WO2022004199A1 - 放射線検出器 - Google Patents

放射線検出器 Download PDF

Info

Publication number
WO2022004199A1
WO2022004199A1 PCT/JP2021/019860 JP2021019860W WO2022004199A1 WO 2022004199 A1 WO2022004199 A1 WO 2022004199A1 JP 2021019860 W JP2021019860 W JP 2021019860W WO 2022004199 A1 WO2022004199 A1 WO 2022004199A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
digital
ground
analog circuit
photoelectric conversion
Prior art date
Application number
PCT/JP2021/019860
Other languages
English (en)
French (fr)
Inventor
亮 身深
浩志 鬼橋
Original Assignee
キヤノン電子管デバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン電子管デバイス株式会社 filed Critical キヤノン電子管デバイス株式会社
Priority to EP21834674.0A priority Critical patent/EP4177642A4/en
Priority to KR1020227044385A priority patent/KR20230011412A/ko
Priority to CN202180044075.8A priority patent/CN115702366A/zh
Publication of WO2022004199A1 publication Critical patent/WO2022004199A1/ja
Priority to US18/066,528 priority patent/US20230121993A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • G01T1/20189Damping or insulation against damage, e.g. caused by heat or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise

Definitions

  • the embodiment of the present invention relates to a radiation detector.
  • An example of a radiation detector is an X-ray detector.
  • a general X-ray detector is provided with, for example, a scintillator, an array board, and a circuit unit.
  • the scintillator converts the incident X-rays into fluorescence.
  • the array substrate includes a plurality of photoelectric conversion units having a photoelectric conversion element and a thin film transistor, and converts the fluorescence generated in the scintillator into electric charges.
  • An analog circuit and a digital circuit are provided in the circuit section. The analog circuit reads out charges (image data signals) from a plurality of photoelectric conversion units.
  • the digital circuit constitutes an X-ray image based on the read image data signal.
  • the amount of X-ray irradiation to the human body is suppressed to the minimum necessary, so that the intensity of the X-ray incident on the X-ray detector is very weak. .. Therefore, the image data signal read from the plurality of photoelectric conversion units becomes extremely weak, and even if a slight noise is mixed in the image data signal, the quality of the X-ray image may deteriorate.
  • the problem to be solved by the present invention is to provide a radiation detector capable of suppressing noise from a digital circuit from being mixed into an analog circuit.
  • the radiation detector includes an array substrate having a plurality of detectors that detect radiation directly or in cooperation with a scintillator, an analog circuit that reads an image data signal from the plurality of detectors, and the analog circuit. It includes a digital circuit that constitutes a radiographic image based on a signal from, and an inductor connected between the ground of the analog circuit and the ground of the digital circuit.
  • the radiation detector according to the embodiment of the present invention can be applied to various types of radiation such as ⁇ -rays in addition to X-rays.
  • ⁇ -rays in addition to X-rays.
  • X-rays as a typical example of radiation will be described. Therefore, by replacing "X-ray" in the following embodiment with "other radiation”, it can be applied to other radiation.
  • the X-ray detector 1 illustrated below can be an X-ray plane sensor that detects an X-ray image that is a radiographic image.
  • the X-ray plane sensor is roughly divided into a direct conversion method and an indirect conversion method.
  • the indirect conversion type X-ray detector is provided with, for example, an array substrate having a plurality of photoelectric conversion units and a scintillator provided on the plurality of photoelectric conversion units to convert X-rays into fluorescence (visible light). ing.
  • X-rays incident from the outside are converted into fluorescence by a scintillator.
  • the generated fluorescence is converted into electric charges by a plurality of photoelectric conversion units.
  • the direct conversion type X-ray detector is provided with a photoelectric conversion film made of, for example, amorphous selenium.
  • a photoelectric conversion film made of, for example, amorphous selenium.
  • X-rays incident from the outside are absorbed by the photoelectric conversion film and directly converted into electric charges. Since a known technique can be applied to the basic configuration of the direct conversion type X-ray detector, detailed description thereof will be omitted.
  • the indirect conversion type X-ray detector 1 will be illustrated as an example, but the present invention can also be applied to a direct conversion type X-ray detector. That is, the X-ray detector may have a plurality of detectors that convert X-rays into electrical information. The detector may, for example, detect X-rays directly or in collaboration with a scintillator. Further, the X-ray detector 1 can be used for general medical treatment, for example. However, the use of the X-ray detector 1 is not limited to general medical treatment.
  • FIG. 1 is a schematic cross-sectional view for illustrating the X-ray detector 1 according to the present embodiment.
  • FIG. 2 is a schematic perspective view for illustrating the detection module 10.
  • FIG. 3 is a circuit diagram of the array board 2.
  • FIG. 4 is a block diagram of the detection module 10. As shown in FIGS. 1 to 4, the X-ray detector 1 can be provided with a detection module 10 and a housing 20.
  • the detection module 10 may be provided with an array board 2, a scintillator 3, and a circuit unit 4.
  • the detection module 10 can be provided inside the housing 20.
  • the array substrate 2 can convert the fluorescence converted from X-rays by the scintillator 3 into electric charges.
  • the array substrate 2 may be provided with a substrate 2a, a photoelectric conversion unit 2b, a control line (or gate line) 2c1, a data line (or signal line) 2c2, a protective layer 2f, and the like.
  • the numbers of the photoelectric conversion unit 2b, the control line 2c1, the data line 2c2, and the like are not limited to those illustrated.
  • the photoelectric conversion unit 2b is a detection unit that detects X-rays in cooperation with the scintillator 3.
  • the substrate 2a has a plate shape and can be formed of, for example, non-alkali glass or a polyimide resin.
  • the planar shape of the substrate 2a can be, for example, a quadrangle.
  • a plurality of photoelectric conversion units 2b can be provided on one surface of the substrate 2a.
  • the photoelectric conversion unit 2b can be provided in the region defined by the control line 2c1 and the data line 2c2.
  • the plurality of photoelectric conversion units 2b can be provided side by side in a matrix.
  • One photoelectric conversion unit 2b corresponds to one pixel of an X-ray image.
  • Each of the plurality of photoelectric conversion units 2b may be provided with a photoelectric conversion element 2b1 and a thin film transistor (TFT) 2b2 which is a switching element. Further, a storage capacitor 2b3 for accumulating the electric charge converted by the photoelectric conversion element 2b1 can be provided.
  • the storage capacitor 2b3 has, for example, a film shape and can be provided under each thin film transistor 2b2. However, depending on the capacity of the photoelectric conversion element 2b1, the photoelectric conversion element 2b1 can also serve as the storage capacitor 2b3.
  • the photoelectric conversion element 2b1 can be, for example, a photodiode or the like.
  • the thin film transistor 2b2 can switch between the accumulation and emission of electric charges in the storage capacitor 2b3.
  • the thin film transistor 2b2 can have a gate electrode 2b2a, a drain electrode 2b2b, and a source electrode 2b2c.
  • the gate electrode 2b2a of the thin film transistor 2b2 can be electrically connected to the corresponding control line 2c1.
  • the drain electrode 2b2b of the thin film transistor 2b2 can be electrically connected to the corresponding data line 2c2.
  • the source electrode 2b2c of the thin film transistor 2b2 can be electrically connected to the corresponding photoelectric conversion element 2b1 and the storage capacitor 2b3.
  • the anode side of the photoelectric conversion element 2b1 and the storage capacitor 2b3 can be electrically connected to the ground (analog ground) of the wiring pattern 4a1 to which the analog circuit 4b described later is electrically connected.
  • a plurality of control lines 2c1 can be provided in parallel with each other at predetermined intervals.
  • the control line 2c1 may extend in the row direction, for example.
  • One control line 2c1 can be electrically connected to one of a plurality of wiring pads 2d1 provided near the peripheral edge of the substrate 2a.
  • One of a plurality of wirings provided on the flexible printed circuit board 2e1 can be electrically connected to one wiring pad 2d1.
  • the other ends of the plurality of wirings provided on the flexible printed circuit board 2e1 can be electrically connected to the analog circuit 4b (gate driver 4b1) provided on the circuit unit 4, respectively.
  • a plurality of data lines 2c2 may be provided in parallel with each other at predetermined intervals.
  • the data line 2c2 can be, for example, extended in a column direction orthogonal to the row direction.
  • One data line 2c2 can be electrically connected to one of a plurality of wiring pads 2d2 provided near the peripheral edge of the substrate 2a.
  • One of a plurality of wirings provided on the flexible printed circuit board 2e2 can be electrically connected to one wiring pad 2d2.
  • the other ends of the plurality of wirings provided on the flexible printed board 2e2 can be electrically connected to the analog circuit 4b (integrating amplifier 4b3) provided in the circuit unit 4, respectively.
  • the control line 2c1 and the data line 2c2 can be formed by using a low resistance metal such as aluminum or chromium.
  • the protective layer 2f can cover the photoelectric conversion unit 2b, the control line 2c1, the data line 2c2, and the like.
  • the protective layer 2f can include, for example, at least one of an oxide insulating material, a nitride insulating material, an oxynitride insulating material, and a resin.
  • the circuit unit 4 can be provided on the side of the array board 2 opposite to the side on which the scintillator 3 is provided.
  • the circuit unit 4 may be provided with a substrate 4a, an analog circuit 4b, a digital circuit 4c, a heat sink 4d, a heat transfer unit 4e, and an inductor 4f.
  • the substrate 4a has a plate shape and can have wiring patterns 4a1 and 4a2 on the surface opposite to the array substrate 2 side.
  • the analog circuit 4b can have a plurality of gate drivers 4b1, a row selection circuit 4b2, a plurality of integrating amplifiers 4b3, a plurality of selection circuits 4b4, and a plurality of AD converters 4b5.
  • the elements and circuits constituting the analog circuit 4b can be housed in one package as an integrated circuit.
  • the package containing the analog circuit 4b can be electrically connected to the wiring pattern 4a1.
  • the wiring pattern 4a1 can be electrically connected to the flexible printed boards 2e1 and 2e2. That is, the analog circuit 4b can be electrically connected to the plurality of control lines 2c1 via the flexible printed circuit board 2e1.
  • the analog circuit 4b can be electrically connected to a plurality of data lines 2c2 via the flexible printed circuit board 2e2.
  • the digital circuit 4c can have an image processing circuit 4c1.
  • the elements and circuits constituting the digital circuit 4c can be housed in one package as an integrated circuit.
  • the package containing the digital circuit 4c can be electrically connected to the wiring pattern 4a2.
  • the package in which the digital circuit 4c is housed can be provided in the area where the ground (digital ground) of the wiring pattern 4a2 is provided.
  • the analog circuit 4b can read the image data signal S2 from the plurality of photoelectric conversion units 2b. Further, the analog circuit 4b may further convert the read image data signal S2 into a digital signal. As shown in FIG. 4, the analog circuit 4b can have a plurality of gate drivers 4b1, a row selection circuit 4b2, a plurality of integrating amplifiers 4b3, a plurality of selection circuits 4b4, and a plurality of AD converters 4b5.
  • the plurality of AD converters 4b5 may be provided in either the analog circuit 4b or the digital circuit 4c. In the following, as an example, a case where a plurality of AD converters 4b5 are provided in the analog circuit 4b will be described.
  • the control signal S1 can be input to the row selection circuit 4b2.
  • the control signal S1 can be input to the row selection circuit 4b2 from, for example, the image processing circuit 4c1.
  • the row selection circuit 4b2 can input the control signal S1 to the corresponding gate driver 4b1 according to the scanning direction of the X-ray image.
  • the gate driver 4b1 can input the control signal S1 to the corresponding control line 2c1.
  • the gate driver 4b1 can sequentially input the control signal S1 for each control line 2c1 via the flexible printed board 2e1.
  • the thin film transistor 2b2 is turned on by the control signal S1 input to the control line 2c1, and the electric charge (image data signal S2) from the storage capacitor 2b3 can be received.
  • one integrator amplifier 4b3 can be electrically connected to one data line 2c2.
  • the integrating amplifier 4b3 can sequentially receive the image data signal S2 from the photoelectric conversion unit 2b. Then, the integration amplifier 4b3 can integrate the current flowing within a fixed time and output the voltage corresponding to the integrated value to the selection circuit 4b4. By doing so, it is possible to convert the value (charge amount) of the current flowing through the data line 2c2 into a voltage value within a predetermined time. That is, the integrating amplifier 4b3 can convert the image data information corresponding to the intensity distribution of the fluorescence generated in the scintillator 3 into the potential information.
  • the selection circuit 4b4 can select the integrating amplifier 4b3 to be read out and sequentially read out the image data signal S2 converted into the potential information.
  • the AD converter 4b5 can sequentially convert the read image data signal S2 into a digital signal.
  • the image data signal S2 converted into a digital signal can be input to the digital circuit 4c (image processing circuit 4c1).
  • the digital circuit 4c can have an image processing circuit 4c1.
  • the digital circuit 4c can form an X-ray image based on the signal from the analog circuit 4b.
  • the digital circuit 4c can form an X-ray image based on the digital signal from the analog circuit 4b.
  • the digital circuit 4c converts the image data signal S2 (analog signal) from the analog circuit 4b into a digital signal, and the digital circuit 4c is based on the converted digital signal. It is possible to construct an X-ray image.
  • the configured X-ray image data can be output from the digital circuit 4c to an external device.
  • the heat sink 4d can be provided on the side of the substrate 4a opposite to the array substrate 2 side.
  • the heat sink 4d has, for example, a plurality of heat dissipation fins and can be formed of a material having high thermal conductivity.
  • the heat sink 4d can be formed of, for example, a metal such as aluminum.
  • the heat sink 4d can be attached to the support plate 24 or the like together with the substrate 4a by using, for example, a fastening member such as a screw.
  • the heat transfer unit 4e can have a heat transfer unit 4e1 (corresponding to an example of the second heat transfer unit) and a heat transfer unit 4e2 (corresponding to an example of the first heat transfer unit).
  • the heat transfer portion 4e1 can be provided between the heat sink 4d and the inner wall (base 23) of the housing 20.
  • the heat transfer unit 4e2 can be provided between at least one of the package containing the analog circuit 4b and the package containing the digital circuit 4c, and the heat sink 4d.
  • the heat transfer unit 4e1 and the heat transfer unit 4e2 can be formed, for example, from a resin or rubber having a sheet shape and mixed with a filler using a material having high thermal conductivity.
  • the heat transfer portion 4e1 is provided, the space between the heat sink 4d and the inner wall of the housing 20 can be filled. Therefore, heat is easily transferred from the heat sink 4d to the housing 20. If the heat transfer portion 4e2 is provided, the space between the heat sink 4d and the package can be filled. Therefore, heat is easily transferred from the package to the heat sink 4d.
  • the inductor 4f can be provided on the side of the substrate 4a opposite to the array substrate 2 side.
  • the inductor 4f can have, for example, a main body containing a magnetic material such as ferrite, and a coil-shaped conductive portion provided inside the main body and having conductivity.
  • the conductive portion may be, for example, a coil pattern containing a metal such as copper, a coil containing a metal such as copper, or the like.
  • the ends on both sides of the conductive portion can be exposed to the outside of the main body.
  • One end of the conductive portion can be electrically connected to the ground (analog ground) of the wiring pattern 4a1 to which the analog circuit 4b is electrically connected.
  • the other end of the conductive portion can be electrically connected to the ground (digital ground) of the wiring pattern 4a2 to which the digital circuit 4c is electrically connected.
  • the details of the inductor 4f will be described later.
  • the scintillator 3 can be provided on a plurality of photoelectric conversion units 2b.
  • the scintillator 3 can convert the incident X-rays into fluorescence.
  • the scintillator 3 can be provided so as to cover a region (effective pixel region) provided with a plurality of photoelectric conversion units 2b on the substrate 2a.
  • the scintillator 3 can be formed using, for example, cesium iodide (CsI): thallium (Tl), sodium iodide (NaI): thallium (Tl), cesium bromide (CsBr): europium (Eu), or the like. can.
  • CsI cesium iodide
  • NaI sodium iodide
  • CaBr cesium bromide
  • Eu europium
  • the scintillator 3 can be formed by using a vacuum vapor deposition method. If the scintillator 3 is formed by using the vacuum vapor deposition method, the scintillator 3 composed of an aggregate of a plurality of columnar crystals can be formed.
  • the scintillator 3 can also be formed by using, for example, terbium-activated sulfated gadolinium (Gd 2 O 2 S / Tb, or GOS).
  • a matrix-shaped groove can be formed so that a square columnar scintillator 3 is provided for each of the plurality of photoelectric conversion units 2b.
  • the detection unit 10 may be provided with a reflective layer (not shown) that covers the surface side (incident surface side of X-rays) of the scintillator 3 in order to increase the utilization efficiency of fluorescence and improve the sensitivity characteristics. Further, in order to suppress deterioration of the characteristics of the scintillator 3 and the characteristics of the reflective layer (not shown) due to water vapor contained in the air, a moisture-proof portion (not shown) covering the scintillator 3 and the reflective layer can be provided.
  • the housing 20 may be provided with a cover portion 21, an incident window 22, a base portion 23, a support plate 24, a spacer 25, and a spacer 26.
  • the cover portion 21 has a box shape and may have an opening on the incident side of the X-ray and on the side opposite to the incident side of the X-ray.
  • the cover portion 21 can be formed by using a light metal such as an aluminum alloy.
  • the cover portion 21 can also be formed by using, for example, a polyphenylene sulfide resin, a polycarbonate resin, a carbon fiber reinforced plastic (CFRP), or the like.
  • the incident window 22 has a plate shape and can be provided so as to close the opening of the cover portion 21 on the incident side of the X-ray.
  • the incident window 22 can transmit X-rays.
  • the incident window 22 can be formed by using a material having a low X-ray absorption rate.
  • the incident window 22 can be formed by using, for example, carbon fiber reinforced plastic.
  • the base portion 23 has a plate shape and can be provided so as to close the opening of the cover portion 21 on the side opposite to the X-ray incident side.
  • the base portion 23 may be integrated with the cover portion 21.
  • the material of the base 23 is not particularly limited as long as it has a certain degree of rigidity.
  • the material of the base 23 can be, for example, the same as the material of the cover 21.
  • the ground (analog ground) of the wiring pattern 4a1 to which the analog circuit 4b is electrically connected can be electrically connected to the cover portion 21 and the base portion 23. In such a case, it is preferable that the cover portion 21 and the base portion 23 are formed by using a metal such as an aluminum alloy.
  • the support plate 24 has a plate shape and can be provided inside the cover portion 21.
  • the array substrate 2 can be provided on the surface of the support plate 24 on the incident window 22 side. In this case, the array substrate 2 may be fixed to the support plate 24, or the array substrate 2 may be detachable from the support plate 24. It is preferable that the material of the support plate 24 has a certain degree of rigidity and has a certain degree of high X-ray absorption rate.
  • the material of the support plate 24 can be, for example, a metal such as stainless steel or an aluminum alloy.
  • the spacer 25 has a columnar or cylindrical shape, and a plurality of spacers 25 can be provided inside the cover portion 21.
  • the plurality of spacers 25 can be provided between the support plate 24 and the base 23.
  • the spacer 25 and the support plate 24 can be fixed by using, for example, a fastening member such as an adhesive or a screw.
  • the material of the spacer 25 is not particularly limited as long as it has a certain degree of rigidity.
  • the spacer 25 can be formed by using, for example, a metal or a resin.
  • the form, arrangement position, number, material, etc. of the spacer 25 are not limited to those illustrated. Further, if the support plate 24 is supported inside the cover portion 21, the spacer 25 may not be used. For example, a plate-shaped body protruding from the inner side surface of the cover portion 21 to the inside of the cover portion 21 may be provided so that the support plate 24 is supported by the plate-shaped body.
  • the spacer 26 has a columnar or cylindrical shape, and a plurality of spacers 26 can be provided inside the cover portion 21.
  • the plurality of spacers 26 can be provided between the support plate 24 and the substrate 4a.
  • the plurality of spacers 26 can be fixed by using, for example, a fastening member such as an adhesive or a screw.
  • the spacer 26 can be formed from an insulating material.
  • the spacer 26 can be formed by using, for example, a resin or the like. The form, arrangement position, number, material, and the like of the spacer 26 are not limited to those illustrated.
  • the analog circuit 4b can read the image data signal S2 from the array board 2.
  • the digital circuit 4c can form an X-ray image based on the signal from the analog circuit 4b.
  • the analog circuit 4b and the digital circuit 4c each have a ground line, and are divided into an analog ground and a digital ground.
  • a signal containing a lot of noise often flows in the digital ground.
  • a signal containing a lot of noise from a power source for driving the image processing circuit 4c1 may flow in the digital ground.
  • the analog ground may be directly connected to the housing 20 in order to stabilize the potential of the analog ground. Therefore, noise on the digital ground side is likely to be mixed into the analog ground side via the housing 20. If noise on the digital ground side is mixed in on the analog ground side, it becomes noise in the X-ray image, and the quality of the X-ray image may deteriorate.
  • FIG. 5 is a schematic cross-sectional view for illustrating the X-ray detector 101 according to the comparative example.
  • the X-ray detector 101 is provided with an array substrate 2, a scintillator 3, and a circuit unit 104.
  • the circuit unit 104 is provided with a substrate 4a, an analog circuit 4b, a digital circuit 4c, a heat sink 4d, and a heat transfer unit 4e2.
  • the digital circuit 4c for forming an X-ray image is provided in an area where a digital ground is provided.
  • the noise 201 on the digital ground side passes through the housing 20 (support plate 24). There is a risk of mixing in the image data signal S2 read from the array substrate 2 (plural photoelectric conversion units 2b). If the noise 201 on the digital ground side is mixed in the image data signal S2, it becomes noise in the X-ray image, and the quality of the X-ray image may deteriorate.
  • FIG. 6 is a schematic cross-sectional view for illustrating the X-ray detector 111 according to the comparative example.
  • the X-ray detector 111 is provided with an array substrate 2, a scintillator 3, and a circuit unit 114.
  • the circuit unit 114 is provided with a substrate 4a, an analog circuit 4b, a digital circuit 4c, a heat sink 4d, and a heat transfer unit 4e2.
  • the digital circuit 4c for forming an X-ray image is provided in an area where a digital ground is provided.
  • the heat sink 4d is formed of a metal such as aluminum
  • the noise 211 on the digital ground side passes through the heat sink 4d, the base 23, the spacer 25, and the support plate 24, and the array substrate 2 (a plurality of photoelectric conversion units). It may be mixed in the image data signal S2 read from 2b).
  • the path of noise 211 is a long loop. Therefore, the noise 201 may be mixed into circuits provided at various places in the process of this long loop, resulting in noise in the X-ray image.
  • the inductor 4f is electrically connected between the analog ground and the digital ground.
  • the inductor 4f has a main body formed of a magnetic material such as ferrite, and a coil-shaped conductive portion provided inside the main body and having conductivity. Therefore, when noise flows through the conductive portion, at least a part of the noise can be converted into heat. As a result, it is possible to suppress noise on the digital ground side from being mixed into the image data signal S2 read from the array substrate 2 (plural photoelectric conversion units 2b) via the digital ground and the analog ground. ..
  • the density is increased by providing more photoelectric conversion units 2b, and the image data signal S2 is read out and processed.
  • Higher speed is required for the X-ray detector 1. Therefore, it is necessary to speed up the processing in the digital circuit 4c, the operating clock is speeded up, and the noise with a lot of high frequency components tends to increase.
  • the noise on the digital ground side causes at least one of the heat transfer section 4e1 and the heat transfer section 4e2.
  • the noise on the digital ground side causes at least one of the heat transfer section 4e1 and the heat transfer section 4e2.
  • the noise on the digital ground side causes at least one of the heat transfer section 4e1 and the heat transfer section 4e2.
  • the noise on the digital ground side causes at least one of the heat transfer section 4e1 and the heat transfer section 4e2.
  • the noise on the digital ground side causes at least one of the heat transfer section 4e1 and the heat transfer section 4e2.
  • the noise on the digital ground side causes at least one of the heat transfer section 4e1 and the heat transfer section 4e2.
  • the noise on the digital ground side causes at least one of the heat transfer section 4e1 and the heat transfer section 4e2.
  • the noise on the digital ground side causes at least one of the heat transfer section 4e1 and the heat transfer section 4e2.
  • the noise on the digital ground side causes at least one of the heat transfer section 4e1 and the heat

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

実施形態に係る放射線検出器は、放射線を直接的またはシンチレータと協働して検出する複数の検出部を有するアレイ基板と、前記複数の検出部から画像データ信号を読み出すアナログ回路と、前記アナログ回路からの信号に基づいて、放射線画像を構成するデジタル回路と、前記アナログ回路のグラウンドと、前記デジタル回路のグラウンドと、の間に接続されたインダクタと、を備えている。

Description

放射線検出器
 本発明の実施形態は、放射線検出器に関する。
 放射線検出器の一例にX線検出器がある。一般的なX線検出器には、例えば、シンチレータ、アレイ基板、および回路部が設けられている。シンチレータは、入射したX線を蛍光に変換する。アレイ基板は、光電変換素子と薄膜トランジスタとを有する光電変換部を複数備え、シンチレータにおいて発生した蛍光を電荷に変換する。回路部には、アナログ回路とデジタル回路が設けられている。アナログ回路は、複数の光電変換部から電荷(画像データ信号)を読み出す。デジタル回路は、読み出された画像データ信号に基づいてX線画像を構成する。
 X線検出器が医療に用いられるものである場合には、人体へのX線照射量が必要最低限に抑えられるため、X線検出器に入射するX線の強度が非常に弱いものとなる。そのため、複数の光電変換部から読み出される画像データ信号が極めて微弱なものとなるので、僅かなノイズが画像データ信号に混入してもX線画像の品質が低下するおそれがある。
 また、近年においては、正確な診断を行うために、より多くの光電変換部を設ける高密度化や、画像データ信号の読み出しと処理の高速化を図ることが求められている。そのため、デジタル回路における処理の高速化が必要となり、動作クロックが高速化して、ノイズが増加したり、発熱量が多くなったりしている。その結果、ノイズがアナログ回路にさらに混入し易くなるので、X線画像の品質がさらに低下するおそれがある。
 そこで、デジタル回路からのノイズがアナログ回路に混入するのを抑制することができる放射線検出器の開発が望まれていた。
特開2003-249637号公報
 本発明が解決しようとする課題は、デジタル回路からのノイズがアナログ回路に混入するのを抑制することができる放射線検出器を提供することである。
 実施形態に係る放射線検出器は、放射線を直接的またはシンチレータと協働して検出する複数の検出部を有するアレイ基板と、前記複数の検出部から画像データ信号を読み出すアナログ回路と、前記アナログ回路からの信号に基づいて、放射線画像を構成するデジタル回路と、前記アナログ回路のグラウンドと、前記デジタル回路のグラウンドと、の間に接続されたインダクタと、を備えている。
本実施の形態に係るX線検出器を例示するための模式断面図である。 検出モジュールを例示するための模式斜視図である。 アレイ基板の回路図である。 検出モジュールのブロック図である。 比較例に係るX線検出器を例示するための模式断面図である。 比較例に係るX線検出器を例示するための模式断面図である。
 以下、図面を参照しつつ、実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
 本発明の実施形態に係る放射線検出器は、X線のほかにもγ線などの各種放射線に適用させることができる。ここでは、一例として、放射線の中の代表的なものとしてX線に係る場合を例にとり説明をする。したがって、以下の実施形態の「X線」を「他の放射線」に置き換えることにより、他の放射線にも適用させることができる。
 また、以下に例示をするX線検出器1は、放射線画像であるX線画像を検出するX線平面センサとすることができる。X線平面センサには、大きく分けて直接変換方式と間接変換方式がある。
 間接変換方式のX線検出器には、例えば、複数の光電変換部を有するアレイ基板と、複数の光電変換部の上に設けられX線を蛍光(可視光)に変換するシンチレータとが設けられている。間接変換方式のX線検出器においては、外部から入射したX線はシンチレータにより蛍光に変換される。発生した蛍光は、複数の光電変換部により電荷に変換される。
 直接変換方式のX線検出器には、例えば、アモルファスセレンなどからなる光電変換膜が設けられている。直接変換方式のX線検出器においては、外部から入射したX線は、光電変換膜に吸収され、電荷に直接変換される。なお、直接変換方式のX線検出器の基本的な構成には既知の技術を適用することができるので詳細な説明は省略する。
 以下においては、一例として、間接変換方式のX線検出器1を例示するが、本発明は、直接変換方式のX線検出器にも適用することができる。
 すなわち、X線検出器は、X線を電気的な情報に変換する複数の検出部を有するものであれば良い。検出部は、例えば、X線を直接的またはシンチレータと協働して検出するものとすることができる。
 また、X線検出器1は、例えば、一般医療などに用いることができる。ただし、X線検出器1の用途は、一般医療に限定されるわけではない。
 図1は、本実施の形態に係るX線検出器1を例示するための模式断面図である。
 図2は、検出モジュール10を例示するための模式斜視図である。
 図3は、アレイ基板2の回路図である。
 図4は、検出モジュール10のブロック図である。
 図1~図4に示すように、X線検出器1には、検出モジュール10、および筐体20を設けることができる。
 検出モジュール10には、アレイ基板2、シンチレータ3、および回路部4を設けることができる。
 検出モジュール10は、筐体20の内部に設けることができる。
 アレイ基板2は、シンチレータ3によりX線から変換された蛍光を電荷に変換することができる。
 アレイ基板2には、基板2a、光電変換部2b、制御ライン(又はゲートライン)2c1、データライン(又はシグナルライン)2c2、および保護層2fなどを設けることができる。なお、光電変換部2b、制御ライン2c1、およびデータライン2c2などの数は例示をしたものに限定されるわけではない。
 本実施の形態に係るX線検出器1においては、光電変換部2bが、X線をシンチレータ3と協働して検出する検出部となる。
 基板2aは、板状を呈し、例えば、無アルカリガラスやポリイミド樹脂などから形成することができる。基板2aの平面形状は、例えば、四角形とすることができる。
 光電変換部2bは、基板2aの一方の面に複数設けることができる。光電変換部2bは、制御ライン2c1とデータライン2c2とにより画された領域に設けることができる。複数の光電変換部2bは、マトリクス状に並べて設けることができる。なお、1つの光電変換部2bは、X線画像の1つの画素(pixel)に対応する。
 複数の光電変換部2bのそれぞれには、光電変換素子2b1と、スイッチング素子である薄膜トランジスタ(TFT;Thin Film Transistor)2b2を設けることができる。
 また、光電変換素子2b1において変換した電荷を蓄積する蓄積キャパシタ2b3を設けることができる。蓄積キャパシタ2b3は、例えば、膜状を呈し、各薄膜トランジスタ2b2の下に設けることができる。ただし、光電変換素子2b1の容量によっては、光電変換素子2b1が蓄積キャパシタ2b3を兼ねることができる。
 光電変換素子2b1は、例えば、フォトダイオードなどとすることができる。
 薄膜トランジスタ2b2は、蓄積キャパシタ2b3への電荷の蓄積および放出のスイッチングを行うことができる。薄膜トランジスタ2b2は、ゲート電極2b2a、ドレイン電極2b2b及びソース電極2b2cを有することができる。薄膜トランジスタ2b2のゲート電極2b2aは、対応する制御ライン2c1と電気的に接続することができる。薄膜トランジスタ2b2のドレイン電極2b2bは、対応するデータライン2c2と電気的に接続することができる。薄膜トランジスタ2b2のソース電極2b2cは、対応する光電変換素子2b1と蓄積キャパシタ2b3とに電気的に接続することができる。また、光電変換素子2b1のアノード側と蓄積キャパシタ2b3は、後述するアナログ回路4bが電気的に接続された配線パターン4a1のグラウンド(アナロググラウンド)に電気的に接続することができる。
 制御ライン2c1は、所定の間隔をあけて互いに平行に複数設けることができる。制御ライン2c1は、例えば、行方向に延びるものとすることができる。1つの制御ライン2c1は、基板2aの周縁近傍に設けられた複数の配線パッド2d1のうちの1つと電気的に接続することができる。1つの配線パッド2d1には、フレキシブルプリント基板2e1に設けられた複数の配線のうちの1つを電気的に接続することができる。フレキシブルプリント基板2e1に設けられた複数の配線の他端は、回路部4に設けられたアナログ回路4b(ゲートドライバ4b1)とそれぞれ電気的に接続することができる。
 データライン2c2は、所定の間隔をあけて互いに平行に複数設けることができる。データライン2c2は、例えば、行方向に直交する列方向に延びるものとすることができる。1つのデータライン2c2は、基板2aの周縁近傍に設けられた複数の配線パッド2d2のうちの1つと電気的に接続することができる。1つの配線パッド2d2には、フレキシブルプリント基板2e2に設けられた複数の配線のうちの1つを電気的に接続することができる。フレキシブルプリント基板2e2に設けられた複数の配線の他端は、回路部4に設けられたアナログ回路4b(積分アンプ4b3)とそれぞれ電気的に接続することができる。
 制御ライン2c1、およびデータライン2c2は、例えば、アルミニウムやクロムなどの低抵抗金属を用いて形成することができる。
 保護層2fは、光電変換部2b、制御ライン2c1、およびデータライン2c2などを覆うことができる。保護層2fは、例えば、酸化物絶縁材料、窒化物絶縁材料、酸窒化物絶縁材料、および樹脂の少なくとも1種を含むことができる。
 回路部4は、アレイ基板2の、シンチレータ3が設けられる側とは反対側に設けることができる。回路部4には、基板4a、アナログ回路4b、デジタル回路4c、ヒートシンク4d、伝熱部4e、およびインダクタ4fを設けることができる。
 基板4aは、板状を呈し、アレイ基板2側とは反対側の面に配線パターン4a1、4a2を有することができる。
 後述するように、アナログ回路4bは、複数のゲートドライバ4b1、行選択回路4b2、複数の積分アンプ4b3、複数の選択回路4b4、および複数のADコンバータ4b5を有することができる。この場合、アナログ回路4bを構成する要素や回路を集積回路として1つのパッケージに収納することができる。アナログ回路4bが収納されたパッケージは、配線パターン4a1と電気的に接続することができる。配線パターン4a1は、フレキシブルプリント基板2e1、2e2と電気的に接続することができる。すなわち、アナログ回路4bは、フレキシブルプリント基板2e1を介して複数の制御ライン2c1と電気的に接続することができる。アナログ回路4bは、フレキシブルプリント基板2e2を介して複数のデータライン2c2と電気的に接続することができる。
 後述するように、デジタル回路4cは、画像処理回路4c1を有することができる。この場合、デジタル回路4cを構成する要素や回路を集積回路として1つのパッケージに収納することができる。デジタル回路4cが収納されたパッケージは、配線パターン4a2と電気的に接続することができる。デジタル回路4cが収納されたパッケージは、配線パターン4a2のグラウンド(デジタルグラウンド)が設けられる領域に設けることができる。
 アナログ回路4bは、複数の光電変換部2bから画像データ信号S2を読み出すことができる。また、アナログ回路4bは、さらに、読み出された画像データ信号S2をデジタル信号に変換するようにしてもよい。
 図4に示すように、アナログ回路4bは、複数のゲートドライバ4b1、行選択回路4b2、複数の積分アンプ4b3、複数の選択回路4b4、および複数のADコンバータ4b5を有することができる。なお、複数のADコンバータ4b5は、アナログ回路4bおよびデジタル回路4cのいずれかに設けられていればよい。以下においては、一例として、複数のADコンバータ4b5がアナログ回路4bに設けられている場合を説明する。
 行選択回路4b2には、制御信号S1を入力することができる。制御信号S1は、例えば、画像処理回路4c1などから行選択回路4b2に入力することができる。行選択回路4b2は、X線画像の走査方向に従って、対応するゲートドライバ4b1に制御信号S1を入力することができる。ゲートドライバ4b1は、対応する制御ライン2c1に制御信号S1を入力することができる。
 例えば、ゲートドライバ4b1は、フレキシブルプリント基板2e1を介して、制御信号S1を各制御ライン2c1毎に順次入力することができる。制御ライン2c1に入力された制御信号S1により薄膜トランジスタ2b2がオン状態となり、蓄積キャパシタ2b3からの電荷(画像データ信号S2)が受信できるようになる。
 また、1つの積分アンプ4b3は、1つのデータライン2c2と電気的に接続することができる。積分アンプ4b3は、光電変換部2bからの画像データ信号S2を順次受信することができる。そして、積分アンプ4b3は、一定時間内に流れる電流を積分し、その積分値に対応した電圧を選択回路4b4へ出力することができる。この様にすれば、所定の時間内にデータライン2c2を流れる電流の値(電荷量)を電圧値に変換することが可能となる。すなわち、積分アンプ4b3は、シンチレータ3において発生した蛍光の強弱分布に対応した画像データ情報を、電位情報へと変換することができる。
 選択回路4b4は、読み出しを行う積分アンプ4b3を選択し、電位情報へと変換された画像データ信号S2を順次読み出すことができる。
 ADコンバータ4b5は、読み出された画像データ信号S2をデジタル信号に順次変換することができる。デジタル信号に変換された画像データ信号S2は、デジタル回路4c(画像処理回路4c1)に入力することができる。
 デジタル回路4cは、画像処理回路4c1を有することができる。デジタル回路4cは、アナログ回路4bからの信号に基づいて、X線画像を構成することができる。
 なお、複数のADコンバータ4b5がアナログ回路4bに設けられている場合には、デジタル回路4cは、アナログ回路4bからのデジタル信号に基づいて、X線画像を構成することができる。
 複数のADコンバータ4b5がデジタル回路4cに設けられている場合には、デジタル回路4cは、アナログ回路4bからの画像データ信号S2(アナログ信号)をデジタル信号に変換し、変換されたデジタル信号に基づいて、X線画像を構成することができる。
 構成されたX線画像のデータは、デジタル回路4cから外部の機器に向けて出力することができる。
 ヒートシンク4dは、基板4aの、アレイ基板2側とは反対側に設けることができる。ヒートシンク4dは、例えば、複数の放熱フィンを有し、熱伝導率の高い材料から形成することができる。ヒートシンク4dは、例えば、アルミニウムなどの金属から形成することができる。ヒートシンク4dは、例えば、ネジなどの締結部材を用いて、基板4aとともに支持板24などに取り付けることができる。
 伝熱部4eは、伝熱部4e1(第2の伝熱部の一例に相当する)、および伝熱部4e2(第1の伝熱部の一例に相当する)を有することができる。
 伝熱部4e1は、ヒートシンク4dと、筐体20の内壁(基部23)との間に設けることができる。
 伝熱部4e2は、アナログ回路4bが収納されたパッケージ、およびデジタル回路4cが収納されたパッケージの少なくともいずれかと、ヒートシンク4dと、の間に設けることができる。伝熱部4e1および伝熱部4e2は、例えば、シート状を呈し、熱伝導率の高い材料を用いたフィラーが混合された樹脂やゴムなどから形成することができる。
 伝熱部4e1が設けられていれば、ヒートシンク4dと筐体20の内壁との間の空間を埋めることができる。そのため、熱がヒートシンク4dから筐体20に伝わり易くなる。
 伝熱部4e2が設けられていれば、ヒートシンク4dとパッケージとの間の空間を埋めることができる。そのため、熱がパッケージからヒートシンク4dに伝わり易くなる。
 インダクタ4fは、基板4aの、アレイ基板2側とは反対側に設けることができる。インダクタ4fは、例えば、フェライトなどの磁性体を含む本体と、本体の内部に設けられ、導電性を有するコイル状の導電部と、を有することができる。導電部は、例えば、銅などの金属を含むコイルパターン、または銅などの金属を含むコイルなどとすることができる。導電部の両側の端部は、本体の外部に露出させることができる。導電部の一方の端部は、アナログ回路4bが電気的に接続された配線パターン4a1のグラウンド(アナロググラウンド)と電気的に接続することができる。導電部の他方の端部は、デジタル回路4cが電気的に接続された配線パターン4a2のグラウンド(デジタルグラウンド)と電気的に接続することができる。
 なお、インダクタ4fに関する詳細は後述する。
 図2に示すように、シンチレータ3は、複数の光電変換部2bの上に設けることができる。シンチレータ3は、入射したX線を蛍光に変換することができる。シンチレータ3は、基板2a上の複数の光電変換部2bが設けられた領域(有効画素領域)を覆うように設けることができる。
 シンチレータ3は、例えば、ヨウ化セシウム(CsI):タリウム(Tl)、ヨウ化ナトリウム(NaI):タリウム(Tl)、あるいは臭化セシウム(CsBr):ユーロピウム(Eu)などを用いて形成することができる。シンチレータ3は、真空蒸着法を用いて形成することができる。真空蒸着法を用いてシンチレータ3を形成すれば、複数の柱状結晶の集合体からなるシンチレータ3を形成することができる。
 また、シンチレータ3は、例えば、テルビウム賦活硫酸化ガドリニウム(GdS/Tb、又はGOS)などを用いて形成することもできる。この場合、複数の光電変換部2bごとに四角柱状のシンチレータ3が設けられるように、マトリクス状の溝部を形成することができる。
 その他、検出部10には、蛍光の利用効率を高めて感度特性を改善するために、シンチレータ3の表面側(X線の入射面側)を覆う図示しない反射層を設けることができる。
 また、空気中に含まれる水蒸気により、シンチレータ3の特性と図示しない反射層の特性が劣化するのを抑制するために、シンチレータ3と反射層を覆う図示しない防湿部を設けることができる。
 図1に示すように、筐体20には、カバー部21、入射窓22、基部23、支持板24、スペーサ25、およびスペーサ26を設けることができる。
 カバー部21は、箱状を呈し、X線の入射側、およびX線の入射側とは反対側に開口部を有することができる。軽量化を考慮して、カバー部21は、例えば、アルミニウム合金などの軽金属を用いて形成することができる。また、カバー部21は、例えば、ポリフェニレンサルファイド樹脂、ポリカーボネイト樹脂、炭素繊維強化プラスチック(CFRP;Carbon-Fiber-Reinforced Plastic)などを用いて形成することもできる。
 入射窓22は、板状を呈し、カバー部21の、X線の入射側の開口部を塞ぐように設けることができる。入射窓22は、X線を透過させることができる。入射窓22は、X線吸収率の低い材料を用いて形成することができる。入射窓22は、例えば、炭素繊維強化プラスチックなどを用いて形成することができる。
 基部23は、板状を呈し、カバー部21の、X線の入射側とは反対側の開口部を塞ぐように設けることができる。なお、基部23は、カバー部21と一体化してもよい。基部23の材料は、ある程度の剛性を有するものであれば特に限定はない。基部23の材料は、例えば、カバー部21の材料と同様とすることができる。なお、アナログ回路4bが電気的に接続された配線パターン4a1のグラウンド(アナロググラウンド)は、カバー部21や基部23に電気的に接続することができる。この様な場合には、カバー部21や基部23は、アルミニウム合金などの金属を用いて形成することが好ましい。
 支持板24は、板状を呈し、カバー部21の内部に設けることができる。支持板24の入射窓22側の面には、アレイ基板2を設けることができる。この場合、アレイ基板2を支持板24に固定してもよいし、アレイ基板2が支持板24に対して着脱可能としてもよい。支持板24の材料は、ある程度の剛性を有し、X線吸収率がある程度高いものとすることが好ましい。支持板24の材料は、例えば、ステンレスやアルミニウム合金などの金属とすることができる。
 スペーサ25は、柱状や筒状を呈し、カバー部21の内部に複数設けることができる。複数のスペーサ25は、支持板24と基部23との間に設けることができる。スペーサ25と支持板24の固定は、例えば、接着剤やネジなどの締結部材を用いて行うことができる。スペーサ25の材料は、ある程度の剛性を有するものであれば特に限定はない。スペーサ25は、例えば、金属や樹脂などを用いて形成することができる。
 なお、スペーサ25の形態、配設位置、数、材料などは例示をしたものに限定されるわけではない。また、支持板24がカバー部21の内部に支持されるのであれば、スペーサ25を用いなくてもよい。例えば、カバー部21の内側面からカバー部21の内部に突出する板状体を設け、支持板24が板状体により支持されるようにしてもよい。
 スペーサ26は、柱状や筒状を呈し、カバー部21の内部に複数設けることができる。複数のスペーサ26は、支持板24と基板4aとの間に設けることができる。複数のスペーサ26の固定は、例えば、接着剤やネジなどの締結部材を用いて行うことができる。スペーサ26は、絶縁性を有する材料から形成することができる。スペーサ26は、例えば、樹脂などを用いて形成することができる。なお、スペーサ26の形態、配設位置、数、材料などは例示をしたものに限定されるわけではない。
 次に、インダクタ4fについてさらに説明する。
 前述したように、アナログ回路4bは、アレイ基板2から画像データ信号S2を読み出すことができる。デジタル回路4cは、アナログ回路4bからの信号に基づいて、X線画像を構成することができる。この場合、アナログ回路4bとデジタル回路4cは、それぞれグラウンドラインを有しており、アナロググラウンドとデジタルグラウンドに別れている。
 ここで、デジタルグラウンドには、ノイズを多く含む信号が流れる場合が多い。例えば、デジタルグラウンドには、画像処理回路4c1を駆動するための電源などからのノイズを多く含む信号が流れる場合がある。また、アナロググラウンドは、アナロググラウンドの電位を安定させるために筺体20へ直接接続する場合がある。そのため、デジタルグラウンド側のノイズが、筺体20を介して、アナロググラウンド側に混入し易くなる。デジタルグラウンド側のノイズが、アナロググラウンド側に混入すると、X線画像のノイズとなり、X線画像の品質が低下するおそれがある。
 図5は、比較例に係るX線検出器101を例示するための模式断面図である。
 図5に示すように、X線検出器101には、アレイ基板2、シンチレータ3、および回路部104が設けられている。
 回路部104には、基板4a、アナログ回路4b、デジタル回路4c、ヒートシンク4d、および伝熱部4e2が設けられている。
 X線画像を構成するためのデジタル回路4cは、デジタルグラウンドが設けられる領域に設けられている。
 図5に示すように、ネジなどを介して、デジタルグラウンドと筺体20(支持板24)が電気的に接続されると、デジタルグラウンド側のノイズ201が筺体20(支持板24)を介して、アレイ基板2(複数の光電変換部2b)から読み出された画像データ信号S2に混入するおそれがある。デジタルグラウンド側のノイズ201が画像データ信号S2に混入すると、X線画像のノイズとなり、X線画像の品質が低下するおそれがある。
 図6は、比較例に係るX線検出器111を例示するための模式断面図である。
 図6に示すように、X線検出器111には、アレイ基板2、シンチレータ3、および回路部114が設けられている。
 回路部114には、基板4a、アナログ回路4b、デジタル回路4c、ヒートシンク4d、および伝熱部4e2が設けられている。
 X線画像を構成するためのデジタル回路4cは、デジタルグラウンドが設けられる領域に設けられている。
 図6に示すように、ヒートシンク4dを筐体20(基部23)に設ければ、デジタルグラウンドと筺体20(支持板24)が電気的に接続されることがない。そのため、図5において説明した、ノイズ201の混入を抑制することができる。
 ところが、ヒートシンク4dはアルミニウムなどの金属から形成されているため、デジタルグラウンド側のノイズ211が、ヒートシンク4d、基部23、スペーサ25、および支持板24を介して、アレイ基板2(複数の光電変換部2b)から読み出された画像データ信号S2に混入するおそれがある。この場合、ノイズ211のパスは長いループとなる。そのため、ノイズ201が、この長いループの過程で様々な場所に設けられた回路などに混入し、結果として、X線画像のノイズとなるおそれがある。
 これに対して、本実施の形態に係るX線検出器1においては、アナロググラウンドとデジタルグラウンドとの間に、インダクタ4fが電気的に接続されている。インダクタ4fは、フェライトなどの磁性体から形成された本体と、本体の内部に設けられ、導電性を有するコイル状の導電部と、を有している。そのため、ノイズが導電部を流れた際に、ノイズの少なくとも一部を熱に変換することができる。その結果、デジタルグラウンド側のノイズが、デジタルグラウンドとアナロググラウンドとを介して、アレイ基板2(複数の光電変換部2b)から読み出された画像データ信号S2に混入するのを抑制することができる。
 ここで、X線検出器1が一般医療などに用いられる場合には、正確な診断を行うために、より多くの光電変換部2bを設ける高密度化や、画像データ信号S2の読み出しと処理の高速化がX線検出器1に求められている。そのため、デジタル回路4cにおける処理の高速化が必要となり、動作クロックが高速化して、高周波成分の多いノイズが増加する傾向にある。
 この場合、インダクタ4fが設けられていれば、高周波の電位変動(ノイズの高周波成分)を効果的に除去することができる。そのため、動作クロックが速くなっても、ノイズがアレイ基板2(複数の光電変換部2b)から読み出された画像データ信号S2に混入するのを抑制することができる。
 また、デジタルグラウンド側のノイズが、ヒートシンク4dに流れたとしても、ノイズのパスは、ヒートシンク4dと基板4aとの間という短いループとなる。そのため、ノイズが、他の回路などに混入して、X線画像のノイズとなるのを抑制することができる。
 また、伝熱部4e1および伝熱部4e2の少なくともいずれかを、フェライトなどの磁性体を含むものとすれば、デジタルグラウンド側のノイズが、伝熱部4e1および伝熱部4e2の少なくともいずれかを流れた際に、ノイズの少なくとも一部を熱に変換することができる。そのため、デジタルグラウンド側のノイズが、アレイ基板2(複数の光電変換部2b)から読み出された画像データ信号S2に混入するのをさらに効果的に抑制することができる。
 また、伝熱部4e1および伝熱部4e2の少なくともいずれかが、フェライトなどの磁性体を含んでいれば、アナログ回路4bやデジタル回路4cで発生した熱を筐体20に伝えるのが容易となる。すなわち、アナログ回路4bが収納されたパッケージ、および、デジタル回路4cが収納されたパッケージにおける放熱性の向上を図ることができる。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
 1 X線検出器
 2 アレイ基板
 2a 基板
 2b 光電変換部
 3 シンチレータ
 4 回路部
 4a 基板
 4a1 配線パターン
 4a2 配線パターン
 4b アナログ回路
 4c デジタル回路
 4c1 画像処理回路
 4d ヒートシンク
 4e 伝熱部
 4f インダクタ
 10 検出モジュール
 20 筐体

Claims (4)

  1.  放射線を直接的またはシンチレータと協働して検出する複数の検出部を有するアレイ基板と、
     前記複数の検出部から画像データ信号を読み出すアナログ回路と、
     前記アナログ回路からの信号に基づいて、放射線画像を構成するデジタル回路と、
     前記アナログ回路のグラウンドと、前記デジタル回路のグラウンドと、の間に接続されたインダクタと、
     を備えた放射線検出器。
  2.  前記インダクタは、
      磁性体を含む本体部と、
      前記本体部の内部に設けられ、導電性を有するコイル状の導電部と、
     を有し、
     前記導電部の一方の端部が前記アナログ回路のグラウンドと接続され、
     前記導電部の他方の端部が前記デジタル回路のグラウンドと接続されている請求項1記載の放射線検出器。
  3.  ヒートシンクと、
     前記アナログ回路および前記デジタル回路の少なくともいずれかと、前記ヒートシンクと、の間に設けられ、磁性体を含む第1の伝熱部と、
     をさらに備えた請求項1または2に記載の放射線検出器。
  4.  前記アレイ基板、前記アナログ回路、前記デジタル回路、前記インダクタ、前記ヒートシンク、および前記第1の伝熱部が収納される筐体と、
     前記筐体の内部であって、前記筐体の内壁と、前記ヒートシンクと、の間に設けられ、磁性体を含む第2の伝熱部と、
     をさらに備えた請求項1~3のいずれか1つに記載の放射線検出器。
PCT/JP2021/019860 2020-07-01 2021-05-25 放射線検出器 WO2022004199A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21834674.0A EP4177642A4 (en) 2020-07-01 2021-05-25 RADIATION DETECTOR
KR1020227044385A KR20230011412A (ko) 2020-07-01 2021-05-25 방사선 검출기
CN202180044075.8A CN115702366A (zh) 2020-07-01 2021-05-25 放射线检测器
US18/066,528 US20230121993A1 (en) 2020-07-01 2022-12-15 Radiation detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-113825 2020-07-01
JP2020113825A JP2022012179A (ja) 2020-07-01 2020-07-01 放射線検出器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/066,528 Continuation US20230121993A1 (en) 2020-07-01 2022-12-15 Radiation detector

Publications (1)

Publication Number Publication Date
WO2022004199A1 true WO2022004199A1 (ja) 2022-01-06

Family

ID=79315905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019860 WO2022004199A1 (ja) 2020-07-01 2021-05-25 放射線検出器

Country Status (6)

Country Link
US (1) US20230121993A1 (ja)
EP (1) EP4177642A4 (ja)
JP (1) JP2022012179A (ja)
KR (1) KR20230011412A (ja)
CN (1) CN115702366A (ja)
WO (1) WO2022004199A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249637A (ja) 2002-02-26 2003-09-05 Canon Inc 画像検出器
JP2006041517A (ja) * 1997-04-10 2006-02-09 Canon Inc 光電変換装置
US20090251125A1 (en) * 2008-04-08 2009-10-08 Jeffery Richard Hawver Power supply for portable radiographic detector
JP2009300084A (ja) * 2008-06-10 2009-12-24 Toshiba Corp 放射線検出装置
US20120018643A1 (en) * 2010-07-21 2012-01-26 Siemens Medical Solutions Usa, Inc. Dual Amplifier For MR-PET Hybrid Imaging System
JP2014055960A (ja) * 2008-12-12 2014-03-27 Fujifilm Corp 画像取得システム
JP2017228863A (ja) * 2016-06-21 2017-12-28 コニカミノルタ株式会社 放射線画像撮影装置
JP2018125731A (ja) * 2017-02-01 2018-08-09 キヤノン株式会社 放射線撮像装置及び放射線撮像システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135815B2 (ja) * 2006-02-14 2013-02-06 ミツミ電機株式会社 半導体集積回路装置
JP5437558B2 (ja) * 2006-11-16 2014-03-12 三菱電機株式会社 プリント基板の電磁ノイズ対策構造
JP6022750B2 (ja) * 2011-06-27 2016-11-09 東芝電子管デバイス株式会社 放射線検出装置
KR101835089B1 (ko) * 2015-11-16 2018-03-08 주식회사 디알텍 방사선 검출장치와 이를 포함하는 방사선 촬영장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041517A (ja) * 1997-04-10 2006-02-09 Canon Inc 光電変換装置
JP2003249637A (ja) 2002-02-26 2003-09-05 Canon Inc 画像検出器
US20090251125A1 (en) * 2008-04-08 2009-10-08 Jeffery Richard Hawver Power supply for portable radiographic detector
JP2009300084A (ja) * 2008-06-10 2009-12-24 Toshiba Corp 放射線検出装置
JP2014055960A (ja) * 2008-12-12 2014-03-27 Fujifilm Corp 画像取得システム
US20120018643A1 (en) * 2010-07-21 2012-01-26 Siemens Medical Solutions Usa, Inc. Dual Amplifier For MR-PET Hybrid Imaging System
JP2017228863A (ja) * 2016-06-21 2017-12-28 コニカミノルタ株式会社 放射線画像撮影装置
JP2018125731A (ja) * 2017-02-01 2018-08-09 キヤノン株式会社 放射線撮像装置及び放射線撮像システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177642A4

Also Published As

Publication number Publication date
CN115702366A (zh) 2023-02-14
KR20230011412A (ko) 2023-01-20
EP4177642A4 (en) 2024-07-31
US20230121993A1 (en) 2023-04-20
JP2022012179A (ja) 2022-01-17
EP4177642A1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
US6323891B1 (en) Imaging apparatus with thermal discharger for transferring heat to cool photoelectric transfer elements
US7696484B2 (en) Electronic cassette type of radiation detection apparatus
US20160161616A1 (en) Radiation detector
US20190313525A1 (en) Radiation imaging apparatus and radiation imaging system
JP2010262134A (ja) 放射線検出装置及び放射線画像撮影システム
JP2006215028A (ja) 光電変換装置
JP2007300996A (ja) 放射線画像撮影装置
KR102057181B1 (ko) 방사선 검출기
WO2022004199A1 (ja) 放射線検出器
TWI659222B (zh) Radiation detector
WO2021205688A1 (ja) 放射線検出器
JP6953186B2 (ja) 放射線検出器
JP2021032715A (ja) 放射線検出器
JP6968668B2 (ja) 放射線検出モジュール、および放射線検出器
JP7236916B2 (ja) 放射線検出器
US20220163682A1 (en) Radiation detection module, radiation detector, and method for manufacturing radiation detection module
JP2019007890A (ja) 放射線検出器、および放射線画像検出装置
JP2017187340A (ja) 放射線検出器
JP2019074490A (ja) 放射線検出器
JP2019196931A (ja) 放射線検出器
JP2017207434A (ja) 放射線検出器、および放射線画像検出装置
JP2017187437A (ja) 放射線検出器、および放射線画像検出装置
JP2021110666A (ja) 放射線検出モジュール、および放射線検出器
JP2020197441A (ja) 放射線検出器
JP2017190951A (ja) 放射線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227044385

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021834674

Country of ref document: EP

Effective date: 20230201