WO2022004109A1 - バックアップ電源装置及びバックアップ電源装置の制御方法 - Google Patents

バックアップ電源装置及びバックアップ電源装置の制御方法 Download PDF

Info

Publication number
WO2022004109A1
WO2022004109A1 PCT/JP2021/016585 JP2021016585W WO2022004109A1 WO 2022004109 A1 WO2022004109 A1 WO 2022004109A1 JP 2021016585 W JP2021016585 W JP 2021016585W WO 2022004109 A1 WO2022004109 A1 WO 2022004109A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
rectifier
power supply
secondary battery
backup power
Prior art date
Application number
PCT/JP2021/016585
Other languages
English (en)
French (fr)
Inventor
克彦 玉木
恭行 勝部
尚章 近田
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Priority to CA3184304A priority Critical patent/CA3184304A1/en
Priority to US18/002,854 priority patent/US20230246478A1/en
Priority to EP21833954.7A priority patent/EP4175118A4/en
Publication of WO2022004109A1 publication Critical patent/WO2022004109A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a backup power supply device and a control method for the backup power supply device.
  • a storage battery and a rectifier that matches it have been used conventionally. Further, as a storage battery, a lead battery is widely used.
  • the rectifier may be overloaded and the output voltage of the rectifier may drop momentarily.
  • the rectifier lowers the output voltage due to overload, it may be detected as an abnormality in the load device or the occurrence of a low voltage in the breaker.
  • a lightweight, compact and long-life battery has tended to be used instead of a lead battery. Further, such a battery is equipped with a control board in order to perform high-performance control, and requires control by a microcomputer or the like.
  • An object of the present invention is to provide a backup power supply device that efficiently supplies power by microcomputer control and a control method thereof.
  • the backup power supply device is charged by a rectifier that generates a predetermined voltage, and the load device that operates by feeding power from the rectifier is described by the rectifier.
  • a backup power supply that supplies power when the power supplied to the load device is insufficient including a secondary battery charged by the power from the rectifier, a control unit that controls charging and discharging of the secondary battery, and the rectifier.
  • the control unit includes an output voltage detection unit that detects the output voltage from the battery, and the control unit has a charging current for charging the secondary battery when the output voltage drops below a first threshold voltage lower than the predetermined voltage. It is characterized in that at least one of reduction and stopping of charging of the secondary battery is performed.
  • the backup power supply device is charged by a rectifier that generates power of a predetermined voltage, and the power supplied from the rectifier to the load device is supplied to the load device operated by the power supply from the rectifier. It is a backup power supply device that supplies power when there is a shortage, and detects a secondary battery charged by the power from the rectifier, a control unit that controls charging / discharging of the secondary battery, and an output voltage from the rectifier.
  • the control unit includes an output voltage detection unit and a battery voltage detection unit that detects the battery voltage of the secondary battery.
  • the secondary battery discharges the load device to the load device for the first hour, and the output voltage returns to the predetermined voltage after the lapse of the first hour. Is characterized in that the discharge from the secondary battery to the load device is stopped.
  • the method of the third aspect of the present invention provides a backup power supply device that supplies power to a load device that operates by supplying power from a rectifier that generates power of a predetermined voltage when the power supplied from the rectifier to the load device is insufficient.
  • the step of charging the backup power supply device by the rectifier and the charging of the backup power supply device are stopped when the output voltage from the rectifier drops below the first threshold voltage lower than the predetermined voltage. It is characterized by having a step of performing.
  • the power supplied from the rectifier to the load device is insufficient for the load device operated by the power supply from the rectifier while being charged by the rectifier that generates the power of a predetermined voltage. It is a method of controlling a backup power supply device that sometimes supplies power, and when the output voltage from the rectifier drops below a third threshold voltage lower than the predetermined voltage, the output voltage of the backup power supply device is from the rectifier. It is characterized by having a step of supplying power from the backup power supply device to the load device for a first period on condition that the voltage is higher than the output voltage.
  • the insufficient power of the supplied power is discharged from the secondary battery. It can be supplied more quickly and the load device can continue to operate.
  • the backup power supply device 1 according to the embodiment of the present invention will be described with reference to FIG. It is needless to say that the present invention is not limited to the embodiments described below, and various modifications can be made within the scope of the claims.
  • the backup power supply device 1 is connected to a power supply line L that electrically connects the rectifier 2 and the load device 3.
  • Rectifier 2 is an AC-DC converter for generating and outputting the DC power of the normal voltage V 0 by using an external commercial power.
  • the voltage V 0 is 26.2V ⁇ 28.8V.
  • the load device 3 is a device that operates by being supplied with power from the rectifier 2.
  • the load device 3 comprises a circuit breaker installed at a railroad crossing, and opens and closes a rod attached to the circuit breaker according to the operation of a train.
  • the load device 3 has a rated voltage of 24 V.
  • the backup power supply device 1 includes an input / output unit 11, a secondary battery 12, a DC-DC converter 13, a constant current control circuit 14, and a control unit 15.
  • the input / output unit 11 is connected to a power supply line L that supplies electric power from the rectifier 2 to the load device 3.
  • the backup power supply device 1 When the backup power supply device 1 is charged, the output voltage from the rectifier 2 is applied to the input / output unit 11.
  • the backup power supply device 1 supplies power to the load device 3 as a backup power source, the battery voltage V b of the secondary battery 12 becomes the voltage of the input / output unit 11.
  • the secondary battery 12 is configured by connecting a plurality of alkaline secondary battery cells such as nickel-hydrogen secondary battery cells in series or in parallel.
  • alkaline secondary battery cells such as nickel-hydrogen secondary battery cells in series or in parallel.
  • Vb battery voltage
  • boost that was boosted to the full charge can become the output voltage V 0 of the secondary battery 12 of the rectifier 2, and outputs toward the secondary battery 12 via the constant current control circuit 14 It is a voltage converter.
  • a charging switch 16 for turning on / off the charging of the secondary battery 12 is provided between the constant current control circuit 14 and one electrode of the secondary battery 12.
  • a discharge switch 17 for turning on / off the discharge of the secondary battery 12 is provided between the other electrode of the secondary battery 12 and the input / output unit 11.
  • a diode D is inserted between the discharge switch 17 and the input / output unit 11, the anode is connected to the other electrode of the secondary battery 12, and the cathode is connected to the input / output unit 11.
  • Control unit 15 includes made from the microcomputer, the output voltage detecting section 18 for detecting a voltage V i at the input and output unit 11, and a battery voltage detection unit 19 that detects a battery voltage V b of the secondary battery 12.
  • Control unit 15 the voltage V i at the input and output unit 11, based on the battery voltage V b of the secondary battery 12, and controls the on-off of the charging switch 16 and discharge switch 17.
  • Voltage V i at the input and output unit 11 is equal to the output voltage V 0 which the rectifier 2, the control unit 15, by monitoring the voltage V i of the input-output unit 11, the backup power supply unit 1, a rectifier 2 and the load It is possible to grasp the operating state of the device 3.
  • FIG. Figure 2 shows the time variation of the voltage V i at the input and output unit 11 of the backup power supply device 1.
  • the voltage V 0 is a voltage value output when the rectifier 2 is operating normally
  • the voltage V c is a first threshold voltage or a fourth threshold voltage
  • the control unit 15 turns off the charging switch 16. This is the voltage value at which the charging of the secondary battery 12 is stopped.
  • the voltage V s is a voltage value at which the control unit 15 determines that the state of the rectifier 2 is a power failure, and is a voltage lower than V c.
  • the voltage V r is a voltage value as a reference for restarting charging of the secondary battery 12 as the second threshold voltage, and is set higher than the voltage V c. Both the voltages V c and V s are lower than the voltage V 0. In this embodiment, V c is set to 24 V, V s is set to 23 V, and V r is set to 24.5 V.
  • the voltage V i of the input and output portion 11 of the backup power supply device 1 is equal to the voltage V 0.
  • the charging switch 16 is turned on by the control unit 15, and the secondary battery 12 is charged by the electric power from the rectifier 2.
  • the control unit 15 turns off the discharge switch 17 to prevent the secondary battery 12 from being discharged and prepare for future discharge.
  • the overload to the rectifier 2 maximum current flows through the load device 3
  • the voltage V i drops start.
  • the control unit 15 turns off the charging switch 16 and stops charging the secondary battery 12.
  • the current flowing through the load device 3 by, for example, rod Kiru up after time t 2 is returned to normal, the voltage V i is increasing prior to drop to the voltage V s which is determined that the power failure of the rectifier 2 turn, increases at time t 3 to voltage V r, to eventually return to the voltage V 0.
  • the backup power supply device 1 since the stop charging, rectifier 2 the power will be supplied to the backup power supply device 1 during the period from the time t 2 to time t 4, that instead of the backup power supply device 1, is supplied to the load device 3 can.
  • the rectifier 2 can eliminate the overload state in a short time. That is, by stopping the charging of the backup power supply device 1 for a short time, the overload of the rectifier 2 can be eliminated and the operation of the load device 3 can be continued.
  • FIG. 3 shows the time variation of the voltage V i at the input and output unit 11 of the backup power supply device 1.
  • the voltage V 0 is the voltage output when the rectifier 2 is operating normally
  • the voltage V s is the third threshold voltage
  • the control unit 15 determines that the state of the rectifier 2 is a power failure.
  • V s is 23V.
  • the control unit 15 turns on the charging switch 16 and charges the secondary battery 12 with the electric power from the rectifier 2. On the other hand, the control unit 15 turns off the discharge switch 17 to prevent the secondary battery 12 from being discharged, and prepares for future discharge.
  • the control unit 15 determines that a power failure to the rectifier 2 is generated, from the time t 12 to time t 13 after 200 microseconds, secondary in terms of battery voltage V b of the battery 12, it was confirmed that higher than V i, and switches on the discharge switch 17 from oFF to start discharge of the secondary battery 12, from the backup power supply device 1 to the load device 3 Start power supply.
  • the control unit 15 turns off the discharge switch 17 and detects the output voltage of the rectifier 2. If the output voltage of the rectifier 2 at time t 14 has returned to V 0 , the control unit 15 continues to turn off the discharge switch 17 after time t 14 to stop the discharge from the secondary battery 12. Accordingly, power supply from the backup power supply device 1 to the load device 3 is not performed, since the input to the load device 3 is only the power from the rectifier 2, the voltage V i of the input-output unit 11, the output voltage V of the rectifier 2 Equal to 0.
  • the control unit 15 when the output power of the rectifier 2 detected at time t 14 is still less than or equal to the voltage V s , the control unit 15 is set at time t 15 200 microseconds after time t 14. After confirming that the battery voltage V b is higher than the voltage V i , the discharge switch 17 is switched from off to on to start discharging the secondary battery 12 and restart the power supply to the load device 3. Therefore, power is supplied from the backup power supply device 1 to the load device 3 by discharging the secondary battery 12 for 10 seconds from the time t 15 to the time t 16. Thus, 10 seconds from the time t 15 to time t 16, the voltage V i of the input-output unit 11 becomes equal to the battery voltage V b of the secondary battery 12.
  • the control unit 15 turns off the discharge switch 17 and detects the output voltage of the rectifier 2. If the output voltage of the rectifier 2 at time t 16 has returned to V 0 , the control unit 15 continues to turn off the discharge switch 17 after time t 16 to stop the discharge from the secondary battery 12. Accordingly, power supply from the backup power supply device 1 to the load device 3 is not performed, since the input to the load device 3 is only the power from the rectifier 2, the voltage V i of the input-output unit 11, the output voltage V of the rectifier 2 Equal to 0.
  • the power supply period from the backup power supply device 1 is extended.
  • the operation of the load device 3 can be continued.
  • the control unit 15 has tens of tens of tens of rectifier 2 and / or load device 3. It is judged that a failure that cannot be restored normally in about seconds has occurred, and at time t 17 200 microseconds after time t 16 , the discharge switch 17 is switched from off to on and discharge is restarted from the secondary battery 12. Then, power is supplied from the backup power supply device 1 to the load device 3.
  • the voltage V i of the input / output unit 11 after the time t 17 becomes equal to the battery voltage V b of the secondary battery 12.
  • the charging of the secondary battery 12 in the backup power supply device 1 by the electric power of the rectifier 2 is stopped to charge the backup power supply device 1.
  • the electric power used may also be supplied to the load device 3.
  • the backup power supply device 1 when an overload state occurs in the rectifier 2, charging of the backup power supply device 1 is stopped, all the power output by the rectifier 2 is supplied to the load device 3, and the operation of the load device 3 is continued. Let me. When the output voltage of the rectifier 2 further decreases, the backup power supply device 1 also supplies power to the load device 3 to compensate for the power shortage of the load device 3 and continue the operation of the load device 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

マイコン制御により効率的な給電を行うバックアップ電源装置を提供する。バックアップ電源装置1は、所定電圧の電力を生成する整流器2によって充電され、整流器2の電力により動作する負荷装置3に対し供給電力が不足するときに給電する。バックアップ電源装置1は、整流器からの電力により充電される2次電池12と、2次電池の充放電を制御する制御部15と、整流器からの出力電圧を検出する入出力電圧検出部18と、を備える。制御部は、出力電圧が第1閾値電圧以下に低下したとき、2次電池の充電を停止したり、又は、2次電池の充電電流を減らす。

Description

バックアップ電源装置及びバックアップ電源装置の制御方法
 本発明は、バックアップ電源装置及びバックアップ電源装置の制御方法に関する。
 蓄電池を用いたバックアップ装置を必要とする分野において、従来から蓄電池とそれに合わせた整流器が用いられている。また、蓄電池として、鉛電池が広く用いられている。
 整流器の許容電力に余裕がなく、負荷装置に瞬間的に大きな電流が流れる場合、整流器に対しては過負荷となって整流器の出力電圧が瞬間的に低下する場合がある。整流器が過負荷により出力電圧を下げると、負荷装置の異常や、遮断機での低電圧の発生として検出されることがある。
 そこで、整流器の出力電力が低下したときに、鉛電池を負荷装置に接続して放電させることにより負荷装置の動作を継続させていた。
 近年、バックアップ電源として、鉛電池に代えて、軽量、且つコンパクトで長寿命な電池が用いられる傾向にある。また、このような電池は、高機能な制御を行うために制御基板を搭載しており、マイコン等による制御を必要としている。
 本発明の目的は、マイコン制御により効率的な給電を行うバックアップ電源装置及びその制御方法を提供することにある。
 上記目的を達成するため、本発明の第1の態様のバックアップ電源装置は、所定電圧の電力を生成する整流器によって充電されると共に、前記整流器からの給電により動作する負荷装置に対し前記整流器から前記負荷装置への供給電力が不足するときに給電するバックアップ電源装置であって、前記整流器からの電力により充電される2次電池と、前記2次電池の充放電を制御する制御部と、前記整流器からの出力電圧を検出する出力電圧検出部と、を備え、前記制御部は、前記出力電圧が前記所定電圧より低い第1閾値電圧以下に低下したとき、前記2次電池を充電する充電電流の低減と、前記2次電池の充電の停止との少なくとも一方を行う、ことを特徴とする。
 本発明の第2の態様のバックアップ電源装置は、所定電圧の電力を生成する整流器によって充電されると共に、前記整流器からの給電により動作する負荷装置に対し前記整流器から前記負荷装置への供給電力が不足するときに給電するバックアップ電源装置であって、前記整流器からの電力により充電される2次電池と、前記2次電池の充放電を制御する制御部と、前記整流器からの出力電圧を検出する出力電圧検出部と、前記2次電池の電池電圧を検出する電池電圧検出部と、を備え、前記制御部は、前記出力電圧が前記所定電圧より低い第3閾値電圧以下に低下し、且つ前記出力電圧が前記電池電圧より低いとき、前記2次電池から前記負荷装置に対して第1時間に亘り放電させ、前記第1時間の経過後に、前記出力電圧が前記所定電圧に復帰しているときは、前記2次電池から前記負荷装置への放電を停止する、ことを特徴とする。
 本発明の第3の態様の方法は、所定電圧の電力を生成する整流器からの給電により動作する負荷装置に対し前記整流器から前記負荷装置への供給電力が不足するときに給電するバックアップ電源装置を制御する方法であって、前記バックアップ電源装置を前記整流器により充電する工程と、前記整流器からの出力電圧が前記所定電圧より低い第1閾値電圧以下に低下したとき、前記バックアップ電源装置の充電を停止する工程とを有する、ことを特徴とする。
 本発明の第4の態様の方法は、所定電圧の電力を生成する整流器によって充電されると共に、前記整流器からの給電により動作する負荷装置に対し前記整流器から前記負荷装置への供給電力が不足するときに給電するバックアップ電源装置を制御する方法であって、前記整流器からの出力電圧が前記所定電圧より低い第3閾値電圧以下に低下したときに、前記バックアップ電源装置の出力電圧が前記整流器からの出力電圧よりも高いことを条件に、前記バックアップ電源装置から前記負荷装置に第1期間に亘り給電する工程を有する、ことを特徴とする。
 本発明によれば、バックアップ電源装置において、整流器からの給電により動作する負荷装置に対し、整流器から負荷装置への供給電力が不足したとき、当該供給電力の不足電力を、2次電池からの放電により迅速に供給し、負荷装置の動作を継続することができる。
一実施形態に係るバックアップ電源装置の回路図である。 バックアップ電源装置の入出力部での電圧の時間変化を示すグラフである。 バックアップ電源装置の入出力部での電圧の時間変化を示すグラフである。 バックアップ電源装置の入出力部での電圧の時間変化を示すグラフである。 バックアップ電源装置の入出力部での電圧の時間変化を示すグラフである。
 本発明の一実施形態に係るバックアップ電源装置1を、図1を参照しながら説明する。なお、本発明は、以下に説明する実施形態に限定されるものではなく、特許請求の範囲内で種々の変形が可能であることは言うまでもない。
<バックアップ電源装置の構成>
 図1に示すように、バックアップ電源装置1は、整流器2と負荷装置3とを電気的に接続する電源ラインLに接続される。整流器2は、外部の商用電力を利用して通常電圧Vの直流電力を生成して出力するAC-DCコンバータである。本実施形態において、電圧Vは26.2V~28.8Vである。負荷装置3は、整流器2から給電されて動作する装置である。本実施形態では、負荷装置3は、例えば踏切装置においては、踏切に設置された遮断器からなり、列車の運行に応じて遮断器に取り付けられた竿を開閉する。負荷装置3は、定格電圧が24Vである。
 バックアップ電源装置1は、入出力部11と、2次電池12と、DC-DCコンバータ13と、定電流制御回路14と、制御部15とを備える。入出力部11は、整流器2から負荷装置3へ電力を供給する電源ラインLに接続される。バックアップ電源装置1が充電されるときは、整流器2からの出力電圧が入出力部11に印加される。一方、バックアップ電源装置1がバックアップ電源として負荷装置3に給電するときは、2次電池12の電池電圧Vが入出力部11の電圧になる。
 2次電池12は、ニッケル水素二次電池セル等のアルカリ二次電池セルの複数個を直列や並列に接続することにより構成される。本実施形態では、2次電池12は、20個のアルカリ二次電池セルが直列接続され、充電容量に応じて20.0~28.8Vの電池電圧Vbの電力を放電する。
 DC-DCコンバータ13は、整流器2の出力電圧Vを2次電池12の満充電可能となる電圧まで昇圧して、定電流制御回路14を介して2次電池12に向けて出力する昇圧型電圧変換器である。
 定電流制御回路14と2次電池12の一方の電極との間には、2次電池12の充電をオン・オフする充電スイッチ16が設けられている。一方、2次電池12の他方の電極と入出力部11との間には、2次電池12の放電をオン・オフする放電スイッチ17が設けられている。なお、放電スイッチ17と入出力部11との間には、ダイオードDが挿入され、アノードが2次電池12の他方の電極に接続され、カソードが入出力部11に接続されている。
 制御部15は、マイコンからなり、入出力部11における電圧Vを検出する入出力電圧検出部18と、2次電池12の電池電圧Vを検出する電池電圧検出部19とを備える。制御部15は、入出力部11における電圧Vと、2次電池12の電池電圧Vとに基づき、充電スイッチ16及び放電スイッチ17のオン・オフを制御する。入出力部11における電圧Vは、整流器2の出力電圧Vと等しいので、制御部15が、入出力部11の電圧Vを監視することによって、バックアップ電源装置1は、整流器2や負荷装置3の動作状態を把握することができる。
<バックアップ電源装置の動作>
(1)バックアップ電源装置の充電停止
 バックアップ電源装置1の動作について、図2から図5を参照して説明する。
 最初に、図2を参照して、バックアップ電源装置1の充電停止動作について説明する。
 図2は、バックアップ電源装置1の入出力部11における電圧Vの時間変化を示す。図2において、電圧Vは、整流器2が正常に動作しているときに出力する電圧値、電圧Vは、第1閾値電圧又は第4閾値電圧として、制御部15が充電スイッチ16をオフにして2次電池12の充電を停止する電圧値である。電圧Vは、制御部15が整流器2の状態を停電と判断する電圧値であり、Vより低い電圧である。また、電圧Vは、第2閾値電圧として、2次電池12の充電再開の基準となる電圧値であり、電圧Vよりも高く設定される。なお、電圧V,Vのいずれも電圧Vよりは低い電圧である。本実施形態では、Vは24V、Vは23V、Vは24.5Vに設定される。
 図2において、時刻tにて、整流器2から負荷装置3への給電が正常に行われている場合、バックアップ電源装置1の入出力部11の電圧Vは電圧Vと等しい。このとき、バックアップ電源装置1では、制御部15により充電スイッチ16がオンにされて整流器2からの電力により2次電池12の充電が行われる。一方、制御部15は放電スイッチ17をオフにして、2次電池12を放電させず、将来の放電に備える。
 次に、時刻tにおいて、例えば踏切装置の場合で言えば、遮断器の竿を上昇させるためなど、負荷装置3に最大電流が流れて整流器2にとって過負荷になると、電圧Vは低下し始める。時刻tにおいて、整流器2の出力電圧がVより下がると、制御部15は、充電スイッチ16をオフにして2次電池12の充電を停止する。しかし、時刻tの後竿が上がりきるなどして負荷装置3を流れる電流が通常に戻ると、電圧Vは、整流器2の停電発生と判断される電圧Vまで低下する前に増加に転じ、時刻tにて電圧Vまで増加し、やがて電圧Vに復帰する。そして、時刻tから例えば30秒が経過した時刻tにて制御部15は充電スイッチ16をオンに切り換えて2次電池12の充電を再開する。
 このように、整流器2への過負荷により出力電圧Vが不意に低下した場合に、負荷装置3への供給電力を増やすために、時刻tから時刻tまでの期間、バックアップ電源装置1の充電を停止するので、整流器2は、時刻tから時刻tまでの間にバックアップ電源装置1に供給する予定の電力を、バックアップ電源装置1に代えて、負荷装置3に供給することができる。このようなバックアップ電源装置1の動作により、整流器2は、過負荷状態を短時間で解消することができる。すなわち、バックアップ電源装置1の充電を短時間停止することで、整流器2の過負荷を解消するとともに、負荷装置3の動作を継続させることができる。
 なお、時刻tから例えば30秒の経過を待って2次電池12の充電を再開するのは、整流器2での異常の発生を避けるためである。また、図2に示す実施形態では、整流器2の出力電圧がVより下がったときに、制御部15は、2次電池12の充電を停止した。
 しかし、他の実施形態では、整流器2の出力電圧がVより下がったときに、2次電池12の充電のために2次電池12に流す電流量を減らして、その分の電力を負荷装置3に供給することもできる。
(2)バックアップ電源装置の放電
 次に、バックアップ電源装置1の放電制御について図3から図5を参照して説明する。
 図3は、バックアップ電源装置1の入出力部11における電圧Vの時間変化を示す。図3において、電圧Vは、整流器2が正常に動作しているときに出力する電圧、電圧Vは第3閾値電圧として、制御部15が整流器2の状態を停電と判断する電圧であり、Vより低い。本実施形態では、Vは23Vである。
 図3において、時刻tにて、整流器2から負荷装置3への給電が正常に行われている場合、バックアップ電源装置1の入出力部11の電圧Vは電圧Vと等しくなる。このとき、バックアップ電源装置1では、制御部15は、充電スイッチ16をオンにして整流器2からの電力により2次電池12の充電を行っている。一方、制御部15は、放電スイッチ17をオフにして2次電池12を放電させず、将来の放電に備える。
 次に、時刻t11において、例えば踏切装置の場合で言えば、遮断器の竿を上昇させるなど、負荷装置3に最大電流が流れて整流器2にとって過負荷になると、電圧Vは低下し始める。さらに、時刻t12にて電圧Vが電圧Vまで低下すると、制御部15は、整流器2に停電が発生したと判断し、時刻t12から200マイクロ秒後の時刻t13に、2次電池12の電池電圧VがVよりも高いことを確認したうえで、放電スイッチ17をオフからオンに切り換えて2次電池12の放電を開始し、バックアップ電源装置1から負荷装置3への給電を開始する。従って、時刻t13から時刻t14までの10秒間、バックアップ電源装置1から負荷装置3へ、2次電池12の放電による給電が行われる。従って、時刻t13から時刻t14までの10秒間、入出力部11の電圧Vは2次電池12の電池電圧Vと等しくなる。
 時刻t14にて、制御部15は、放電スイッチ17をオフにして整流器2の出力電圧を検出する。時刻t14における整流器2の出力電圧がVに復帰していれば、制御部15は、時刻t14以降、放電スイッチ17のオフを継続して2次電池12からの放電を停止する。
 従って、バックアップ電源装置1から負荷装置3への給電は行われず、負荷装置3への入力は整流器2からの電力のみになるので、入出力部11の電圧Vは、整流器2の出力電圧Vと等しくなる。
 このように、時刻t11から時刻t14までの間に、整流器2に過負荷が生じた場合、時刻t13から時刻t14までの間にバックアップ電源装置1から負荷装置3に対して給電して、整流器2から負荷装置3への電力不足を補うことで、負荷装置3の動作を継続させることができる。
 一方、図4に示すように、時刻t14にて、検出された整流器2の出力電力が依然として電圧V以下の場合、時刻t14から200マイクロ秒後の時刻t15に、制御部15は、電池電圧Vが電圧Vよりも高いことを確認したうえで、放電スイッチ17をオフからオンに切替えて2次電池12の放電を開始して負荷装置3への給電を再開する。従って、時刻t15から時刻t16までの10秒間、バックアップ電源装置1から負荷装置3へ、2次電池12の放電による給電が行われる。これにより、時刻t15から時刻t16までの10秒間、入出力部11の電圧Vは2次電池12の電池電圧Vと等しくなる。
 時刻t16にて、制御部15は、放電スイッチ17をオフにして整流器2の出力電圧を検出する。時刻t16における整流器2の出力電圧がVに復帰していれば、制御部15は、時刻t16以降、放電スイッチ17のオフを継続して2次電池12からの放電を停止する。
 従って、バックアップ電源装置1から負荷装置3への給電は行われず、負荷装置3への入力は整流器2からの電力のみになるので、入出力部11の電圧Vは、整流器2の出力電圧Vと等しくなる。
 このように、バックアップ電源装置1からの最初の10秒間の負荷装置3への給電によっても整流器2の過負荷状態が改善しなかった場合、バックアップ電源装置1からの給電期間を延長することによって、負荷装置3の動作を継続させることができる。
 一方、図5に示すように、時刻t16にて、検出された整流器2の出力電力が依然として電圧V以下の場合、制御部15は、整流器2若しくは負荷装置3、又はその両方に数十秒程度では正常に復帰しえない障害が発生したと判断し、時刻t16から200マイクロ秒後の時刻t17に、放電スイッチ17をオフからオンに切替えて2次電池12から放電を再開して、バックアップ電源装置1から負荷装置3に給電する。この状態では、入出力部11での電圧がV以下となる期間が20秒以上と長期にわたることから、時刻t17以降は、入出力部11での電圧Vが電池電圧Vを上回るまでバックアップ電源装置1から負荷装置3への給電を継続する。従って、整流器の出力電圧の長期にわたる低下にも拘わらず、負荷装置3の動作の継続が可能になる。
 時刻t17以降の入出力部11の電圧Vは2次電池12の電池電圧Vと等しくなる。
 なお、バックアップ電源装置1から負荷装置3への給電が行われている間は、整流器2の電力によるバックアップ電源装置1内の2次電池12の充電は停止して、バックアップ電源装置1の充電に用いられる電力も負荷装置3に供給しても良い。
 このように、整流器2に過負荷状態が発生したときは、バックアップ電源装置1の充電を停止して整流器2が出力する電力の全てを負荷装置3に供給して、負荷装置3の動作を継続させる。さらなる整流器2の出力電圧の低下が発生したときは、バックアップ電源装置1からも負荷装置3に給電することによって、負荷装置3の電力不足を補い、負荷装置3の動作を継続させる。
  1  バックアップ電源装置
  2  整流器
  3  負荷装置
 12  2次電池
 15  制御部
 18  入出力電圧検出部
 19  電池電圧検出部

Claims (10)

  1.  所定電圧の電力を生成する整流器によって充電されると共に、前記整流器からの給電により動作する負荷装置に対し前記整流器から前記負荷装置への供給電力が不足するときに給電するバックアップ電源装置であって、
     前記整流器からの電力により充電される2次電池と、
     前記2次電池の充放電を制御する制御部と、
     前記整流器からの出力電圧を検出する出力電圧検出部と、を備え、
     前記制御部は、前記出力電圧が前記所定電圧より低い第1閾値電圧以下に低下したとき、前記2次電池を充電する充電電流の低減と、前記2次電池の充電の停止との少なくとも一方を行う、ことを特徴とするバックアップ電源装置。
  2.  前記制御部は、前記第1閾値電圧以下に低下した前記出力電圧が、前記第1閾値電圧よりも高い第2閾値電圧に増加するまで、前記2次電池の充電停止を継続する、請求項1記載のバックアップ電源装置。
  3.  所定電圧の電力を生成する整流器によって充電されると共に、前記整流器からの給電により動作する負荷装置に対し前記整流器から前記負荷装置への供給電力が不足するときに給電するバックアップ電源装置であって、
     前記整流器からの電力により充電される2次電池と、
     前記2次電池の充放電を制御する制御部と、
     前記整流器からの出力電圧を検出する出力電圧検出部と、
     前記2次電池の電池電圧を検出する電池電圧検出部と、を備え、
     前記制御部は、
      前記出力電圧が前記所定電圧より低い第3閾値電圧以下に低下し、且つ前記出力電圧が前記電池電圧より低いとき、前記2次電池から前記負荷装置に対して第1時間に亘り放電させ、
      前記第1時間の経過後に、前記出力電圧が前記所定電圧に復帰しているときは、前記2次電池から前記負荷装置への放電を停止する、ことを特徴とするバックアップ電源装置。
  4.  前記制御部は、
      前記第1時間の経過後の前記出力電圧が前記第3閾値電圧よりも低く、且つ前記出力電圧が前記電池電圧より低いとき、前記2次電池から前記負荷装置に対して第2時間に亘り放電させ、
      前記第2時間の経過後に、前記出力電圧が前記所定電圧に復帰しているときは、前記2次電池から前記負荷装置への放電を停止する、請求項3記載のバックアップ電源装置。
  5.  前記制御部は、前記第2時間の経過後の前記出力電圧が前記第3閾値電圧よりも低いとき、前記2次電池から前記負荷装置に対して放電させ、前記2次電池から前記負荷装置への放電は、前記電池電圧が前記出力電圧以下になるまで継続する、請求項4に記載のバックアップ電源装置。
  6.  前記制御部は、前記出力電圧が、前記所定電圧より低く且つ前記第3閾値電圧より高い第4閾値電圧以下に低下したとき、前記2次電池の充電を停止し、前記出力電圧が前記所定電圧に復帰するまで、前記2次電池の充電停止を継続する、請求項3から5のいずれか一に記載のバックアップ電源装置。
  7.  所定電圧の電力を生成する整流器からの給電により動作する負荷装置に対し、前記整流器から前記負荷装置への供給電力が不足するときに給電するバックアップ電源装置を制御する方法であって、
     前記バックアップ電源装置を前記整流器により充電する工程と、
     前記整流器からの出力電圧が前記所定電圧より低い第1閾値電圧以下に低下したとき、前記バックアップ電源装置の充電を停止する工程と
    を有する、ことを特徴とする方法。
  8.  前記停止工程の後、前記出力電圧が前記第1閾値電圧よりも高く且つ前記所定電圧よりも低い第2閾値電圧に増加するまで、前記バックアップ電源装置の充電停止を継続する工程を有する、請求項7記載の方法。
  9.  所定電圧の電力を生成する整流器によって充電されると共に、前記整流器からの給電により動作する負荷装置に対し前記整流器から前記負荷装置への供給電力が不足するときに給電するバックアップ電源装置を制御する方法であって、
     前記整流器からの出力電圧が前記所定電圧より低い第3閾値電圧以下に低下したときに、前記バックアップ電源装置の出力電圧が前記整流器からの出力電圧よりも高いことを条件に、前記バックアップ電源装置から前記負荷装置に第1期間に亘り給電する工程を有する、ことを特徴とする方法。
  10.  前記第1期間の給電工程の後、前記整流器の出力電圧が、前記第3閾値電圧よりも低く且つ前記バックアップ電源装置の出力電圧よりも低い場合、第2期間に亘り前記バックアップ電源装置から前記負荷装置に給電する工程をさらに有する、請求項9記載の方法。
PCT/JP2021/016585 2020-06-29 2021-04-26 バックアップ電源装置及びバックアップ電源装置の制御方法 WO2022004109A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3184304A CA3184304A1 (en) 2020-06-29 2021-04-26 Backup power supply and method for controlling backup power supply
US18/002,854 US20230246478A1 (en) 2020-06-29 2021-04-26 Backup power supply device and method for controlling backup power supply device
EP21833954.7A EP4175118A4 (en) 2020-06-29 2021-04-26 EMERGENCY POWER SUPPLY DEVICE AND METHOD FOR CONTROLLING EMERGENCY POWER SUPPLY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112189A JP2022011203A (ja) 2020-06-29 2020-06-29 バックアップ電源装置及びバックアップ電源装置の制御方法
JP2020-112189 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022004109A1 true WO2022004109A1 (ja) 2022-01-06

Family

ID=79315744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016585 WO2022004109A1 (ja) 2020-06-29 2021-04-26 バックアップ電源装置及びバックアップ電源装置の制御方法

Country Status (5)

Country Link
US (1) US20230246478A1 (ja)
EP (1) EP4175118A4 (ja)
JP (1) JP2022011203A (ja)
CA (1) CA3184304A1 (ja)
WO (1) WO2022004109A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412821A (en) * 1987-07-06 1989-01-17 Fujitsu Ltd Rush current preventive circuit
JP2001186689A (ja) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp 無停電電源装置
JP2007209056A (ja) * 2006-01-31 2007-08-16 Power System:Kk 蓄電装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756984B1 (fr) * 1996-12-05 1999-01-08 Gec Alsthom Syst Et Serv Alimentation de secours destinee a suppleer provisoirement a une carence d'une source d'alimentation principale
CN103337901B (zh) * 2013-06-28 2016-03-30 华为技术有限公司 不间断供电的方法和不间断电源
TWI600254B (zh) * 2016-06-17 2017-09-21 台達電子工業股份有限公司 電源轉換裝置及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412821A (en) * 1987-07-06 1989-01-17 Fujitsu Ltd Rush current preventive circuit
JP2001186689A (ja) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp 無停電電源装置
JP2007209056A (ja) * 2006-01-31 2007-08-16 Power System:Kk 蓄電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4175118A4 *

Also Published As

Publication number Publication date
CA3184304A1 (en) 2022-01-06
EP4175118A4 (en) 2024-06-26
EP4175118A1 (en) 2023-05-03
JP2022011203A (ja) 2022-01-17
US20230246478A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US10404095B2 (en) Uninterruptible power supply unit
KR101308783B1 (ko) 무정전 전원 장치
CN109792160B (zh) 车载用的备用装置
JP4763660B2 (ja) 電源システム
CN106471705B (zh) 不间断电源装置
JP2013042627A (ja) 直流電源制御装置および直流電源制御方法
US20130264879A1 (en) Low power consumption backup power system
JP2007336610A (ja) 蓄電素子充放電システム
CN113316526B (zh) 车辆用电源控制装置及车辆用电源装置
WO2022004109A1 (ja) バックアップ電源装置及びバックアップ電源装置の制御方法
JP5304279B2 (ja) 蓄電装置
CN110061559B (zh) 离线式不间断电源及其控制方法
US11855475B2 (en) Charge/discharge control apparatus
CN112117920A (zh) 电源供应器及其控制方法及电源供应系统
JP2008035573A (ja) 電気二重層コンデンサを用いた蓄電装置
WO2021241136A1 (ja) バックアップ電源装置
CN114400751A (zh) 电池群并联系统、控制方法及存储介质
CN110061560B (zh) 离线式不间断电源及其控制方法
JP2005278334A (ja) 無停電電源装置
TWI524627B (zh) To avoid excessive discharge of the battery module power supply
JP2010178500A (ja) 放電器、放電方法および直流電源システム
JP2021027749A (ja) 充放電制御装置およびそれを備えたバッテリ並びに直流給電システム
CN112242704B (zh) 电压维持电路
JP6387498B2 (ja) 二次電池の充電制御回路
JP3275245B2 (ja) 無停電電源式電気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3184304

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833954

Country of ref document: EP

Effective date: 20230130