mold temperature was POM resin: 80 ° C., PBT resin: 80 ° C., PPS resin: 150 ° C.), and was used for the following evaluation. The measurement was carried out at room temperature for surface resistivity and volume resistivity, at 23 ° C. and 50 RH% for tensile fracture strain and impact resistance. (1) Surface resistivity / volume resistivity Fig. 2 shows the appearance of the multipurpose test piece obtained as described above. FIG.
  • FIG. 2 (A) shows the front surface
  • FIG. 2 (B) shows the back surface
  • a conductive paint Dotite D500, manufactured by Fujikura Kasei Co., Ltd.
  • a conductive paint Dotite D500, manufactured by Fujikura Kasei Co., Ltd.
  • a conductive paint Dotite D500, manufactured by Fujikura Kasei Co., Ltd.
  • a low resistivity measuring device DIGITAL MULTIMETER R6450, manufactured by Advantest
  • the resistance between AB in FIG. 2 (A) was measured, and this was used as the surface resistivity.
  • the resistance between CD and CD in FIG. 2 was measured and used as the volume resistivity.
  • the measurement results are shown in Tables 1 and 2.
  • the upper limit of measurement of surface resistivity is 5.0 ⁇ 10 9 ⁇ / ⁇
  • the upper limit of measurement of volume resistivity is 1.8 ⁇ 10 11 ⁇ ⁇ cm.
  • the surface resistivity in Comparative Examples 1 and 2 containing no or less CNS is also 5.0 ⁇ 10 9 ⁇ / ⁇ , but the volume resistivity is higher than that in Examples 1 and 2, and therefore, in Examples 1 and 2.
  • the surface resistivity is considered to be lower than that of Comparative Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A thermoplastic resin composition obtained by melt kneading at least 0.3-2.5 parts by mass of a carbon nanostructure into100 parts by mass of a thermoplastic resin, and a member obtained by molding the thermoplastic resin composition. Also, a method for producing an electroconductive member, the method including a step for preparing a resin composition obtained by melt kneading at least 0.3-2.5 parts by mass of a carbon nanostructure into100 parts by mass of a thermoplastic resin, and a step for molding the resin composition into a prescribed shape. Furthermore, a method for imparting electroconductivity to a thermoplastic resin composition by adding and melt kneading at least 0.3-2.5 parts by mass of a carbon nanostructure to 100 parts by mass of a thermoplastic resin.

Description

熱可塑性樹脂組成物、部材及びその製造方法、並びに熱可塑性樹脂組成物の導電性発現方法A thermoplastic resin composition, a member and a method for producing the same, and a method for developing conductivity of the thermoplastic resin composition.
 本発明は、熱可塑性樹脂組成物、それを成形してなる部材及びその製造方法、並びに熱可塑性樹脂組成物の導電性発現方法に関する。 The present invention relates to a thermoplastic resin composition, a member formed by molding the thermoplastic resin composition, a method for producing the same, and a method for developing conductivity of the thermoplastic resin composition.
 ポリアセタール樹脂(以下、「POM樹脂」とも呼ぶ。)は、種々の物理的・機械特性、耐薬品性、摺動性に優れることからエンジニアリングプラスチックとして多方面で利用されている。しかし、POM樹脂は、他の大半の樹脂と同様に電気絶縁体であるため導電性に劣る。そこで、POM樹脂に導電性を付与するため、カーボンブラックや炭素繊維等の導電性フィラーを添加することが知られている(特許文献1、2参照)。このように、POM樹脂に導電性フィラーを添加することで導電性を付与することが可能であり、導電性部材とする目的のみならず、帯電防止においても導電性フィラーの添加が有効である。 Polyacetal resin (hereinafter, also referred to as "POM resin") is widely used as an engineering plastic because of its excellent various physical and mechanical properties, chemical resistance, and slidability. However, the POM resin is inferior in conductivity because it is an electric insulator like most other resins. Therefore, it is known to add a conductive filler such as carbon black or carbon fiber in order to impart conductivity to the POM resin (see Patent Documents 1 and 2). As described above, it is possible to impart conductivity by adding a conductive filler to the POM resin, and the addition of the conductive filler is effective not only for the purpose of making the conductive member but also for antistatic.
特許第1978846号公報Japanese Patent No. 1978846 特表2004-526596号公報Japanese Patent Publication No. 2004-526596
 しかしながら、本発明者は、POM樹脂組成物において、導電性フィラーとしてカーボンブラック又は炭素繊維を添加すると耐衝撃性及び引張破壊ひずみが劣ることを確認した。すなわち、カーボンブラック又は炭素繊維を添加することにより導電性を付与することはできるものの、耐衝撃性及び破断伸びが大きく低下してしまうという問題がある。このような問題は、POM樹脂以外の熱可塑性樹脂を含む熱可塑性樹脂組成物にも起こり得る。 However, the present inventor has confirmed that the impact resistance and tensile fracture strain are inferior when carbon black or carbon fiber is added as a conductive filler in the POM resin composition. That is, although it is possible to impart conductivity by adding carbon black or carbon fiber, there is a problem that impact resistance and breaking elongation are greatly reduced. Such a problem may also occur in a thermoplastic resin composition containing a thermoplastic resin other than the POM resin.
 本発明は、上記従来の問題点に鑑みなされたものであり、その課題は、耐衝撃性及び引張破壊ひずみが大きく低下することなく、導電性が付与された熱可塑性樹脂組成物、部材及びその製造方法、並びに熱可塑性樹脂組成物の導電性発現方法を提供することにある。 The present invention has been made in view of the above-mentioned conventional problems, and the problems thereof are a thermoplastic resin composition and a member to which conductivity is imparted without significantly reducing impact resistance and tensile fracture strain, and a member thereof. It is an object of the present invention to provide a manufacturing method and a method for developing conductivity of a thermoplastic resin composition.
 前記課題を解決する本発明の一態様は以下の通りである。
(1)熱可塑性樹脂100質量部に対して、少なくとも、カーボンナノストラクチャー0.3~2.5質量部を溶融混練して得られる、熱可塑性樹脂組成物。
One aspect of the present invention that solves the above problems is as follows.
(1) A thermoplastic resin composition obtained by melt-kneading at least 0.3 to 2.5 parts by mass of carbon nanostructures with respect to 100 parts by mass of the thermoplastic resin.
(2)前記(1)に記載の熱可塑性樹脂組成物を成形してなる部材。 (2) A member obtained by molding the thermoplastic resin composition according to (1) above.
(3)熱可塑性樹脂100質量部に対して、少なくとも、カーボンナノストラクチャー0.3~2.5質量部を溶融混練して得られる熱可塑性樹脂組成物を準備する工程、及び
 前記熱可塑性樹脂組成物を所定の形状に成形する工程、を含む、導電性部材の製造方法。
(3) A step of preparing a thermoplastic resin composition obtained by melt-kneading at least 0.3 to 2.5 parts by mass of carbon nanostructures with respect to 100 parts by mass of the thermoplastic resin, and the thermoplastic resin composition. A method for manufacturing a conductive member, which comprises a step of forming an object into a predetermined shape.
(4)熱可塑性樹脂組成物に対して導電性を発現する方法であって、
 熱可塑性樹脂100質量部に対して、少なくとも、カーボンナノストラクチャー0.3~2.5質量部を添加して溶融混練する、熱可塑性樹脂組成物の導電性発現方法。
(4) A method for exhibiting conductivity with respect to a thermoplastic resin composition.
A method for developing conductivity of a thermoplastic resin composition, wherein at least 0.3 to 2.5 parts by mass of carbon nanostructure is added to 100 parts by mass of the thermoplastic resin and melt-kneaded.
 本発明によれば、耐衝撃性及び引張破壊ひずみが大きく低下することなく、導電性が付与された熱可塑性樹脂組成物、部材及びその製造方法、並びに熱可塑性樹脂組成物の導電性発現方法を提供することができる。 According to the present invention, a thermoplastic resin composition to which conductivity is imparted, a member and a method for producing the same, and a method for developing conductivity of the thermoplastic resin composition are provided without significantly reducing impact resistance and tensile fracture strain. Can be provided.
カーボンナノストラクチャーについて、(A)溶融混練前、(B)溶融混練開始直後、(C)溶融混練後の状態を模式的に示す図である。It is a figure which shows typically the state of (A) before melt kneading, (B) immediately after the start of melt kneading, and (C) after melt kneading about a carbon nanostructure. 実施例において、表面抵抗率及び体積抵抗率の測定に使用した試験片の(A)上面図、(B)裏面図である。In the Example, it is (A) top view and (B) back view of the test piece used for measuring surface resistivity and volume resistivity.
<熱可塑性樹脂組成物>
 本実施形態の熱可塑性樹脂組成物は、熱可塑性樹脂100質量部に対して、少なくとも、カーボンナノストラクチャー(以下、「CNS」とも呼ぶ。)0.3~2.5質量部を溶融混練して得られることを特徴としている。
<Thermoplastic resin composition>
In the thermoplastic resin composition of the present embodiment, at least 0.3 to 2.5 parts by mass of carbon nanostructure (hereinafter, also referred to as “CNS”) is melt-kneaded with 100 parts by mass of the thermoplastic resin. It is characterized by being obtained.
 本実施形態の熱可塑性樹脂組成物においては、熱可塑性樹脂に対して所定量のCNSを添加して溶融混練することにより、耐衝撃性及び引張破壊ひずみが大きく低下することなく導電性が付与される。
 以下、本実施形態の熱可塑性樹脂組成物の各成分について説明する。
In the thermoplastic resin composition of the present embodiment, by adding a predetermined amount of CNS to the thermoplastic resin and melt-kneading it, conductivity is imparted without significantly reducing impact resistance and tensile fracture strain. To.
Hereinafter, each component of the thermoplastic resin composition of the present embodiment will be described.
[熱可塑性樹脂]
 本実施形態において、熱可塑性樹脂としては結晶性熱可塑性樹脂、例えば、ポリアセタール樹脂(以下、「POM樹脂」とも呼ぶ。)、ポリアリーレンサルファイド樹脂(以下、「PAS樹脂」とも呼ぶ。)、ポリブチレンテレフタレート樹脂(以下、「PBT樹脂」とも呼ぶ。)、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、等が挙げられる。中でも、熱可塑性樹脂としては、ポリアセタール樹脂、ポリアリーレンサルファイド樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、及びポリアミド樹脂からなる群より選択される一種であることが好ましい。以下に、熱可塑性樹脂として、POM樹脂、PAS樹脂、及びPBT樹脂を挙げて説明するが、本実施形態においてはそれに限定されるものではない。
[Thermoplastic resin]
In the present embodiment, the thermoplastic resin includes a crystalline thermoplastic resin, for example, a polyacetal resin (hereinafter, also referred to as “POM resin”), a polyarylene sulfide resin (hereinafter, also referred to as “PAS resin”), and polybutylene. Examples thereof include terephthalate resin (hereinafter, also referred to as “PBT resin”), polyethylene terephthalate resin, polyamide resin, and the like. Among them, the thermoplastic resin is preferably one selected from the group consisting of polyacetal resin, polyarylene sulfide resin, polybutylene terephthalate resin, polyethylene terephthalate resin, and polyamide resin. Hereinafter, the thermoplastic resin will be described with reference to POM resin, PAS resin, and PBT resin, but the present embodiment is not limited thereto.
(ポリアセタール樹脂(POM樹脂))
 ポリアセタール樹脂は、オキシメチレン基(-CHO-)を主たる構成単位とする高分子化合物であり、ポリオキシメチレンホモポリマー、オキシメチレンコポリマーがあり、これらのいずれでもよい。オキシメチレンコポリマーはオキシメチレン基を主たる繰り返し単位とし、これ以外に他の構成単位、例えばエチレンオキサイド、1,3-ジオキソラン、1,4-ブタンジオールホルマール等のコモノマー単位を少量含有する。また、これ以外のポリマーとしてターポリマー、ブロックポリマーも存在するが、これらのいずれでもよい。また、ポリアセタール樹脂は、分子が線状のみならず分岐、架橋構造を有するものであってもよく、他の有機基を導入した公知の変性ポリオキシメチレンであってもよい。また、ポリアセタール樹脂は、その重合度に関しても特に制限はなく、溶融成形加工性を有するもの(例えば、190℃、2160g荷重下でのメルトフロー値(MFR)が1.0g/10分以上100g/10分以下)であればよい。
 ポリアセタール樹脂は公知の製造方法によって製造される。
(Polyacetal resin (POM resin))
The polyacetal resin is a polymer compound having an oxymethylene group (-CH 2 O-) as a main constituent unit, and includes polyoxymethylene homopolymers and oximethylene copolymers, and any of these may be used. The oxymethylene copolymer has an oxymethylene group as the main repeating unit, and also contains other structural units such as ethylene oxide, 1,3-dioxolane, and 1,4-butanediol formal in a small amount. Further, as other polymers, there are terpolymers and block polymers, but any of these may be used. Further, the polyacetal resin may be one in which the molecule is not only linear but also has a branched or crosslinked structure, or may be a known modified polyoxymethylene into which another organic group is introduced. Further, the polyacetal resin is not particularly limited in terms of the degree of polymerization, and has melt molding processability (for example, a melt flow value (MFR) of 1.0 g / 10 minutes or more under a load of 190 ° C. and 2160 g / 100 g / It may be 10 minutes or less).
The polyacetal resin is produced by a known production method.
(ポリブチレンテレフタレート樹脂(PBT樹脂))
 PBT樹脂は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られる樹脂である。PBT樹脂は、ホモポリブチレンテレフタレートに限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体であってもよい。
(Polybutylene terephthalate resin (PBT resin))
The PBT resin is a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (such as an alkyl ester of C1-6 or an acid halide) and an alkylene glycol (1,4-butanediol) having at least 4 carbon atoms. It is a resin obtained by polycondensing with a glycol component containing the ester-forming derivative (acetylated acid or the like). The PBT resin is not limited to homopolybutylene terephthalate, and may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of butylene terephthalate units.
 PBT樹脂の末端カルボキシル基量は、本実施形態の熱可塑性樹脂の効果を阻害しない限り特に限定されない。PBT樹脂の末端カルボキシル基量は、30meq/kg以下が好ましく、25meq/kg以下がより好ましい。 The amount of terminal carboxyl groups in the PBT resin is not particularly limited as long as it does not inhibit the effect of the thermoplastic resin of the present embodiment. The amount of the terminal carboxyl group of the PBT resin is preferably 30 meq / kg or less, more preferably 25 meq / kg or less.
 PBT樹脂の固有粘度は、0.65~1.20dL/gであることが好ましい。かかる範囲の固有粘度のPBT樹脂を用いる場合には、得られる樹脂組成物が特に機械特性と流動性に優れたものとなる。逆に固有粘度0.65dL/g未満では優れた機械特性が得られず、1.20dL/gを超えると優れた流動性が得られないことがある。
 また、固有粘度が上記範囲のPBT樹脂は、異なる固有粘度を有するPBT樹脂をブレンドして、固有粘度を調整することもできる。例えば、固有粘度0.9dL/gのPBT樹脂と固有粘度0.7dL/gのPBT樹脂とをブレンドすることにより、固有粘度0.8dL/gのPBT樹脂を調製することができる。PBT樹脂の固有粘度は、例えば、o-クロロフェノール中で温度35℃の条件で測定を行った値である。
The intrinsic viscosity of the PBT resin is preferably 0.65 to 1.20 dL / g. When a PBT resin having an intrinsic viscosity in such a range is used, the obtained resin composition is particularly excellent in mechanical properties and fluidity. On the contrary, if the intrinsic viscosity is less than 0.65 dL / g, excellent mechanical properties cannot be obtained, and if it exceeds 1.20 dL / g, excellent fluidity may not be obtained.
Further, the PBT resin having the above-mentioned intrinsic viscosity can be blended with PBT resins having different intrinsic viscosities to adjust the intrinsic viscosity. For example, a PBT resin having an intrinsic viscosity of 0.8 dL / g can be prepared by blending a PBT resin having an intrinsic viscosity of 0.9 dL / g and a PBT resin having an intrinsic viscosity of 0.7 dL / g. The intrinsic viscosity of the PBT resin is, for example, a value measured in o-chlorophenol under the condition of a temperature of 35 ° C.
 PBT樹脂において、テレフタル酸及びそのエステル形成性誘導体以外のジカルボン酸成分(コモノマー成分)としては、例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル等のC8-14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4-16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5-10のシクロアルカンジカルボン酸;これらのジカルボン酸成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体や酸ハロゲン化物等)が挙げられる。これらのジカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。 In the PBT resin, examples of the dicarboxylic acid component (comonomer component) other than terephthalic acid and its ester-forming derivative include isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-dicarboxydiphenyl ether and the like. C8-14 aromatic dicarboxylic acid; C4-16 alcandicarboxylic acid such as succinic acid, adipic acid, azelaic acid, sebacic acid; C5-10 cycloalkandicarboxylic acid such as cyclohexanedicarboxylic acid; Examples thereof include ester-forming derivatives (C1-6 alkyl ester derivatives, acid halides, etc.). These dicarboxylic acid components can be used alone or in combination of two or more.
 これらのジカルボン酸成分の中では、イソフタル酸等のC8-12の芳香族ジカルボン酸、及び、アジピン酸、アゼライン酸、セバシン酸等のC6-12のアルカンジカルボン酸がより好ましい。 Among these dicarboxylic acid components, C8-12 aromatic dicarboxylic acids such as isophthalic acid and C6-12 arcandicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferable.
 PBT樹脂において、1,4-ブタンジオール以外のグリコール成分(コモノマー成分)としては、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオール等のC2-10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2-4のアルキレンオキサイド付加体;又はこれらのグリコールのエステル形成性誘導体(アセチル化物等)が挙げられる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。 In the PBT resin, examples of the glycol component (comonomer component) other than 1,4-butanediol include ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neopentyl glycol, and 1, C2-10 alkylene glycols such as 3-octanediol; polyoxyalkylene glycols such as diethylene glycol, triethylene glycol and dipropylene glycol; alicyclic diols such as cyclohexanedimethanol and hydride bisphenol A; bisphenol A, 4,4 Aromatic diols such as'-dihydroxybiphenyl; alkylene oxide adducts of C2-4 of bisphenol A such as ethylene oxide 2 mol adducts of bisphenol A, propylene oxide 3 mol adducts of bisphenol A; or esters of these glycols. Examples thereof include formable derivatives (acetylated products, etc.). These glycol components can be used alone or in combination of two or more.
 これらのグリコール成分の中では、エチレングリコール、トリメチレングリコール等のC2-6のアルキレングリコール、ジエチレングリコール等のポリオキシアルキレングリコール、又は、シクロヘキサンジメタノール等の脂環式ジオール等がより好ましい。 Among these glycol components, C2-6 alkylene glycols such as ethylene glycol and trimethylene glycol, polyoxyalkylene glycols such as diethylene glycol, and alicyclic diols such as cyclohexanedimethanol are more preferable.
 ジカルボン酸成分及びグリコール成分の他に使用できるコモノマー成分としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトン;これらのコモノマー成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。 Examples of the comonomer component that can be used in addition to the dicarboxylic acid component and the glycol component include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4'-hydroxybiphenyl and the like. Aromatic hydroxycarboxylic acid; aliphatic hydroxycarboxylic acid such as glycolic acid and hydroxycaproic acid; C3-12 lactone such as propiolactone, butyrolactone, valerolactone, caprolactone (ε-caprolactone etc.); ester formation of these comonomer components Examples thereof include sex derivatives (C1-6 alkyl ester derivatives, acid halides, acetylates, etc.).
(ポリアリーレンサルファイド樹脂(PAS樹脂))
 PAS樹脂は、機械的性質、電気的性質、耐熱性その他物理的・化学的特性に優れ、且つ加工性が良好であるという特徴を有する。
 PAS樹脂は、主として、繰返し単位として-(Ar-S)-(但しArはアリーレン基)で構成された高分子化合物であり、本実施形態では一般的に知られている分子構造のPAS樹脂を使用することができる。
(Polyarylene sulfide resin (PAS resin))
The PAS resin is characterized by being excellent in mechanical properties, electrical properties, heat resistance and other physical and chemical properties, and having good processability.
The PAS resin is a polymer compound mainly composed of-(Ar-S)-(where Ar is an arylene group) as a repeating unit, and is a PAS resin having a molecular structure generally known in the present embodiment. Can be used.
 上記アリーレン基としては、例えば、p-フェニレン基、m-フェニレン基、o-フェニレン基、置換フェニレン基、p,p’-ジフェニレンスルフォン基、p,p’-ビフェニレン基、p,p’-ジフェニレンエーテル基、p,p’-ジフェニレンカルボニル基、ナフタレン基等が挙げられる。PAS樹脂は、上記繰返し単位のみからなるホモポリマーでもよいし、下記の異種繰返し単位を含んだコポリマーが加工性等の点から好ましい場合もある。 Examples of the arylene group include a p-phenylene group, an m-phenylene group, an o-phenylene group, a substituted phenylene group, a p, p'-diphenylene sulphon group, a p, p'-biphenylene group, p, p'-. Examples thereof include a diphenylene ether group, a p, p'-diphenylene carbonyl group and a naphthalene group. The PAS resin may be a homopolymer composed of only the above-mentioned repeating units, or a copolymer containing the following different kinds of repeating units may be preferable from the viewpoint of processability and the like.
 ホモポリマーとしては、アリーレン基としてp-フェニレン基を用いた、p-フェニレンサルファイド基を繰返し単位とするポリフェニレンサルファイド樹脂(以下、「PPS樹脂」とも呼ぶ。 )が好ましく用いられる。また、コポリマーとしては、前記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp-フェニレンサルファイド基とm-フェニレンサルファイド基を含む組み合わせが特に好ましく用いられる。この中で、p-フェニレンサルファイド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、成形性、機械特性等の物性上の点から適当である。また、これらのPAS樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが、特に好ましく使用できる。尚、本実施形態に用いるPAS樹脂は、異なる2種類以上の分子量のPAS樹脂を混合して用いてもよい。 As the homopolymer, a polyphenylene sulfide resin (hereinafter, also referred to as “PPS resin”) using a p-phenylene group as an arylene group and having a p-phenylene sulfide group as a repeating unit is preferably used. Further, as the copolymer, among the above-mentioned allylene sulfide groups consisting of allylene groups, two or more different combinations can be used, and among them, the combination containing the p-phenylene sulfide group and the m-phenylene sulfide group is particularly preferably used. Be done. Among these, those containing 70 mol% or more, preferably 80 mol% or more of the p-phenylene sulfide group are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties. Further, among these PAS resins, a high molecular weight polymer having a substantially linear structure obtained by polycondensation from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used. The PAS resin used in this embodiment may be a mixture of two or more different molecular weight PAS resins.
 尚、直鎖状構造のPAS樹脂以外にも、縮重合させるときに、3個以上のハロゲン置換基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造または架橋構造を形成させたポリマーや、低分子量の直鎖状構造ポリマーを酸素等の存在下、高温で加熱して酸化架橋または熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマーも挙げられる。 In addition to the linear PAS resin, a small amount of a monomer such as a polyhalo aromatic compound having three or more halogen substituents is used to partially form a branched structure or a crosslinked structure during polycondensation. Examples thereof include a polymer obtained by heating a low molecular weight linear structure polymer at a high temperature in the presence of oxygen and the like to increase the melt viscosity by oxidative crosslinking or thermal crosslinking to improve molding processability.
 本実施形態に使用する基体樹脂としてのPAS樹脂の溶融粘度(310℃・せん断速度1200sec-1)は、上記混合系の場合も含め5~500Pa・sのものを用いることが好ましい。 The melt viscosity (310 ° C., shear rate 1200 sec -1 ) of the PAS resin as the substrate resin used in the present embodiment is preferably 5 to 500 Pa · s, including the case of the above mixed system.
[カーボンナノストラクチャー(CNS)」
 本実施形態の熱可塑性樹脂組成物においては、上述の通り、熱可塑性樹脂に対して所定量のCNSを添加して溶融混練することにより、耐衝撃性及び引張破壊ひずみが大きく低下することなく、導電性が付与される。本実施形態で使用するCNSは、複数のカーボンナノチューブが結合した状態で含む構造体であり、カーボンナノチューブは分岐結合や架橋構造で他のカーボンナノチューブと結合している。このようなCNSの詳細は、米国特許出願公開第2013-0071565号明細書、米国特許第9,113,031号明細書、同第9,447,259号明細書、同第9,111,658号明細書に記載されている。
[Carbon Nanostructure (CNS)]
In the thermoplastic resin composition of the present embodiment, as described above, by adding a predetermined amount of CNS to the thermoplastic resin and melt-kneading it, the impact resistance and the tensile fracture strain are not significantly reduced. Conductivity is imparted. The CNS used in the present embodiment is a structure containing a plurality of carbon nanotubes in a bonded state, and the carbon nanotubes are bonded to other carbon nanotubes by a branched bond or a crosslinked structure. Details of such CNS are described in US Patent Application Publication No. 2013-0071565, US Pat. No. 9,113,031, US Pat. No. 9,447,259, US Pat. No. 9,111,658. It is described in the specification.
 CNSの形態について図面を参照して説明する。図1は本実施形態で使用するCNSを模式的に示しており、(A)は熱可塑性樹脂と溶融混練する前の状態、(B)は溶融混練開始直後の状態、(C)は溶融混練後の状態を示す。図1(A)に示すように、溶融混練前のCNS10は、分岐したカーボンナノチューブ12が多数絡み合って結合した構造体をなす。そして、CNS10を熱可塑性樹脂20中に投じて溶融混練すると、図1(B)に示すようにCNS10は多数に分断される。溶融混練が進むと、CNS10はさらに分断され、図1(C)に示すように各カーボンナノチューブ12の1本1本が接点14を介して接した状態となる。すなわち、図1(C)の状態では、熱可塑性樹脂中において、広範囲にわたりカーボンナノチューブ12が多数接した状態となり導電経路を形成するため、導電性が発現する。また、カーボンナノチューブ12が無秩序に絡み合うことで三次元網目構造を形成するため、耐衝撃性及び引張破壊ひずみの低下を抑えることができると考えられる。 The form of CNS will be explained with reference to the drawings. FIG. 1 schematically shows the CNS used in the present embodiment, (A) is a state before melt-kneading with a thermoplastic resin, (B) is a state immediately after the start of melt-kneading, and (C) is a state immediately after melt-kneading. Indicates the later state. As shown in FIG. 1 (A), the CNS 10 before melt-kneading forms a structure in which a large number of branched carbon nanotubes 12 are entangled and bonded. Then, when the CNS 10 is poured into the thermoplastic resin 20 and melt-kneaded, the CNS 10 is divided into a large number as shown in FIG. 1 (B). As the melt-kneading progresses, the CNS 10 is further divided, and as shown in FIG. 1 (C), each of the carbon nanotubes 12 is in contact with each other via the contact point 14. That is, in the state of FIG. 1C, in the thermoplastic resin, a large number of carbon nanotubes 12 are in contact with each other over a wide range to form a conductive path, so that conductivity is exhibited. Further, since the carbon nanotubes 12 are randomly entangled to form a three-dimensional network structure, it is considered that the impact resistance and the decrease in tensile fracture strain can be suppressed.
 本実施形態において使用するCNSは市販品としてもよい。例えば、CABOT社製のATHLOS 200、ATHLOS 100等を使用することができる。 The CNS used in this embodiment may be a commercially available product. For example, ATHLOS 200, ATHLOS 100, etc. manufactured by CABOT can be used.
 本実施形態の熱可塑性樹脂組成物において、CNSは熱可塑性樹脂100質量部に対して0.3~2.5質量部含有する。当該CNSの含有量が0.3質量部未満であると導電性に劣り、2.5質量部を超えると耐衝撃性及び引張破壊ひずみが低下する。当該CNSの含有量は、 0.5~2.0質量部が好ましく、0.6~1.8質量部がより好ましく、0.8~1.5質量部がさらに好ましい。 In the thermoplastic resin composition of the present embodiment, CNS is contained in an amount of 0.3 to 2.5 parts by mass with respect to 100 parts by mass of the thermoplastic resin. If the content of the CNS is less than 0.3 parts by mass, the conductivity is inferior, and if it exceeds 2.5 parts by mass, the impact resistance and the tensile fracture strain are lowered. The content of the CNS is preferably 0.5 to 2.0 parts by mass, more preferably 0.6 to 1.8 parts by mass, and even more preferably 0.8 to 1.5 parts by mass.
[他の成分]
 本実施形態の熱可塑性樹脂組成物には、必要に応じて選択される各種安定剤を配合してもよい。ここで用いられる安定剤としては、ヒンダードフェノール系化合物、窒素含有化合物、アルカリ又はアルカリ土類金属の水酸化物、無機塩、カルボン酸塩等のいずれか1種又は2種以上を挙げることができる。更に、上述の効果を阻害しない限り、必要に応じて、熱可塑性樹脂に対する一般的な添加剤、例えば、染料、顔料等の着色剤、滑剤、核剤、離型剤、帯電防止剤、界面活性剤、又は、有機高分子材料、無機若しくは有機の繊維状、粉体状、板状の充填剤等を1種又は2種以上添加することができる。
[Other ingredients]
Various stabilizers selected as necessary may be added to the thermoplastic resin composition of the present embodiment. Examples of the stabilizer used here include one or more of hindered phenol compounds, nitrogen-containing compounds, hydroxides of alkaline or alkaline earth metals, inorganic salts, carboxylates and the like. can. Further, as long as the above-mentioned effects are not impaired, general additives to thermoplastic resins such as colorants such as dyes and pigments, lubricants, nucleating agents, mold release agents, antistatic agents and surfactants are required. One or two or more kinds of agents, organic polymer materials, inorganic or organic fibrous, powdery, plate-like fillers and the like can be added.
 本実施形態の熱可塑性樹脂組成物を用いて成形品を作製する方法としては特に限定はなく、公知の方法を採用することができる。例えば、本実施形態の熱可塑性樹脂組成物を押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製することができる。 The method for producing a molded product using the thermoplastic resin composition of the present embodiment is not particularly limited, and a known method can be adopted. For example, the thermoplastic resin composition of the present embodiment is put into an extruder, melt-kneaded and pelletized, and the pellets are put into an injection molding machine equipped with a predetermined mold and injection-molded. Can be done.
 以上の本実施形態の熱可塑性樹脂組成物は、後記の導電性部材とすることもできるし、あるいは帯電防止機能を有する成形品とすることもできる。 The above-mentioned thermoplastic resin composition of the present embodiment may be a conductive member described later, or may be a molded product having an antistatic function.
<部材>
 本実施形態の部材は、上述の本実施形態の熱可塑性樹脂組成物を成形してなる。従って、本実施形態の部材は、本実施形態の熱可塑性樹脂組成物と同様に、導電性を有し、かつ、十分な耐衝撃性及び引張破壊ひずみを有する。
<Members>
The member of the present embodiment is formed by molding the above-mentioned thermoplastic resin composition of the present embodiment. Therefore, the member of the present embodiment has conductivity, and has sufficient impact resistance and tensile fracture strain, like the thermoplastic resin composition of the present embodiment.
 本実施形態の部材としては、例えば、燃料配管部品等の自動車部品やプリンター部品等の電気電子部品に好適に使用することができる。 As the member of the present embodiment, for example, it can be suitably used for an automobile part such as a fuel piping part and an electric / electronic part such as a printer part.
 本実施形態の部材は、以下に説明する本実施形態の導電性部材の製造方法により製造することができる。 The member of the present embodiment can be manufactured by the method of manufacturing the conductive member of the present embodiment described below.
<導電性部材の製造方法>
 本実施形態の導電性部材の製造方法は、熱可塑性樹脂100質量部に対して、少なくとも、カーボンナノストラクチャー0.3~2.5質量部を溶融混練して得られる熱可塑性樹脂組成物を準備する工程(以下、「工程A」と呼ぶ。)、及び熱可塑性樹脂組成物を所定の形状に成形する工程(以下、「工程B」と呼ぶ。)、を含むことを特徴としている。
 以下に、各工程について説明する。
<Manufacturing method of conductive member>
In the method for manufacturing a conductive member of the present embodiment, a thermoplastic resin composition obtained by melt-kneading at least 0.3 to 2.5 parts by mass of a carbon nanostructure with 100 parts by mass of a thermoplastic resin is prepared. It is characterized by including a step of forming the thermoplastic resin composition into a predetermined shape (hereinafter referred to as “step B”).
Each process will be described below.
[工程A]
 工程Aにおいては、熱可塑性樹脂100質量部に対して、少なくとも、カーボンナノストラクチャー0.3~2.5質量部を溶融混練して得られる熱可塑性樹脂組成物を準備する。
 当該熱可塑性樹脂組成物中の各成分の好ましいものと、その好ましい含有量、及び他の成分は上述の通りである。当該熱可塑性樹脂組成物は、定法に従い、上記各成分と、必要に応じて他の成分とを溶融混練することにより得られる。例えば、本実施形態の熱可塑性樹脂組成物を押出機に投入して溶融混練してペレット化することにより得ることができる。CNSは予めマスターバッチとしておき、CNSを添加する場合、このマスターバッチを用いてもよい。なお、マスターバッチとは、事前に作製しておく、CNSを高濃度で含む熱可塑性樹脂組成物のことをいう。
 尚、溶融混練する場合、CNSが十分に分断し、導電性、耐衝撃性及び引張破壊ひずみの効果を発揮するため、溶融混練時の温度、せん断速度及び時間を考慮することが好ましい。
[Step A]
In step A, a thermoplastic resin composition obtained by melt-kneading at least 0.3 to 2.5 parts by mass of carbon nanostructures with respect to 100 parts by mass of the thermoplastic resin is prepared.
Preferred components in the thermoplastic resin composition, preferred contents thereof, and other components are as described above. The thermoplastic resin composition is obtained by melt-kneading each of the above components and, if necessary, other components according to a conventional method. For example, it can be obtained by putting the thermoplastic resin composition of the present embodiment into an extruder, melt-kneading it, and pelletizing it. CNS may be set as a masterbatch in advance, and this masterbatch may be used when CNS is added. The masterbatch is a thermoplastic resin composition containing a high concentration of CNS, which is prepared in advance.
In the case of melt-kneading, it is preferable to consider the temperature, shear rate and time at the time of melt-kneading because the CNS is sufficiently divided and the effects of conductivity, impact resistance and tensile fracture strain are exhibited.
[工程B]
 工程Bにおいては、熱可塑性樹脂組成物を所定の形状に成形する。例えば、上記のようにして得たペレットを所定の金型を装備した射出成形機に投入して射出成形する。
[Step B]
In step B, the thermoplastic resin composition is molded into a predetermined shape. For example, the pellets obtained as described above are put into an injection molding machine equipped with a predetermined mold for injection molding.
 以上の本実施形態の製造方法により、上述の通り、導電性を有し、かつ、十分な耐衝撃性及び引張破壊ひずみを有する導電性部材を製造することができる。 As described above, the above-mentioned manufacturing method of the present embodiment can manufacture a conductive member having conductivity and sufficient impact resistance and tensile fracture strain.
<熱可塑性樹脂組成物の導電性発現方法>
 本実施形態の熱可塑性樹脂組成物の導電性発現方法は、熱可塑性樹脂組成物に対して導電性を発現する方法であって、熱可塑性樹脂100質量部に対して、カーボンナノストラクチャー0.3~2.5質量部を添加して溶融混練することを特徴としている。
 上述の通り、本実施形態の熱可塑性樹脂組成物を成形して得られる導電性部材は、導電性を有し、かつ、十分な耐衝撃性及び引張破壊ひずみを有する。つまり、本実施形態の熱可塑性樹脂組成物を用いることにより、熱可塑性樹脂組成物の導電性を発現することができ、かつ、十分な耐衝撃性及び引張破壊ひずみをも発現することができる。本実施形態の熱可塑性樹脂組成物の導電性発現方法において、熱可塑性樹脂に対するCNSの好ましい含有量、及び他の成分は上述の本実施形態の熱可塑性樹脂組成物で説明した通りである。
<Method for developing conductivity of thermoplastic resin composition>
The method for expressing conductivity of the thermoplastic resin composition of the present embodiment is a method for exhibiting conductivity with respect to the thermoplastic resin composition, and the carbon nanostructure is 0.3 with respect to 100 parts by mass of the thermoplastic resin. It is characterized by adding up to 2.5 parts by mass and melt-kneading.
As described above, the conductive member obtained by molding the thermoplastic resin composition of the present embodiment has conductivity, and has sufficient impact resistance and tensile fracture strain. That is, by using the thermoplastic resin composition of the present embodiment, the conductivity of the thermoplastic resin composition can be exhibited, and sufficient impact resistance and tensile fracture strain can also be exhibited. In the method for expressing conductivity of the thermoplastic resin composition of the present embodiment, the preferable content of CNS with respect to the thermoplastic resin and other components are as described in the above-mentioned thermoplastic resin composition of the present embodiment.
 以下に、実施例により本実施形態をさらに具体的に説明するが、本実施形態は以下の実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to the following examples.
[実施例1~8、比較例1~7]
 各実施例・比較例において、表1及び表2に示す各原料成分をドライブレンドした後、シリンダー温度200℃の二軸押出機に投入して、溶融混練し、ペレット化した。なお、表1、表2において、各成分の数値は質量部を示す。
 また、使用した各原料成分の詳細を以下に示す。
(1)熱可塑性樹脂
 ・ポリアセタール樹脂(POM樹脂)
 ポリアセタール樹脂;トリオキサン96.7質量%と1,3-ジオキソラン3.3質量%とを共重合させてなるポリアセタール共重合体(メルトフローレート(ISO 1133に準じて、190℃、荷重2160gで測定):9.0g/10min)
 ・ポリブチレンテレフタレート樹脂(PBT樹脂)
 ポリプラスチックス(株)製のポリブチレンテレフタレート樹脂(固有粘度(o-クロロフェノール中で温度35℃で測定):1.0dL/g)
 ・ポリフェニレンサルファイド樹脂(PPS樹脂)
 (株)クレハ製、フォートロンKPS(溶融粘度:130Pa・s(せん断速度:1200sec-1、310℃))
(PPS樹脂の溶融粘度の測定)
 上記PPS樹脂の溶融粘度は以下のようにして測定した。
 (株)東洋精機製作所製キャピログラフを用い、キャピラリーとして口径:1mm、長さ:20mmのフラットダイを使用し、バレル温度310℃、せん断速度1200sec-1での溶融粘度を測定した。
(2)カーボンナノストラクチャー
   CABOT社製、ATHLOS 200
(3)ガラス繊維
   オーウェンス コーニング  ジャパン合同会社製、チョップドストランド
   繊維径:10.5μm、長さ3mm
(4)炭素繊維
   東邦テナックス株式会社製、HT C443 6mm
(5)カーボンブラック
   ライオン株式会社製、ケッチェンブラックEC300J
(6)安定剤(ヒンダードフェノール系酸化安定剤)
   BASFジャパン株式会社製、Irganox1010
[Examples 1 to 8, Comparative Examples 1 to 7]
In each Example / Comparative Example, the raw material components shown in Tables 1 and 2 were dry-blended, then put into a twin-screw extruder having a cylinder temperature of 200 ° C., melt-kneaded, and pelletized. In Tables 1 and 2, the numerical values of each component indicate parts by mass.
The details of each raw material component used are shown below.
(1) Thermoplastic resin-Polyacetal resin (POM resin)
Polyacetal resin; Polyacetal copolymer obtained by copolymerizing 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane (melt flow rate (measured at 190 ° C. and a load of 2160 g according to ISO 1133)). : 9.0 g / 10 min)
-Polybutylene terephthalate resin (PBT resin)
Polybutylene terephthalate resin manufactured by Polyplastics Co., Ltd. (Intrinsic viscosity (measured at temperature 35 ° C. in o-chlorophenol): 1.0 dL / g)
-Polyphenylene sulfide resin (PPS resin)
Fortron KPS, manufactured by Kureha Corporation (melt viscosity: 130 Pa · s (shear velocity: 1200 sec -1 , 310 ° C))
(Measurement of melt viscosity of PPS resin)
The melt viscosity of the PPS resin was measured as follows.
Using a capillograph manufactured by Toyo Seiki Seisakusho Co., Ltd., a flat die having a diameter of 1 mm and a length of 20 mm was used as a capillary, and the melt viscosity was measured at a barrel temperature of 310 ° C. and a shear rate of 1200 sec -1.
(2) Carbon nanostructure ATHLOS 200 manufactured by CABOT
(3) Glass fiber Owens Corning Japan GK, chopped strand Fiber diameter: 10.5 μm, length 3 mm
(4) Carbon fiber manufactured by Toho Tenax Co., Ltd., HT C443 6 mm
(5) Carbon Black Lion Corporation, Ketjen Black EC300J
(6) Stabilizer (hindered phenol-based oxidation stabilizer)
Irganox1010 manufactured by BASF Japan Ltd.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
[評価]
 ISO TYPE1Aの試験片を射出成形機(EC40,東芝機械株式会社製)にて射出成形にて成形を行い(成形機のシリンダー温度はPOM樹脂:200℃、PBT樹脂:260℃、PPS樹脂:320℃、金型温度はPOM樹脂:80℃、PBT樹脂:80℃、PPS樹脂:150℃)、以下の評価に用いた。測定は、表面抵抗率・体積抵抗率は室温、引張破壊ひずみ及び耐衝撃性は23℃、50RH%にて実施した。
(1)表面抵抗率・体積抵抗率
 上記のようにして得た多目的試験片の外観を図2に示す。図2(A)は表面を示し、図2(B)は裏面を示す。当該試験片の各面の所定領域(図2のハッチング領域)に導電塗料(ドータイトD500、藤倉化成株式会社製)を塗布して乾燥した。その後、低抵抗率測定装置(DIGITAL MULTIMETER R6450、アドバンテスト製)を使用し、図2(A)のA-B間の抵抗を測定し、これを表面抵抗率とした。また、図2のC-D間の抵抗を測定し、これを体積抵抗率とした。測定結果を表1及び表2に示す。
 なお、表面抵抗率の測定上限は5.0×10Ω/□であり、体積抵抗率の測定上限は1.8×1011Ω・cmである。
[evaluation]
The ISO TYPE1A test piece is molded by injection molding with an injection molding machine (EC40, manufactured by Toshiba Machine Co., Ltd.) (the cylinder temperature of the molding machine is POM resin: 200 ° C, PBT resin: 260 ° C, PPS resin: 320. ° C., mold temperature was POM resin: 80 ° C., PBT resin: 80 ° C., PPS resin: 150 ° C.), and was used for the following evaluation. The measurement was carried out at room temperature for surface resistivity and volume resistivity, at 23 ° C. and 50 RH% for tensile fracture strain and impact resistance.
(1) Surface resistivity / volume resistivity Fig. 2 shows the appearance of the multipurpose test piece obtained as described above. FIG. 2 (A) shows the front surface, and FIG. 2 (B) shows the back surface. A conductive paint (Dotite D500, manufactured by Fujikura Kasei Co., Ltd.) was applied to a predetermined region (hatched region in FIG. 2) on each surface of the test piece and dried. Then, using a low resistivity measuring device (DIGITAL MULTIMETER R6450, manufactured by Advantest), the resistance between AB in FIG. 2 (A) was measured, and this was used as the surface resistivity. Further, the resistance between CD and CD in FIG. 2 was measured and used as the volume resistivity. The measurement results are shown in Tables 1 and 2.
The upper limit of measurement of surface resistivity is 5.0 × 10 9 Ω / □, and the upper limit of measurement of volume resistivity is 1.8 × 10 11 Ω · cm.
(2)引張破壊ひずみ
 上記のようにして得た多目的試験片を用い、ISO527-1,2に準拠して引張破壊ひずみを測定した。測定結果を表1及び表2に示す。引張破壊ひずみは、POM樹脂及びPBT樹脂の場合は8%以上、ガラス繊維を含むPPS樹脂の場合は1.6%以上で良好と言える。
(2) Tensile fracture strain The tensile fracture strain was measured according to ISO527-1 and ISO using the multipurpose test piece obtained as described above. The measurement results are shown in Tables 1 and 2. It can be said that the tensile fracture strain is good at 8% or more in the case of POM resin and PBT resin, and 1.6% or more in the case of PPS resin containing glass fiber.
(3)耐衝撃性(シャルピー衝撃強さ)
 上記のようにして得た短冊型試験片を用い、ISO179/1eAに準じてシャルピー衝撃強さ(ノッチ付き)を測定した。測定結果を表1及び表2に示す。シャルピー衝撃強さは、POM樹脂の場合は5.5kJ/m超、PBT樹脂の場合は3.5kJ/m超、PPS樹脂の場合は8kJ/m超で良好と言える。
(3) Impact resistance (Charpy impact strength)
Using the strip-shaped test piece obtained as described above, the Charpy impact strength (notched) was measured according to ISO179 / 1eA. The measurement results are shown in Tables 1 and 2. Charpy impact strength, POM case of resin 5.5kJ / m 2 greater than PBT case of resin 3.5kJ / m 2 than in the case of the PPS resin can be said that good with 8 kJ / m 2 greater.
 表1より、POM樹脂を用いた実施例1~6においては、いずれも低抵抗率であり、かつ、引張破壊ひずみ及び耐衝撃性のいずれも良好な結果を示していることが分かる。換言すると、実施例1~6においては、耐衝撃性及び引張破壊ひずみが大きく低下することなく、導電性が付与されている。これに対して、CNSを含有しない又は少ない比較例1及び2は導電性に劣っていた。また、CNSの含有量を多くした比較例3は、導電性に優れていたが、引張破壊ひずみ及び耐衝撃性に劣っていた。さらに、CNSの代わりにカーボンブラックを用いた比較例4、炭素繊維を用いた比較例5においては、導電性に優れていたが、引張破壊ひずみ及び耐衝撃性に劣っていた。
 一方、それぞれ、PBT樹脂、PPS樹脂を用いた実施例7、8においても、耐衝撃性及び引張破壊ひずみが大きく低下することなく、導電性が付与されていることが分かる。これに対して、PBT樹脂を用いたがCNSを含有しない比較例6においては、導電性及び耐衝撃性に劣っていた。また、PPS樹脂を用いたがCNSを含有しない比較例7は導電性に劣っていた。
 なお、実施例1及び2においては、表面抵抗率がいずれも5.0×10Ω/□であり、これは測定限界値であるため実際の数値とは異なる。CNSを含有しない又は少ない比較例1及び2における表面抵抗率も5.0×10Ω/□であるが、体積抵抗率は実施例1及び2よりも高いことから、実施例1及び2における表面抵抗率は比較例1及び2よりも低いと考えられる。
From Table 1, it can be seen that in Examples 1 to 6 using the POM resin, the resistivity was low, and both the tensile fracture strain and the impact resistance showed good results. In other words, in Examples 1 to 6, conductivity is imparted without significantly reducing the impact resistance and the tensile fracture strain. On the other hand, Comparative Examples 1 and 2 containing no or little CNS were inferior in conductivity. Further, Comparative Example 3 in which the content of CNS was increased was excellent in conductivity, but was inferior in tensile fracture strain and impact resistance. Further, in Comparative Example 4 in which carbon black was used instead of CNS and Comparative Example 5 in which carbon fiber was used, the conductivity was excellent, but the tensile fracture strain and the impact resistance were inferior.
On the other hand, it can be seen that even in Examples 7 and 8 using the PBT resin and the PPS resin, the impact resistance and the tensile fracture strain are not significantly reduced, and the conductivity is imparted. On the other hand, in Comparative Example 6 in which PBT resin was used but CNS was not contained, the conductivity and impact resistance were inferior. Further, Comparative Example 7 in which PPS resin was used but did not contain CNS was inferior in conductivity.
In Examples 1 and 2, the surface resistivity was either 5.0 × 10 a 9 Omega / □ is different from the actual numbers for this is a measurement limit value. The surface resistivity in Comparative Examples 1 and 2 containing no or less CNS is also 5.0 × 10 9 Ω / □, but the volume resistivity is higher than that in Examples 1 and 2, and therefore, in Examples 1 and 2. The surface resistivity is considered to be lower than that of Comparative Examples 1 and 2.

Claims (4)

  1.  熱可塑性樹脂100質量部に対して、少なくとも、カーボンナノストラクチャー0.3~2.5質量部を溶融混練して得られる、熱可塑性樹脂組成物。 A thermoplastic resin composition obtained by melt-kneading at least 0.3 to 2.5 parts by mass of carbon nanostructures with respect to 100 parts by mass of the thermoplastic resin.
  2.  請求項1に記載の熱可塑性樹脂組成物を成形してなる部材。 A member obtained by molding the thermoplastic resin composition according to claim 1.
  3.  熱可塑性樹脂100質量部に対して、少なくとも、カーボンナノストラクチャー0.3~2.5質量部を溶融混練して得られる熱可塑性樹脂組成物を準備する工程、及び
     前記熱可塑性樹脂組成物を所定の形状に成形する工程、を含む、導電性部材の製造方法。
    A step of preparing a thermoplastic resin composition obtained by melt-kneading at least 0.3 to 2.5 parts by mass of carbon nanostructures with respect to 100 parts by mass of the thermoplastic resin, and a predetermined step of preparing the thermoplastic resin composition. A method for manufacturing a conductive member, which comprises a step of forming into a shape of.
  4.  熱可塑性樹脂組成物に対して導電性を発現する方法であって、
     熱可塑性樹脂100質量部に対して、少なくとも、カーボンナノストラクチャー0.3~2.5質量部を添加して溶融混練する、熱可塑性樹脂組成物の導電性発現方法。
    A method of exhibiting conductivity with respect to a thermoplastic resin composition.
    A method for developing conductivity of a thermoplastic resin composition, wherein at least 0.3 to 2.5 parts by mass of carbon nanostructure is added to 100 parts by mass of the thermoplastic resin and melt-kneaded.
PCT/JP2021/020683 2020-06-30 2021-05-31 Thermoplastic resin composition, member, method for producing same, and method for imparting electroconductivity to thermoplastic resin composition WO2022004235A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180046675.8A CN115885017A (en) 2020-06-30 2021-05-31 Thermoplastic resin composition, part and method for producing same, and method for expressing conductivity of thermoplastic resin composition
JP2022533758A JP7510504B2 (ja) 2020-06-30 2021-05-31 熱可塑性樹脂組成物、部材及びその製造方法、並びに熱可塑性樹脂組成物の導電性発現方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-112469 2020-06-30
JP2020112469 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004235A1 true WO2022004235A1 (en) 2022-01-06

Family

ID=79315966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020683 WO2022004235A1 (en) 2020-06-30 2021-05-31 Thermoplastic resin composition, member, method for producing same, and method for imparting electroconductivity to thermoplastic resin composition

Country Status (2)

Country Link
CN (1) CN115885017A (en)
WO (1) WO2022004235A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022075107A1 (en) * 2020-10-09 2022-04-14
JPWO2022137998A1 (en) * 2020-12-23 2022-06-30
WO2024053535A1 (en) * 2022-09-08 2024-03-14 Dic株式会社 Conductive resin composition, master batch, molded body, and production methods therefor
WO2024083686A1 (en) * 2022-10-17 2024-04-25 Dsm Ip Assets B.V. Electrically conductive polymer composition, process for preparation and moulding, and articles made thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508534A (en) * 1993-03-31 1996-09-10 ハイピリオン カタリシス インターナショナル インコーポレイテッド Reinforced conductive polymer
JP2007112885A (en) * 2005-10-19 2007-05-10 Bussan Nanotech Research Institute Inc Thermoplastic elastomer composition
JP2007119647A (en) * 2005-10-28 2007-05-17 Bussan Nanotech Research Institute Inc Composite material
JP2011132370A (en) * 2009-12-24 2011-07-07 Polyplastics Co Method for producing polyacetal resin composition
JP2012140482A (en) * 2010-12-28 2012-07-26 Hodogaya Chem Co Ltd Polyacetal resin/carbon nanotube conductive resin composite material
JP2013221231A (en) * 2012-04-18 2013-10-28 Tec One Company Branched carbon fiber, method for producing branched carbon fiber and material having the branched carbon fiber
JP2016504470A (en) * 2013-12-06 2016-02-12 エルジー・ケム・リミテッド Composite material with improved mechanical properties and molded product containing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706651B1 (en) * 2006-12-22 2007-04-13 제일모직주식회사 Electroconductive thermoplastic resin composition and plastic article
JP5616943B2 (en) * 2012-02-21 2014-10-29 大日精化工業株式会社 Method for producing conductive resin composition and conductive resin composition
CN110325595B (en) * 2017-02-28 2022-03-11 三井化学株式会社 Conductive resin composition, method for producing same, and molded article obtained therefrom
CN111902488A (en) * 2018-03-20 2020-11-06 大日精化工业株式会社 Conductive resin composition and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508534A (en) * 1993-03-31 1996-09-10 ハイピリオン カタリシス インターナショナル インコーポレイテッド Reinforced conductive polymer
JP2007112885A (en) * 2005-10-19 2007-05-10 Bussan Nanotech Research Institute Inc Thermoplastic elastomer composition
JP2007119647A (en) * 2005-10-28 2007-05-17 Bussan Nanotech Research Institute Inc Composite material
JP2011132370A (en) * 2009-12-24 2011-07-07 Polyplastics Co Method for producing polyacetal resin composition
JP2012140482A (en) * 2010-12-28 2012-07-26 Hodogaya Chem Co Ltd Polyacetal resin/carbon nanotube conductive resin composite material
JP2013221231A (en) * 2012-04-18 2013-10-28 Tec One Company Branched carbon fiber, method for producing branched carbon fiber and material having the branched carbon fiber
JP2016504470A (en) * 2013-12-06 2016-02-12 エルジー・ケム・リミテッド Composite material with improved mechanical properties and molded product containing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022075107A1 (en) * 2020-10-09 2022-04-14
JP7217384B2 (en) 2020-10-09 2023-02-02 ポリプラスチックス株式会社 Polyacetal resin composition and automobile parts
JPWO2022137998A1 (en) * 2020-12-23 2022-06-30
WO2022137998A1 (en) * 2020-12-23 2022-06-30 ポリプラスチックス株式会社 Polyacetal resin composition and fuel-contacting article
JP7217385B2 (en) 2020-12-23 2023-02-02 ポリプラスチックス株式会社 Polyacetal resin composition and fuel contactor
WO2024053535A1 (en) * 2022-09-08 2024-03-14 Dic株式会社 Conductive resin composition, master batch, molded body, and production methods therefor
WO2024083686A1 (en) * 2022-10-17 2024-04-25 Dsm Ip Assets B.V. Electrically conductive polymer composition, process for preparation and moulding, and articles made thereof

Also Published As

Publication number Publication date
CN115885017A (en) 2023-03-31
JPWO2022004235A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2022004235A1 (en) Thermoplastic resin composition, member, method for producing same, and method for imparting electroconductivity to thermoplastic resin composition
WO2022004236A1 (en) Thermoplastic resin composition, member, manufacturing method therefor, and method for developing conductivity of thermoplastic resin composition
WO2022009616A1 (en) Thermoplastic resin composition, member, and manufacturing method and mechanical strength improvement method for member formed from thermoplastic resin composition
KR102046880B1 (en) Electroconductive carbon composite material, molded article and process for preparing thereof
EP2177567B1 (en) Polybutylene terephthalate resin composition and thin molded article
CN109689782B (en) Polybutylene terephthalate resin composition and molded article
US10336899B2 (en) Polybutylene terephthalate resin composition
KR102252550B1 (en) Thermoplastic resin composition and article produced therefrom
JP6294829B2 (en) Corona-resistant member, corona-resistant resin composition, and method for expressing corona resistance of resin molded product
KR950009758B1 (en) Polyarylene sulfide resin composition
US5310823A (en) Polyacetal resin composition
JP7446090B2 (en) Method for improving tracking resistance of polybutylene terephthalate resin composition
JP2015129073A (en) Surface-treated glass fiber and glass fiber-reinforced thermoplastic resin composition prepared using the same
KR101950118B1 (en) Polyamide resin composition and article comprising the same
JP2006298993A (en) Polybutylene terephthalate resin composition
JP7455652B2 (en) Method for manufacturing resin composition
JP7448740B2 (en) Resin compositions and molded products
JPH0548789B2 (en)
JP7261841B2 (en) Method for suppressing strength reduction of two-color molded product, resin composition for two-color molding, two-color molded product and method for producing the same
JPS62106954A (en) Polyester resin composition
WO2023105955A1 (en) Polyalkylene terephthalate resin composition, polyalkylene terephthalate resin composition production method, and molded article
CN115612261A (en) Hydrolysis-resistant flame-retardant polyester composite material capable of being subjected to laser welding and preparation method thereof
JP2024504273A (en) Polybutylene terephthalate compositions and molded products
WO2018159487A1 (en) Polybutylene terephthalate resin composition for molded body for welding polyester elastomer, and composite molded body
JPH01282245A (en) Electrically conductive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833117

Country of ref document: EP

Kind code of ref document: A1