WO2022004141A1 - 固定構造、光デバイス、及びレーザ装置 - Google Patents

固定構造、光デバイス、及びレーザ装置 Download PDF

Info

Publication number
WO2022004141A1
WO2022004141A1 PCT/JP2021/018038 JP2021018038W WO2022004141A1 WO 2022004141 A1 WO2022004141 A1 WO 2022004141A1 JP 2021018038 W JP2021018038 W JP 2021018038W WO 2022004141 A1 WO2022004141 A1 WO 2022004141A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
optical fiber
resin body
fixed structure
coating
Prior art date
Application number
PCT/JP2021/018038
Other languages
English (en)
French (fr)
Inventor
智久 遠藤
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2022533711A priority Critical patent/JP7489464B2/ja
Priority to CN202180037392.7A priority patent/CN115668024A/zh
Priority to EP21832252.7A priority patent/EP4177648A1/en
Priority to US18/008,242 priority patent/US20230204864A1/en
Publication of WO2022004141A1 publication Critical patent/WO2022004141A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves

Definitions

  • the present invention relates to a fixed structure in which an optical fiber is fixed to a support using a resin body.
  • the present invention also relates to an optical device having such a fixed structure and a laser device including such an optical device.
  • a fixed structure in which the optical fiber is fixed to the support by a resin body covering the boundary between the coating removal section and the coating section of the optical fiber is widely used.
  • the optical fiber is fixed to the terminal portion (corresponding to the above-mentioned support) by a guide adhesive (corresponding to the above-mentioned resin body) covering the boundary between the coating removal section and the covering section of the optical fiber.
  • the fixed structure is disclosed.
  • the covering section refers to a section in which the clad of the optical fiber is covered with a coating
  • the coating removal section refers to a section in which the coating is removed and the clad is exposed.
  • the light leaked from the clad of the optical fiber to the resin body in the covering section may enter the coating in the covering section to generate heat, which is the reliability of the fixed structure. It was a factor that reduced the number of people.
  • One aspect of the present invention has been made in view of the above problems, and heat generation of the coating that may occur when the light leaked from the clad of the optical fiber to the resin body in the coating removal section is incident on the coating in the coating section.
  • the purpose is to realize a highly reliable fixed structure.
  • Another aspect of the present invention is to realize a highly reliable optical device by using such a fixed structure.
  • Another aspect of the present invention is to realize a highly reliable laser apparatus by using such an optical device.
  • the fixed structure according to one aspect of the present invention is a boundary between an optical fiber, a support having a groove for accommodating the optical fiber, and a covering section and a covering removing section of the optical fiber inside the groove.
  • a resin body for fixing the optical fiber to the support is provided, and the resin body extends to the outside of the groove in the middle of the groove.
  • the optical device according to one aspect of the present invention has a fixed structure according to one aspect of the present invention.
  • the laser device according to one aspect of the present invention includes an optical device according to one aspect of the present invention.
  • the heat generation of the coating that may occur when the light leaked from the clad of the optical fiber to the resin body in the coating section is incident on the coating in the coating section is suppressed, and a highly reliable fixed structure can be obtained. It can be realized. Moreover, one aspect of the present invention can realize a highly reliable optical device by using such a fixed structure. Moreover, one aspect of the present invention can realize a highly reliable laser apparatus by using such an optical device.
  • FIG. 1 is a side view showing the configuration of the optical device 1.
  • FIG. 2 is a cross-sectional view showing an AA'cross section (see FIG. 1) of the fixed structure 10.
  • FIG. 3 is a cross-sectional view showing a BB'cross section (see FIG. 1) of the fixed structure 10.
  • the optical device 1 is a device for irradiating a machined object with a laser beam.
  • the optical device 1 includes an optical fiber 11, a support 12, a resin body 13, a large-diameter fiber 14, and a glass block 15.
  • the optical fiber 11, the support 12, and the resin body 13 form a fixed structure 10.
  • the optical device 1 may include a housing (not shown). In this case, the support 12, the resin body 13, the large-diameter fiber 14, and the glass block 15 are housed in the housing, and the optical fiber 11 is drawn into the housing.
  • the optical fiber 11 is configured to guide the laser beam.
  • an optical fiber including a cylindrical core 11a, a cylindrical clad 11b surrounding the core 11a, and a cylindrical coating 11c surrounding the clad 11b is used as the optical fiber 11.
  • the core 11a and the clad 11b are mainly made of quartz, and the coating 11c is mainly made of resin.
  • the coating 11c is removed in the section including one end of the optical fiber 11.
  • the section in which the clad 11b is covered with the coating 11c is referred to as a “covering section”
  • the section in which the coating 11c is removed and the clad 11b is exposed is referred to as a “cover removal section”.
  • the support 12 has a configuration for linearly supporting the optical fiber 11.
  • the support 12 includes a flange portion 12b, a substrate portion 12a provided on one side of the flange portion 12b, and a ferrule portion 12c provided on the other side of the flange portion 12b. Support is used.
  • the support 12 is integrally molded of copper and has a gold-plated surface.
  • the substrate portion 12a is a plate-shaped portion having a rectangular main surface. A groove 12a1 that crosses this surface in the longitudinal direction and ribs 12a2 that are arranged on both sides of the groove 12a1 and cross the surface in the longitudinal direction are formed on one surface of the substrate portion 12a.
  • the optical fiber 11 is housed inside the groove 12a1 and is inserted into the ferrule portion 12c through a through hole provided in the center of the flange portion 12b. At this time, the optical fiber 11 is arranged so that the boundary between the covering section and the covering removing section is located inside the groove 12a1.
  • the resin body 13 is configured to fix the optical fiber 11 housed in the groove 12a1 to the support body 12.
  • a resin body obtained by curing the liquid resin injected into the groove 12a1 is used as the resin body 13.
  • This liquid resin may be a photocurable resin or a thermosetting resin.
  • the curing of the liquid resin is realized by irradiating the liquid resin with light belonging to a specific wavelength band (for example, ultraviolet rays).
  • a specific wavelength band for example, ultraviolet rays
  • the curing of the liquid resin is realized by heating the liquid resin.
  • the laser beam emitted from the optical fiber 11 irradiates the object to be processed via the large diameter fiber 14 and the glass block 15.
  • a cylindrical optical fiber having a tapered diameter at one end is used as the large-diameter fiber 14, and a cylindrical glass block having a tapered diameter at one end is used as the glass block 15. I am using it.
  • the emission end face of the optical fiber 11 is fused and connected to the small diameter side end face of the large diameter fiber 14, and the large diameter side end face of the large diameter fiber 14 is fused to the small diameter side end face of the glass block 15.
  • the fixed structure 10 includes an optical fiber 11, a support 12, and a resin body 13.
  • the support 12 is formed with a groove 12a1 for accommodating the optical fiber 11.
  • the resin body 13 covers the boundary between the covering section and the coating removing section of the optical fiber 11 inside the groove 12a1 and fixes the optical fiber 11 to the support 12.
  • the feature of the fixed structure 10 is that the resin body 13 extends to the outside of the groove 12a1 in the middle of the groove 12a1.
  • another groove (orthogonal in the present embodiment) that intersects the groove 12a1 in the middle of the groove 12a1. 12a3 is formed on the support 12.
  • the ribs 12a2 provided on both sides of the groove 12a1 are interrupted in the middle of the groove 12a1.
  • the resin body 13 formed by curing this liquid resin takes a shape that extends to the outside of the groove 12a1 in the middle of the groove 12a1.
  • the laser beam applied to the object to be processed propagates forward from the optical fiber 11 side to the glass block 15 side, and the light reflected by the object to be processed is emitted. It may propagate in the opposite direction from the glass block 15 side to the optical fiber 11 side. At this time, a part of the light propagating in the opposite direction leaks from the clad 11b of the optical fiber 11 to the resin body 13 in the coating removal section. Then, the light leaked from the clad 11b of the optical fiber 11 to the resin body 13 in the coating removal section propagates through the resin body 13 formed inside the groove 12a1 and is incident on the coating 11c of the optical fiber 11 to enter the optical fiber. The coating 11c of 11 may generate heat.
  • the resin body 13 extends to the outside of the groove 12a1 in the middle of the groove 12a1. Therefore, a part of the light leaked from the clad 11b of the optical fiber 11 to the resin body 13 in the coating removal section is outside the groove 12a1 (specifically, the groove 12a3) before being incident on the coating 11c of the optical fiber 11. It is guided to the resin body 13 that has spread to. Therefore, in the light leaked from the clad 11b of the optical fiber 11 to the resin body 13 in the coating removal section, the ratio of the light incident on the coating 11c of the optical fiber 11 can be suppressed to a small value.
  • the refractive index of the resin body 13 is preferably lower than that of the clad 11b of the optical fiber 11. This makes it possible to reduce the amount of light leaking from the clad 11b of the optical fiber 11 to the resin body 13 in the coating removal section. Therefore, the intensity of the light incident on the coating 11c of the optical fiber 11 can be further reduced. As a result, the heat generated by the coating 11c of the optical fiber 11 that may occur when the light leaked from the clad 11b of the optical fiber 11 to the resin body 13 in the coating removal section is incident on the coating 11c of the optical fiber 11 can be further suppressed. can.
  • the groove 12a1 is preferably a U-shaped groove as shown in FIG.
  • the stress received by the optical fiber 11 from the resin body 13 formed inside the groove 12a1 approaches uniform (axisymmetric).
  • the groove 12a3 is formed line-symmetrically with respect to the groove 12a1 in the plan view of the support 12.
  • the stress received by the optical fiber 11 from the resin body 13 formed inside the grooves 12a1 and the grooves 12a3 approaches uniform (line symmetry).
  • the bottom portion of the groove 12a1 is formed with a recess 12a4 for restricting the expanding range of the resin body 13.
  • the liquid resin injected into the groove 12a1 when forming the resin body 13 penetrates beyond the recess 12a4 to the vicinity of the flange portion 12b, and the resin body 13 obtained by curing the recess 12a4 is unintended. It is possible to prevent the optical fiber 11 from being formed into a shape (as a result, an unintended stress is applied to the optical fiber 11).
  • how the resin body 13 spreads is defined by the groove 12a1. Therefore, the resin body 13 is expanded to the outside of the groove 12a1 by forming another groove 12a3 that intersects with the groove 12a1.
  • the present invention is not limited to this.
  • how the resin body 13 spreads may be defined by the ribs 12a2. In this case, the resin body 13 can be expanded to the outside of the groove 12a1 simply by interrupting the rib 12a2 in the middle of the groove 12a1 without forming another groove 12a3 that intersects with the groove 12a1.
  • FIG. 4 shows the results obtained by numerical experiments on the power of light propagating in the reverse direction of the resin body 13 formed inside the groove 12a1 in the fixed structure 10.
  • FIG. 4 is a graph in which the power of light propagating in the reverse direction of the resin body 13 formed inside the groove 12a1 is plotted along the z-axis shown in FIG.
  • the z-axis is an axis parallel to the optical axis of the optical fiber 11, and its origin is set at the start point of the groove 12a3.
  • the width of the groove 12a3 in the z-axis direction was set to 2 mm.
  • the power of the light propagating in the reverse direction through the resin body 13 formed inside the groove 12a1 in the third section is the light propagating in the reverse direction through the resin body 13 formed inside the groove 12a1 in the first section. It is about 1/8 of the power of. This means that the power of light reaching the coating 11c of the optical fiber 11 is sufficiently small.
  • FIG. 5A is a perspective view of the fixed structure 10 (Example) and a temperature distribution map thereof.
  • FIG. 5B is a perspective view of the fixed structure 10 (comparative example) in which the groove 12a3 is omitted so that the resin body 13 does not spread to the outside of the groove 12a1 and the temperature distribution thereof. Both temperature distribution maps are for light propagating in the opposite direction through the clad 11b of the optical fiber 11. According to the temperature distribution map shown in FIG. 5, in the above comparative example in which the resin body 13 does not spread to the outside of the groove 12a1, the temperature of the coating 11c of the optical fiber 11 reaches about 100 ° C., whereas the temperature of the resin body 13 reaches about 100 ° C.
  • the temperature of the coating 11c of the optical fiber 11 is suppressed to about 40 ° C. in the above embodiment in which the light spreads to the outside of the groove 12a1. That is, by providing the groove 12a3 and expanding the resin body 13 to the outside of the groove 12a1, the heat generated by the coating 11c of the optical fiber 11 caused by the light leaked from the clad 11b of the optical fiber 11 to the resin body 13 in the coating removal section. It was confirmed that the amount of light could be kept small.
  • FIG. 6 is a graph showing the correlation between the temperature rise of the coating 11c of the optical fiber 11 and the deviation thereof for the above-mentioned example of 5 samples and the above-mentioned comparative example of 7 samples.
  • the difference between the temperature rise of the coating 11c of the optical fiber 11 and the temperature rise of the support 12 is taken on the horizontal axis, and the multiple of the standard deviation is taken on the vertical axis. According to the graph shown in FIG.
  • the average value of the temperature rise of the coating 11c is higher than the temperature rise of the support 12 by about 30 ° C., whereas in the above embodiment, the coating 11c It can be seen that the average value of the temperature rise is about the same as the temperature rise of the support 12. Further, according to the graph shown in FIG. 6, in the above comparative example, the temperature rise of the coating 11c has a large variation, and there is a high probability that an extreme temperature rise causing a serious problem in the coating 11c will occur. In the examples, it can be seen that the variation in the temperature rise of the coating 11c is small, and the probability that the above occurs is low. That is, it can be seen that the reliability of the above-mentioned embodiment is higher than the reliability of the above-mentioned comparative example.
  • the above-mentioned optical device 1 can be used as a laser device for processing.
  • FIG. 7 is a block diagram showing the configuration of such a laser device 20.
  • the laser device 20 includes a laser light source 21, a delivery fiber 22, and an optical device 23.
  • the laser light source 21 is configured to generate a laser beam.
  • the laser light source 21 may be a solid-state laser, a liquid laser, a gas laser, or a fiber laser.
  • the delivery fiber 22 is configured to guide the laser beam generated by the laser light source 21.
  • the delivery fiber 22 may be a single mode fiber or a multimode fiber.
  • the optical device 23 is configured to irradiate the processing object W with the light guided through the delivery fiber 22.
  • the fixed structure according to the first aspect of the present invention includes an optical fiber, a support having a groove for accommodating the optical fiber, and a covering section and coating of the optical fiber inside the groove.
  • a resin body that covers the boundary with the removal section and fixes the optical fiber to the support is provided, and the resin body extends to the outside of the groove in the middle of the groove.
  • the light leaked from the clad of the optical fiber to the resin body in the covering section is less likely to enter the coating of the optical fiber in the covering section. Therefore, the heat generation of the optical fiber coating can be suppressed to be smaller than that in the case where the resin body is formed only inside the groove. As a result, the reliability of the fixed structure can be improved as compared with the case where the resin body is formed only inside the groove.
  • the other grooves are formed line-symmetrically with respect to the grooves in the plan view of the support. It has been adopted.
  • the heat generation of the optical fiber coating can be further suppressed.
  • the groove is a U-shaped groove.
  • a recess for restricting the spreading range of the resin body is formed at the bottom of the groove. The configuration is adopted.
  • the resin body has an unintended shape, and as a result, it is less likely that an unintended stress is applied to the optical fiber.
  • the optical device according to the seventh aspect of the present invention has the fixed structure according to any one of the first to sixth aspects.
  • the laser apparatus according to the eighth aspect of the present invention includes the optical device according to the seventh aspect.
  • Optical device 10 Fixed structure 11 Optical fiber 11a Core 11b Clad 11c Coating 12 Support 12a Substrate 12a1 Groove 12a2 Rib 12a3 Groove 12a4 Recess 13 Resin body 14 Large diameter fiber 15 Glass block 20 Laser device 21 Laser light source 22 Delivari device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

本発明の一態様は、樹脂体を用いて光ファイバを支持体に固定する固定構造において信頼性を高めることを目的とする。固定構造(10)は、光ファイバ(11)と、光ファイバ(11)を収容するための溝(12a1)が形成された支持体(12)と、溝(12a1)の内部において光ファイバ(11)の被覆区間と被覆除去区間との境界を覆い、光ファイバ(11)を支持体(12)に固定する樹脂体(13)と、を備えている。樹脂体(13)は、溝(12a1)の途中で溝(12a1)の外部に広がっている。

Description

固定構造、光デバイス、及びレーザ装置
 本発明は、樹脂体を用いて光ファイバを支持体に固定する固定構造に関する。また、本発明は、そのような固定構造を備えた光デバイス、及び、そのような光デバイスを備えたレーザ装置に関する。
 光ファイバの被覆除去区間と被覆区間との境界を覆う樹脂体によって光ファイバを支持体に固定する固定構造が広く用いられている。例えば、特許文献1には、光ファイバの被覆除去区間と被覆区間との境界を覆う案内接着剤(上述した樹脂体に相当)によって光ファイバを末端部分(上述した支持体に相当)に固定する固定構造が開示されている。なお、被覆区間とは、光ファイバのクラッドが被覆により覆われた区間のことを指し、被覆除去区間とは、被覆が除去されクラッドが露出した区間のことを指す。
日本国公開特許公報「特表2016-533543号公報」
 しかしながら、従来の固定構造においては、被覆除去区間において光ファイバのクラッドから樹脂体へと漏出した光が被覆区間において被覆に入射して被覆を発熱させることがあり、このことが固定構造の信頼性の低下させる要因となっていた。
 本発明の一態様は、上記の問題に鑑みてなされたものであり、被覆除去区間において光ファイバのクラッドから樹脂体へと漏出した光が被覆区間において被覆に入射することによって生じ得る被覆の発熱を抑え、信頼性の高い固定構造を実現することを目的とする。また、本発明の一態様は、そのような固定構造を用いることによって、信頼性の高い光デバイスを実現することを目的とする。また、本発明の一態様は、そのような光デバイスを用いることによって、信頼性の高いレーザ装置を実現することを目的とする。
 本発明の一態様に係る固定構造は、光ファイバと、前記光ファイバを収容するための溝が形成された支持体と、前記溝の内部において前記光ファイバの被覆区間と被覆除去区間との境界を覆い、前記光ファイバを前記支持体に固定する樹脂体と、を備えており、前記樹脂体は、前記溝の途中で前記溝の外部に広がっている。
 本発明の一態様に係る光デバイスは、本発明の一態様に係る固定構造を備えている。
 本発明の一態様に係るレーザ装置は、本発明の一態様に係る光デバイスを備えている。
 本発明の一態様によれば、被覆除去区間において光ファイバのクラッドから樹脂体へと漏出した光が被覆区間において被覆に入射することによって生じ得る被覆の発熱を抑え、信頼性の高い固定構造を実現することができる。また、本発明の一態様は、そのような固定構造を用いることによって、信頼性の高い光デバイスを実現することができる。また、本発明の一態様は、そのような光デイバスを用いることによって、信頼性の高いレーザ装置を実現することができる。
本発明の一実施形態に係る固定構造を備えた光デバイスの構成を示す側面図である。 図1に示す光デバイスのAA’断面を示す断面図である。 図1に示す光デバイスのBB’断面を示す断面図である。 図1~図3に示す固定構造において、溝の内部を逆方向に伝搬する光のパワーの測定結果を示すグラフである。 (a)は、実施例に係る固定構造の斜視図、及び、その温度分布図であり、(b)は、比較例に係る固定構造の斜視図、及び、その温度分布図である。 5サンプルの実施例及び7サンプルの比較例について、光ファイバの被覆の温度上昇とその偏差との相関を示したグラフである。 図1に示す光デバイスを備えたレーザ装置のブロック図である。
 (光デバイスの構成)
 本発明の一実施形態に係る固定構造10を含む光デバイス1について、図1~3を参照して説明する。図1は、光デバイス1の構成を示す側面図である。図2は、固定構造10のAA’断面(図1参照)を示す断面図である。図3は、固定構造10のBB’断面(図1参照)を示す断面図である。
 光デバイス1は、加工対象物にレーザ光を照射するための装置である。光デバイス1は、図1に示すように、光ファイバ11と、支持体12と、樹脂体13と、太径ファイバ14と、ガラスブロック15と、を備えている。光デバイス1においては、光ファイバ11と、支持体12と、樹脂体13と、が固定構造10を構成している。なお、光デバイス1は、不図示の筐体を備えていてもよい。この場合、支持体12、樹脂体13、太径ファイバ14、及びガラスブロック15が、その筐体に収容され、光ファイバ11が、その筐体に引き込まれる。
 光ファイバ11は、レーザ光を導波するための構成である。本実施形態においては、光ファイバ11として、円柱状のコア11aと、コア11aを取り囲む円筒状のクラッド11bと、クラッド11bを取り囲む円筒状の被覆11cと、を備えた光ファイバを用いている。コア11a及びクラッド11bは、主に石英により構成されており、被覆11cは、主に樹脂により構成されている。被覆11cは、光ファイバ11の一方の端部を含む区間において除去されている。光ファイバ11において、クラッド11bが被覆11cに覆われた区間のことを「被覆区間」と呼び、被覆11cが除去されクラッド11bが露出した区間のことを「被覆除去区間」と呼ぶ。
 支持体12は、光ファイバ11を直線状に支持するための構成である。本実施形態においては、支持体12として、鍔部12bと、鍔部12bの一方の側に設けられた基板部12aと、鍔部12bの他方の側に設けられたフェルール部12cと、を備えた支持体を用いている。支持体12は、銅により一体成形されており、表面に金メッキが施されている。基板部12aは、主面が長方形の板状の部分である。基板部12aの一方の面には、この面を長手方向に横断する溝12a1と、この溝12a1の両側に配置され、この面を長手方向に横断するリブ12a2と、が形成されている。光ファイバ11は、この溝12a1の内部に収容され、鍔部12bの中心に設けられた貫通穴を通って、フェルール部12cに挿通される。この際、光ファイバ11は、被覆区間と被覆除去区間との境界が溝12a1の内部に位置するように配置される。
 樹脂体13は、溝12a1に収容された光ファイバ11を支持体12に固定するための構成である。本実施形態においては、樹脂体13として、溝12a1の内部に注入された液体樹脂を硬化させることにより得られた樹脂体を用いている。この液体樹脂は、光硬化性樹脂であってもよいし、熱硬化性樹脂であってもよい。前者の場合、液体樹脂の硬化は、液体樹脂に特定の波長帯域に属する光(例えば、紫外線)を照射することによって実現される。後者の場合、液体樹脂の硬化は、液体樹脂を加熱することによって実現される。
 光ファイバ11から出射されたレーザ光は、太径ファイバ14及びガラスブロック15を介して加工対象物に照射される。本実施形態においては、太径ファイバ14として、一端がテーパ状に縮径された円柱状の光ファイバを用いると共に、ガラスブロック15として、一端がテーパ状に縮径された円柱状のガラスブロックを用いている。光ファイバ11の出射端面は、太径ファイバ14の小径側端面に融着接続されており、太径ファイバ14の太径側端面は、ガラスブロック15の小径側端面に融着されている。
 (固定構造の特徴)
 光デバイス1において、固定構造10は、光ファイバ11と、支持体12と、樹脂体13と、を備えている。支持体12には、図1及び図3に示すように、光ファイバ11を収容するための溝12a1が形成されている。樹脂体13は、図1及び図3に示すように、溝12a1の内部において光ファイバ11の被覆区間と被覆除去区間との境界を覆い、光ファイバ11を支持体12に固定している。
 固定構造10の特徴は、樹脂体13が溝12a1の途中で溝12a1の外部に広がっている点である。この特徴を実現するために、本実施形態に係る固定構造10においては、図1及び図2に示すように、溝12a1の途中で溝12a1と交わる(本実施形態においては直交する)他の溝12a3を支持体12に形成している。また、図1及び図3に示すように、溝12a1の両側に設けられたリブ12a2を溝12a1の途中で途切れさせている。これにより、樹脂体13を形成する際に、溝12a1に注入される液体樹脂が溝12a1の途中で溝12a3に侵入する。このため、この液体樹脂を硬化することにより形成される樹脂体13は、図1及び図2に示すように、溝12a1の途中で溝12a1の外部に広がった形状を取ることになる。
 光デバイス1を利用した加工を行うと、加工対象物に照射されるレーザ光が光ファイバ11側からガラスブロック15側へと順方向に伝搬すると共に、加工対象物にて反射された光などがガラスブロック15側から光ファイバ11側へと逆方向に伝搬することがある。この際、逆方向に伝搬する光の一部が、被覆除去区間において光ファイバ11のクラッド11bから樹脂体13へと漏出する。そして、被覆除去区間において光ファイバ11のクラッド11bから樹脂体13へと漏出した光が、溝12a1の内部に形成された樹脂体13を伝搬して光ファイバ11の被覆11cに入射し、光ファイバ11の被覆11cを発熱させることがある。これに対して、固定構造10においては、樹脂体13が溝12a1の途中で溝12a1の外部に広がっている。このため、被覆除去区間において光ファイバ11のクラッド11bから樹脂体13に漏出した光の一部は、光ファイバ11の被覆11cに入射する前に、溝12a1の外部(具体的には溝12a3)に広がった樹脂体13に導かれる。したがって、被覆除去区間において光ファイバ11のクラッド11bから樹脂体13へと漏出した光において、光ファイバ11の被覆11cに入射する光が占める割合を小さく抑えることができる。その結果、被覆除去区間において光ファイバ11のクラッド11bから樹脂体13へと漏出した光が光ファイバ11の被覆11cに入射した場合に生じ得る光ファイバ11の被覆11cの発熱を小さく抑えることができる。このため、信頼性の高い固定構造10を実現することができる。その結果、信頼性の高い光デバイス1を実現することができる。
 なお、樹脂体13の屈折率は、光ファイバ11のクラッド11bの屈折率よりも低いことが好ましい。これにより、被覆除去区間において光ファイバ11のクラッド11bから樹脂体13へと漏出する光を少なくすることができる。したがって、光ファイバ11の被覆11cに入射する光の強度を更に小さくすることができる。その結果、被覆除去区間において光ファイバ11のクラッド11bから樹脂体13へと漏出した光が光ファイバ11の被覆11cに入射した場合に生じ得る光ファイバ11の被覆11cの発熱を更に小さく抑えることができる。
 また、溝12a1は、図2に示すように、U字溝であることが好ましい。これにより、溝12a1の内部に形成された樹脂体13から光ファイバ11が受ける応力が均一(軸対称)に近づく。その結果、光ファイバ11が受ける応力が不均一(非軸対象)である場合に生じ得るビーム品質の劣化を抑制することが可能になる。
 また、溝12a3は、図1に示すように、支持体12の平面視において溝12a1に対して線対称に形成されていることが好ましい。これにより、溝12a1及び溝12a3の内部に形成された樹脂体13から光ファイバ11が受ける応力が均一(線対称)に近づく。その結果、光ファイバ11が受ける応力が不均一(非線対称)である場合に生じ得るビーム品質の劣化を抑制することが可能になる。
 また、溝12a1の底部には、図3に示したように、樹脂体13の広がる範囲を規制するための凹部12a4が形成されていることが好ましい。これにより、樹脂体13を形成する際に溝12a1に注入される液体樹脂が凹部12a4を超えて鍔部12bの近傍にまで侵入し、これを硬化することにより得られる樹脂体13が意図せぬ形状になる(その結果として、光ファイバ11に意図せぬ応力が作用する)ことを防止することができる。
 なお、本実施形態においては、樹脂体13の広がり方が溝12a1によって規定されている。このため、溝12a1と交わる他の溝12a3を形成することによって、樹脂体13を溝12a1の外部に広げている。ただし、本発明は、これに限定されない。例えば、樹脂体13の広がり方は、リブ12a2により規定されていてもよい。この場合、溝12a1と交わる他の溝12a3を形成せずとも、リブ12a2を溝12a1の途中で途切れさせるだけで、樹脂体13を溝12a1の外部に広げることができる。
 (効果の検証)
 固定構造10において、溝12a1の内部に形成された樹脂体13を逆方向に伝搬する光のパワーを数値実験により求めた結果を図4に示す。図4は、溝12a1の内部に形成された樹脂体13を逆方向に伝搬する光のパワーを、図3に示すz軸に沿ってプロットしたグラフである。ここで、z軸は、光ファイバ11の光軸と平行な軸であり、その原点は、溝12a3の開始点に設定されている。なお、数値実験に際しては、溝12a3のz軸方向の幅を2mmとした。また、光ファイバ11のクラッド11bの屈折率は1.45とし、空気の屈折率は1とし、樹脂体13の屈折率は1.41とした。また、z=-2からz=0までの区間においては、樹脂体13が溝12a1を隈なく埋め尽くしているものとし、z=0からz=2までの区間においては、樹脂体13が溝12a1及び溝12a3を隈なく埋め尽くしているものとした。
 図4に示すグラフによれば、以下のことが分かる。すなわち、z=-2からz=0までの、樹脂体13が溝12a1の内部にのみ形成されている第1の区間においては、溝12a1の内部に形成された樹脂体13を逆方向に伝搬する光のパワーが略一定になる。そして、z=0からz=2までの、樹脂体13が溝12a1の外部に広がっている第2の区間においては、溝12a1の内部に形成された樹脂体13を逆方向に伝搬する光のパワーが急減少する。そして、z=2以上の、樹脂体13が溝12a1の内部にのみ形成されている第3の区間においては、溝12a1の内部に形成された樹脂体13を逆方向に伝搬する光のパワーが略一定になる。第3の区間において溝12a1の内部に形成された樹脂体13を逆方向に伝搬する光のパワーは、第1の区間において溝12a1の内部に形成された樹脂体13を逆方向に伝搬する光のパワーの1/8の程度である。これは、光ファイバ11の被覆11cに到達する光のパワーが十分に小さいことを意味する。
 図5の(a)は、固定構造10(実施例)の斜視図、及び、その温度分布図である。図5の(b)は、溝12a3を省略して樹脂体13が溝12a1の外部に広がらないようにした固定構造10(比較例)の斜視図、及び、その温度分布である。いずれの温度分布図も、光ファイバ11のクラッド11bを光が逆方向に伝搬しているときのものである。図5に示す温度分布図によれば、樹脂体13が溝12a1の外部に広がらない上記比較例においては、光ファイバ11の被覆11cの温度が100℃程度に達するのに対して、樹脂体13が溝12a1の外部に広がる上記実施例においては、光ファイバ11の被覆11cの温度が40℃程度に抑えられていることが分かる。すなわち、溝12a3を設けて樹脂体13を溝12a1の外部に広げることで、被覆除去区間において光ファイバ11のクラッド11bから樹脂体13へと漏出した光に起因する光ファイバ11の被覆11cの発熱を小さく抑えられることが確かめられた。
 図6は、5サンプルの上記実施例及び7サンプルの上記比較例について、光ファイバ11の被覆11cの温度上昇とその偏差との相関を示したグラフである。なお、図6に示すグラフにおいては、光ファイバ11の被覆11cの温度上昇と支持体12の温度上昇との差を横軸に取り、標準偏差の倍数を縦軸に取っている。図6に示すグラフによれば、上記比較例においては、被覆11cの温度上昇の平均値が支持体12の温度上昇よりも30℃程度高いのに対して、上記実施例においては、被覆11cの温度上昇の平均値が支持体12の温度上昇と同程度であることが分かる。また、図6に示すグラフによれば、上記比較例においては、被覆11cの温度上昇のバラつきが大きく、被覆11cに深刻な問題を引き起こす極端な温度上昇が生じる確率が高いのに対して、上記実施例においては、被覆11cの温度上昇のバラつきが小さく、上記のようなことが生じる確率が低いことが分かる。すなわち、上記実施例の信頼性は、上記比較例の信頼性よりも高いことが分かる。
 (レーザ装置)
 上述した光デバイス1は、加工用のレーザ装置に利用することができる。図7は、このようなレーザ装置20の構成を示すブロック図である。
 レーザ装置20は、レーザ光源21と、デリバリファイバ22と、光デバイス23と、を備えている。レーザ光源21は、レーザ光を生成するための構成である。レーザ光源21は、固体レーザであってもよいし、液体レーザであってもよいし、気体レーザであってもよいし、ファイバレーザであってもよい。デリバリファイバ22は、レーザ光源21にて生成されたレーザ光を導波するための構成である。デリバリファイバ22は、シングルモードファイバであってもよいし、マルチモードファイバであってもよい。光デバイス23は、デリバリファイバ22を導波された光を加工対象物Wに照射するための構成である。光デバイス23として、上述した光デバイス1を用いることで、信頼性の高いレーザ装置20を実現することができる。
 〔まとめ〕
 以上のように、本発明の態様1に係る固定構造は、光ファイバと、前記光ファイバを収容するための溝が形成された支持体と、前記溝の内部において前記光ファイバの被覆区間と被覆除去区間との境界を覆い、前記光ファイバを前記支持体に固定する樹脂体と、を備えており、前記樹脂体は、前記溝の途中で前記溝の外部に広がっている。
 上記の構成によれば、被覆除去区間において光ファイバのクラッドから樹脂体に漏出した光が被覆区間において光ファイバの被覆に入射し難くなる。したがって、樹脂体が溝の内部にのみ形成されている場合と比べて、光ファイバの被覆の発熱を小さく抑えることができる。その結果、樹脂体が溝の内部のみに形成されている場合と比べて、固定構造の信頼性を高めることができる。
 本発明の態様2に係る固定構造においては、態様1の構成に加えて、前記支持体には、前記溝と交わる他の溝が形成されており、前記樹脂体は、前記他の溝の内部に広がっている、という構成が採用されている。
 上記の構成によれば、溝に注入した液体樹脂を硬化することによって樹脂体を形成する場合に、樹脂体を溝の途中で溝の外部に広げることが容易になる。
 本発明の態様3に係る固定構造においては、態様2の構成に加えて、前記他の溝は、前記支持体の平面視において、前記溝に対して線対称に形成されている、という構成が採用されている。
 上記の構成によれば、樹脂体から光ファイバに作用する不均一な応力によって生じ得るビーム品質の低下を抑えることができる。
 本発明の態様4に係る固定構造においては、態様1~3の何れかの構成に加えて、前記樹脂体の屈折率は、前記光ファイバのクラッドの屈折率よりも低い、という構成が採用されている。
 上記の構成によれば、光ファイバの被覆の発熱を更に小さく抑えることができる。
 本発明の態様5に係る固定構造においては、態様1~4の何れかの構成に加えて、前記溝は、U字溝である、という構成が採用されている。
 上記の構成によれば、樹脂体から光ファイバに作用する不均一な応力によって生じ得るビーム品質の低下を抑えることができる。
 本発明の態様6に係る固定構造においては、態様1~5の何れかの構成に加えて、前記溝の底には、前記樹脂体の広がる範囲を規制するための凹部が形成されている、という構成が採用されている。
 上記の構成によれば、樹脂体が意図せぬ形状になり、その結果として、光ファイバに意図せぬ応力が働くという事態が生じ難くなる。
 本発明の態様7に係る光デバイスは、態様1~6の何れかに係る固定構造を備えている。
 上記の構成によれば、従来の固定構造を備えた光デバイスよりも信頼性の高い光デバイスを実現することができる。
 本発明の態様8に係るレーザ装置は、態様7に係る光デバイスを備えている。
 上記の構成によれば、従来の光デバイスを備えたレーザ装置よりも信頼性の高いレーザ装置を実現することができる。
 (付記事項)
 本発明は、上述した実施形態に限定されるものでなく、請求項に示した範囲で種々の変更が可能である。上述した実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
 1    光デバイス
 10   固定構造
 11   光ファイバ
 11a  コア
 11b  クラッド
 11c  被覆
 12   支持体
 12a  基板部
 12a1 溝
 12a2 リブ
 12a3 溝
 12a4 凹部
 13   樹脂体
 14   太径ファイバ
 15   ガラスブロック
 20   レーザ装置
 21   レーザ光源
 22   デリバリファイバ
 23   光デバイス

Claims (8)

  1.  光ファイバと、
     前記光ファイバを収容するための溝が形成された支持体と、
     前記溝の内部において前記光ファイバの被覆区間と被覆除去区間との境界を覆い、前記光ファイバを前記支持体に固定する樹脂体と、を備えており、
     前記樹脂体は、前記溝の途中で前記溝の外部に広がっている、
    ことを特徴とする固定構造。
  2.  前記支持体には、前記溝と交わる他の溝が形成されており、
     前記樹脂体は、前記他の溝の内部に広がっている、
    ことを特徴とする請求項1に記載の固定構造。
  3.  前記他の溝は、前記支持体の平面視において、前記溝に対して線対称に形成されている、
    ことを特徴とする請求項2に記載の固定構造。
  4.  前記樹脂体の屈折率は、前記光ファイバのクラッドの屈折率よりも低い、
    ことを特徴とする請求項1~3の何れか一項に記載の固定構造。
  5.  前記溝は、U字溝である、
    ことを特徴とする請求項1~4の何れか一項に記載の固定構造。
  6.  前記溝の底には、前記樹脂体の広がる範囲を規制するための凹部が形成されている、
    ことを特徴とする請求項1~5の何れか一項に記載の固定構造。
  7.  請求項1~6の何れか一項に記載の固定構造を備えている光デバイス。
  8.  請求項7に記載の光デバイスを備えているレーザ装置。
PCT/JP2021/018038 2020-07-01 2021-05-12 固定構造、光デバイス、及びレーザ装置 WO2022004141A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022533711A JP7489464B2 (ja) 2020-07-01 2021-05-12 固定構造、光デバイス、及びレーザ装置
CN202180037392.7A CN115668024A (zh) 2020-07-01 2021-05-12 固定结构、光器件、以及激光装置
EP21832252.7A EP4177648A1 (en) 2020-07-01 2021-05-12 Securing structure, optical device, and laser apparatus
US18/008,242 US20230204864A1 (en) 2020-07-01 2021-05-12 Securing structure, optical device, and laser apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-114282 2020-07-01
JP2020114282 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022004141A1 true WO2022004141A1 (ja) 2022-01-06

Family

ID=79315211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018038 WO2022004141A1 (ja) 2020-07-01 2021-05-12 固定構造、光デバイス、及びレーザ装置

Country Status (5)

Country Link
US (1) US20230204864A1 (ja)
EP (1) EP4177648A1 (ja)
JP (1) JP7489464B2 (ja)
CN (1) CN115668024A (ja)
WO (1) WO2022004141A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511122A (ja) * 1991-07-05 1993-01-19 Japan Aviation Electron Ind Ltd 光フアイバ用キヤリア
JPH1020146A (ja) * 1996-07-03 1998-01-23 Takaoka Electric Mfg Co Ltd 光導波路と光ファイバの結合構造および結合方法
JPH11109188A (ja) * 1997-10-03 1999-04-23 Hitachi Ltd 半導体素子と光ファイバの搭載基板
US20070217738A1 (en) * 2006-03-16 2007-09-20 Northrop Grumman Corporation System and method to remove light from cladding
JP2011513774A (ja) * 2008-02-27 2011-04-28 イェノプティック レーザー ゲーエムベーハー 光伝送装置の製造方法及び光伝送装置
JP2011525706A (ja) * 2008-06-25 2011-09-22 コラクティヴ ハイ−テック インコーポレイティド 高出力光ファイバ部材用エネルギ放散パッケージ
JP2019144385A (ja) * 2018-02-20 2019-08-29 株式会社フジクラ クラッドモードストリッパ及びレーザ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511122A (ja) * 1991-07-05 1993-01-19 Japan Aviation Electron Ind Ltd 光フアイバ用キヤリア
JPH1020146A (ja) * 1996-07-03 1998-01-23 Takaoka Electric Mfg Co Ltd 光導波路と光ファイバの結合構造および結合方法
JPH11109188A (ja) * 1997-10-03 1999-04-23 Hitachi Ltd 半導体素子と光ファイバの搭載基板
US20070217738A1 (en) * 2006-03-16 2007-09-20 Northrop Grumman Corporation System and method to remove light from cladding
JP2011513774A (ja) * 2008-02-27 2011-04-28 イェノプティック レーザー ゲーエムベーハー 光伝送装置の製造方法及び光伝送装置
JP2011525706A (ja) * 2008-06-25 2011-09-22 コラクティヴ ハイ−テック インコーポレイティド 高出力光ファイバ部材用エネルギ放散パッケージ
JP2019144385A (ja) * 2018-02-20 2019-08-29 株式会社フジクラ クラッドモードストリッパ及びレーザ装置

Also Published As

Publication number Publication date
CN115668024A (zh) 2023-01-31
EP4177648A1 (en) 2023-05-10
US20230204864A1 (en) 2023-06-29
JPWO2022004141A1 (ja) 2022-01-06
JP7489464B2 (ja) 2024-05-23

Similar Documents

Publication Publication Date Title
JP5147834B2 (ja) レーザ加工装置及びレーザ加工方法
JP6109321B2 (ja) 半導体レーザモジュール
JP4954737B2 (ja) 光増幅システム、これを用いた光ファイバレーザ及び光ファイバ増幅器
US20160336711A1 (en) Leakage light removal structure and fiber laser
JP6356856B1 (ja) クラッドモード光除去構造及びレーザ装置
JP2005070608A (ja) ダブルクラッドファイバとマルチモードファイバの接続構造及びその接続方法
US7309168B2 (en) Optical fiber cable
JP2015145959A (ja) 余剰光除去構造及びファイバレーザ
JP2007293298A (ja) 光学部品の光入出力端
JP4138979B2 (ja) ファイバーレーザー装置及びレーザー加工装置
US20190237929A1 (en) Optical fiber and fiber laser
WO2022004141A1 (ja) 固定構造、光デバイス、及びレーザ装置
WO2020196626A1 (ja) 光学部品および半導体レーザモジュール
JP4551390B2 (ja) 光学部品及び光学装置
EP3525018A1 (en) Optical fiber and fiber laser
WO2020195411A1 (ja) 余剰光除去ファイバ、余剰光除去ファイバの製造方法、及びファイバレーザ装置
US9690055B2 (en) Laser-based systems and methods for fiber-to-ferrule bonding for optical fiber connectors
JP2016189361A (ja) パルスファイバレーザ装置
CN113169508B (zh) 激光装置和激光装置的制造方法
EP3929637A1 (en) Optical fiber fixing structure, laser transmission cable using optical fiber fixing structure, and laser device
JP2012234007A (ja) 光ファイバケーブル
WO2014133000A1 (ja) 光ファイバ、ポンプコンバイナ、および光増幅デバイス
WO2020105553A1 (ja) クラッドモード光除去構造及びレーザ装置
WO2020045569A1 (ja) クラッドモード光除去構造、レーザ装置、及びクラッドモード光除去構造の製造方法
WO2018151100A1 (ja) 半導体レーザモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533711

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021832252

Country of ref document: EP

Effective date: 20230201