WO2018159487A1 - Polybutylene terephthalate resin composition for molded body for welding polyester elastomer, and composite molded body - Google Patents

Polybutylene terephthalate resin composition for molded body for welding polyester elastomer, and composite molded body Download PDF

Info

Publication number
WO2018159487A1
WO2018159487A1 PCT/JP2018/006697 JP2018006697W WO2018159487A1 WO 2018159487 A1 WO2018159487 A1 WO 2018159487A1 JP 2018006697 W JP2018006697 W JP 2018006697W WO 2018159487 A1 WO2018159487 A1 WO 2018159487A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
polybutylene terephthalate
terephthalate resin
resin composition
molded body
Prior art date
Application number
PCT/JP2018/006697
Other languages
French (fr)
Japanese (ja)
Inventor
悟 堀口
元暢 神谷
藤井 泰人
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US16/488,716 priority Critical patent/US11104794B2/en
Priority to JP2018516860A priority patent/JP7074055B2/en
Priority to CN201880014000.3A priority patent/CN110382622B/en
Publication of WO2018159487A1 publication Critical patent/WO2018159487A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a polybutylene terephthalate resin composition for molded articles having improved weldability to a polyester elastomer.
  • Polybutylene terephthalate resin is used in a wide range of applications such as automobiles, electrical and electronic parts as engineering plastics because of its excellent mechanical and electrical properties, other physical and chemical properties, and good processability. ing.
  • the molding efficiency of the injection-molded product is good, the shape is limited in terms of its flow characteristics and mold structure, and it is difficult to mold a hollow molded body, for example.
  • adhesives have problems of adhesive strength, and mechanical joining with bolts and the like has problems of cost, labor for fastening, and weight increase.
  • Bonding methods such as hot plate welding, vibration welding, laser welding, and ultrasonic welding can be joined in a short time, and there is no need to use adhesives or metal parts. Since problems such as environmental pollution can be reduced, joining of parts by these methods is increasing (Patent Documents 1, 2, 3, 4).
  • Patent Document 1 shows that by adding an elastomer and glass fiber to a polybutylene terephthalate resin, vibration weldability is improved without a significant decrease in mechanical properties.
  • Patent Document 2 shows that by adding an elastomer and glass fiber to polybutylene terephthalate resin, it is excellent in durability and hydrolysis resistance in a cold cycle environment.
  • the disclosed composition is a secondary material to be insert-molded, and although hydrolysis resistance is improved, it is not sufficient as welding resistance and is not sufficient as insert bondability.
  • Patent Document 3 it has been found that hydrolysis resistance is improved without significant reduction in mechanical properties by adding a terminal carboxyl group and adding carbodiimide.
  • this composition is excellent as a material for heat welding, a special machine for heat welding must be used at the time of joining as in Patent Document 1, and burrs are generated at the heat welding portion as in vibration welding. In some cases, a burr post-treatment process may occur.
  • Patent Document 4 there is a correlation between the molecular weight of the polybutylene terephthalate resin and the vibration welding strength, and by adjusting the molecular weight within a specific range, the vibration welding strength is increased and the fluidity of the resin composition constituting the molded product is increased. Indicates that it will not be damaged.
  • this patent document similarly to Patent Document 1, this patent document must use a special machine for vibration welding at the time of joining, which may generate burrs at the welded portion and may cause a post-treatment process for burrs.
  • Patent Documents 1 to 4 do not have any technical idea of joining a polyester elastomer to a polybutylene terephthalate resin-based molded body by insert molding.
  • the present invention is intended to solve the above-described problems, does not require special welding equipment, can be joined (welded) by insert molding, and further has a practical joint strength even at a stress generation site.
  • a polybutylene terephthalate resin composition having the following formula is provided. Among them, a composite molded body having both excellent properties of a polybutylene terephthalate resin and a polyester elastomer is demanded from the market by joining (welding) a polyester elastomer to the polybutylene terephthalate resin-based molded body by insert molding. There is a demand for a resin composition for a polybutylene terephthalate resin-based molded body necessary for the composite molded body.
  • the present inventors have intensively studied the structure and properties of the polybutylene terephthalate resin composition in order to solve the above problems, and as a result, have completed the present invention.
  • the present invention has the following configuration.
  • a hard segment (a3) consisting of: at least selected from aliphatic polyether, aliphatic polyester and aliphatic polycarbonate
  • a polybutylene terephthalate resin composition which is a
  • [4] A method for producing a composite molded body in which a molded body made of the polybutylene terephthalate resin composition according to [1] or [2] is disposed as an insert material in a mold and a polyester elastomer is welded by injection molding.
  • a polybutylene terephthalate resin can be joined to a polyester elastomer by insert molding by adding a polyester block copolymer.
  • the composite molded body in which the molded body made of the polybutylene terephthalate resin composition of the present invention and the polyester elastomer are welded is an insert composite molded body that does not require special equipment and can be obtained by a simple method called insert molding. is there.
  • the joint part of the composite molded body is formed by directly bonding (welding) the molded body made of the polybutylene terephthalate resin composition and the polyester elastomer without using an adhesive or a bolt. Sufficient bonding strength with practicality.
  • the polybutylene terephthalate resin composition of the present invention is a polybutylene terephthalate resin composition for molded articles capable of welding a polyester elastomer having a high hardness to a low hardness.
  • the present invention will be specifically described below.
  • the polybutylene terephthalate resin (A) undergoes a polycondensation reaction between a dicarboxylic acid mainly composed of terephthalic acid or an ester-forming derivative thereof and a diol mainly composed of 1,4-butanediol or an ester-forming derivative thereof. It can be obtained by a general polymerization method such as In the polybutylene terephthalate resin, the repeating unit of butylene terephthalate is preferably 80 mol% or more, more preferably 90 mol% or more, further preferably 95 mol% or more, and 100 mol%. Is particularly preferred.
  • the polybutylene terephthalate resin (A) can contain other polymerization components within a range that does not impair its properties, for example, about 20% by mass or less.
  • polybutylene terephthalate resins containing other polymerization components include polybutylene (terephthalate / isophthalate), polybutylene (terephthalate / adipate), polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decane dicarboxylate), polybutylene (terephthalate) / Naphthalate), poly (butylene / ethylene) terephthalate, and the like. These components may be used alone or in combination of two or more.
  • the intrinsic viscosity (IV) of the polybutylene terephthalate resin (A) is not particularly limited, but is preferably 0.5 to 1.6 dl / g, and preferably 0.7 to 1.3 dl / g. More preferred is 0.8 to 1.1 dl / g.
  • the polybutylene terephthalate resin composition produced according to the present invention has mechanical properties and chemical properties due to the intrinsic viscosity (IV) of the polybutylene terephthalate resin (A) being 0.5 to 1.6 dl / g. It becomes good.
  • the amount of terminal carboxyl groups of the polybutylene terephthalate resin (A) is not particularly limited because it does not affect the bondability. However, since the terminal carboxyl group plays a catalytic role in the hydrolysis reaction of the polymer, hydrolysis is accelerated as the amount of the terminal carboxyl group increases. For this reason, it is preferable that the density
  • the concentration (acid value) of the terminal carboxyl group of the polybutylene terephthalate resin (A) is preferably 40 eq / ton or less, more preferably 30 eq / ton or less, still more preferably 25 eq / ton or less, particularly Preferably it is 20 eq / ton or less.
  • the terminal carboxyl group concentration (unit: eq / ton) of the polybutylene terephthalate resin is, for example, a predetermined amount of polybutylene terephthalate resin dissolved in benzyl alcohol and a sodium hydroxide 0.01 mol / 1 benzyl alcohol solution used. Then, it can be measured by titrating. For example, a phenolphthalein solution may be used as the indicator.
  • the content of the polybutylene terephthalate resin (A) in the polybutylene terephthalate resin composition is 40 to 95% by mass, preferably 45 to 90% by mass, and more preferably 45 to 80% by mass.
  • the polyester block copolymer (B) used in the present invention comprises a hard segment (a3) composed of a polyester comprising a dicarboxylic acid and an aliphatic and / or alicyclic glycol as constituent components, an aliphatic polyether, and an aliphatic group. It is a polyester block copolymer in which at least one soft segment (a4) selected from polyester and aliphatic polycarbonate is bonded.
  • the dicarboxylic acid component constituting the polyester to be the hard segment (a3) is composed of terephthalic acid or its ester-forming derivative (a1) and at least one dicarboxylic acid other than terephthalic acid or its ester-forming derivative (a2).
  • the molar ratio of (a1) to (a2) ((a1) / (a2)) is 1 to 4.
  • An ester-forming derivative refers to, for example, a dimethyl ester form.
  • the polyester block copolymer (B) is generally also referred to as a polyester elastomer.
  • Dicarboxylic acids other than terephthalic acid include isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, diphenyl Aromatic dicarboxylic acids such as p, p-dicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid, succinic acid, glutaric acid, and dimer acid, hexahydroterephthalic acid, hexahydroisophthalic acid, cyclohexanedicarboxylic acid, etc.
  • the dicarboxylic acid other than terephthalic acid is a low component that lowers the crystallinity of the polyester block copolymer (B). Is preferred. Therefore, as dicarboxylic acids other than terephthalic acid, isophthalic acid and orthophthalic acid are preferable, and isophthalic acid is particularly preferable.
  • the molar ratio of the dicarboxylic acid component ((a1) / (a2)) is preferably 2-4. When the molar ratio is less than 1, molding processability deteriorates, and when it exceeds 4, the joining (welding) property expected cannot be obtained.
  • the aliphatic or alicyclic glycol constituting the polyester of the hard segment (a3) of the polyester block copolymer (B) used in the present invention is not particularly limited, and general aliphatic or alicyclic glycols are widely used. However, it is desirable that they are mainly alkylene glycols having 2 to 8 carbon atoms. Preferred are ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, and 1,4-cyclohexanedimethanol, and particularly preferred are ethylene glycol and 1,4-butanediol. One of them.
  • the aromatic polyester Polyester can be easily obtained according to a normal polyester production method.
  • the polyester preferably has a number average molecular weight of 10,000 to 40,000.
  • the soft segment (a4) of the polyester block copolymer (B) used in the present invention is at least one selected from aliphatic polyether, aliphatic polyester, and aliphatic polycarbonate.
  • Aliphatic polyethers include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, polyoxyhexamethylene glycol, polyoxytrimethylene glycol, copolymers of ethylene oxide and propylene oxide, ethylene oxide of polyoxyethylene glycol Examples include adducts, copolymers of ethylene oxide and tetrahydrofuran, and the like.
  • the aliphatic polyester include poly ( ⁇ -caprolactone), polyenantlactone, polycaprylolactone, and polybutylene adipate.
  • the aliphatic polycarbonate is preferably composed mainly of an aliphatic diol residue having 2 to 12 carbon atoms.
  • these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- Examples include octanediol.
  • polyester block copolymer (B) aliphatic diols having 5 to 12 carbon atoms are preferred from the viewpoint of flexibility and low temperature characteristics of the obtained polyester block copolymer (B).
  • These components may be used alone or in combination of two or more as required, based on the case described below.
  • the aliphatic polycarbonate diol having a low temperature characteristic and constituting the soft segment (a4) of the usable polyester block copolymer (B) has a low melting point (for example, 70 ° C. or less) and glass. Those having a low transition temperature are preferred.
  • an aliphatic polycarbonate diol composed of 1,6-hexanediol used to form the soft segment (a4) of the polyester block copolymer has a low glass transition temperature of around ⁇ 60 ° C. and a melting point of around 50 ° C. Therefore, the low temperature characteristics are good.
  • an aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of, for example, 3-methyl-1,5-pentanediol with the above aliphatic polycarbonate diol has a glass transition point with respect to the original aliphatic polycarbonate diol. Although the melting point is slightly increased, the melting point is lowered or becomes amorphous, so that it corresponds to an aliphatic polycarbonate diol having good low-temperature characteristics.
  • an aliphatic polycarbonate diol composed of 1,9-nonanediol and 2-methyl-1,8-octanediol has a melting point of about 30 ° C. and a glass transition temperature of about ⁇ 70 ° C., which is sufficiently low. Corresponds to a good aliphatic polycarbonate diol.
  • the polyester block copolymer (B) used in the present invention is mainly composed of terephthalic acid, isophthalic acid, 1,4-butanediol, and polyoxytetramethylene glycol for reasons of economy, heat resistance, and cold resistance.
  • a copolymer is preferred.
  • the total of terephthalic acid and isophthalic acid is preferably 40 mol% or more, more preferably 70 mol% or more, and 80 mol% or more. More preferably, it is more preferably 90 mol% or more.
  • the total of 1,4-butanediol and polyoxytetramethylene glycol is preferably 40 mol% or more, more preferably 70 mol% or more. 80 mol% or more is more preferable, and 90 mol% or more is particularly preferable.
  • the number average molecular weight of the polyoxytetramethylene glycol is preferably 500 to 4000. If the number average molecular weight is less than 500, it may be difficult to develop elastomeric properties. On the other hand, when the number average molecular weight exceeds 4000, the compatibility with the polyester portion constituting the hard segment (a3) of the polyester block copolymer (B) is lowered, and it may be difficult to copolymerize in a block shape. is there.
  • the number average molecular weight of polyoxytetramethylene glycol is more preferably 800 or more and 3000 or less, and further preferably 1000 or more and 2500 or less.
  • the copolymerization amount of the hard segment (a3) and the soft segment (a4) of the polyester block copolymer (B) used in the present invention is the mass ratio of the hard segment (a3) and the soft segment (a4) ((a3) / (A4)) is preferably 85/15 to 35/65, more preferably 75/25 to 50/50.
  • the hardness (surface hardness) of the polyester block copolymer (B) used in the present invention is not particularly limited.
  • Block copolymers can be used, preferably those having a Shore D hardness of 25 to 65, more preferably a Shore D hardness of 30 to 60.
  • the reduced viscosity of the polyester block copolymer (B) used in the present invention is preferably 0.5 dl / g or more and 3.5 dl / g or less when measured by the measurement method described later. If it is less than 0.5 dl / g, the durability as a resin is low, and if it exceeds 3.5 dl / g, workability such as injection molding may be insufficient.
  • the reduced viscosity of the polyester block copolymer (B) is more preferably 1.0 dl / g or more and 3.0 dl / g or less, and further preferably 1.5 dl / g or more and 2.8 dl / g or less. .
  • the acid value of the polyester block copolymer (B) is preferably 200 eq / t or less, and particularly preferably 50 eq / t or less.
  • the polyester block copolymer (B) used in the present invention can be produced by a known method. For example, a method of transesterifying a lower alcohol diester of a dicarboxylic acid, an excess amount of a low molecular weight glycol, and a soft segment component in the presence of a catalyst and polycondensing the resulting reaction product, or a dicarboxylic acid and an excess amount of glycol and A method in which a soft segment component is esterified in the presence of a catalyst and the resulting reaction product is polycondensed. In addition, a hard segment is prepared in advance, and a soft segment component is added thereto and randomized by a transesterification reaction.
  • Any method may be used, such as a method, a method of linking a hard segment and a soft segment with a chain linking agent, and a poly ( ⁇ -caprolactone) used for the soft segment, such as an addition reaction of ⁇ -caprolactone monomer to the hard segment.
  • the content of the polyester block copolymer (B) in the polybutylene terephthalate resin composition is 4 to 40% by mass, preferably 5 to 35% by mass, more preferably 15 to 30% by mass. .
  • the polyester block copolymer (B) is a polybutylene terephthalate resin composition capable of being bonded to a polyester elastomer having practical bonding strength.
  • the copolyester resin (C) in the present invention is not particularly limited as long as it is a copolyester resin different from the polybutylene terephthalate resin (A) and the polyester block copolymer (B).
  • a polyester block copolymer having a molar ratio ((a1) / (a2)) exceeding 4 may be used.
  • ethylene glycol is 40 mol% or more, and terephthalic acid and ethylene glycol when the total acid component is 100 mol% and the total glycol component is 100 mol%.
  • copolymerization components isophthalic acid, sebacic acid, adipic acid, trimellitic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,4-butanediol, 1 , 2-propanediol, 1,3-propanediol, ethylene glycol, and 2-methyl-1,3-propanediol.
  • Ethylene glycol and 1,4-butanediol can be a copolymerization component in a polyester resin not included in the main component.
  • the copolymer polyester resin (C) is preferably a polyester resin obtained by copolymerizing at least one of an alkyl side chain-containing glycol and isophthalic acid to an ethylene terephthalate unit or a butylene terephthalate unit, and is preferably amorphous.
  • alkyl side chain-containing glycols include neopentyl glycol, 1,2-propanediol, and 2-methyl-1,3-propanediol.
  • a component that lowers crystallinity such as neopentyl glycol and isophthalic acid is preferable as a copolymer component from the viewpoint of various characteristics.
  • the copolymerization ratio of the alkyl side chain-containing glycol is preferably 20 to 60 mol%, more preferably 25 to 50 mol%.
  • the copolymerization ratio of isophthalic acid is preferably 20 to 60 mol%, more preferably 25 to 50 mol%.
  • the degree of polymerization of the copolyester resin (C) varies slightly depending on the specific copolymer composition, but the intrinsic viscosity (0.1 g sample is dissolved in 25 ml of a mixed solvent of phenol / tetrachloroethane (mass ratio 6/4)). And measured at 30 ° C. using an Ubbelohde viscosity tube) is preferably 0.4 to 1.5 dl / g, more preferably 0.4 to 1.3 dl / g. If it is less than 0.4 dl / g, the toughness tends to decrease, and if it exceeds 1.5 dl / g, the fluidity tends to decrease.
  • the content of the copolymer polyester resin (C) in the polybutylene terephthalate resin composition is 0 to 50% by mass, preferably 0 to 25% by mass, more preferably 5 to 25% by mass, More preferably, it is 5 to 20% by mass.
  • the copolyester resin (C) is added. By doing so, it is possible to increase the bonding strength. When the content exceeds 50% by mass, the bonding strength is improved, but the heat resistance is lowered, which is not preferable.
  • the polybutylene terephthalate resin composition of the present invention can be blended with (D) an inorganic filler as long as the effects of the present invention are not impaired.
  • an inorganic filler there are a fibrous filler and a non-fibrous filler. Examples of the fibrous filler used in the present invention include glass fiber, carbon fiber, potassium titanate fiber, silica / alumina fiber. , Zirconia fiber, metal fiber and the like, and glass fiber is preferable.
  • any known glass fiber is preferably used, and the glass fiber diameter, the shape such as a round shape, a saddle-shaped cross section, an oval cross section, or the length or glass cut when used for manufacturing chopped strands, rovings, etc. It does not depend on the method.
  • the type of glass is not limited, but E glass or corrosion resistant glass containing a zirconium element in the composition is preferably used in terms of quality.
  • a fibrous filler surface-treated with an organic treating agent such as an aminosilane compound or an epoxy compound is preferably used for the purpose of improving the interfacial characteristics between the fibrous filler and the resin matrix.
  • an organic treating agent such as an aminosilane compound or an epoxy compound
  • any known compounds can be preferably used, and the types of aminosilane compounds and epoxy compounds used for the surface treatment of the fibrous filler in the present invention are as follows. Do not depend.
  • Examples of the plate-like or granular non-fibrous inorganic filler include glass beads, glass flakes, silica, kaolin, talc, mica, wollastonite, titanium oxide, zinc oxide, alumina, calcium carbonate, and magnesium carbonate. From the viewpoint of balance between impact resistance, fluidity and product appearance, glass beads, kaolin, talc and mica are preferred, and kaolin and mica are more preferred. When a plate-like or granular non-fibrous inorganic filler is used alone, sufficient strength cannot be obtained, so it is preferable to use it together with a fibrous filler.
  • the content of the inorganic filler (D) in the polybutylene terephthalate resin composition is 0 to 55% by mass, preferably 10 to 55% by mass, more preferably 15 to 50% by mass, The content is preferably 20 to 40% by mass.
  • the polybutylene terephthalate resin composition of the present invention can contain various known additives as long as the characteristics of the present invention are not impaired.
  • Known additives include, for example, colorants such as pigments, mold release agents, heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, modifiers, antistatic agents, flame retardants, dyes, and the like.
  • the release agent include long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicon, polyethylene oxide, and the like.
  • the long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed.
  • the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture.
  • These various additives can be contained up to 5% by mass in total when the polybutylene terephthalate resin composition is 100% by mass. That is, the total of (A), (B), (C) and (D) is preferably 95 to 100% by mass in 100% by mass of the polybutylene terephthalate resin composition.
  • Polybutylene terephthalate resin composition As a production method for producing the polybutylene terephthalate resin composition of the present invention, the composition is blended in an arbitrary blending sequence in the above blending composition, and then mixed with a tumbler or a Henschel mixer and melt-kneaded.
  • the melt kneading method can be any method known to those skilled in the art, and a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, a roll, etc. can be used, among which a twin-screw extruder is used. It is preferable to do. Further, in order to remove volatile components and decomposed low molecular components at the time of processing, it is desirable to perform suction by a vacuum pump between the side port of the glass fiber charging portion and the die head at the tip of the extruder.
  • the polybutylene terephthalate resin composition of the present invention is for a molded body for welding a polyester elastomer, and particularly for a molded body for welding a polyester elastomer by insert molding.
  • the polybutylene terephthalate resin composition of the present invention can be formed into a molded body by a known molding method such as injection molding. This molded body can be used for a composite material described below.
  • a molded body made of the polybutylene terephthalate resin composition of the present invention and a composite molded body in which a polyester elastomer is welded will be described.
  • This composite molded body is obtained by placing a molded body made of a polybutylene terephthalate resin composition as an insert material in a mold and welding a polyester elastomer by injection molding.
  • a material (insert material) disposed in a mold is called a primary material
  • a molded body made of a polybutylene terephthalate resin composition corresponds to this.
  • the material injected into the mold in which the insert material is arranged is called a secondary material, and in the present invention, a polyester elastomer is applicable.
  • the polyester elastomer as the secondary material may be the same as or different from the polyester block copolymer (B) used for the primary material described above.
  • the polyester elastomer as the secondary material is not particularly limited, but includes a hard segment composed of a polyester composed of an aromatic dicarboxylic acid and an aliphatic and / or alicyclic glycol, an aliphatic polyether, an aliphatic polyester and a fat. Any polyester elastomer to which at least one soft segment selected from a group polycarbonate is bonded may be used.
  • the polyester block copolymer (B) used for the primary material described above, or the polyester block copolymer (B) in which the molar ratio ((a1) / (a2)) exceeds 4 is provided.
  • the hardness (surface hardness) of the polyester elastomer as the secondary material can be a wide range of polyester elastomers, from a low hardness of about 65 Shore A hardness to a high hardness of about 75 Shore D hardness, preferably Shore D hardness. 25 to 65, more preferably a Shore D hardness of 30 to 60. It is a preferable aspect to use the same kind of soft segment in the polyester elastomer of the secondary material and the polyester block copolymer (B) used in the primary material.
  • a major feature of the present invention is that a wide range of polyester elastomers from a low hardness to a high hardness can be joined (welded) as the secondary material polyester elastomer.
  • the polyester block copolymer (B) dispersed in the sea-island structure in the polybutylene terephthalate resin (A) by containing a specific amount of the polyester block copolymer (B) is a secondary material. It is considered that the polyester block copolymer dispersed on the primary material side and the polyester elastomer on the secondary material side are mixed with each other and melted by the heat of fusion of the polyester elastomer introduced as the above, thereby bringing about adhesion.
  • the copolymerized polyester resin (C) it is considered that the polybutylene terephthalate resin (A) in the primary material becomes easy to move and is more easily mixed.
  • the composite material of the present invention can be used for air ducts, bearings, rollers, covers, various cases, connectors, grips, casters, etc., taking advantage of the characteristics.
  • Polybutylene terephthalate resin (A): (A) Polybutylene terephthalate resin, manufactured by Toyobo Co., Ltd., intrinsic viscosity 0.90 dl / g Polyester block copolymer (B): (B-1) TPA / IPA // 1,4-BD / PTMG1000 copolymer with a composition ratio of 75/25 // 92/8 (mol%), prototype of Perprene (registered trademark) manufactured by Toyobo Co., Ltd.
  • Inorganic filler (D) fiber diameter and fiber length are measured by electron microscope observation, average particle diameter is a value measured by laser diffraction method (50% diameter of cumulative particle size distribution by weight (volume)): (D-1) Glass fiber (average fiber length 3 mm, average fiber diameter 11 ⁇ m), T-120H (manufactured by Nippon Electric Glass Co., Ltd.) (D-2) Talc (average particle size: 12.0 ⁇ m), Talcan PK-C (manufactured by Hayashi Kasei)
  • Examples 1 to 11 and Comparative Examples 1 to 7 In the polybutylene terephthalate resin compositions of Examples and Comparative Examples, the raw materials were weighed according to the blending ratios (parts by mass) shown in Tables 1 and 2, and a cylinder temperature of 260 was measured with a 35 ⁇ twin-screw extruder (manufactured by Toshiba Machine Co., Ltd.). Melt kneading was performed at a temperature of 200 ° C. and a screw rotation speed of 200 rpm.
  • Raw materials other than the inorganic filler were charged from the hopper into the twin screw extruder, and the inorganic filler was charged from the vent port by side feed (when two or more inorganic fillers were used, they were charged from separate side feeds).
  • the obtained pellets of the polybutylene terephthalate resin composition were dried, and then various samples for evaluation were molded using an injection molding machine. The evaluation results are shown in Tables 1 and 2.
  • the resin compositions of the examples are not limited to the type of bonded polyester elastomer and have a breaking elongation (%) of 10% or more and are sufficiently bonded (welded).
  • the elongation at break (%) was improved (joining strength was improved) as compared to Example 2 in which the copolymer polyester resin (C) was not used.
  • Examples 10 and 11 containing the inorganic filler (D) also showed excellent bondability. That is, by containing the polyester block copolymer (B), a polyester elastomer having a wide hardness range can be joined.
  • Comparative Examples 1 to 7 did not contain the polyester block copolymer (B), resulting in poor bonding (welding) properties to a relatively hard polyester elastomer.
  • Comparative Example 5 in which an elastomer other than the polyester elastomer is added, sufficient bonding strength is not exhibited.
  • the resin composition of the present invention has practically sufficient bonding strength as compared with conventional polybutylene terephthalate resin compositions, it is useful as a molding material for molded articles that can be bonded by insert molding with a polyester elastomer.

Abstract

A polybutylene terephthalate resin composition for a molded body for welding a polyester elastomer, said polybutylene terephthalate resin composition being capable of being bonded by insert-molding and having practical bonding strength even in portions where stress is generated, and said polybutylene terephthalate resin composition comprising 40-95% by mass of (A) a polybutylene terephthalate resin, 4-40% by mass of (B) a polyester block copolymer, 0-50% by mass of (C) a copolymerized polyester resin different from (B), and 0-55% by mass of (D) an inorganic filler, wherein the polyester block copolymer (B) has, as a constituent component thereof, a hard segment comprising a polyester having a specific structure.

Description

ポリエステルエラストマーを溶着する成形体用ポリブチレンテレフタレート樹脂組成物および複合成形体Polybutylene terephthalate resin composition for molded article and composite molded article for welding polyester elastomer
 本発明は、ポリエステルエラストマーに対する溶着性が改善された成形体用のポリブチレンテレフタレート樹脂組成物に関する。 The present invention relates to a polybutylene terephthalate resin composition for molded articles having improved weldability to a polyester elastomer.
 ポリブチレンテレフタレート樹脂は、機械的性質、電気的性質、その他物理的、化学的特性に優れ、かつ加工性が良好であるため、エンジニアリングプラスチックとして自動車、電気・電子部品などの広範な用途に使用されている。
 しかし、射出成形品の成形効率は良いが、その流動特性や金型構造の点から形状に制限があり、例えば、中空成形体などの成形が困難であった。このため、従来、製品形状の複雑な部品同士の接合においては、接着剤による接合、ボルトなどによる機械的接合などが行われてきた。しかしながら、接着剤ではその接着強度が、また、ボルトなどによる機械的接合では、費用、締結の手間、重量増が問題となっている。
Polybutylene terephthalate resin is used in a wide range of applications such as automobiles, electrical and electronic parts as engineering plastics because of its excellent mechanical and electrical properties, other physical and chemical properties, and good processability. ing.
However, although the molding efficiency of the injection-molded product is good, the shape is limited in terms of its flow characteristics and mold structure, and it is difficult to mold a hollow molded body, for example. For this reason, conventionally, in the joining of parts having complicated product shapes, joining with an adhesive, mechanical joining with a bolt or the like has been performed. However, adhesives have problems of adhesive strength, and mechanical joining with bolts and the like has problems of cost, labor for fastening, and weight increase.
 熱板溶着、振動溶着、レーザー溶着、超音波溶着などの接合方法では、短時間で接合が可能であり、また、接着剤や金属部品を使用する必要がないので、それにかかるコストや重量増、環境汚染等の問題を低減することができるため、これらの方法による部品同士の接合が増大している(特許文献1、2、3、4)。 Bonding methods such as hot plate welding, vibration welding, laser welding, and ultrasonic welding can be joined in a short time, and there is no need to use adhesives or metal parts. Since problems such as environmental pollution can be reduced, joining of parts by these methods is increasing (Patent Documents 1, 2, 3, 4).
 特許文献1では、ポリブチレンテレフタレート樹脂にエラストマー及びガラス繊維を添加することで機械的物性の大きな低下なく振動溶着性が向上することを示している。しかし、これらの方法は振動溶着用の特殊機械を使用しなければならないばかりか、振動溶着時に発生するバリにより、バリの後処理工程が発生する場合がある。特許文献2では、ポリブチレンテレフタレート樹脂にエラストマー及びガラス繊維を添加することで、冷熱サイクル環境での耐久性と耐加水分解性に優れていることを示している。しかしながら、開示されている組成物は、インサート成形する二次用材料であり、耐加水分解性は向上するものの耐溶着性としては十分ではなく、インサート接合性としても十分ではない。特許文献3では、末端カルボキシル基の限定とカルボジイミドを添加することにより、機械物性の大きな低下なしに、耐加水分解性が向上することを見出している。しかしながら、この組成物は熱溶着用材料として優れているが、特許文献1と同様に接合時に熱溶着用の特殊機械を使用しなければならず、振動溶着と同様に熱溶着部にバリが発生し、バリの後処理工程が発生する場合がある。特許文献4では、ポリブチレンテレフタレート樹脂の分子量と振動溶着強度に相関があり、ある特定の範囲に分子量を調整することで、振動溶着強度を高めつつ、成形品を構成する樹脂組成物の流動性が損なわないことを示している。しかしながら、本特許文献も特許文献1と同様に、接合時に振動溶着用の特殊機械を使用しなければならず、溶着部のバリの発生があり、バリの後処理工程が発生する場合がある。 Patent Document 1 shows that by adding an elastomer and glass fiber to a polybutylene terephthalate resin, vibration weldability is improved without a significant decrease in mechanical properties. However, in these methods, not only a special machine for vibration welding has to be used, but also a burr post-treatment process may occur due to burrs generated during vibration welding. Patent Document 2 shows that by adding an elastomer and glass fiber to polybutylene terephthalate resin, it is excellent in durability and hydrolysis resistance in a cold cycle environment. However, the disclosed composition is a secondary material to be insert-molded, and although hydrolysis resistance is improved, it is not sufficient as welding resistance and is not sufficient as insert bondability. In Patent Document 3, it has been found that hydrolysis resistance is improved without significant reduction in mechanical properties by adding a terminal carboxyl group and adding carbodiimide. However, although this composition is excellent as a material for heat welding, a special machine for heat welding must be used at the time of joining as in Patent Document 1, and burrs are generated at the heat welding portion as in vibration welding. In some cases, a burr post-treatment process may occur. In Patent Document 4, there is a correlation between the molecular weight of the polybutylene terephthalate resin and the vibration welding strength, and by adjusting the molecular weight within a specific range, the vibration welding strength is increased and the fluidity of the resin composition constituting the molded product is increased. Indicates that it will not be damaged. However, similarly to Patent Document 1, this patent document must use a special machine for vibration welding at the time of joining, which may generate burrs at the welded portion and may cause a post-treatment process for burrs.
 ところで、インサート成形で接合できれば、特殊な溶着設備が必要でなく、簡便に複合成形体を成形することができる。さらに、振動溶着等の機械的接合においては、成形条件のバラつきが大きいという問題もある。また、特許文献1~4には、ポリブチレンテレフタレート樹脂系成形体に対して、ポリエステルエラストマーをインサート成形によって接合しようとする技術思想は全く無い。 By the way, if it can be joined by insert molding, a special welding facility is not required, and a composite molded body can be molded easily. Furthermore, in mechanical joining such as vibration welding, there is a problem that the molding conditions vary greatly. Patent Documents 1 to 4 do not have any technical idea of joining a polyester elastomer to a polybutylene terephthalate resin-based molded body by insert molding.
特開2006-176691号公報JP 2006-176691 A 国際公開第2009/150831号パンフレットInternational Publication No. 2009/150831 Pamphlet 国際公開第2010/122915号パンフレットInternational Publication No. 2010/122915 Pamphlet 国際公開第2013/047708号パンフレットInternational Publication No. 2013/047708 Pamphlet
 本発明は、上記の問題点を解決しようとするものであり、特殊な溶着設備を必要とせず、インサート成形で接合(溶着)することができ、さらに応力発生部位においても実用性のある接合強度をもつポリブチレンテレフタレート樹脂組成物を提供するものである。中でも、ポリブチレンテレフタレート樹脂系成形体に対して、ポリエステルエラストマーをインサート成形によって接合(溶着)して、ポリブチレンテレフタレート樹脂とポリエステルエラストマーの両者の優れた特性を併せ持つ複合成形体が市場から要望され、この複合成形体に必要なポリブチレンテレフタレート樹脂系成形体用の樹脂組成物が求められている。本発明者らが検討したところ、ポリブチレンテレフタレート樹脂成形体に対して、ポリエステルエラストマーはもとより他の樹脂をインサート成形によって接合しようとしても実用に足る接合(溶着)が困難であり、接合できたとしても成形体形状が制約され、接合部に応力がかかる部品には使用できないということが分かった。したがって、本発明は、インサート成形で接合することができ、さらに応力発生部位においても実用性のある接合強度をもつ、ポリエステルエラストマーを溶着する成形体用ポリブチレンテレフタレート樹脂組成物を提供することを課題とする。さらには、溶着するポリエステルエラストマーの硬度によっては、接合(溶着)が不十分な場合があることが分かり、高硬度から低硬度のポリエステルエラストマーを溶着することが可能な成形体用ポリブチレンテレフタレート樹脂組成物を提供することも新たな課題となっている。 The present invention is intended to solve the above-described problems, does not require special welding equipment, can be joined (welded) by insert molding, and further has a practical joint strength even at a stress generation site. A polybutylene terephthalate resin composition having the following formula is provided. Among them, a composite molded body having both excellent properties of a polybutylene terephthalate resin and a polyester elastomer is demanded from the market by joining (welding) a polyester elastomer to the polybutylene terephthalate resin-based molded body by insert molding. There is a demand for a resin composition for a polybutylene terephthalate resin-based molded body necessary for the composite molded body. As a result of investigations by the present inventors, it was difficult to join (welding) to a polybutylene terephthalate resin molded body, which is sufficient for practical use even if another resin as well as polyester elastomer was joined by insert molding. However, it was found that the shape of the molded body is restricted and cannot be used for parts in which the joint is stressed. Accordingly, it is an object of the present invention to provide a polybutylene terephthalate resin composition for a molded body that can be bonded by insert molding and has a practical bonding strength even at a stress generation site, and which is used to weld a polyester elastomer. And Furthermore, depending on the hardness of the polyester elastomer to be welded, it can be seen that the bonding (welding) may be insufficient, and a polybutylene terephthalate resin composition for molded articles capable of welding a polyester elastomer having a high hardness to a low hardness. Providing goods is also a new issue.
 本発明者らは、上記課題を解決するためにポリブチレンテレフタレート樹脂組成物の構成と特性を鋭意検討した結果、本発明を完成するに至ったのである。 The present inventors have intensively studied the structure and properties of the polybutylene terephthalate resin composition in order to solve the above problems, and as a result, have completed the present invention.
 すなわち、本発明は以下の構成を有するものである。
[1] ポリブチレンテレフタレート樹脂(A)40~95質量%、ポリエステルブロック共重合体(B)4~40質量%、(B)とは異なる共重合ポリエステル樹脂(C)0~50質量%及び無機充填剤(D)0~55質量%を含有するポリブチレンテレフタレート樹脂組成物であって、前記ポリエステルブロック共重合体(B)は、ジカルボン酸成分がテレフタル酸またはそのエステル形成性誘導体(a1)と少なくとも1種以上のテレフタル酸以外のジカルボン酸またはそのエステル形成性誘導体(a2)から構成され、(a1)と(a2)のモル比((a1)/(a2))が1~4であるポリエステルからなるハードセグメント(a3)と、脂肪族ポリエーテル、脂肪族ポリエステル及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメント(a4)とを構成成分とするポリエステルブロック共重合体であり、ポリエステルエラストマーを溶着する成形体用であるポリブチレンテレフタレート樹脂組成物。
[2] 前記共重合ポリエステル樹脂(C)が、エチレンテレフタレート単位またはブチレンテレフタレート単位に、アルキル側鎖含有グリコール及びイソフタル酸の少なくとも一方を共重合したポリエステル樹脂である[1]に記載のポリブチレンテレフタレート樹脂組成物。
[3] [1]または[2]に記載のポリブチレンテレフタレート樹脂組成物からなる成形体とポリエステルエラストマーが溶着された複合成形体。
[4] [1]または[2]に記載のポリブチレンテレフタレート樹脂組成物からなる成形体を金型内にインサート材として配し、ポリエステルエラストマーを射出成形により溶着させる複合成形体の製造方法。
That is, the present invention has the following configuration.
[1] Polybutylene terephthalate resin (A) 40 to 95% by mass, polyester block copolymer (B) 4 to 40% by mass, copolymer polyester resin (C) different from (B) 0 to 50% by mass and inorganic A polybutylene terephthalate resin composition containing 0 to 55% by mass of a filler (D), wherein the polyester block copolymer (B) has a dicarboxylic acid component of terephthalic acid or an ester-forming derivative thereof (a1) Polyester composed of at least one dicarboxylic acid other than terephthalic acid or its ester-forming derivative (a2) and having a molar ratio of (a1) to (a2) ((a1) / (a2)) of 1 to 4 A hard segment (a3) consisting of: at least selected from aliphatic polyether, aliphatic polyester and aliphatic polycarbonate And a polybutylene terephthalate resin composition, which is a polyester block copolymer having one kind of soft segment (a4) as a constituent component and is used for a molded body on which a polyester elastomer is welded.
[2] The polybutylene terephthalate according to [1], wherein the copolymerized polyester resin (C) is a polyester resin obtained by copolymerizing at least one of an alkyl side chain-containing glycol and isophthalic acid to an ethylene terephthalate unit or a butylene terephthalate unit. Resin composition.
[3] A composite molded body in which a molded body made of the polybutylene terephthalate resin composition according to [1] or [2] and a polyester elastomer are welded.
[4] A method for producing a composite molded body in which a molded body made of the polybutylene terephthalate resin composition according to [1] or [2] is disposed as an insert material in a mold and a polyester elastomer is welded by injection molding.
 本発明によれば、ポリブチレンテレフタレート樹脂においても、ポリエステルブロック共重合体を添加することにより、インサート成形でポリエステルエラストマーと接合することができる。本発明のポリブチレンテレフタレート樹脂組成物からなる成形体とポリエステルエラストマーが溶着された複合成形体は、特殊な設備を必要とせず、インサート成形と言う簡便な方法で得ることができるインサート複合成形体である。また、この複合成形体の接合部は、ポリブチレンテレフタレート樹脂組成物からなる成形体とポリエステルエラストマーが、接着剤やボルトなどを介することなく、直接、接合(溶着)されており、その接合部は実用性のある十分な接合強度を有している。さらには、本発明のポリブチレンテレフタレート樹脂組成物は、高硬度から低硬度のポリエステルエラストマーを溶着することが可能な成形体用ポリブチレンテレフタレート樹脂組成物である。 According to the present invention, a polybutylene terephthalate resin can be joined to a polyester elastomer by insert molding by adding a polyester block copolymer. The composite molded body in which the molded body made of the polybutylene terephthalate resin composition of the present invention and the polyester elastomer are welded is an insert composite molded body that does not require special equipment and can be obtained by a simple method called insert molding. is there. In addition, the joint part of the composite molded body is formed by directly bonding (welding) the molded body made of the polybutylene terephthalate resin composition and the polyester elastomer without using an adhesive or a bolt. Sufficient bonding strength with practicality. Furthermore, the polybutylene terephthalate resin composition of the present invention is a polybutylene terephthalate resin composition for molded articles capable of welding a polyester elastomer having a high hardness to a low hardness.
 以下に本発明を具体的に説明する。
[ポリブチレンテレフタレート樹脂(A)]
 ポリブチレンテレフタレート樹脂(A)は、テレフタル酸またはそのエステル形成性誘導体を主たる成分とするジカルボン酸と、1、4-ブタンジオールまたはそのエステル形成性誘導体を主たる成分とするジオールとを重縮合反応させるなどの一般的な重合方法によって得ることができる重合体である。ポリブチレンテレフタレート樹脂は、ブチレンテレフタレートの繰返し単位が80モル%以上であることが好ましく、90モル%以上であることがより好ましく、95モル%以上であることがさらに好ましく、100モル%であることが特に好ましい。
The present invention will be specifically described below.
[Polybutylene terephthalate resin (A)]
The polybutylene terephthalate resin (A) undergoes a polycondensation reaction between a dicarboxylic acid mainly composed of terephthalic acid or an ester-forming derivative thereof and a diol mainly composed of 1,4-butanediol or an ester-forming derivative thereof. It can be obtained by a general polymerization method such as In the polybutylene terephthalate resin, the repeating unit of butylene terephthalate is preferably 80 mol% or more, more preferably 90 mol% or more, further preferably 95 mol% or more, and 100 mol%. Is particularly preferred.
 ポリブチレンテレフタレート樹脂(A)は、その特性を損なわない範囲、たとえば20質量%程度以下で、他の重合成分を含むことができる。他の重合成分を含むポリブチレンテレフタレート樹脂の例としては、ポリブチレン(テレフタレート/イソフタレート)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレン(テレフタレート/ナフタレート)、ポリ(ブチレン/エチレン)テレフタレートなどを挙げることができる。これらの成分を単独で用いてもよいし、2種以上混合して用いてもよい。 The polybutylene terephthalate resin (A) can contain other polymerization components within a range that does not impair its properties, for example, about 20% by mass or less. Examples of polybutylene terephthalate resins containing other polymerization components include polybutylene (terephthalate / isophthalate), polybutylene (terephthalate / adipate), polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decane dicarboxylate), polybutylene (terephthalate) / Naphthalate), poly (butylene / ethylene) terephthalate, and the like. These components may be used alone or in combination of two or more.
 ポリブチレンテレフタレート樹脂(A)の固有粘度(IV)は、特に限定されないが、0.5~1.6dl/gであることが好適であり、0.7~1.3dl/gであることがより好適であり、0.8~1.1dl/gであることがさらに好適である。本発明により製造されるポリブチレンテレフタレート樹脂組成物は、ポリブチレンテレフタレート樹脂(A)の固有粘度(IV)が0.5~1.6dl/gであることにより、機械的特性および化学的特性が良好となる。 The intrinsic viscosity (IV) of the polybutylene terephthalate resin (A) is not particularly limited, but is preferably 0.5 to 1.6 dl / g, and preferably 0.7 to 1.3 dl / g. More preferred is 0.8 to 1.1 dl / g. The polybutylene terephthalate resin composition produced according to the present invention has mechanical properties and chemical properties due to the intrinsic viscosity (IV) of the polybutylene terephthalate resin (A) being 0.5 to 1.6 dl / g. It becomes good.
 ポリブチレンテレフタレート樹脂(A)の末端カルボキシル基量は、接合性には影響がないため特に限定されない。しかし、末端カルボキシル基は、ポリマーの加水分解反応において触媒的な役割を担うため、末端カルボキシル基量の増加に伴って加水分解が加速される。このため、この末端カルボキシル基の濃度は低いことが好ましい。ポリブチレンテレフタレート樹脂(A)の末端カルボキシル基の濃度(酸価)は、40eq/ton以下であることが好ましく、より好ましくは30eq/ton以下であり、さらに好ましくは25eq/ton以下であり、特に好ましくは20eq/ton以下である。 The amount of terminal carboxyl groups of the polybutylene terephthalate resin (A) is not particularly limited because it does not affect the bondability. However, since the terminal carboxyl group plays a catalytic role in the hydrolysis reaction of the polymer, hydrolysis is accelerated as the amount of the terminal carboxyl group increases. For this reason, it is preferable that the density | concentration of this terminal carboxyl group is low. The concentration (acid value) of the terminal carboxyl group of the polybutylene terephthalate resin (A) is preferably 40 eq / ton or less, more preferably 30 eq / ton or less, still more preferably 25 eq / ton or less, particularly Preferably it is 20 eq / ton or less.
 ポリブチレンテレフタレート樹脂の末端カルボキシル基の濃度(単位:eq/ton)は、たとえば、所定量のポリブチレンテレフタレート樹脂をベンジルアルコールに溶解し、水酸化ナトリウムの0.01モル/1ベンジルアルコール溶液を使用して滴定することにより測定することができる。指示薬は、たとえば、フェノールフタレイン溶液を用いればよい。 The terminal carboxyl group concentration (unit: eq / ton) of the polybutylene terephthalate resin is, for example, a predetermined amount of polybutylene terephthalate resin dissolved in benzyl alcohol and a sodium hydroxide 0.01 mol / 1 benzyl alcohol solution used. Then, it can be measured by titrating. For example, a phenolphthalein solution may be used as the indicator.
 上記ポリブチレンテレフタレート樹脂(A)の含有量は、ポリブチレンテレフタレート樹脂組成物中、40~95質量%であり、好ましくは45~90質量%であり、より好ましくは45~80質量%である。この範囲内にポリブチレンテレフタレート樹脂(A)を配合することにより、実用性のある接合強度をもつポリエステルエラストマー接合可能なポリブチレンテレフタレート樹脂組成物を得ることが可能となる。 The content of the polybutylene terephthalate resin (A) in the polybutylene terephthalate resin composition is 40 to 95% by mass, preferably 45 to 90% by mass, and more preferably 45 to 80% by mass. By blending the polybutylene terephthalate resin (A) within this range, it is possible to obtain a polybutylene terephthalate resin composition capable of being bonded to a polyester elastomer having practical bonding strength.
[ポリエステルブロック共重合体(B)]
 本発明に用いられるポリエステルブロック共重合体(B)は、ジカルボン酸と脂肪族及び/又は脂環族のグリコールを構成成分とするポリエステルからなるハードセグメント(a3)と、脂肪族ポリエーテル、脂肪族ポリエステル及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメント(a4)が結合したポリエステルブロック共重合体である。ハードセグメント(a3)となるポリエステルを構成するジカルボン酸成分は、テレフタル酸またはそのエステル形成性誘導体(a1)と少なくとも1種以上のテレフタル酸以外のジカルボン酸またはそのエステル形成性誘導体(a2)から構成され、(a1)と(a2)のモル比((a1)/(a2))が1~4である。エステル形成性誘導体とは、例えばジメチルエステル体などを指す。
 ポリエステルブロック共重合体(B)は、一般的にポリエステルエラストマーとも称されるものである。
[Polyester block copolymer (B)]
The polyester block copolymer (B) used in the present invention comprises a hard segment (a3) composed of a polyester comprising a dicarboxylic acid and an aliphatic and / or alicyclic glycol as constituent components, an aliphatic polyether, and an aliphatic group. It is a polyester block copolymer in which at least one soft segment (a4) selected from polyester and aliphatic polycarbonate is bonded. The dicarboxylic acid component constituting the polyester to be the hard segment (a3) is composed of terephthalic acid or its ester-forming derivative (a1) and at least one dicarboxylic acid other than terephthalic acid or its ester-forming derivative (a2). The molar ratio of (a1) to (a2) ((a1) / (a2)) is 1 to 4. An ester-forming derivative refers to, for example, a dimethyl ester form.
The polyester block copolymer (B) is generally also referred to as a polyester elastomer.
 テレフタル酸以外のジカルボン酸としては、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、ジフェニル-p,p-ジカルボン酸等の芳香族ジカルボン酸、アジピン酸、セバシン酸、コハク酸、グルタル酸、ダイマ-酸等の脂肪族ジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸が挙げられる。テレフタル酸以外のジカルボン酸としては、ポリエステルエラストマーを溶着することが可能な成形体用ポリブチレンテレフタレート樹脂組成物を得ると言う観点から、ポリエステルブロック共重合体(B)の結晶性を低下させる低分が好ましい。よって、テレフタル酸以外のジカルボン酸としては、イソフタル酸、オルトフタル酸が好ましく、特にイソフタル酸が好ましい。 Dicarboxylic acids other than terephthalic acid include isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, diphenyl Aromatic dicarboxylic acids such as p, p-dicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid, succinic acid, glutaric acid, and dimer acid, hexahydroterephthalic acid, hexahydroisophthalic acid, cyclohexanedicarboxylic acid, etc. And alicyclic dicarboxylic acids. From the viewpoint of obtaining a polybutylene terephthalate resin composition for molded articles capable of welding a polyester elastomer, the dicarboxylic acid other than terephthalic acid is a low component that lowers the crystallinity of the polyester block copolymer (B). Is preferred. Therefore, as dicarboxylic acids other than terephthalic acid, isophthalic acid and orthophthalic acid are preferable, and isophthalic acid is particularly preferable.
 ジカルボン酸成分のモル比((a1)/(a2))は、2~4であることが好ましい。モル比が1未満であると、成形加工性が悪化し、また4を超えると期待する接合(溶着)性が得られない。 The molar ratio of the dicarboxylic acid component ((a1) / (a2)) is preferably 2-4. When the molar ratio is less than 1, molding processability deteriorates, and when it exceeds 4, the joining (welding) property expected cannot be obtained.
 本発明に用いられるポリエステルブロック共重合体(B)のハードセグメント(a3)のポリエステルを構成する脂肪族又は脂環族グリコールは、一般の脂肪族又は脂環族グリコールが広く用いられ、特に限定されないが、主として炭素数2~8のアルキレングリコール類であることが望ましい。好ましくは、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノールであり、特に好ましくは、エチレングリコール、1,4-ブタンジオールのいずれかである。 The aliphatic or alicyclic glycol constituting the polyester of the hard segment (a3) of the polyester block copolymer (B) used in the present invention is not particularly limited, and general aliphatic or alicyclic glycols are widely used. However, it is desirable that they are mainly alkylene glycols having 2 to 8 carbon atoms. Preferred are ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, and 1,4-cyclohexanedimethanol, and particularly preferred are ethylene glycol and 1,4-butanediol. One of them.
 また、本発明で使用するポリエステルブロック共重合体(B)におけるハードセグメント(a3)を構成するポリエステルとして好適な芳香族ポリエステルを事前に製造し、その後ソフトセグメント成分と共重合させる場合、該芳香族ポリエステルは、通常のポリエステルの製造法に従って容易に得ることができる。また、かかるポリエステルは、数平均分子量10000~40000を有しているものが望ましい。 In the case where an aromatic polyester suitable as the polyester constituting the hard segment (a3) in the polyester block copolymer (B) used in the present invention is produced in advance and then copolymerized with the soft segment component, the aromatic polyester Polyester can be easily obtained according to a normal polyester production method. The polyester preferably has a number average molecular weight of 10,000 to 40,000.
 本発明に用いられるポリエステルブロック共重合体(B)のソフトセグメント(a4)は、脂肪族ポリエーテル、脂肪族ポリエステル、脂肪族ポリカーボネートから選ばれる少なくとも1種である。脂肪族ポリエーテルとしては、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール、ポリオキシヘキサメチレングリコール、ポリオキシトリメチレングリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリオキシエチレングリコールのエチレンオキシド付加物、エチレンオキシドとテトラヒドロフランの共重合体などが挙げられる。
 また、脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペートなどが挙げられる。
The soft segment (a4) of the polyester block copolymer (B) used in the present invention is at least one selected from aliphatic polyether, aliphatic polyester, and aliphatic polycarbonate. Aliphatic polyethers include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, polyoxyhexamethylene glycol, polyoxytrimethylene glycol, copolymers of ethylene oxide and propylene oxide, ethylene oxide of polyoxyethylene glycol Examples include adducts, copolymers of ethylene oxide and tetrahydrofuran, and the like.
Examples of the aliphatic polyester include poly (ε-caprolactone), polyenantlactone, polycaprylolactone, and polybutylene adipate.
 また、脂肪族ポリカーボネートは、主として炭素数2~12の脂肪族ジオール残基からなるものであることが好ましい。これらの脂肪族ジオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2,2-ジメチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオールなどが挙げられる。特に、得られるポリエステルブロック共重合体(B)の柔軟性や低温特性の点より炭素数5~12の脂肪族ジオールが好ましい。これらの成分は、以下に説明する事例に基づき、単独で用いてもよいし、必要に応じて2種以上を併用してもよい。 The aliphatic polycarbonate is preferably composed mainly of an aliphatic diol residue having 2 to 12 carbon atoms. Examples of these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- Examples include octanediol. In particular, aliphatic diols having 5 to 12 carbon atoms are preferred from the viewpoint of flexibility and low temperature characteristics of the obtained polyester block copolymer (B). These components may be used alone or in combination of two or more as required, based on the case described below.
 本発明において、使用可能なポリエステルブロック共重合体(B)のソフトセグメント(a4)を構成する、低温特性が良好な脂肪族ポリカーボネートジオールとしては、融点が低く(例えば、70℃以下)かつ、ガラス転移温度が低いものが好ましい。一般に、ポリエステルブロック共重合体のソフトセグメント(a4)を形成するのに用いられる1,6-ヘキサンジオールからなる脂肪族ポリカーボネートジオールは、ガラス転移温度が-60℃前後と低く、融点も50℃前後となるため、低温特性が良好なものとなる。その他にも、上記脂肪族ポリカーボネートジオールに、例えば、3-メチル-1,5-ペンタンジオールを適当量共重合して得られる脂肪族ポリカーボネートジオールは、元の脂肪族ポリカーボネートジオールに対してガラス転移点が若干高くなるものの、融点が低下もしくは非晶性となるため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。また、例えば、1,9-ノナンジオールと2-メチル-1,8-オクタンジオールからなる脂肪族ポリカーボネートジオールは融点が30℃程度、ガラス転移温度が-70℃前後と十分に低いため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。 In the present invention, the aliphatic polycarbonate diol having a low temperature characteristic and constituting the soft segment (a4) of the usable polyester block copolymer (B) has a low melting point (for example, 70 ° C. or less) and glass. Those having a low transition temperature are preferred. In general, an aliphatic polycarbonate diol composed of 1,6-hexanediol used to form the soft segment (a4) of the polyester block copolymer has a low glass transition temperature of around −60 ° C. and a melting point of around 50 ° C. Therefore, the low temperature characteristics are good. In addition, an aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of, for example, 3-methyl-1,5-pentanediol with the above aliphatic polycarbonate diol has a glass transition point with respect to the original aliphatic polycarbonate diol. Although the melting point is slightly increased, the melting point is lowered or becomes amorphous, so that it corresponds to an aliphatic polycarbonate diol having good low-temperature characteristics. In addition, for example, an aliphatic polycarbonate diol composed of 1,9-nonanediol and 2-methyl-1,8-octanediol has a melting point of about 30 ° C. and a glass transition temperature of about −70 ° C., which is sufficiently low. Corresponds to a good aliphatic polycarbonate diol.
 本発明に用いるポリエステルブロック共重合体(B)は、経済性、耐熱性、耐寒性の理由から、テレフタル酸、イソフタル酸、1,4-ブタンジオール、及びポリオキシテトラメチレングリコールを主たる成分とする共重合体であることが好ましい。ポリエステルブロック共重合体(B)を構成するジカルボン酸成分中、テレフタル酸とイソフタル酸の合計が40モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましい。ポリエステルブロック共重合体(B)を構成するグリコール成分中、1,4-ブタンジオールとポリオキシテトラメチレングリコールの合計が40モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましい。 The polyester block copolymer (B) used in the present invention is mainly composed of terephthalic acid, isophthalic acid, 1,4-butanediol, and polyoxytetramethylene glycol for reasons of economy, heat resistance, and cold resistance. A copolymer is preferred. In the dicarboxylic acid component constituting the polyester block copolymer (B), the total of terephthalic acid and isophthalic acid is preferably 40 mol% or more, more preferably 70 mol% or more, and 80 mol% or more. More preferably, it is more preferably 90 mol% or more. In the glycol component constituting the polyester block copolymer (B), the total of 1,4-butanediol and polyoxytetramethylene glycol is preferably 40 mol% or more, more preferably 70 mol% or more. 80 mol% or more is more preferable, and 90 mol% or more is particularly preferable.
 前記ポリオキシテトラメチレングリコールの数平均分子量が、500~4000であることが好ましい。数平均分子量が500未満であると、エラストマー特性を発現しづらくなることがある。一方、数平均分子量が4000を超えると、ポリエステルブロック共重合体(B)のハードセグメント(a3)を構成するポリエステル部分との相溶性が低下し、ブロック状に共重合することが難しくなる場合がある。ポリオキシテトラメチレングリコールの数平均分子量は、800以上3000以下であることがより好ましく、1000以上2500以下がさらに好ましい。 The number average molecular weight of the polyoxytetramethylene glycol is preferably 500 to 4000. If the number average molecular weight is less than 500, it may be difficult to develop elastomeric properties. On the other hand, when the number average molecular weight exceeds 4000, the compatibility with the polyester portion constituting the hard segment (a3) of the polyester block copolymer (B) is lowered, and it may be difficult to copolymerize in a block shape. is there. The number average molecular weight of polyoxytetramethylene glycol is more preferably 800 or more and 3000 or less, and further preferably 1000 or more and 2500 or less.
 本発明に用いられるポリエステルブロック共重合体(B)のハードセグメント(a3)とソフトセグメント(a4)の共重合量は、ハードセグメント(a3)とソフトセグメント(a4)の質量比((a3)/(a4))が、85/15~35/65であることが好ましく、より好ましくは、75/25~50/50である。 The copolymerization amount of the hard segment (a3) and the soft segment (a4) of the polyester block copolymer (B) used in the present invention is the mass ratio of the hard segment (a3) and the soft segment (a4) ((a3) / (A4)) is preferably 85/15 to 35/65, more preferably 75/25 to 50/50.
 本発明で使用するポリエステルブロック共重合体(B)の硬度(表面硬度)は特に限定されないが、例えばショアA硬度25程度の低硬度のものからショアD硬度75程度の高硬度まで広い範囲のポリエステルブロック共重合体が使用可能であり、好ましくはショアD硬度25~65、さらに好ましくはショアD硬度30~60のものである。 The hardness (surface hardness) of the polyester block copolymer (B) used in the present invention is not particularly limited. For example, a polyester having a wide range from a low hardness of about 25 Shore A hardness to a high hardness of about 75 Shore D hardness. Block copolymers can be used, preferably those having a Shore D hardness of 25 to 65, more preferably a Shore D hardness of 30 to 60.
 本発明に用いるポリエステルブロック共重合体(B)の還元粘度は、後記する測定方法で測定した場合、0.5dl/g以上3.5dl/g以下であることが好ましい。0.5dl/g未満では、樹脂としての耐久性が低く、3.5dl/gを超えると、射出成形などの加工性が不十分になる可能性がある。ポリエステルブロック共重合体(B)の還元粘度は、1.0dl/g以上3.0dl/g以下であることがより好ましく、1.5dl/g以上2.8dl/g以下であることがさらに好ましい。また、ポリエステルブロック共重合体(B)の酸価は200eq/t以下が好ましく、50eq/t以下が特に好ましい。 The reduced viscosity of the polyester block copolymer (B) used in the present invention is preferably 0.5 dl / g or more and 3.5 dl / g or less when measured by the measurement method described later. If it is less than 0.5 dl / g, the durability as a resin is low, and if it exceeds 3.5 dl / g, workability such as injection molding may be insufficient. The reduced viscosity of the polyester block copolymer (B) is more preferably 1.0 dl / g or more and 3.0 dl / g or less, and further preferably 1.5 dl / g or more and 2.8 dl / g or less. . The acid value of the polyester block copolymer (B) is preferably 200 eq / t or less, and particularly preferably 50 eq / t or less.
 本発明に用いられるポリエステルブロック共重合体(B)は、公知の方法で製造することができる。例えば、ジカルボン酸の低級アルコールジエステル、過剰量の低分子量グリコール、およびソフトセグメント成分を触媒の存在下エステル交換反応せしめ、得られる反応生成物を重縮合する方法、あるいはジカルボン酸と過剰量のグリコールおよびソフトセグメント成分を触媒の存在下エステル化反応せしめ、得られる反応生成物を重縮合する方法、また、あらかじめハードセグメントを作っておき、これにソフトセグメント成分を添加してエステル交換反応によりランダム化せしめる方法、ハードセグメントとソフトセグメントを鎖連結剤でつなぐ方法、さらにポリ(ε-カプロラクトン)をソフトセグメントに用いる場合は、ハードセグメントにε-カプロラクトンモノマを付加反応させるなど、いずれの方法をとってもよい。 The polyester block copolymer (B) used in the present invention can be produced by a known method. For example, a method of transesterifying a lower alcohol diester of a dicarboxylic acid, an excess amount of a low molecular weight glycol, and a soft segment component in the presence of a catalyst and polycondensing the resulting reaction product, or a dicarboxylic acid and an excess amount of glycol and A method in which a soft segment component is esterified in the presence of a catalyst and the resulting reaction product is polycondensed. In addition, a hard segment is prepared in advance, and a soft segment component is added thereto and randomized by a transesterification reaction. Any method may be used, such as a method, a method of linking a hard segment and a soft segment with a chain linking agent, and a poly (ε-caprolactone) used for the soft segment, such as an addition reaction of ε-caprolactone monomer to the hard segment.
 上記ポリエステルブロック共重合体(B)の含有量は、ポリブチレンテレフタレート樹脂組成物中、4~40質量%であり、好ましくは5~35質量%であり、より好ましくは15~30質量%である。この範囲内にポリエステルブロック共重合体(B)を配合することにより、実用性のある接合強度をもつポリエステルエラストマー接合可能なポリブチレンテレフタレート樹脂組成物を得ることが可能となる。上述のとおりポリエステルブロック共重合体(B)を含有することにより、接合(溶着)性を改良することが可能となるが、ポリエステルブロック共重合体(B)の含有量が40質量%を超えると、生産性が悪化するので好ましくない。 The content of the polyester block copolymer (B) in the polybutylene terephthalate resin composition is 4 to 40% by mass, preferably 5 to 35% by mass, more preferably 15 to 30% by mass. . By blending the polyester block copolymer (B) within this range, it is possible to obtain a polybutylene terephthalate resin composition capable of being bonded to a polyester elastomer having practical bonding strength. By containing the polyester block copolymer (B) as described above, it becomes possible to improve the bonding (welding) property, but when the content of the polyester block copolymer (B) exceeds 40% by mass. This is not preferable because productivity deteriorates.
[共重合ポリエステル樹脂(C)]
 本発明における共重合ポリエステル樹脂(C)としては、上記したポリブチレンテレフタレート樹脂(A)やポリエステルブロック共重合体(B)と異なる共重合ポリエステル樹脂であれば、特に限定されない。例えば、上記モル比((a1)/(a2))が4を超えるポリエステルブロック共重合体でも良い。
 本発明における共重合ポリエステル樹脂(C)としては、構成する全酸成分を100モル%、構成する全グリコール成分を100モル%としたとき、エチレングリコールが40モル%以上かつ、テレフタル酸とエチレングリコールの合計が80~180モル%を占める樹脂、または1,4-ブタンジオールが40モル%以上かつ、テレフタル酸と1,4-ブタンジオールの合計が80~180モル%を占める樹脂が好ましい。共重合成分として、イソフタル酸、セバシン酸、アジピン酸、トリメリット酸、2,6-ナフタレンジカルボン酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロへキサンジメタノール、1,4-ブタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、エチレングリコール及び2-メチル-1,3-プロパンジオールからなる群より選ばれる少なくとも1種以上が挙げられる。エチレングリコール、1,4-ブタンジオールは、主成分に含まれないポリエステル樹脂において、共重合成分となり得る。
[Copolymerized polyester resin (C)]
The copolyester resin (C) in the present invention is not particularly limited as long as it is a copolyester resin different from the polybutylene terephthalate resin (A) and the polyester block copolymer (B). For example, a polyester block copolymer having a molar ratio ((a1) / (a2)) exceeding 4 may be used.
As the copolymerized polyester resin (C) in the present invention, ethylene glycol is 40 mol% or more, and terephthalic acid and ethylene glycol when the total acid component is 100 mol% and the total glycol component is 100 mol%. A resin in which 80 to 180 mol% of the total of the total amount of 1,4-butanediol is 40 mol% or more and a total of 80 to 180 mol% of the total of terephthalic acid and 1,4-butanediol is preferable. As copolymerization components, isophthalic acid, sebacic acid, adipic acid, trimellitic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,4-butanediol, 1 , 2-propanediol, 1,3-propanediol, ethylene glycol, and 2-methyl-1,3-propanediol. Ethylene glycol and 1,4-butanediol can be a copolymerization component in a polyester resin not included in the main component.
 共重合ポリエステル樹脂(C)としては、エチレンテレフタレート単位またはブチレンテレフタレート単位に、アルキル側鎖含有グリコール及びイソフタル酸の少なくとも一方を共重合したポリエステル樹脂であることが好ましく、非晶性であることが好ましい。アルキル側鎖含有グリコールとしては、ネオペンチルグリコール、1,2-プロパンジオール、及び2-メチル-1,3-プロパンジオールが挙げられる。中でも共重合成分として各種特性の観点から好ましいのは、ネオペンチルグリコールやイソフタル酸など結晶性を低下させる成分である。 The copolymer polyester resin (C) is preferably a polyester resin obtained by copolymerizing at least one of an alkyl side chain-containing glycol and isophthalic acid to an ethylene terephthalate unit or a butylene terephthalate unit, and is preferably amorphous. . Examples of alkyl side chain-containing glycols include neopentyl glycol, 1,2-propanediol, and 2-methyl-1,3-propanediol. Among them, a component that lowers crystallinity such as neopentyl glycol and isophthalic acid is preferable as a copolymer component from the viewpoint of various characteristics.
 共重合ポリエステル樹脂(C)を構成する全グリコール成分を100モル%としたとき、アルキル側鎖含有グリコールの共重合割合は20~60モル%が好ましく、25~50モル%がより好ましい。
 共重合ポリエステル樹脂(C)を構成する全酸成分を100モル%としたとき、イソフタル酸の共重合割合は20~60モル%が好ましく、25~50モル%がより好ましい。
When the total glycol component constituting the copolymerized polyester resin (C) is 100 mol%, the copolymerization ratio of the alkyl side chain-containing glycol is preferably 20 to 60 mol%, more preferably 25 to 50 mol%.
When the total acid component constituting the copolymerized polyester resin (C) is 100 mol%, the copolymerization ratio of isophthalic acid is preferably 20 to 60 mol%, more preferably 25 to 50 mol%.
 共重合ポリエステル樹脂(C)の重合度としては、具体的な共重合組成により若干異なるが、固有粘度(0.1gのサンプルをフェノール/テトラクロロエタン(質量比6/4)の混合溶媒25mlに溶解し、ウベローデ粘度管を用いて30℃で測定)が0.4~1.5dl/gであることが好ましく、0.4~1.3dl/gがより好ましい。0.4dl/g未満ではタフネス性が低下する傾向があり、1.5dl/gを超えると流動性が低下する傾向がある。 The degree of polymerization of the copolyester resin (C) varies slightly depending on the specific copolymer composition, but the intrinsic viscosity (0.1 g sample is dissolved in 25 ml of a mixed solvent of phenol / tetrachloroethane (mass ratio 6/4)). And measured at 30 ° C. using an Ubbelohde viscosity tube) is preferably 0.4 to 1.5 dl / g, more preferably 0.4 to 1.3 dl / g. If it is less than 0.4 dl / g, the toughness tends to decrease, and if it exceeds 1.5 dl / g, the fluidity tends to decrease.
 上記共重合ポリエステル樹脂(C)の含有量は、ポリブチレンテレフタレート樹脂組成物中、0~50質量%であり、好ましくは0~25質量%であり、より好ましくは5~25質量%であり、さらに好ましくは5~20質量%である。この範囲内に共重合ポリエステル樹脂(C)を配合することにより、ポリエステルブロック共重合体(B)を同添加量含有したポリブチレンテレフタレート樹脂組成物と比較すると、共重合ポリエステル樹脂(C)を添加することにより接合強さを上昇させることが可能となる。含有量が50質量%を超えると、接合強度が良好になるものの、耐熱性が低下するため好ましくない。 The content of the copolymer polyester resin (C) in the polybutylene terephthalate resin composition is 0 to 50% by mass, preferably 0 to 25% by mass, more preferably 5 to 25% by mass, More preferably, it is 5 to 20% by mass. By adding the copolyester resin (C) within this range, compared to the polybutylene terephthalate resin composition containing the same amount of the polyester block copolymer (B), the copolyester resin (C) is added. By doing so, it is possible to increase the bonding strength. When the content exceeds 50% by mass, the bonding strength is improved, but the heat resistance is lowered, which is not preferable.
[無機充填剤(D)]
 本発明のポリブチレンテレフタレート樹脂組成物には、耐熱性および剛性を向上させる目的で、本発明の効果が損なわれない範囲において、(D)無機充填剤を配合することができる。(D)無機充填剤としては、繊維状充填剤と非繊維状充填剤とがあり、本発明で用いられる繊維状充填剤としては、ガラス繊維、炭素繊維、チタン酸カリウム繊維、シリカ・アルミナ繊維、ジルコニア繊維、金属繊維等が挙げられるが、ガラス繊維が好ましい。
[Inorganic filler (D)]
For the purpose of improving heat resistance and rigidity, the polybutylene terephthalate resin composition of the present invention can be blended with (D) an inorganic filler as long as the effects of the present invention are not impaired. (D) As the inorganic filler, there are a fibrous filler and a non-fibrous filler. Examples of the fibrous filler used in the present invention include glass fiber, carbon fiber, potassium titanate fiber, silica / alumina fiber. , Zirconia fiber, metal fiber and the like, and glass fiber is preferable.
 ガラス繊維としては、公知のガラス繊維がいずれも好ましく用いられ、ガラス繊維径や、円形、繭形断面、長円断面等の形状、あるいはチョップドストランドやロービング等の製造に用いる際の長さやガラスカットの方法にはよらない。本発明では、ガラスの種類も限定されないが、品質上、Eガラスや、組成中にジルコニウム元素を含む耐腐食ガラスが好ましく用いられる。 As the glass fiber, any known glass fiber is preferably used, and the glass fiber diameter, the shape such as a round shape, a saddle-shaped cross section, an oval cross section, or the length or glass cut when used for manufacturing chopped strands, rovings, etc. It does not depend on the method. In the present invention, the type of glass is not limited, but E glass or corrosion resistant glass containing a zirconium element in the composition is preferably used in terms of quality.
 また、本発明では、繊維状充填剤と樹脂マトリックスの界面特性を向上させる目的で、アミノシラン化合物やエポキシ化合物等の有機処理剤で表面処理された繊維状充填剤が好ましく用いられる。かかる繊維状充填剤に用いられるアミノシラン化合物やエポキシ化合物としては、公知のものがいずれも好ましく用いることができ、本発明で繊維状充填剤の表面処理に用いられるアミノシラン化合物、エポキシ化合物の種類には依存しない。 In the present invention, a fibrous filler surface-treated with an organic treating agent such as an aminosilane compound or an epoxy compound is preferably used for the purpose of improving the interfacial characteristics between the fibrous filler and the resin matrix. As the aminosilane compound and the epoxy compound used for the fibrous filler, any known compounds can be preferably used, and the types of aminosilane compounds and epoxy compounds used for the surface treatment of the fibrous filler in the present invention are as follows. Do not depend.
 板状や粒状の非繊維状無機充填剤としては、例えばガラスビーズ、ガラスフレーク、シリカ、カオリン、タルク、マイカ、ワラストナイト、酸化チタン、酸化亜鉛、アルミナ、炭酸カルシウム、炭酸マグネシウムが挙げられる。耐衝撃性、流動性、製品外観のバランスの観点から、ガラスビーズ、カオリン、タルク、マイカが好ましく、カオリン、マイカがさらに好ましい。板状や粒状の非繊維状無機充填剤は単独で使用した場合に十分な強度が得られないため、繊維状充填剤と併用することが好ましい。 Examples of the plate-like or granular non-fibrous inorganic filler include glass beads, glass flakes, silica, kaolin, talc, mica, wollastonite, titanium oxide, zinc oxide, alumina, calcium carbonate, and magnesium carbonate. From the viewpoint of balance between impact resistance, fluidity and product appearance, glass beads, kaolin, talc and mica are preferred, and kaolin and mica are more preferred. When a plate-like or granular non-fibrous inorganic filler is used alone, sufficient strength cannot be obtained, so it is preferable to use it together with a fibrous filler.
 上記無機充填剤(D)の含有量は、ポリブチレンテレフタレート樹脂組成物中、0~55質量%であり、好ましくは10~55質量%であり、より好ましくは15~50質量%であり、さらに好ましくは20~40質量%である。この範囲内に無機充填剤(D)を配合することにより、ポリエステルエラストマーとの接合強度を損なわず、かつ耐熱性および剛性を向上させたポリエステルエラストマー接合可能なポリブチレンテレフタレート樹脂組成物を得ることが可能となる。 The content of the inorganic filler (D) in the polybutylene terephthalate resin composition is 0 to 55% by mass, preferably 10 to 55% by mass, more preferably 15 to 50% by mass, The content is preferably 20 to 40% by mass. By blending the inorganic filler (D) within this range, it is possible to obtain a polybutylene terephthalate resin composition that can be bonded to a polyester elastomer without impairing the bonding strength with the polyester elastomer and having improved heat resistance and rigidity. It becomes possible.
[その他の添加剤]
 その他、本発明のポリブチレンテレフタレート樹脂組成物には、必要に応じて、本発明としての特性を損なわない範囲において、公知の各種添加剤を含有させることができる。公知の添加剤としては、例えば顔料等の着色剤、離型剤、耐熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、変性剤、帯電防止剤、難燃剤、染料等が挙げられる。
 離型剤としては、長鎖脂肪酸またはそのエステルや金属塩、アマイド系化合物、ポリエチレンワックス、シリコン、ポリエチレンオキシド等が挙げられる。長鎖脂肪酸としては、特に炭素数12以上が好ましく、例えばステアリン酸、12-ヒドロキシステアリン酸、ベヘン酸、モンタン酸等が挙げられ、部分的もしくは全カルボン酸が、モノグリコールやポリグリコールによりエステル化されていてもよく、または金属塩を形成していても良い。アマイド系化合物としては、エチレンビステレフタルアミド、メチレンビスステアリルアミド等が挙げられる。これら離型剤は、単独であるいは混合物として用いても良い。
 これら各種添加剤は、ポリブチレンテレフタレート樹脂組成物を100質量%とした時、合計で5質量%まで含有させることができる。つまり、ポリブチレンテレフタレート樹脂組成物100質量%中、前記(A)、(B)、(C)、(D)の合計は95~100質量%であることが好ましい。
[Other additives]
In addition, if necessary, the polybutylene terephthalate resin composition of the present invention can contain various known additives as long as the characteristics of the present invention are not impaired. Known additives include, for example, colorants such as pigments, mold release agents, heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, modifiers, antistatic agents, flame retardants, dyes, and the like. Can be mentioned.
Examples of the release agent include long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicon, polyethylene oxide, and the like. The long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed. Examples of the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture.
These various additives can be contained up to 5% by mass in total when the polybutylene terephthalate resin composition is 100% by mass. That is, the total of (A), (B), (C) and (D) is preferably 95 to 100% by mass in 100% by mass of the polybutylene terephthalate resin composition.
[ポリブチレンテレフタレート樹脂組成物]
 本発明のポリブチレンテレフタレート樹脂組成物を製造する製造法としては、上記配合組成にて任意の配合順列で配合した後、タンブラー或いはヘンシェルミキサー等で混合し、溶融混錬される。溶融混錬方法は、当業者に周知のいずれかの方法が可能であり、単軸押出機、2軸押出機、ニーダー、バンバリーミキサー、ロール等が使用できるが、なかでも2軸押出機を使用することが好ましい。また、加工時の揮発成分、分解低分子成分を除去するため、ガラス繊維投入部分のサイド口と押し出し機先端のダイヘッドとの間で真空ポンプによる吸引を行うことが望ましい。
[Polybutylene terephthalate resin composition]
As a production method for producing the polybutylene terephthalate resin composition of the present invention, the composition is blended in an arbitrary blending sequence in the above blending composition, and then mixed with a tumbler or a Henschel mixer and melt-kneaded. The melt kneading method can be any method known to those skilled in the art, and a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, a roll, etc. can be used, among which a twin-screw extruder is used. It is preferable to do. Further, in order to remove volatile components and decomposed low molecular components at the time of processing, it is desirable to perform suction by a vacuum pump between the side port of the glass fiber charging portion and the die head at the tip of the extruder.
 本発明のポリブチレンテレフタレート樹脂組成物は、ポリエステルエラストマーを溶着する成形体用であり、特には、ポリエステルエラストマーをインサート成形により溶着する成形体用である。
 本発明のポリブチレンテレフタレート樹脂組成物は、射出成形等の公知の成形方法により、成形体とすることができる。この成形体は、以下に説明する複合材料に供することができる。
The polybutylene terephthalate resin composition of the present invention is for a molded body for welding a polyester elastomer, and particularly for a molded body for welding a polyester elastomer by insert molding.
The polybutylene terephthalate resin composition of the present invention can be formed into a molded body by a known molding method such as injection molding. This molded body can be used for a composite material described below.
[複合材料]
 以下、本発明のポリブチレンテレフタレート樹脂組成物からなる成形体とポリエステルエラストマーが溶着された複合成形体について説明する。この複合成形体は、ポリブチレンテレフタレート樹脂組成物からなる成形体を金型内にインサート材として配し、ポリエステルエラストマーを射出成形により溶着させることにより得られる。インサート成形において、金型内に配置される材料(インサート材)は、一次材料と呼ばれ、本発明においては、ポリブチレンテレフタレート樹脂組成物からなる成形体がこれに相当する。インサート材が配置された金型に、射出される材料は、二次材料と呼ばれ、本発明においては、ポリエステルエラストマーが該当する。
[Composite material]
Hereinafter, a molded body made of the polybutylene terephthalate resin composition of the present invention and a composite molded body in which a polyester elastomer is welded will be described. This composite molded body is obtained by placing a molded body made of a polybutylene terephthalate resin composition as an insert material in a mold and welding a polyester elastomer by injection molding. In insert molding, a material (insert material) disposed in a mold is called a primary material, and in the present invention, a molded body made of a polybutylene terephthalate resin composition corresponds to this. The material injected into the mold in which the insert material is arranged is called a secondary material, and in the present invention, a polyester elastomer is applicable.
 二次材料のポリエステルエラストマーは、上記で説明した一次材料に使用されるポリエステルブロック共重合体(B)と同一のものでも異なっているものでも良い。二次材料のポリエステルエラストマーは、特に限定されないが、芳香族ジカルボン酸と脂肪族及び/又は脂環族のグリコールを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合したポリエステルエラストマーであれば良い。上記で説明した一次材料に使用されるポリエステルブロック共重合体(B)、またはポリエステルブロック共重合体(B)においてモル比((a1)/(a2))が4を超えるポリエステルブロック共重合体が使用可能である。二次材料のポリエステルエラストマーの硬度(表面硬度)は、ショアA硬度65程度の低硬度のものからショアD硬度75程度の高硬度まで広い範囲のポリエステルエラストマーが使用可能であり、好ましくはショアD硬度25~65、より好ましくはショアD硬度30~60のものである。二次材料のポリエステルエラストマーと一次材料に使用されるポリエステルブロック共重合体(B)とで、同じ種類のソフトセグメントを用いることは好ましい態様である。
 二次材料のポリエステルエラストマーとして、低硬度のものから高硬度のものまで広い範囲のポリエステルエラストマーが接合(溶着)可能である点が、本発明の大きな特徴である。
The polyester elastomer as the secondary material may be the same as or different from the polyester block copolymer (B) used for the primary material described above. The polyester elastomer as the secondary material is not particularly limited, but includes a hard segment composed of a polyester composed of an aromatic dicarboxylic acid and an aliphatic and / or alicyclic glycol, an aliphatic polyether, an aliphatic polyester and a fat. Any polyester elastomer to which at least one soft segment selected from a group polycarbonate is bonded may be used. The polyester block copolymer (B) used for the primary material described above, or the polyester block copolymer (B) in which the molar ratio ((a1) / (a2)) exceeds 4 is provided. It can be used. The hardness (surface hardness) of the polyester elastomer as the secondary material can be a wide range of polyester elastomers, from a low hardness of about 65 Shore A hardness to a high hardness of about 75 Shore D hardness, preferably Shore D hardness. 25 to 65, more preferably a Shore D hardness of 30 to 60. It is a preferable aspect to use the same kind of soft segment in the polyester elastomer of the secondary material and the polyester block copolymer (B) used in the primary material.
A major feature of the present invention is that a wide range of polyester elastomers from a low hardness to a high hardness can be joined (welded) as the secondary material polyester elastomer.
 インサート成形により、一次材料のポリブチレンテレフタレート樹脂組成物からなる成形体と二次材料のポリエステルエラストマーが、優れた接合(溶着)性を示す理由は、以下のように考えられる。一次材料において、ポリエステルブロック共重合体(B)が特定量含有されることで、ポリブチレンテレフタレート樹脂(A)内に海島構造で分散しているポリエステルブロック共重合体(B)が、二次材料として導入されたポリエステルエラストマーの溶融熱で溶かされ、一次材料側の分散しているポリエステルブロック共重合体と二次材料側のポリエステルエラストマーが混合し接着性をもたらしていると考えられる。共重合ポリエステル樹脂(C)を含有させることで、一次材料中のポリブチレンテレフタレート樹脂(A)が動きやすくなり、より混合が起こりやすくなっていると考えられる。 The reason why the molded body made of the polybutylene terephthalate resin composition as the primary material and the polyester elastomer as the secondary material exhibit excellent bonding (welding) by insert molding is considered as follows. In the primary material, the polyester block copolymer (B) dispersed in the sea-island structure in the polybutylene terephthalate resin (A) by containing a specific amount of the polyester block copolymer (B) is a secondary material. It is considered that the polyester block copolymer dispersed on the primary material side and the polyester elastomer on the secondary material side are mixed with each other and melted by the heat of fusion of the polyester elastomer introduced as the above, thereby bringing about adhesion. By containing the copolymerized polyester resin (C), it is considered that the polybutylene terephthalate resin (A) in the primary material becomes easy to move and is more easily mixed.
 本発明の複合材料は、その特性を活かし、エアダクト、軸受、ローラー、カバー、各種筐体、コネクター、グリップ、キャスター等に使用可能である。 The composite material of the present invention can be used for air ducts, bearings, rollers, covers, various cases, connectors, grips, casters, etc., taking advantage of the characteristics.
 実施例および比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。 The present invention will be specifically described using examples and comparative examples, but the present invention is not limited to these examples. In addition, the measured value described in the Example is measured by the following method.
(1)ポリブチレンテレフタレート樹脂、共重合ポリエステル樹脂の固有粘度
 0.1gのサンプルをフェノール/テトラクロロエタン(質量比6/4)の混合溶媒25mlに溶解し、ウベローデ粘度管を用いて30℃で測定した。(単位:dl/g)
(2)ポリエステルブロック共重合体、ポリエステルエラストマーの還元粘度
 0.05gのサンプルを25mlの混合溶媒(フェノール/テトラクロロエタン=60/40(質量比))に溶かし、オストワルド粘度計を用いて30℃で測定した。(単位:dl/g)
(3)ポリエステルブロック共重合体、ポリエステルエラストマーの硬度(表面硬度)
 JIS K7215(-1986)に準じて測定した。試験片は、シリンダー温度240℃、金型温度50℃にて作製した射出成形品(長さ100mm、幅100mm、厚み2mm)を3枚重ねたものを使用し、測定圧5000g、タイプDの圧子を用いたデュロメーターにより測定し、測定開始5秒後の値をD硬度(ショアD硬度)とした。
(1) Intrinsic viscosity of polybutylene terephthalate resin and copolymerized polyester resin A 0.1 g sample was dissolved in 25 ml of a mixed solvent of phenol / tetrachloroethane (mass ratio 6/4) and measured at 30 ° C. using an Ubbelohde viscometer. did. (Unit: dl / g)
(2) Reduced viscosity of polyester block copolymer and polyester elastomer A sample of 0.05 g was dissolved in 25 ml of a mixed solvent (phenol / tetrachloroethane = 60/40 (mass ratio)) at 30 ° C. using an Ostwald viscometer. It was measured. (Unit: dl / g)
(3) Hardness (surface hardness) of polyester block copolymer and polyester elastomer
It was measured according to JIS K7215 (-1986). The test piece used was a stack of three injection-molded products (length 100 mm, width 100 mm, thickness 2 mm) produced at a cylinder temperature of 240 ° C. and a mold temperature of 50 ° C., measuring pressure 5000 g, type D indenter The value after 5 seconds from the start of measurement was defined as D hardness (Shore D hardness).
(4)インサート成形用ポリブチレンテレフタレート樹脂組成物の半ダンベルの作製
 コンパウンドして得られたポリブチレンテレフタレート樹脂組成物ペレットを射出成形機(日本製鋼所社製J110AD-110H)で、シリンダー温度=260℃、金型温度=50℃、射出速度=50mm/sec、保圧40MPaでISO3167に準じた引張試験ダンベルの半分の形状のものを得た。
(5)インサート成形
 前記で得たISOの引張試験の半ダンベルを、接合面に触れないようISO引張試験ダンベル成形金型キャビティに装着後、ポリエステルエラストマーをシリンダー温度260℃、金型温度60℃、射出速度=50mm/secで残りのダンベル部分を射出成形し、ポリブチレンテレフタレート樹脂組成物とポリエステルエラストマーとが中央部で接合(溶着)したISO引張試験ダンベルを得た。ポリエステルエラストマーとしては、表1、2に示す各種ポリエステルエラストマーを用いた。
(6)接合性の評価
 前記で得られたポリブチレンテレフタレート樹脂組成物とポリエステルエラストマーとが中央部で接合したISO引張試験ダンベルをISO-527-1.2に準じて測定し、当該ダンベルの破断伸度(%)を求め、さらにポリエステルエラストマーの状態を評価した。
 上記引張試験において、伸度10%以上の試験後試験片を確認すると、ポリブチレンテレフタレート組成物の接合部にポリエステルエラストマーが付着しており、接合の痕跡が確認された。よって、伸度10%以上の場合、応力発生部位において十分な接合強度を有していると判断した。
(4) Preparation of half dumbbell of polybutylene terephthalate resin composition for insert molding The polybutylene terephthalate resin composition pellets obtained by compounding were subjected to an injection molding machine (J110AD-110H, manufactured by Nippon Steel Co., Ltd.) at a cylinder temperature of 260. C., mold temperature = 50.degree. C., injection speed = 50 mm / sec, holding pressure of 40 MPa, and a half of a tensile test dumbbell according to ISO 3167 was obtained.
(5) Insert molding After mounting the ISO tensile test half dumbbell obtained above in the ISO tensile test dumbbell molding die cavity so as not to touch the joint surface, the polyester elastomer was cylinder temperature 260 ° C, mold temperature 60 ° C, The remaining dumbbell portion was injection molded at an injection speed of 50 mm / sec to obtain an ISO tensile test dumbbell in which the polybutylene terephthalate resin composition and the polyester elastomer were joined (welded) at the center. As the polyester elastomer, various polyester elastomers shown in Tables 1 and 2 were used.
(6) Evaluation of bondability An ISO tensile test dumbbell in which the polybutylene terephthalate resin composition obtained above and a polyester elastomer were bonded at the center was measured according to ISO-527-1.2, and the dumbbell was broken. The elongation (%) was determined, and the state of the polyester elastomer was further evaluated.
In the tensile test, when a post-test specimen having an elongation of 10% or more was confirmed, the polyester elastomer was adhered to the joint portion of the polybutylene terephthalate composition, and a trace of joining was confirmed. Therefore, when the elongation was 10% or more, it was determined that the joint had sufficient bonding strength at the stress generation site.
 実施例、比較例において使用した配合成分を次に示す。
ポリブチレンテレフタレート樹脂(A):
 (A)ポリブチレンテレフタレート樹脂 東洋紡社製 固有粘度0.90dl/g
ポリエステルブロック共重合体(B):
 (B-1)TPA/IPA//1,4-BD/PTMG1000=75/25//92/8(モル%)の組成比の共重合体、東洋紡社製、ペルプレン(登録商標)の試作品、還元粘度1.51dl/g、ショアD硬度50、(a1)/(a2)=3
 (B-2)TPA/IPA//1,4-BD/PTMG1000=73/27//87/13(モル%)の組成比の共重合体、東洋紡社製、ペルプレン(登録商標)の試作品、還元粘度1.95dl/g、ショアD硬度39、(a1)/(a2)=2.7
The compounding components used in Examples and Comparative Examples are shown below.
Polybutylene terephthalate resin (A):
(A) Polybutylene terephthalate resin, manufactured by Toyobo Co., Ltd., intrinsic viscosity 0.90 dl / g
Polyester block copolymer (B):
(B-1) TPA / IPA // 1,4-BD / PTMG1000 = copolymer with a composition ratio of 75/25 // 92/8 (mol%), prototype of Perprene (registered trademark) manufactured by Toyobo Co., Ltd. , Reduced viscosity 1.51 dl / g, Shore D hardness 50, (a1) / (a2) = 3
(B-2) TPA / IPA // 1,4-BD / PTMG1000 = 73/27 // 87/13 (mol%) copolymer, manufactured by Toyobo, Perprene (registered trademark) , Reduced viscosity 1.95 dl / g, Shore D hardness 39, (a1) / (a2) = 2.7
共重合ポリエステル樹脂(C):
 (C-1)TPA//EG/NPG=100//70/30(モル%)の組成比の共重合体、東洋紡社製、バイロン(登録商標)の試作品、固有粘度0.83dl/g
 (C-2)TPA/IPA//EG/NPG=50/50//50/50(モル%)の組成比の共重合体、東洋紡社製、バイロン(登録商標)の試作品、固有粘度0.53dl/g
 (略号はそれぞれ、TPA:テレフタル酸、IPA:イソフタル酸、1,4-BD:1,4-ブタンジオール、PTMG1000:ポリオキシテトラメチレングリコール(数平均分子量:1000)、EG:エチレングリコール、NPG:ネオペンチルグリコール成分を示す。)
Copolyester resin (C):
(C-1) Copolymer having a composition ratio of TPA // EG / NPG = 100 // 70/30 (mol%), manufactured by Toyobo Co., Ltd., Byron (registered trademark), intrinsic viscosity 0.83 dl / g
(C-2) TPA / IPA // EG / NPG = 50/50 // 50/50 (mol%) copolymer, Toyobo Co., Ltd., Byron (registered trademark) prototype, inherent viscosity 0 .53 dl / g
(Abbreviations are TPA: terephthalic acid, IPA: isophthalic acid, 1,4-BD: 1,4-butanediol, PTMG1000: polyoxytetramethylene glycol (number average molecular weight: 1000), EG: ethylene glycol, NPG: Indicates a neopentyl glycol component.)
無機充填剤(D)(繊維径、繊維長は電子顕微鏡観察による測定値、平均粒子径はレーザー回折法により測定した値(重量(体積)累積粒度分布の50%径)を示す。):
 (D-1)ガラス繊維(平均繊維長3mm、平均繊維径11μm)、T-120H(日本電気硝子社製)
 (D-2)タルク(平均粒子径:12.0μm)、タルカンPK-C(林化成社製)
Inorganic filler (D) (fiber diameter and fiber length are measured by electron microscope observation, average particle diameter is a value measured by laser diffraction method (50% diameter of cumulative particle size distribution by weight (volume))):
(D-1) Glass fiber (average fiber length 3 mm, average fiber diameter 11 μm), T-120H (manufactured by Nippon Electric Glass Co., Ltd.)
(D-2) Talc (average particle size: 12.0 μm), Talcan PK-C (manufactured by Hayashi Kasei)
(E)ポリエステルエラストマー:
 (E-1)TPA//1,4-BD/PTMG2000=100//75/25(モル%)の組成比の共重合体、東洋紡社製、ペルプレン(登録商標)の試作品、還元粘度2.50dl/g、ショアD硬度31
 (E-2)TPA//1,4-BD/PTMG1000=100//88/12(モル%)の組成比の共重合体、東洋紡社製、ペルプレン(登録商標)の試作品、還元粘度1.75dl/g、ショアD硬度52
 (E-3)TPA//1,4-BD/PTMG1000=100//93/7(モル%)の組成比の共重合体、東洋紡社製、ペルプレン(登録商標)の試作品、還元粘度1.52dl/g、ショアD硬度57
 (略号はそれぞれ、TPA:テレフタル酸、1,4-BD:1,4-ブタンジオール、PTMG1000:ポリオキシテトラメチレングリコール(数平均分子量:1000)、PTMG2000:ポリオキシテトラメチレングリコール(数平均分子量:2000)成分を示す。)
その他のエラストマー:
 (E-4)日油(株)製、モディパーA5300(エチレンエチルアクリレート-グラフト-ブチルアクリレート/メチルメタクリレート)
(E) Polyester elastomer:
(E-1) TPA // 1,4-BD / PTMG2000 = 100 // 75/25 (mol%) copolymer, manufactured by Toyobo Co., Ltd., Perprene (registered trademark), reduced viscosity 2 .50 dl / g, Shore D hardness 31
(E-2) TPA // 1,4-BD / PTMG1000 = 100 // 88/12 (mol%) copolymer, manufactured by Toyobo Co., Ltd., Perprene (registered trademark), reduced viscosity 1 .75 dl / g, Shore D hardness 52
(E-3) TPA // 1,4-BD / PTMG1000 = 100 // 93/7 (mol%) copolymer, manufactured by Toyobo Co., Ltd., Perprene (registered trademark), reduced viscosity 1 .52 dl / g, Shore D hardness 57
(The abbreviations are TPA: terephthalic acid, 1,4-BD: 1,4-butanediol, PTMG1000: polyoxytetramethylene glycol (number average molecular weight: 1000), PTMG2000: polyoxytetramethylene glycol (number average molecular weight: 2000) Indicates an ingredient.)
Other elastomers:
(E-4) manufactured by NOF Corporation, Modiper A5300 (ethylene ethyl acrylate-graft-butyl acrylate / methyl methacrylate)
<実施例1~11、比較例1~7>
 実施例、比較例のポリブチレンテレフタレート樹脂組成物は、上記原料を表1、2に示した配合比率(質量部)に従い計量して、35φ二軸押出機(東芝機械社製)でシリンダー温度260℃、スクリュー回転数200rpmにて溶融混練した。無機充填剤以外の原料はホッパーから二軸押出機へ投入し、無機充填剤はベント口からサイドフィードで投入した(無機充填剤を2種以上使用した場合は別々のサイドフィードから投入した)。得られたポリブチレンテレフタレート樹脂組成物のペレットは、乾燥後、射出成形機にて各種評価用サンプルを成形した。評価結果は表1、2に示した。
<Examples 1 to 11 and Comparative Examples 1 to 7>
In the polybutylene terephthalate resin compositions of Examples and Comparative Examples, the raw materials were weighed according to the blending ratios (parts by mass) shown in Tables 1 and 2, and a cylinder temperature of 260 was measured with a 35φ twin-screw extruder (manufactured by Toshiba Machine Co., Ltd.). Melt kneading was performed at a temperature of 200 ° C. and a screw rotation speed of 200 rpm. Raw materials other than the inorganic filler were charged from the hopper into the twin screw extruder, and the inorganic filler was charged from the vent port by side feed (when two or more inorganic fillers were used, they were charged from separate side feeds). The obtained pellets of the polybutylene terephthalate resin composition were dried, and then various samples for evaluation were molded using an injection molding machine. The evaluation results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例の樹脂組成物は、接合されたポリエステルエラストマーの種類に限定されることなく破断伸度(%)が10%以上であり、十分に接合(溶着)されていることがわかる。共重合ポリエステル樹脂(C)を使用した実施例8、9は、使用しなかった実施例2に比べ、破断伸度(%)が向上した(接合強度が向上した)。無機充填剤(D)を含んでいる実施例10、11も、優れた接合性を示した。すなわち、ポリエステルブロック共重合体(B)を含有することで、広い硬度範囲のポリエステルエラストマーが接合可能である。 It can be seen that the resin compositions of the examples are not limited to the type of bonded polyester elastomer and have a breaking elongation (%) of 10% or more and are sufficiently bonded (welded). In Examples 8 and 9 using the copolymerized polyester resin (C), the elongation at break (%) was improved (joining strength was improved) as compared to Example 2 in which the copolymer polyester resin (C) was not used. Examples 10 and 11 containing the inorganic filler (D) also showed excellent bondability. That is, by containing the polyester block copolymer (B), a polyester elastomer having a wide hardness range can be joined.
 一方、比較例1~7では、ポリエステルブロック共重合体(B)を含まないため、比較的高硬度のポリエステルエラストマーとの接合(溶着)性が悪い結果となった。ポリエステルエラストマー以外のエラストマーを添加した比較例5は、十分な接合強度が発現しない。 On the other hand, Comparative Examples 1 to 7 did not contain the polyester block copolymer (B), resulting in poor bonding (welding) properties to a relatively hard polyester elastomer. In Comparative Example 5 in which an elastomer other than the polyester elastomer is added, sufficient bonding strength is not exhibited.
 本発明の樹脂組成物は、従来のポリブチレンテレフタレート樹脂組成物に比べ、実用に足る接合強度を持つため、ポリエステルエラストマーとのインサート成形による接合可能な成形品用の成形材料として有用である。
 
Since the resin composition of the present invention has practically sufficient bonding strength as compared with conventional polybutylene terephthalate resin compositions, it is useful as a molding material for molded articles that can be bonded by insert molding with a polyester elastomer.

Claims (4)

  1.  ポリブチレンテレフタレート樹脂(A)40~95質量%、ポリエステルブロック共重合体(B)4~40質量%、(B)とは異なる共重合ポリエステル樹脂(C)0~50質量%及び無機充填剤(D)0~55質量%を含有するポリブチレンテレフタレート樹脂組成物であって、前記ポリエステルブロック共重合体(B)は、ジカルボン酸成分がテレフタル酸またはそのエステル形成性誘導体(a1)と少なくとも1種以上のテレフタル酸以外のジカルボン酸またはそのエステル形成性誘導体(a2)から構成され、(a1)と(a2)のモル比((a1)/(a2))が1~4であるポリエステルからなるハードセグメント(a3)と、脂肪族ポリエーテル、脂肪族ポリエステル及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメント(a4)とを構成成分とするポリエステルブロック共重合体であり、ポリエステルエラストマーを溶着する成形体用であるポリブチレンテレフタレート樹脂組成物。 Polybutylene terephthalate resin (A) 40 to 95% by mass, polyester block copolymer (B) 4 to 40% by mass, copolymer polyester resin (C) different from (B) 0 to 50% by mass and inorganic filler ( D) A polybutylene terephthalate resin composition containing 0 to 55% by mass, wherein the polyester block copolymer (B) has at least one dicarboxylic acid component and terephthalic acid or an ester-forming derivative thereof (a1). A hard comprising a polyester composed of a dicarboxylic acid other than terephthalic acid or an ester-forming derivative thereof (a2) and having a molar ratio of (a1) to (a2) ((a1) / (a2)) of 1 to 4 Segment (a3) and at least one selected from aliphatic polyether, aliphatic polyester and aliphatic polycarbonate Of the soft segment (a4) and a polyester block copolymer containing a constituent component, polybutylene terephthalate resin composition is molded articles to weld the polyester elastomer.
  2.  前記共重合ポリエステル樹脂(C)が、エチレンテレフタレート単位またはブチレンテレフタレート単位に、アルキル側鎖含有グリコール及びイソフタル酸の少なくとも一方を共重合したポリエステル樹脂である請求項1に記載のポリブチレンテレフタレート樹脂組成物。 2. The polybutylene terephthalate resin composition according to claim 1, wherein the copolymerized polyester resin (C) is a polyester resin obtained by copolymerizing an ethylene terephthalate unit or a butylene terephthalate unit with at least one of an alkyl side chain-containing glycol and isophthalic acid. .
  3.  請求項1または2に記載のポリブチレンテレフタレート樹脂組成物からなる成形体とポリエステルエラストマーが溶着された複合成形体。 A composite molded body obtained by welding a molded body made of the polybutylene terephthalate resin composition according to claim 1 or 2 and a polyester elastomer.
  4.  請求項1または2に記載のポリブチレンテレフタレート樹脂組成物からなる成形体を金型内にインサート材として配し、ポリエステルエラストマーを射出成形により溶着させる複合成形体の製造方法。
     
    A method for producing a composite molded article, wherein a molded article comprising the polybutylene terephthalate resin composition according to claim 1 or 2 is disposed as an insert material in a mold, and a polyester elastomer is welded by injection molding.
PCT/JP2018/006697 2017-02-28 2018-02-23 Polybutylene terephthalate resin composition for molded body for welding polyester elastomer, and composite molded body WO2018159487A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/488,716 US11104794B2 (en) 2017-02-28 2018-02-23 Polybutylene terephthalate resin composition for molded body for welding polyester elastomer, and composite molded body
JP2018516860A JP7074055B2 (en) 2017-02-28 2018-02-23 Polybutylene terephthalate resin composition for moldings and composite moldings for welding polyester elastomers
CN201880014000.3A CN110382622B (en) 2017-02-28 2018-02-23 Polybutylene terephthalate resin composition for fusion-bonding molded article of polyester elastomer, and composite molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037208 2017-02-28
JP2017-037208 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159487A1 true WO2018159487A1 (en) 2018-09-07

Family

ID=63370343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006697 WO2018159487A1 (en) 2017-02-28 2018-02-23 Polybutylene terephthalate resin composition for molded body for welding polyester elastomer, and composite molded body

Country Status (4)

Country Link
US (1) US11104794B2 (en)
JP (1) JP7074055B2 (en)
CN (1) CN110382622B (en)
WO (1) WO2018159487A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133381A (en) * 1984-12-03 1986-06-20 Toray Ind Inc Manufacture of surface-metallized molded article of thermoplastic polyester resin
JPH04119810A (en) * 1990-09-10 1992-04-21 Polyplastics Co Polyester composite molded form and manufacture thereof
WO2012014823A1 (en) * 2010-07-30 2012-02-02 東洋紡績株式会社 Resin composition for low-pressure insert molding of electric and electronic components, sealing body for electric and electronic components, and method for producing sealing body for electric and electronic components
JP2013189550A (en) * 2012-03-14 2013-09-26 Du Pont-Toray Co Ltd Heat-resistant thermoplastic elastomer resin composition

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775373A (en) * 1972-05-30 1973-11-27 Du Pont Segmented thermoplastic copolyesters
IT1247504B (en) * 1991-04-19 1994-12-17 Montedipe Srl THERMOPLASTIC ELASTOMERIC COPOLETE-ESTERS WITH IMPROVED THERMAL AND HYDROLYTIC STABILITY
US6300399B1 (en) * 1999-08-27 2001-10-09 General Electric Company High specific gravity polyester blend
AU2003286955A1 (en) 2002-12-30 2004-07-22 Samyang Corporation Thermoplastic elastomer resin
JP4456392B2 (en) 2003-03-28 2010-04-28 ウィンテックポリマー株式会社 Laser welding resin composition and molded article
JP4799857B2 (en) 2004-12-24 2011-10-26 ウィンテックポリマー株式会社 Insert molded product
JP5242150B2 (en) 2007-12-21 2013-07-24 ウィンテックポリマー株式会社 Composite molded body
JP5739083B2 (en) 2008-05-08 2015-06-24 帝人株式会社 Resin molded body and molding method thereof
JPWO2009150831A1 (en) 2008-06-11 2011-11-10 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition and molded article
JP5510861B2 (en) 2008-06-19 2014-06-04 東レ・デュポン株式会社 Composite molded body
JP5788790B2 (en) 2009-04-20 2015-10-07 ウィンテックポリマー株式会社 Welded polybutylene terephthalate resin composition and composite molded article
US9434839B2 (en) * 2011-09-30 2016-09-06 Wintech Polymer Ltd. Polybutylene terephthalate resin composition and welded body
JP6009535B2 (en) 2012-03-15 2016-10-19 東レ・デュポン株式会社 Thermoplastic elastomer resin composition and composite molded body
WO2014109352A1 (en) 2013-01-10 2014-07-17 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate resin composition, and molded article
JP2014133810A (en) 2013-01-10 2014-07-24 Du Pont-Toray Co Ltd Polyester block copolymer resin composition for composite molding and composite molding
KR102238921B1 (en) 2014-02-25 2021-04-12 듀폰 도레이 컴파니, 리미티드 Thermoplastic elastomer resin composition and molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133381A (en) * 1984-12-03 1986-06-20 Toray Ind Inc Manufacture of surface-metallized molded article of thermoplastic polyester resin
JPH04119810A (en) * 1990-09-10 1992-04-21 Polyplastics Co Polyester composite molded form and manufacture thereof
WO2012014823A1 (en) * 2010-07-30 2012-02-02 東洋紡績株式会社 Resin composition for low-pressure insert molding of electric and electronic components, sealing body for electric and electronic components, and method for producing sealing body for electric and electronic components
JP2013189550A (en) * 2012-03-14 2013-09-26 Du Pont-Toray Co Ltd Heat-resistant thermoplastic elastomer resin composition

Also Published As

Publication number Publication date
US11104794B2 (en) 2021-08-31
JP7074055B2 (en) 2022-05-24
US20210130605A1 (en) 2021-05-06
CN110382622B (en) 2022-05-03
JPWO2018159487A1 (en) 2019-12-19
CN110382622A (en) 2019-10-25

Similar Documents

Publication Publication Date Title
JP5788790B2 (en) Welded polybutylene terephthalate resin composition and composite molded article
JP4799857B2 (en) Insert molded product
US20150361258A1 (en) Poly (lactic acid)-based biocomposite materials having improved toughness and heat distortion temperature and methods of making and using thereof
WO2009150831A1 (en) Polybutylene terephthalate resin composition and molding
WO2022009616A1 (en) Thermoplastic resin composition, member, and manufacturing method and mechanical strength improvement method for member formed from thermoplastic resin composition
US8017034B2 (en) Polyamide composition
JP6100983B1 (en) Polybutylene terephthalate resin composition
JP7183536B2 (en) Polybutylene terephthalate resin composition for molded article for welding polyester elastomer and composite molded article
JP6911382B2 (en) Polybutylene terephthalate resin composition for moldings and composite moldings for welding polyester elastomers
JP4908855B2 (en) Thermoplastic resin composition and resin molded product
JPS6028446A (en) Thermoplastic polyester resin composition
JP7074055B2 (en) Polybutylene terephthalate resin composition for moldings and composite moldings for welding polyester elastomers
JP6911383B2 (en) Polybutylene terephthalate resin composition for moldings and composite moldings for welding polyester elastomers
JP7278529B2 (en) Polybutylene terephthalate resin composition for molded article for welding polyester elastomer and composite molded article
JP7081123B2 (en) Polybutylene terephthalate resin composition for moldings and composite moldings for welding polyester elastomers
JPH06145486A (en) Polybutylene terephthalate resin composition and its molded article
CN113454161A (en) Polybutylene terephthalate resin composition
JP2014133810A (en) Polyester block copolymer resin composition for composite molding and composite molding
JP7400743B2 (en) Polybutylene terephthalate resin composition
JP5773999B2 (en) Adhesive strength improving resin composition, resin molded body, joined body and adhesive strength improving agent
JP2010143995A (en) Polyester resin composition and molded article thereof
KR102176289B1 (en) Polyester-based resin composition for metal-resin junction product, method for preparing the same and metal-resin junction product comprising the same
JP2012126832A (en) Polyester block copolymer resin composition for thin wall molding and molding
JPS61133264A (en) Polyester composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516860

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761005

Country of ref document: EP

Kind code of ref document: A1