WO2022003961A1 - ワイヤ自動結線装置およびワイヤ放電加工機 - Google Patents

ワイヤ自動結線装置およびワイヤ放電加工機 Download PDF

Info

Publication number
WO2022003961A1
WO2022003961A1 PCT/JP2020/026229 JP2020026229W WO2022003961A1 WO 2022003961 A1 WO2022003961 A1 WO 2022003961A1 JP 2020026229 W JP2020026229 W JP 2020026229W WO 2022003961 A1 WO2022003961 A1 WO 2022003961A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
automatic
wire electrode
unit
connection device
Prior art date
Application number
PCT/JP2020/026229
Other languages
English (en)
French (fr)
Inventor
智昭 ▲高▼田
孝幸 中川
大介 関本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020565511A priority Critical patent/JP6847335B1/ja
Priority to CN202080098156.1A priority patent/CN115243818B/zh
Priority to PCT/JP2020/026229 priority patent/WO2022003961A1/ja
Publication of WO2022003961A1 publication Critical patent/WO2022003961A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode

Definitions

  • the present disclosure relates to an automatic wire connection device and a wire electric discharge machine that automatically connect wire electrodes in a wire electric discharge machine.
  • the wire discharge processing machine has a wire feeding unit that pulls out the wire electrode from the wire bobbin and sends out the drawn wire electrode, an upper guide unit that is placed on the workpiece and guides the wire electrode, and a lower portion of the workpiece. It has a lower guide section for guiding the wire electrode and a wire recovery section for collecting the used wire electrode.
  • the wire discharge processing machine automatically connects the wire electrodes by feeding the wire electrodes from the wire feeding section to the wire collecting section when the wire electrodes are newly loaded or when the wire electrodes are broken.
  • the configuration used for automatic wiring may be referred to as an automatic wire connection device.
  • the automatic wire connection device performs a wire connection operation after cutting the wire electrode and annealing treatment for ensuring the straightness of the wire electrode.
  • Patent Document 1 a section having a failure in connection is detected, a count value of the number of times that automatic connection fails is stored for each section, and a parameter for performing automatic connection is based on the count value for each section.
  • An automatic wire connection device for switching is disclosed.
  • the automatic wire connection device of Patent Document 1 determines the cause of failure based on the position and count value of the section where the failure occurs when the failure occurs frequently in a specific section.
  • the automatic wire connection device of Patent Document 1 automatically performs correction work by selecting an optimum condition from the conditions for each cause and switching parameters.
  • the melt of the wire electrode may remain in a ball shape at the tip of the wire electrode. If the wire connection operation is performed with the ball-shaped portion left, the wire electrode may be clogged in the upper guide portion or the lower guide portion. When the wire electrode is clogged, the wire electrode is prevented from being sent out beyond the position where the wire electrode is clogged, so that the wiring operation fails.
  • the automatic wire connection device of Patent Document 1 detects a failure of the connection operation, the parameter is changed and the wire electrode is cut for the next connection operation.
  • the present disclosure has been made in view of the above, and an object of the present invention is to obtain an automatic wire connection device capable of avoiding a state in which automatic connection cannot be performed due to clogging of wire electrodes.
  • the automatic wire connection device performs automatic connection of wire electrodes in a wire electric discharge machine.
  • the automatic wire connection device includes a cutting state detection unit that detects a cutting state when the wire electrode is cut, a determination unit that determines the quality of the wire electrode cutting based on the cutting state, and a quality determination unit. It is provided with a connection execution unit that determines the execution of the connection operation based on the result of.
  • the automatic wire connection device has the effect of avoiding a state in which automatic connection cannot be performed due to clogging of the wire electrodes.
  • the figure which shows the wire automatic wire connection apparatus among the wire electric discharge machine which concerns on Embodiment 1. A flowchart showing an operation procedure of the automatic wire connection device according to the first embodiment. The figure for demonstrating the clogging of the wire electrode which can be prevented in the wire automatic wire connection apparatus of Embodiment 1.
  • the figure which shows the wire automatic wire connection apparatus among the wire electric discharge machine which concerns on Embodiment 3. A flowchart showing an operation procedure of the automatic wire connection device according to the third embodiment.
  • a flowchart showing a processing procedure of the learning device according to the third embodiment A block diagram showing a functional configuration of an inference device included in the automatic wire connection device of the third embodiment. A flowchart showing a processing procedure of the inference device according to the third embodiment. The figure which shows the example of the hardware composition which the automatic connection adjustment part which concerns on Embodiment 1 to 3 has.
  • FIG. 1 is a diagram showing an automatic wire connection device among the wire electric discharge machines according to the first embodiment.
  • the wire electric discharge machine repeatedly generates electric discharge between the wire electrode 11 and the workpiece 17.
  • the wire electric discharge machine cuts the workpiece 17 or removes a part of the workpiece 17 by electric discharge machining using electric discharge energy.
  • the wire automatic connection device 1 automatically connects the wire electrodes 11 in the wire electric discharge machine.
  • the wire electric discharge machine is equipped with a wire bobbin 10 around which a wire electrode 11 is wound.
  • the wire automatic connection device 1 provides pulleys 12a and 12b for changing the direction of the wire electrode 11 drawn from the wire bobbin 10, a feeding roller 13 which is a wire feeding unit, and a wire electrode 11 to the feeding roller 13. It has pinch rollers 14a and 14b to be pressed.
  • the feeding roller 13 pulls out the wire electrode 11 from the wire bobbin 10 and feeds out the drawn wire electrode 11.
  • the feeding roller 13 also performs an operation of pulling back the wire electrode 11 in the direction opposite to the feeding direction.
  • the automatic wire connection device 1 includes an upper guide portion 16a and a lower guide portion 16b for guiding the wire electrode 11, a guide roller 18 for changing the feeding direction of the wire electrode 11, and the wire electrode 11 used in electric discharge machining. It has a wire collecting unit 19 for collecting.
  • the upper guide portion 16a is arranged between the workpiece 17 and the power supply electron 15a arranged above the workpiece 17.
  • the lower guide portion 16b is arranged between the workpiece 17 and the power supply electron 15b arranged below the workpiece 17.
  • the feeders 15a and 15b supply a machining current to the wire electrode 11.
  • the automatic wire connection device 1 feeds the wire electrode 11 vertically downward from the feed roller 13 to the guide roller 18.
  • the guide roller 18 changes the direction of the wire electrode 11 from the vertical direction to the horizontal direction.
  • the wire collecting unit 19 discharges the wire electrode 11 by sending the wire electrode 11 sent out from the guide roller 18 to a collecting place (not shown).
  • the automatic wire connection device 1 automatically connects the wire electrode 11 by feeding the wire electrode 11 from the feed roller 13 to the wire recovery unit 19 when the wire electrode 11 is newly loaded or when the wire electrode 11 is broken. Make a connection.
  • the automatic wire connection device 1 includes an annealing processing unit 20 for annealing the wire electrode 11, a cutting unit 21 for cutting the wire electrode 11, a camera 22 for photographing the cut portion of the wire electrode 11, and a wire electrode. It has a pinch roller 23 for gripping the 11.
  • the cutting of the wire electrode 11 and the annealing process to the wire electrode 11 are steps performed in preparation for the connection operation, and are included in the automatic connection step.
  • the annealing processing unit 20 has electrodes 24a and 24b.
  • the annealing processing unit 20 causes an electric current to flow through the wire electrode 11 by bringing the electrode 24a and the electrode 24b into contact with the wire electrode 11.
  • the annealing process unit 20 passes a current through the wire electrode 11 during the annealing process. In the annealing process, a current flows through the wire electrode 11, and heat is generated in the wire electrode 11 according to the electric resistance of the wire electrode 11.
  • the pinch roller 23 fixes the wire electrode 11 at the position of the pinch roller 23 by gripping the wire electrode 11. Tension is applied to the wire electrode 11 by pulling back the wire electrode 11 in a state where the wire electrode 11 is fixed by the pinch roller 23.
  • the wire electrode 11 is straightened by the generation of heat and the application of tension. Further, the surface of the wire electrode 11 is smoothed by the generation of heat and the application of tension.
  • the feed roller 13 stops the pullback of the wire electrode 11.
  • the pinch roller 23 separates the wire electrode 11.
  • the annealing processing unit 20 separates the electrode 24a and the electrode 24b from the wire electrode 11.
  • the cutting portion 21 has an electrode 25.
  • the cutting portion 21 causes an electric current to flow through the wire electrode 11 by bringing the electrode 25 into contact with the wire electrode 11.
  • the cutting portion 21 blows the wire electrode 11 by passing an electric current through the wire electrode 11.
  • Tension is applied to the wire electrode 11 by pulling back the wire electrode 11 in a state where the wire electrode 11 is fixed by the pinch roller 23.
  • the feed roller 13 stops pulling back the wire electrode 11.
  • the pinch roller 23 separates the wire electrode 11.
  • the cutting portion 21 separates the electrode 25 from the wire electrode 11.
  • the camera 22 photographs the tip of the wire electrode 11 cut by the cutting portion 21. Alternatively, the camera 22 photographs the wire electrode 11 when it is cut by the cutting portion 21.
  • the wire automatic connection device 1 has an automatic connection adjustment unit 30 that adjusts the connection operation.
  • the automatic wiring adjustment unit 30 refers to a configuration used in the control of automatic wiring among the numerical control devices that control the wire electric discharge machine. That is, the automatic connection adjustment unit 30 is a part of the numerical control device.
  • the automatic connection adjusting unit 30 is based on the cutting state detecting unit 33 that detects the cutting state of the wire electrode 11, the determining unit 34 that determines the quality of the cutting of the wire electrode 11 based on the cutting state, and the result of the quality determination. It has a connection execution unit 35 that determines the execution of the connection operation.
  • the cutting state detection unit 33 detects the cutting state when the wire electrode 11 is cut in the automatic connection.
  • the automatic wiring adjustment unit 30 has a power supply control unit 31 that controls power supply to each unit of the wire automatic wiring device 1, and a parameter setting unit 32 that sets parameters for automatic wiring.
  • the parameter setting unit 32 outputs the set parameter to the power supply control unit 31.
  • the power supply control unit 31 supplies electric power to the motor that drives the feed roller 13.
  • the power supply control unit 31 controls the feeding of the wire electrode 11 by the feeding roller 13 and the pulling back of the wire electrode 11 by the feeding roller 13 by supplying electric power to the motor.
  • the motor is not shown. Further, the power supply control unit 31 supplies electric power to the annealing processing unit 20 and the cutting unit 21.
  • the cutting state detection unit 33 has a tension detection unit 36, an annealing current detection unit 37, a cutting current detection unit 38, and an image acquisition unit 39.
  • the tension detection unit 36 detects the tension of the wire electrode 11.
  • the annealing current detection unit 37 detects the annealing current.
  • the annealing current is the current flowing through the wire electrode 11 in the annealing process.
  • the cutting current detection unit 38 detects the cutting current.
  • the cutting current is the current flowing through the wire electrode 11 when the wire electrode 11 is cut.
  • the image acquisition unit 39 acquires an image taken by the camera 22.
  • the tension detection unit 36 measures the tension fluctuation of the wire electrode 11 when the wire electrode 11 is cut.
  • the cutting state detecting unit 33 detects the tension state of the wire electrode 11 when the wire electrode 11 is cut as one of the elements of the cutting state. Further, the tension detection unit 36 measures the tension fluctuation of the wire electrode 11 when the wire electrode 11 is annealed. By the measurement by the tension detecting unit 36, the cutting state detecting unit 33 detects the tension state of the wire electrode 11 at the time of the annealing process as one of the elements of the cutting state.
  • the annealing current detection unit 37 measures the annealing current when the wire electrode 11 is annealed. By the measurement by the annealing current detection unit 37, the cutting state detection unit 33 detects the state of the annealing current as one of the elements of the cutting state.
  • the cutting current detection unit 38 measures the cutting current when the wire electrode 11 is cut. By the measurement by the cutting current detecting unit 38, the cutting state detecting unit 33 detects the state of the cutting current as one of the elements of the cutting state.
  • the image acquisition unit 39 acquires an image of the tip of the cut wire electrode 11.
  • the image acquisition unit 39 measures the shape of the tip portion of the wire electrode 11 which is a cut portion from the image.
  • the cutting state detecting unit 33 detects the shape of the tip portion of the wire electrode 11 as one of the elements of the cutting state.
  • the image acquisition unit 39 acquires an image obtained by capturing the wire electrode 11 when the wire electrode 11 is being cut by the cutting unit 21. From such an image, the image acquisition unit 39 measures the emission color at the time of cutting the wire electrode 11 or the magnitude of the emission at the time of cutting the wire electrode 11. By the measurement by the image acquisition unit 39, the cutting state detecting unit 33 detects the light emitting state when the wire electrode 11 is cut as one of the elements of the cutting state.
  • the emission state is the emission color or the magnitude of emission.
  • the cutting states detected by the cutting state detecting unit 33 include the tension state of the wire electrode 11, the annealing current state, the cutting current state, the shape of the tip portion of the wire electrode 11, and light emission. Each element with the state is included.
  • the disconnection state detection unit 33 outputs information indicating the detected disconnection state to the determination unit 34.
  • the determination unit 34 determines whether the cut is good or bad by comparing the cut state detected by the cut state detection unit 33 with the determination standard.
  • the determination criterion is set in advance in the wire automatic connection device 1 based on the result of the experiment of cutting the wire electrode 11 or the result of simulating the cutting of the wire electrode 11.
  • the determination unit 34 determines that the cutting is good.
  • the determination unit 34 determines that the cutting is defective when the cutting state does not satisfy the determination criteria for good determination.
  • the determination unit 34 outputs information indicating the result of the pass / fail determination to the connection execution unit 35.
  • connection execution unit 35 determines the execution of the connection operation when the information indicating the good judgment is input.
  • connection execution unit 35 instructs the power supply control unit 31 to execute the connection operation.
  • the power supply control unit 31 starts feeding the wire electrode 11 by the feed roller 13 according to the instruction from the wire connection execution unit 35.
  • the connection execution unit 35 cancels the connection operation when the information indicating the defect determination is input.
  • FIG. 2 is a flowchart showing an operation procedure of the automatic wire connection device according to the first embodiment.
  • the wire automatic connection device 1 sets parameters for automatic connection.
  • the parameters to be set include a cutting current parameter indicating the current flowing through the cutting unit 21, a cutting tension parameter indicating the tension applied to the wire electrode 11 at the time of cutting, and an annealing current indicating the current flowing through the annealing processing unit 20.
  • a parameter and an annealing tension parameter indicating the tension applied to the wire electrode 11 during the annealing process are included.
  • the numerical control device stores parameters that are initial conditions in advance.
  • the parameter setting unit 32 sets the parameter which is the initial condition by reading the parameter stored in the numerical control device.
  • the parameter setting unit 32 outputs the set parameter to the power supply control unit 31.
  • step S2 the wire automatic connection device 1 cuts the wire electrode 11.
  • the operation of the wire automatic connection device 1 in step S2 includes a first operation of cutting the wire electrode 11 and a second operation of annealing the wire electrode 11.
  • the power supply control unit 31 causes a current according to the set cutting current parameter to flow to the electrode 25.
  • the power supply control unit 31 causes the feed roller 13 to perform a pull-back operation according to the cutting tension parameter by passing a current according to the cutting tension parameter to the motor.
  • Tension is applied to the wire electrode 11 by pulling the wire electrode 11 fixed at the position of the pinch roller 23 by the feeding roller 13.
  • the wire automatic connection device 1 cuts the wire electrode 11 by applying tension to the wire electrode 11 and passing a current through the wire electrode 11 at the cutting portion 21.
  • the portion of the wire electrode 11 on the wire recovery unit 19 side of the cut portion is collected by the wire collection unit 19.
  • the automatic wire connection device 1 causes the feeding roller 13 to perform a feeding operation, and causes the pinch roller 23 to grip the cut wire electrode 11.
  • the automatic wire connection device 1 starts a second operation.
  • the power supply control unit 31 causes a current according to the set annealing current parameter to flow to the electrodes 24a and 24b.
  • the power supply control unit 31 causes the feed roller 13 to perform a pull-back operation according to the annealing tension parameter by passing a current according to the annealing tension parameter to the motor.
  • Tension is applied to the wire electrode 11 by pulling the wire electrode 11 fixed at the position of the pinch roller 23 by the feeding roller 13.
  • the wire automatic connection device 1 applies tension to the wire electrode 11 and causes the wire electrode 11 to be annealed by passing a current through the wire electrode 11 at the annealing processing unit 20.
  • the wire automatic connection device 1 detects the cut state of the wire electrode 11 in step S2.
  • the cutting state detection unit 33 detects the state of the cutting current at the time of cutting and the state of the tension at the time of cutting as elements of the cutting state.
  • the cutting state detection unit 33 detects the state of the annealing current at the time of the annealing process and the state of the tension at the time of the annealing process as elements of the cutting state.
  • the cut state detection unit 33 detects the shape of the tip portion of the wire electrode 11 as an element of the cut state.
  • the cutting state detection unit 33 detects the light emitting state at the time of cutting as an element of the cutting state.
  • step S4 the automatic wire connection device 1 determines whether or not the detected disconnection state satisfies the criteria for good determination. That is, the automatic wire connection device 1 determines whether or not the wire electrode 11 is cut by the determination unit 34. In addition, the determination unit 34 may determine whether or not the detected disconnection state corresponds to the criterion for defect determination as a quality determination.
  • the determination unit 34 obtains the difference between the detected shape and the criterion for good determination. The determination unit 34 determines that the disconnection state satisfies the criteria for good determination when the obtained difference is within the preset allowable range. On the other hand, when the obtained difference exceeds the permissible range, the determination unit 34 determines that the cutting state does not satisfy the criteria for good determination.
  • the emission color when the wire electrode 11 is cut abnormally may be different from the emission color when the wire electrode 11 is normally cut.
  • the determination unit 34 may obtain a difference between the emission color as a reference and the measured emission color, and determine whether or not the cutting state satisfies the criteria for good determination based on the obtained difference.
  • the magnitude of light emission when the wire electrode 11 is abnormally cut may differ from the magnitude of light emission when the wire electrode 11 is normally cut.
  • the determination unit 34 may obtain a difference between the magnitude of the light emission as a reference and the magnitude of the measured light emission, and determine whether or not the cutting state satisfies the criteria for good determination based on the obtained difference. ..
  • the determination unit 34 may determine whether or not the cutting state satisfies the criteria for good determination by comparing the measurement result of the tension variation at the time of cutting with the reference tension variation.
  • the determination unit 34 determines whether or not the cutting state satisfies the criteria for good determination based on the difference between the measured cutting current and the reference cutting current for the cutting current.
  • the determination unit 34 may determine whether or not the cutting state satisfies the criteria for good determination by comparing the measurement result of the fluctuation of the cutting current with the current fluctuation which is the reference.
  • the determination unit 34 determines whether or not the cutting state satisfies the criteria for good determination based on the difference between the measured annealing current and the reference annealing current for the annealing current.
  • the determination unit 34 may determine whether or not the cutting state satisfies the criteria for good determination by comparing the measurement result of the variation of the annealing current with the reference current variation.
  • the determination unit 34 may determine whether or not the cutting state satisfies the criteria for good determination by comparing the measurement result of the tension variation during the annealing process with the reference tension variation.
  • At least one of the tension state of the wire electrode 11, the annealing current state, the cutting current state, the shape of the tip portion of the wire electrode 11, and the light emitting state of the determination unit 34 is a criterion for good determination. If the above is not satisfied, it is determined that the disconnection state does not satisfy the criteria for good judgment.
  • the determination unit 34 at least one of the tension state of the wire electrode 11, the annealing current state, the cutting current state, the shape of the tip portion of the wire electrode 11, and the light emitting state is a criterion for defect determination. In the case of, it may be determined that the cutting state does not satisfy the criteria for good determination.
  • step S4 When the disconnection state satisfies the criteria for good determination (step S4, Yes), the connection execution unit 35 determines the execution of automatic connection. As a result, in step S5, the wire automatic connection device 1 executes the connection operation. On the other hand, when the cutting state does not satisfy the criteria for good determination (steps S4 and No), the wire automatic connection device 1 does not perform the connection operation. As a result, the wire automatic connection device 1 ends the automatic connection. When the disconnection state of the wire electrode 11 is determined to be defective, the wire automatic wiring device 1 cancels the wiring operation and ends the automatic wiring operation.
  • the wire electrode 11 may be easily caught in the path of the wire electrode 11 due to a defect that a ball of melt remains at the tip of the wire electrode 11. Due to poor cutting, in addition to the problem that a ball of melt remains, the problem that the tip of the wire electrode 11 is deformed may occur.
  • the wire automatic wire connection device 1 performs the wire connection operation even though the wire electrode 11 has a defect in this way, there is a high possibility that the wire electrode 11 is clogged in the path of the wire electrode 11.
  • the automatic wire connection device 1 prevents the wire electrode 11 from being clogged by canceling the connection operation when it is determined that the wire electrode 11 is poorly cut.
  • FIG. 3 is a diagram for explaining the clogging of the wire electrodes that can be prevented in the automatic wire connection device of the first embodiment.
  • the wire automatic connection device 1 performs the connection operation when the disconnection is defective, and a state in which the connection operation fails will be described.
  • FIG. 3 shows a state before the wire electrode 11 is cut, a state in which a molten ball 11a is left at the tip of the wire electrode 11 by cutting the wire electrode 11 in the cutting portion 21, and a state in which the ball 11a is shown. The state after the wire connection operation is performed about the wire electrode 11 is shown.
  • the automatic wire connection device 1 recognizes that the connection operation has failed because the wire electrode 11 cannot be sent out to the wire recovery unit 19. Due to the failure of the wire connection operation, the wire automatic wire connection device 1 cuts the wire electrode 11 and tries the wire connection operation again.
  • the portion of the wire electrode 11 above the cut portion is used.
  • the portion of the wire electrode 11 below the cut portion that is, the portion including the ball 11a, is discharged from the path of the wire electrode 11 by the wire automatic connection device 1 by pulling back upward or the like.
  • the wire electrode 11 is pulled back while the ball 11a is caught in the path of the wire electrode 11 and the wire electrode 11 is cut, the fragment of the wire electrode 11 including the ball 11a is not discharged.
  • the wire automatic connection device 1 cannot succeed in the connection unless the fragment is manually removed.
  • the automatic wire connection device 1 determines whether the wire electrode 11 is good or bad for cutting based on the cutting state, and determines the execution of the connection operation based on the result of the good or bad judgment. As a result, the automatic wire connection device 1 can prevent the wire electrode 11 from being clogged, so that it is possible to prevent the wire electrode 11 from being clogged and the automatic connection cannot be performed.
  • the cutting states detected by the cutting state detecting unit 33 include the tension state of the wire electrode 11, the annealing current state, the cutting current state, the shape of the tip portion of the wire electrode 11, and the light emitting state. It is sufficient that at least one of the above is included. As a result, the cutting state detection unit 33 can detect the state of the wire electrode 11 for cutting.
  • the determination unit 34 is based on at least one of a tension state of the wire electrode 11, an annealing current state, a cutting current state, a shape of the tip portion of the wire electrode 11, and a light emitting state. The quality of the cutting of the electrode 11 may be determined. As a result, the automatic wire connection device 1 can avoid a state in which automatic connection cannot be performed due to clogging of the wire electrode 11.
  • FIG. 4 is a diagram showing an automatic wire connection device among the wire electric discharge machines according to the second embodiment.
  • the automatic connection adjusting unit 40 of the automatic wire connection device 2 adjusts the parameters for automatic connection based on the result of the quality determination and the success or failure of the automatic connection.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the configurations different from those in the first embodiment will be mainly described.
  • the automatic connection adjustment unit 40 has the same components as the automatic connection adjustment unit 30 in the first embodiment. Further, the automatic connection adjustment unit 40 includes a wire information input unit 41, a connection detection unit 42, and a parameter adjustment unit 43.
  • Wire information is input to the wire information input unit 41.
  • the wire information is information about the specifications of the wire electrode 11.
  • the wire information includes information such as the material of the wire electrode 11, the thickness of the wire electrode 11, and the manufacturer of the wire electrode 11.
  • the wire information input unit 41 outputs the input wire information to the parameter adjustment unit 43.
  • the connection detection unit 42 detects the success or failure of the automatic connection by the wire automatic connection device 2.
  • the connection detection unit 42 determines that the automatic connection is successful when the wire electrode 11 is sent out from the wire recovery unit 19 by the connection operation.
  • the connection detection unit 42 automatically performs when the wire electrode 11 does not reach the wire collection unit 19 even though the wire electrode 11 having a length that can reach the wire collection unit 19 is sent out from the feeding roller 13.
  • the connection is judged to be a failure.
  • the connection detection unit 42 outputs information indicating the success or failure of the automatic connection to the parameter adjustment unit 43.
  • connection execution unit 35 determines the execution of automatic connection as in the case of the first embodiment.
  • the connection execution unit 35 instructs the parameter adjustment unit 43 to adjust the parameters when the information indicating the defect determination is input.
  • the parameter adjustment unit 43 adjusts the parameters set in the parameter setting unit 32 when there is an instruction from the connection execution unit 35 or when information indicating that the automatic connection has failed is input.
  • the parameter adjusting unit 43 outputs the adjusted parameter to the parameter setting unit 32.
  • the parameter adjustment unit 43 notifies the connection execution unit 35 that the parameter adjustment has been performed.
  • the connection execution unit 35 determines the execution of the connection operation according to the parameter adjusted by the parameter adjustment unit 43.
  • FIG. 5 is a flowchart showing an operation procedure of the automatic wire connection device according to the second embodiment. Steps S1 to S5 shown in FIG. 5 are the same as steps S1 to S5 shown in FIG. If the cutting state does not satisfy the criteria for good determination (steps S4 and No), the automatic wire connection device 2 proceeds to step S7, which will be described later. Further, the automatic wire connection device 2 proceeds to step S6, which will be described next, following step S5.
  • step S6 the automatic wire connection device 2 determines whether or not the connection is successful in the connection detection unit 42.
  • the connection is successful (steps S6, Yes)
  • the automatic wire connection device 2 ends the operation according to the procedure shown in FIG.
  • the connection fails (steps S6 and No)
  • the wire automatic connection device 2 proceeds to step S7 to be described next.
  • step S7 the automatic wire connection device 2 adjusts the parameters in the parameter adjusting unit 43. That is, the parameter adjusting unit 43 adjusts the parameters set in the parameter setting unit 32 when the disconnection state does not satisfy the criteria for good determination or when the connection fails. In this way, the parameter adjusting unit 43 adjusts the parameters based on the result of the pass / fail determination by the determination unit 34 and the success / failure of the automatic connection.
  • the connection execution unit 35 determines the execution of the connection operation according to the adjusted parameter, and instructs the power supply control unit 31 to execute the connection operation.
  • the wire automatic wiring device 2 returns the procedure to step S2 and performs the wiring operation according to the adjusted parameters. As a result, when the wire electrode 11 is poorly cut or the automatic wire connection fails, the automatic wire connection device 2 adjusts the parameters and tries to cut and connect the wire electrode 11 again.
  • parameter adjustment by the parameter adjustment unit 43 will be described.
  • the causes of the defect are considered to be an excessive cutting current and an excessively small tension at the time of cutting.
  • the parameter adjusting unit 43 makes an adjustment to decrease the cutting current parameter or an adjustment to increase the cutting tension parameter.
  • the parameter adjusting unit 43 adjusts at least one of the annealing current parameter and the annealing tension parameter. In addition to adjusting the annealing current parameter or annealing tension parameter, the parameter adjusting unit 43 may make adjustments to lengthen the annealing process time or shorten the annealing process time.
  • the parameter adjusting unit 43 may obtain the difference between the detected cutting current value and the cutting current reference value, and adjust the cutting current parameter so that the cutting current value falls within the range including the reference value.
  • the parameter adjusting unit 43 obtains the difference between the tension value detected at the time of cutting and the reference value of the cutting tension, and adjusts the cutting tension parameter so that the cutting tension value falls within the range including the reference value. good.
  • the parameter adjusting unit 43 may obtain the difference between the detected annealing current value and the annealing current reference value, and adjust the annealing current parameter so that the annealing current value falls within the range including the reference value.
  • the parameter adjusting unit 43 obtains the difference between the tension value detected during the annealing process and the annealing tension reference value, and adjusts the cutting tension parameter so that the annealing tension value falls within the range including the reference value. May be.
  • the reference value and the range including the reference value are set in advance in the wire automatic connection device 2 based on the result of the experiment of cutting the wire electrode 11 or the result of simulating the cutting of the wire electrode 11.
  • the set reference value and the information in the range including the reference value are stored in the storage unit of the automatic wire connection device 2. The illustration of the storage unit is omitted.
  • the reference values associated with the wire information may be set for each reference value of the cutting current, the cutting tension, the annealing current, and the annealing tension.
  • the parameter adjusting unit 43 reads out the reference value associated with the wire information and the information in the range including the reference value from the storage unit based on the wire information input from the wire information input unit 41. As a result, the parameter adjusting unit 43 adjusts the parameter by using the reference value associated with the wire information and the information in the range associated with the wire information. In this way, the parameter adjusting unit 43 adjusts the parameters based on the wire information input from the wire information input unit 41.
  • the automatic wire connection device 2 attempts to cut and connect the wire electrode 11 again by adjusting the parameters based on the result of the quality determination for cutting and the success or failure of the automatic connection.
  • the wire automatic connection device 2 can adjust the parameter and execute the disconnection and connection operation of the wire electrode 11 again.
  • the automatic wire connection device 2 can adjust the parameters suitable for the type of the wire electrode 11 for each type of the wire electrode 11 by adjusting the parameters based on the wire information.
  • FIG. 6 is a diagram showing an automatic wire connection device among the wire electric discharge machines according to the third embodiment.
  • the parameter adjustment unit 51 provided in the automatic connection adjustment unit 50 of the wire automatic connection device 3 learns the parameters using the trained model.
  • the same components as those in the first or second embodiment are designated by the same reference numerals, and the configurations different from those in the first or second embodiment will be mainly described.
  • the parameter adjusting unit 51 includes a learning device 52 that learns parameters that enable automatic wiring, an inference device 53 that infers parameters that enable automatic wiring, and a model storage unit 54 that stores learned models.
  • the learning device 52 generates a trained model for inferring parameters that enable automatic wiring.
  • the learning device 52 generates a trained model by machine learning.
  • the inference device 53 infers the parameters using the trained model generated by the learning device 52.
  • the wire information input unit 41 outputs the input wire information to the parameter adjustment unit 51.
  • the connection detection unit 42 outputs success / failure information to the parameter adjustment unit 51.
  • the success / failure information is information indicating the success / failure of the automatic connection.
  • the connection execution unit 35 outputs the determination information input from the determination unit 34 to the parameter adjustment unit 51.
  • the determination information is information indicating the result of the quality determination in the determination unit 34.
  • the parameter adjusting unit 51 adjusts the parameters based on the wire information, the success / failure information, and the determination information.
  • FIG. 7 is a flowchart showing an operation procedure of the automatic wire connection device according to the third embodiment. Steps S1 to S6 shown in FIG. 7 are the same as steps S1 to S6 shown in FIG. If the disconnection state does not satisfy the criteria for good determination (steps S4, No), or if the connection fails (steps S6, No), the wire automatic connection device 3 proceeds to step S9, which will be described later. If the connection is successful (steps S6 and Yes), the wire automatic connection device 3 proceeds to step S8 described below.
  • step S8 the wire automatic connection device 3 acquires wire information, determination information, success / failure information, and parameters in the learning device 52.
  • the learning device 52 learns parameters using a data set including wire information, determination information, success / failure information, and parameters.
  • the automatic wire connection device 3 ends the operation according to the procedure shown in FIG. 7.
  • step S9 the wire automatic connection device 3 acquires wire information, determination information, success / failure information, and parameters in the learning device 52.
  • the learning device 52 learns parameters using a data set including wire information, determination information, success / failure information, and parameters.
  • the wire automatic connection device 3 infers the parameters enabling the automatic connection in the inference device 53.
  • step S10 the automatic wire connection device 3 outputs the parameter which is the inference result from the inference device 53 to the parameter setting unit 32.
  • the wire automatic connection device 3 returns the procedure to step S2.
  • FIG. 8 is a block diagram showing a functional configuration of a learning device included in the automatic wire connection device of the third embodiment.
  • the learning device 52 has a data acquisition unit 55 and a model generation unit 56.
  • the data acquisition unit 55 acquires the wire information, the determination information, and the success / failure information input to the parameter adjustment unit 51. Further, the data acquisition unit 55 acquires the set parameters by reading the parameters from the parameter setting unit 32. The data acquisition unit 55 creates a data set in which wire information, determination information, success / failure information, and parameters are combined. The data acquisition unit 55 outputs the created data set to the model generation unit 56. The model generation unit 56 generates a trained model using a data set created based on wire information, determination information, success / failure information, and parameters.
  • the learning algorithm used by the model generation unit 56 may be any.
  • reinforcement learning Reinforcement Learning
  • Reinforcement learning is that an action subject who is an agent in a certain environment observes the current state and decides an action to be taken. Agents get rewards from the environment by choosing actions and learn how to get the most rewards through a series of actions.
  • Q-learning and TD-Learning are known as typical methods of reinforcement learning.
  • the behavior value table which is a general update formula of the behavior value function Q (s, a)
  • the action value function Q (s, a) represents the action value Q, which is the value of the action of selecting the action “a” under the environment “s”.
  • the model generation unit 56 has a reward calculation unit 57 and a function update unit 58.
  • the reward calculation unit 57 calculates the reward for the combination of the wire information and the parameter used for the automatic connection based on the determination information and the success / failure information.
  • the function update unit 58 updates the function for determining the parameters according to the reward calculated by the reward calculation unit 57.
  • the function update unit 58 outputs the trained model created by updating the function to the model storage unit 54.
  • the reward calculation unit 57 calculates the reward "r" for the combination of the wire information and the parameter used for the automatic connection based on the judgment information and the success / failure information. For example, when the determination information is “good” and the success / failure information is “success", the reward calculation unit 57 increases the reward “r” by giving the reward value "+2". When the determination information is "good” and the success / failure information is "failure”, the reward calculation unit 57 reduces the reward “r” by giving the reward value "-1”. When the determination information is "bad”, the reward calculation unit 57 reduces the reward "r” by giving the reward value "-2". The value of the reward is arbitrary.
  • FIG. 9 is a flowchart showing a processing procedure of the learning device according to the third embodiment.
  • a reinforcement learning method for updating the action value function Q (s, a) will be described with reference to the flowchart of FIG.
  • step S11 the learning device 52 acquires wire information, determination information, success / failure information, and parameters.
  • step S12 the learning device 52 calculates a reward for the combination of the wire information and the parameter used for the automatic connection based on the determination information and the success / failure information.
  • step S13 the learning device 52 updates the action value function Q (s, a) based on the reward.
  • step S14 the learning device 52 determines whether or not the action value function Q (s, a) has converged. The learning device 52 determines that the action value function Q (s, a) has converged because the action value function Q (s, a) is not updated in step S13.
  • the learning device 52 When it is determined that the action value function Q (s, a) has not converged (step S14, No), the learning device 52 returns the operation procedure to step S11. When it is determined that the action value function Q (s, a) has converged (steps S14, Yes), the learning device 52 ends the learning according to the procedure shown in FIG. The learning device 52 may continue learning by returning the operation procedure from step S13 to step S11 without performing the determination in step S14.
  • the model storage unit 54 stores the generated action value function Q (s, a) as a learned model.
  • FIG. 10 is a block diagram showing a functional configuration of an inference device included in the automatic wire connection device of the third embodiment.
  • the inference device 53 infers the parameters that enable automatic connection based on the trained model and the wire information.
  • the inference device 53 has a data acquisition unit 59 and an inference unit 60.
  • the data acquisition unit 59 acquires the wire information input to the parameter adjustment unit 51.
  • the data acquisition unit 59 outputs the acquired wire information to the inference unit 60.
  • the inference unit 60 infers parameters that enable automatic wiring by using the trained model read from the model storage unit 54.
  • the inference unit 60 can infer parameters that can make automatic connection successful by inputting wire information into the trained model.
  • FIG. 11 is a flowchart showing a processing procedure of the inference device according to the third embodiment.
  • the inference device 53 acquires the wire information in the data acquisition unit 59.
  • the inference device 53 inputs the wire information to the trained model in the inference unit 60, and obtains the parameters.
  • the inference device 53 outputs parameters from the inference unit 60 to the parameter setting unit 32. As a result, the inference device 53 ends the process according to the procedure shown in FIG.
  • reinforcement learning is applied to the learning algorithm used by the learning device 52
  • learning other than reinforcement learning may be applied to the learning algorithm.
  • the learning device 52 executes machine learning using a known learning algorithm other than reinforcement learning, for example, a learning algorithm such as deep learning, neural network, genetic programming, functional logic programming, or support vector machine. good.
  • the learning device 52 is built in the automatic wiring adjustment unit 50.
  • the learning device 52 is not limited to the device included in the automatic wire connection device 3, and may be an external device of the automatic wire connection device 3.
  • the learning device 52 may be a device that can be connected to the automatic wire connection device 3 via a network.
  • the learning device 52 may be a device existing on the cloud server.
  • the learning device 52 may learn the parameters according to the data set created for the plurality of automatic wire connection devices 3.
  • the learning device 52 may acquire a data set from a plurality of automatic wire connection devices 3 used at the same site, or may acquire a data set from a plurality of automatic wire connection devices 3 used at different sites. You may.
  • the data set may be collected from a plurality of automatic wire connection devices 3 that operate independently of each other at a plurality of sites. After starting the collection of the data set from the plurality of automatic wire connection devices 3, a new automatic wire connection device 3 may be added to the target for which the data set is collected. Further, after starting the collection of the data set from the plurality of automatic wire connection devices 3, a part of the plurality of automatic wire connection devices 3 may be excluded from the target for which the data set is collected.
  • the learning device 52 that has learned about one automatic wire connection device 3 may learn about other automatic wire connection devices 3 other than the automatic wire connection device 3.
  • the learning device 52 that learns about the other automatic wire connection device 3 can update the output prediction model by re-learning in the other automatic wire connection device 3.
  • the automatic wire connection device 3 adjusts the parameters by using the trained model for inferring the parameters that enable the automatic connection.
  • the automatic wire connection device 3 can succeed in automatic connection by adjusting parameters based on the trained model.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the automatic connection adjusting unit according to the first to third embodiments.
  • FIG. 12 shows a hardware configuration when the functions of the automatic connection adjusting units 30, 40, and 50 are realized by using the hardware for executing the program.
  • the automatic connection adjustment units 30, 40, 50 include a processor 61 that executes various processes, a memory 62 that is a built-in memory, a storage device 63 that stores information, and information to the automatic connection adjustment units 30, 40, 50. It has an input and an interface circuit 64 for outputting information from the automatic connection adjusting units 30, 40, and 50.
  • the processor 61 is a CPU (Central Processing Unit).
  • the processor 61 may be a processing device, an arithmetic unit, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the memory 62 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory) or an EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory).
  • the storage device 63 is an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the program that causes the computer to function as the automatic connection adjustment units 30, 40, 50 is stored in the storage device 63.
  • the processor 61 reads the program stored in the storage device 63 into the memory 62 and executes it.
  • the program may be stored in a storage medium that can be read by a computer system.
  • the automatic connection adjusting units 30, 40, and 50 may store the program recorded on the storage medium in the memory 62.
  • the storage medium may be a portable storage medium that is a flexible disk, or a flash memory that is a semiconductor memory.
  • the program may be installed in a computer system from another computer or server device via a communication network.
  • the functions of the power supply control unit 31, the parameter setting unit 32, the disconnection state detection unit 33, the determination unit 34, the connection execution unit 35, the connection detection unit 42, the parameter adjustment unit 43, the learning device 52, and the inference device 53 are the processor 61. It is realized by a combination of software. Each of the functions may be realized by a combination of the processor 61 and the firmware, or may be realized by a combination of the processor 61, the software and the firmware.
  • the software or firmware is written as a program and stored in the storage device 63.
  • Each function of the storage unit of the automatic connection adjustment unit 30, 40, 50 and the model storage unit 54 is realized by using the storage device 63.
  • the interface circuit 64 receives a signal from an external device connected to the hardware.
  • the external device includes a sensor for detecting the cutting current, a sensor for detecting the annealing current, a sensor for detecting the tension of the wire electrode 11, and a camera 22.
  • the function of the wire information input unit 41 is realized by using the interface circuit 64.
  • each of the above embodiments shows an example of the contents of the present disclosure.
  • the configurations of each embodiment can be combined with other known techniques.
  • the configurations of the respective embodiments may be appropriately combined. It is possible to omit or change a part of the configuration of each embodiment without departing from the gist of the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

ワイヤ自動結線装置(1)は、ワイヤ放電加工機におけるワイヤ電極(11)の自動結線を行う。ワイヤ自動結線装置(1)は、ワイヤ電極(11)が切断された際における切断状態を検出する切断状態検出部(33)を備える。ワイヤ自動結線装置(1)は、切断状態に基づいてワイヤ電極(11)の切断についての良否判定を行う判定部(34)を備える。ワイヤ自動結線装置(1)は、良否判定の結果に基づいて動作結線の実行を決定する結線実行部(35)を備える。

Description

ワイヤ自動結線装置およびワイヤ放電加工機
 本開示は、ワイヤ放電加工機におけるワイヤ電極の自動結線を行うワイヤ自動結線装置およびワイヤ放電加工機に関する。
 ワイヤ放電加工機は、ワイヤボビンからワイヤ電極を引き出し、引き出されたワイヤ電極を送り出すワイヤ送給部と、被加工物の上に配置されてワイヤ電極を案内する上ガイド部と、被加工物の下に配置されてワイヤ電極を案内する下ガイド部と、使用されたワイヤ電極を回収するワイヤ回収部とを有する。ワイヤ放電加工機は、ワイヤ電極を新規に装填するとき、またはワイヤ電極が断線したときに、ワイヤ送給部からワイヤ回収部までワイヤ電極を送り出すことによって、ワイヤ電極の自動結線を行う。以下の説明において、ワイヤ放電加工機のうち、自動結線において使用される構成を、ワイヤ自動結線装置と称することがある。一般に、ワイヤ自動結線装置は、ワイヤ電極の切断と、ワイヤ電極の真直性を確保するためのアニール処理を経て、結線動作を行う。
 特許文献1には、結線において障害があった区間を検出して、自動結線が失敗した回数のカウント値を区間ごとに記憶し、自動結線を行うためのパラメータを区間ごとのカウント値に基づいて切り換えるワイヤ自動結線装置が開示されている。特許文献1のワイヤ自動結線装置は、特定の区間にて障害が多発する場合に、障害があった区間の位置とカウント値とを基に失敗の原因を判定する。特許文献1のワイヤ自動結線装置は、原因別の条件の中から最適条件を選択してパラメータを切り換えることにより、修正作業を自動で行う。
特許第5180363号公報
 上記特許文献1のワイヤ自動結線装置では、ワイヤ電極への通電によってワイヤ電極が切断された際に、ワイヤ電極の先端部にワイヤ電極の溶融物が玉状に残ることがある。かかる玉状の部分が残されたまま結線動作が行われると、上ガイド部または下ガイド部などにワイヤ電極が詰まる場合がある。ワイヤ電極が詰まった場合、ワイヤ電極が詰まった位置よりも先へのワイヤ電極の送り出しが妨げられることになるため、結線動作は失敗となる。上記特許文献1のワイヤ自動結線装置は、結線動作の失敗を検出すると、パラメータを変更して、次の結線動作のためにワイヤ電極を切断する。玉状部分を含むワイヤ電極の断片が、ワイヤ電極が通される経路に残されることによって、ワイヤ電極の切断後の結線動作においてワイヤ電極の送り出しが妨げられて、結線動作は再度失敗となる場合がある。この場合、パラメータが適切なパラメータへ変更されていたとしても、ワイヤ電極の断片が手作業によって除去されない限り、結線動作を成功させることができなくなる。このように、上記特許文献1に開示される従来のワイヤ自動結線装置は、ワイヤ電極の詰まりによって自動結線ができない状態となることの回避が困難であった。
 本開示は、上記に鑑みてなされたものであって、ワイヤ電極の詰まりによって自動結線ができない状態となることを回避可能とするワイヤ自動結線装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示にかかるワイヤ自動結線装置は、ワイヤ放電加工機におけるワイヤ電極の自動結線を行う。本開示にかかるワイヤ自動結線装置は、ワイヤ電極が切断された際における切断状態を検出する切断状態検出部と、切断状態に基づいてワイヤ電極の切断についての良否判定を行う判定部と、良否判定の結果に基づいて結線動作の実行を決定する結線実行部とを備える。
 本開示にかかるワイヤ自動結線装置は、ワイヤ電極の詰まりによって自動結線ができない状態となることを回避できるという効果を奏する。
実施の形態1にかかるワイヤ放電加工機のうちワイヤ自動結線装置を示す図 実施の形態1におけるワイヤ自動結線装置の動作手順を示すフローチャート 実施の形態1のワイヤ自動結線装置において防ぎ得るワイヤ電極の詰まりについて説明するための図 実施の形態2にかかるワイヤ放電加工機のうちワイヤ自動結線装置を示す図 実施の形態2におけるワイヤ自動結線装置の動作手順を示すフローチャート 実施の形態3にかかるワイヤ放電加工機のうちワイヤ自動結線装置を示す図 実施の形態3におけるワイヤ自動結線装置の動作手順を示すフローチャート 実施の形態3のワイヤ自動結線装置が有する学習装置の機能構成を示すブロック図 実施の形態3における学習装置の処理手順を示すフローチャート 実施の形態3のワイヤ自動結線装置が有する推論装置の機能構成を示すブロック図 実施の形態3における推論装置の処理手順を示すフローチャート 実施の形態1から3にかかる自動結線調整部が有するハードウェア構成の例を示す図
 以下に、実施の形態にかかるワイヤ自動結線装置およびワイヤ放電加工機を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1にかかるワイヤ放電加工機のうちワイヤ自動結線装置を示す図である。ワイヤ放電加工機は、ワイヤ電極11と被加工物17との間に放電を繰り返し発生させる。ワイヤ放電加工機は、放電エネルギーを用いた放電加工によって、被加工物17を切断、または被加工物17の一部を除去する。ワイヤ自動結線装置1は、ワイヤ放電加工機におけるワイヤ電極11の自動結線を行う。
 ワイヤ放電加工機には、ワイヤ電極11が巻き付けられたワイヤボビン10が装着される。ワイヤ自動結線装置1は、ワイヤボビン10から引き出されたワイヤ電極11の方向を転換するためのプーリ12a,12bと、ワイヤ送給部である送給ローラ13と、送給ローラ13へワイヤ電極11を押し付けるピンチローラ14a,14bとを有する。送給ローラ13は、ワイヤボビン10からワイヤ電極11を引き出し、引き出されたワイヤ電極11を送り出す。送給ローラ13は、送り出し方向とは逆にワイヤ電極11を引き戻す動作も行う。
 ワイヤ自動結線装置1は、ワイヤ電極11を案内する上ガイド部16aおよび下ガイド部16bと、ワイヤ電極11の送り方向を転換するためのガイドローラ18と、放電加工において使用されたワイヤ電極11を回収するワイヤ回収部19とを有する。
 上ガイド部16aは、被加工物17と、被加工物17よりも上に配置されている給電子15aとの間に配置されている。下ガイド部16bは、被加工物17と、被加工物17よりも下に配置されている給電子15bとの間に配置されている。給電子15a,15bは、ワイヤ電極11に加工電流を供給する。ワイヤ自動結線装置1は、送給ローラ13からガイドローラ18までにおいて、ワイヤ電極11を鉛直下方へ送り出す。ガイドローラ18は、ワイヤ電極11の方向を、鉛直方向から水平方向へ転換させる。
 ワイヤ回収部19は、ガイドローラ18から送り出されたワイヤ電極11を、不図示の回収場所へ送り出すことによって、ワイヤ電極11を排出する。ワイヤ自動結線装置1は、ワイヤ電極11を新規に装填するとき、またはワイヤ電極11が断線したときに、送給ローラ13からワイヤ回収部19までワイヤ電極11を送り出すことによって、ワイヤ電極11の自動結線を行う。
 ワイヤ自動結線装置1は、ワイヤ電極11にアニール処理を施すアニール処理部20と、ワイヤ電極11を切断する切断部21と、ワイヤ電極11のうち切断された部分を撮影するカメラ22と、ワイヤ電極11を把持するピンチローラ23とを有する。ワイヤ電極11の切断とワイヤ電極11へのアニール処理とは、結線動作の準備において実施される工程であって、自動結線の工程に含まれる。
 アニール処理部20は、電極24a,24bを有する。アニール処理部20は、電極24aと電極24bとをワイヤ電極11に接触させることによって、ワイヤ電極11に電流を流す。アニール処理部20は、アニール処理の際に、ワイヤ電極11に電流を流す。アニール処理では、ワイヤ電極11に電流が流れることで、ワイヤ電極11には、ワイヤ電極11の電気抵抗に応じた熱が発生する。
 アニール処理において、ピンチローラ23は、ワイヤ電極11を把持することによってピンチローラ23の位置にてワイヤ電極11を固定する。ピンチローラ23にてワイヤ電極11が固定された状態において送給ローラ13がワイヤ電極11を引き戻すことによって、ワイヤ電極11には張力が付与される。ワイヤ電極11は、熱の発生と張力の付与とによって、真直化される。また、熱の発生と張力付与とによって、ワイヤ電極11の表面が滑らかにされる。アニール処理の終了後、送給ローラ13は、ワイヤ電極11の引き戻しを止める。ピンチローラ23は、ワイヤ電極11を離す。アニール処理部20は、電極24aと電極24bをワイヤ電極11から離す。
 切断部21は、電極25を有する。切断部21は、ワイヤ電極11に電極25を接触させることによって、ワイヤ電極11に電流を流す。切断部21は、ワイヤ電極11に電流を流すことによって、ワイヤ電極11を溶断する。ピンチローラ23にてワイヤ電極11が固定された状態において送給ローラ13がワイヤ電極11を引き戻すことによって、ワイヤ電極11には張力が付与される。ワイヤ電極11が切断された後、送給ローラ13は、ワイヤ電極11の引き戻しを止める。ピンチローラ23は、ワイヤ電極11を離す。切断部21は、電極25をワイヤ電極11から離す。カメラ22は、切断部21によって切断されたワイヤ電極11の先端部を撮影する。または、カメラ22は、切断部21によって切断されているときのワイヤ電極11を撮影する。
 ワイヤ自動結線装置1は、結線動作を調整する自動結線調整部30を有する。自動結線調整部30は、ワイヤ放電加工機を制御する数値制御装置のうち、自動結線の制御において使用される構成を指す。すなわち、自動結線調整部30は、数値制御装置の一部である。
 自動結線調整部30は、ワイヤ電極11の切断状態を検出する切断状態検出部33と、切断状態に基づいてワイヤ電極11の切断についての良否判定を行う判定部34と、良否判定の結果に基づいて結線動作の実行を決定する結線実行部35とを有する。切断状態検出部33は、自動結線においてワイヤ電極11が切断された際における切断状態を検出する。
 自動結線調整部30は、ワイヤ自動結線装置1の各部への電力供給を制御する電源制御部31と、自動結線のためのパラメータを設定するパラメータ設定部32とを有する。パラメータ設定部32は、設定されたパラメータを電源制御部31へ出力する。電源制御部31は、送給ローラ13を駆動するモータへ電力を供給する。電源制御部31は、モータへの電力供給によって、送給ローラ13によるワイヤ電極11の送り出しと、送給ローラ13によるワイヤ電極11の引き戻しとを制御する。モータの図示は省略する。また、電源制御部31は、アニール処理部20と切断部21とへ電力を供給する。
 切断状態検出部33は、張力検出部36と、アニール電流検出部37と、切断電流検出部38と、画像取得部39とを有する。張力検出部36は、ワイヤ電極11の張力を検出する。アニール電流検出部37は、アニール電流を検出する。アニール電流は、アニール処理においてワイヤ電極11を流れた電流である。切断電流検出部38は、切断電流を検出する。切断電流は、ワイヤ電極11が切断される際にワイヤ電極11を流れた電流である。画像取得部39は、カメラ22によって撮影された画像を取得する。
 張力検出部36は、ワイヤ電極11が切断される際におけるワイヤ電極11の張力変動を測定する。張力検出部36での測定によって、切断状態検出部33は、ワイヤ電極11が切断される際におけるワイヤ電極11の張力の状態を、切断状態の要素の1つとして検出する。また、張力検出部36は、ワイヤ電極11にアニール処理が施されているときのワイヤ電極11の張力変動を測定する。張力検出部36での測定によって、切断状態検出部33は、アニール処理の際におけるワイヤ電極11の張力の状態を、切断状態の要素の1つとして検出する。
 アニール電流検出部37は、ワイヤ電極11にアニール処理が施されているときのアニール電流を測定する。アニール電流検出部37での測定によって、切断状態検出部33は、切断状態の要素の1つとして、アニール電流の状態を検出する。
 切断電流検出部38は、ワイヤ電極11が切断される際の切断電流を測定する。切断電流検出部38での測定によって、切断状態検出部33は、切断状態の要素の1つとして、切断電流の状態を検出する。
 画像取得部39は、切断されたワイヤ電極11の先端部を撮影した画像を取得する。画像取得部39は、かかる画像から、ワイヤ電極11のうち切断された部分である先端部の形状を測定する。画像取得部39での測定によって、切断状態検出部33は、ワイヤ電極11の先端部の形状を、切断状態の要素の1つとして検出する。
 また、画像取得部39は、切断部21によって切断されているときのワイヤ電極11を撮影した画像を取得する。画像取得部39は、かかる画像から、ワイヤ電極11の切断時における発光色、または、ワイヤ電極11の切断時における発光の大きさを測定する。画像取得部39での測定によって、切断状態検出部33は、ワイヤ電極11が切断される際の発光状態を、切断状態の要素の1つとして検出する。発光状態は、発光色または発光の大きさである。
 このように、切断状態検出部33によって検出される切断状態には、ワイヤ電極11の張力の状態と、アニール電流の状態と、切断電流の状態と、ワイヤ電極11の先端部の形状と、発光状態との各要素が含まれる。切断状態検出部33は、検出された切断状態を示す情報を判定部34へ出力する。
 判定部34は、切断状態検出部33によって検出された切断状態を、判定基準と比較することによって、切断の良否判定を行う。判定基準は、ワイヤ電極11の切断を実験した結果、またはワイヤ電極11の切断をシミュレーションした結果を基に、ワイヤ自動結線装置1にあらかじめ設定される。判定部34は、切断状態が良判定のための判定基準を満たす場合、切断を良と判定する。判定部34は、切断状態が良判定のための判定基準を満たさない場合に、切断を不良と判定する。判定部34は、良否判定の結果を示す情報を結線実行部35へ出力する。
 結線実行部35は、良判定を示す情報が入力された場合に、結線動作の実行を決定する。結線実行部35は、結線動作の実行を決定すると、結線動作を電源制御部31へ指示する。電源制御部31は、結線実行部35からの指示に従って、送給ローラ13によるワイヤ電極11の送り出しを開始させる。一方、結線実行部35は、不良判定を示す情報が入力された場合に、結線動作を取りやめる。
 次に、ワイヤ自動結線装置1による自動結線の動作について説明する。図2は、実施の形態1におけるワイヤ自動結線装置の動作手順を示すフローチャートである。
 ステップS1において、ワイヤ自動結線装置1は、自動結線のためのパラメータを設定する。設定されるパラメータには、切断部21へ流される電流を示す切断電流パラメータと、切断時にワイヤ電極11へ付与される張力を示す切断張力パラメータと、アニール処理部20へ流される電流を示すアニール電流パラメータと、アニール処理時にワイヤ電極11へ付与される張力を示すアニール張力パラメータとが含まれる。数値制御装置には、初期条件であるパラメータがあらかじめ格納されている。パラメータ設定部32は、数値制御装置に格納されているパラメータを読み出すことによって、初期条件であるパラメータを設定する。パラメータ設定部32は、設定されたパラメータを電源制御部31へ出力する。
 ステップS2において、ワイヤ自動結線装置1は、ワイヤ電極11を切断する。ステップS2におけるワイヤ自動結線装置1の動作には、ワイヤ電極11を切断する第1の動作と、ワイヤ電極11へアニール処理を施す第2の動作とが含まれる。
 第1の動作において、電源制御部31は、設定された切断電流パラメータに従った電流を電極25へ流す。電源制御部31は、切断張力パラメータに従った電流をモータへ流すことによって、切断張力パラメータに従った引き戻し動作を送給ローラ13に行わせる。ピンチローラ23の位置にて固定されているワイヤ電極11が送給ローラ13によって引っ張られることによって、ワイヤ電極11には張力が付与される。ワイヤ自動結線装置1は、ワイヤ電極11に張力を付与するとともに切断部21にてワイヤ電極11へ電流を流すことによって、ワイヤ電極11を切断する。ワイヤ電極11のうち切断された箇所よりもワイヤ回収部19側の部分は、ワイヤ回収部19によって回収される。
 次に、ワイヤ自動結線装置1は、送給ローラ13に送り出し動作を行わせて、切断されたワイヤ電極11をピンチローラ23に把持させる。ワイヤ自動結線装置1は、第2の動作を開始する。第2の動作において、電源制御部31は、設定されたアニール電流パラメータに従った電流を電極24a,24bへ流す。電源制御部31は、アニール張力パラメータに従った電流をモータへ流すことによって、アニール張力パラメータに従った引き戻し動作を送給ローラ13に行わせる。ピンチローラ23の位置にて固定されているワイヤ電極11が送給ローラ13によって引っ張られることによって、ワイヤ電極11には張力が付与される。ワイヤ自動結線装置1は、ワイヤ電極11に張力を付与するとともにアニール処理部20にてワイヤ電極11へ電流を流すことによって、ワイヤ電極11へアニール処理を施す。
 ステップS3において、ワイヤ自動結線装置1は、ステップS2におけるワイヤ電極11の切断状態を検出する。切断状態検出部33は、切断状態の要素として、切断時における切断電流の状態と、切断時における張力の状態とを検出する。切断状態検出部33は、切断状態の要素として、アニール処理時におけるアニール電流の状態と、アニール処理時における張力の状態とを検出する。切断状態検出部33は、切断状態の要素として、ワイヤ電極11の先端部の形状を検出する。切断状態検出部33は、切断状態の要素として、切断時における発光状態を検出する。
 ステップS4において、ワイヤ自動結線装置1は、検出された切断状態が良判定の基準を満たすか否かを判定する。すなわち、ワイヤ自動結線装置1は、判定部34において、ワイヤ電極11の切断についての良否判定を行う。なお、判定部34は、良否判定として、検出された切断状態が不良判定の基準に該当するか否かを判定しても良い。
 ここで、良否判定の具体例について説明する。切断時におけるワイヤ電極11の伸びが不十分であった場合に、ワイヤ電極11の溶融物である玉がワイヤ電極11の先端部に残ることがある。例えば、切断電流が過大である異常、または切断時の張力が過小である異常があった場合に、切断時におけるワイヤ電極11の伸びが不十分となることによって、溶融物の玉が形成され得る。これに対し、ワイヤ電極11が正常に切断された場合、ワイヤ電極11の先端部に溶融物の玉は形成されず、ワイヤ電極11の先端部はまっすぐな形状となる。ワイヤ自動結線装置1には、良判定の基準である形状のデータがあらかじめ設定される。判定部34は、検出された形状について、良判定の基準との差分を求める。判定部34は、求めた差分があらかじめ設定された許容範囲内である場合、切断状態が良判定の基準を満たすと判定する。一方、判定部34は、求めた差分が当該許容範囲を超える場合、切断状態が良判定の基準を満たさないと判定する。
 ワイヤ電極11の切断に異常があった場合における発光色は、ワイヤ電極11が正常に切断されるときにおける発光色とは異なる場合がある。判定部34は、基準である発光色と、測定された発光色との差分を求め、切断状態が良判定の基準を満たすか否かを、求めた差分に基づいて判定しても良い。
 ワイヤ電極11の切断に異常があった場合における発光の大きさは、ワイヤ電極11が正常に切断されるときにおける発光の大きさとは異なる場合がある。判定部34は、基準とする発光の大きさと、測定された発光の大きさとの差分を求め、切断状態が良判定の基準を満たすか否かを、求めた差分に基づいて判定しても良い。
 ワイヤ電極11が正常に切断される場合、ワイヤ電極11が溶融しながらワイヤ電極11に張力が付与されることによって、一定の割合での張力変動が維持されると推測される。これに対し、切断電流が過小である異常、または切断時の張力が過大である異常があった場合に、溶融が不十分である状態のワイヤ電極11に張力が与えられてワイヤ電極11が切断されることによって、張力は瞬時的に変動すると推測される。このように、ワイヤ電極11の切断が正常である場合と異常である場合とで、張力変動に違いが表れる。判定部34は、切断時における張力変動の測定結果を、基準である張力変動と比較することによって、切断状態が良判定の基準を満たすか否かを判定しても良い。
 判定部34は、切断電流について、測定された切断電流と基準である切断電流との差分に基づいて、切断状態が良判定の基準を満たすか否かを判定する。判定部34は、切断電流の変動の測定結果を、基準である電流変動と比較することによって、切断状態が良判定の基準を満たすか否かを判定しても良い。
 判定部34は、アニール電流について、測定されたアニール電流と基準であるアニール電流との差分に基づいて、切断状態が良判定の基準を満たすか否かを判定する。判定部34は、アニール電流の変動の測定結果を、基準である電流変動と比較することによって、切断状態が良判定の基準を満たすか否かを判定しても良い。判定部34は、アニール処理時における張力変動の測定結果を、基準である張力変動と比較することによって、切断状態が良判定の基準を満たすか否かを判定しても良い。
 判定部34は、ワイヤ電極11の張力の状態と、アニール電流の状態と、切断電流の状態と、ワイヤ電極11の先端部の形状と、発光状態とのうちの少なくとも1つが、良判定の基準を満たさない場合に、切断状態が良判定の基準を満たさないと判定する。判定部34は、ワイヤ電極11の張力の状態と、アニール電流の状態と、切断電流の状態と、ワイヤ電極11の先端部の形状と、発光状態とのうちの少なくとも1つが、不良判定の基準に該当する場合に、切断状態が良判定の基準を満たさないと判定しても良い。
 切断状態が良判定の基準を満たす場合(ステップS4,Yes)、結線実行部35は、自動結線の実行を決定する。これにより、ステップS5において、ワイヤ自動結線装置1は、結線動作を実行する。一方、切断状態が良判定の基準を満たさない場合(ステップS4,No)、ワイヤ自動結線装置1は、結線動作を行わない。以上により、ワイヤ自動結線装置1は、自動結線を終了する。ワイヤ自動結線装置1は、ワイヤ電極11の切断状態が不良と判定された場合に、結線動作を取りやめて、自動結線の動作を終了する。
 切断不良があった場合、ワイヤ電極11の先端部に溶融物の玉が残る不具合によって、ワイヤ電極11は、ワイヤ電極11の経路において引っ掛かり易くなることがある。切断不良によって、溶融物の玉が残る不具合のほか、ワイヤ電極11の先端部が変形する不具合も起こり得る。このようにワイヤ電極11に不具合が生じているにもかかわらずワイヤ自動結線装置1が結線動作を行った場合、ワイヤ電極11の経路においてワイヤ電極11が詰まる可能性が高くなる。実施の形態1において、ワイヤ自動結線装置1は、ワイヤ電極11の切断が不良と判定された場合に結線動作を取りやめることで、ワイヤ電極11の詰まりを未然に防ぐ。
 図3は、実施の形態1のワイヤ自動結線装置において防ぎ得るワイヤ電極の詰まりについて説明するための図である。ここでは、切断が不良であった場合においてワイヤ自動結線装置1が結線動作を行うことを想定して、結線動作の失敗に至る様子について説明する。図3には、ワイヤ電極11が切断される前の様子と、切断部21におけるワイヤ電極11の切断によって、ワイヤ電極11の先端部に溶融物の玉11aが残された様子と、玉11aを有するワイヤ電極11について結線動作が行われた後の様子とを示している。
 例えば、玉11aを有するワイヤ電極11についての結線動作において、玉11aが上ガイド部16aを通過した後に、下ガイド部16bにて詰まったとする。この場合において、ワイヤ自動結線装置1は、ワイヤ回収部19までワイヤ電極11を送り出せないことによって、結線動作が失敗したと認識する。結線動作が失敗したことによって、ワイヤ自動結線装置1は、ワイヤ電極11を切断して、結線動作を再度試みる。
 再度の結線動作には、ワイヤ電極11のうち切断された部分よりも上の部分が使用される。ワイヤ電極11のうち切断された部分よりも下の部分、すなわち玉11aを含む部分については、ワイヤ自動結線装置1は、上方への引き戻しなどによって、ワイヤ電極11の経路から排出する。かかる排出の工程において、ワイヤ電極11の経路に玉11aが引っ掛かった状態でワイヤ電極11が引き戻されることによって、ワイヤ電極11が切れてしまうと、玉11aを含むワイヤ電極11の断片が排出されずに経路に留まる。ワイヤ電極11の経路に留まった断片がその後の結線動作における妨げとなるため、ワイヤ自動結線装置1は、手作業によって断片が除去されない限り、結線を成功させることができない状態となる。
 実施の形態1によると、ワイヤ自動結線装置1は、切断状態に基づいてワイヤ電極11の切断についての良否判定を行い、良否判定の結果に基づいて結線動作の実行を決定する。これにより、ワイヤ自動結線装置1は、ワイヤ電極11の詰まりを未然に防ぐことができるため、ワイヤ電極11の詰まりによって自動結線ができない状態となることを回避できるという効果を奏する。
 なお、切断状態検出部33によって検出される切断状態には、ワイヤ電極11の張力の状態と、アニール電流の状態と、切断電流の状態と、ワイヤ電極11の先端部の形状と、発光状態との少なくとも1つが含まれれば良い。これにより、切断状態検出部33は、ワイヤ電極11の切断について良否判定のための状態検出を行うことができる。判定部34は、ワイヤ電極11の張力の状態と、アニール電流の状態と、切断電流の状態と、ワイヤ電極11の先端部の形状と、発光状態とのうちの少なくとも1つに基づいて、ワイヤ電極11の切断についての良否判定を行えば良い。これにより、ワイヤ自動結線装置1は、ワイヤ電極11の詰まりによって自動結線ができない状態となることを回避することができる。
実施の形態2.
 図4は、実施の形態2にかかるワイヤ放電加工機のうちワイヤ自動結線装置を示す図である。実施の形態2において、ワイヤ自動結線装置2の自動結線調整部40は、良否判定の結果と自動結線の成否とに基づいて、自動結線のためのパラメータを調整する。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。
 自動結線調整部40は、実施の形態1における自動結線調整部30と同様の構成要素を有する。さらに、自動結線調整部40は、ワイヤ情報入力部41と、結線検出部42と、パラメータ調整部43とを有する。
 ワイヤ情報入力部41には、ワイヤ情報が入力される。ワイヤ情報は、ワイヤ電極11の諸元についての情報である。ワイヤ情報には、ワイヤ電極11の材料、ワイヤ電極11の太さ、ワイヤ電極11の製造メーカといった情報が含まれる。ワイヤ情報入力部41は、入力されたワイヤ情報をパラメータ調整部43へ出力する。
 結線検出部42は、ワイヤ自動結線装置2による自動結線の成否を検出する。結線検出部42は、結線動作によってワイヤ回収部19からワイヤ電極11が送り出された場合に、自動結線は成功と判断する。結線検出部42は、ワイヤ回収部19へ到達可能な長さのワイヤ電極11が送給ローラ13から送り出されたにもかかわらずワイヤ回収部19にワイヤ電極11が到達しなかった場合に、自動結線は失敗と判断する。結線検出部42は、自動結線の成否を示す情報をパラメータ調整部43へ出力する。
 結線実行部35は、実施の形態1の場合と同様に、自動結線の実行を決定する。結線実行部35は、不良判定を示す情報が入力された場合に、パラメータ調整をパラメータ調整部43に指示する。
 パラメータ調整部43は、結線実行部35からの指示があった場合、または自動結線が失敗したことを示す情報が入力された場合に、パラメータ設定部32に設定されているパラメータを調整する。パラメータ調整部43は、調整後のパラメータをパラメータ設定部32へ出力する。パラメータ調整部43は、パラメータ調整が行われたことを結線実行部35へ通知する。結線実行部35は、パラメータ調整部43からの通知を受けると、パラメータ調整部43による調整後のパラメータによる結線動作の実行を決定する。
 次に、ワイヤ自動結線装置2による自動結線の動作について説明する。図5は、実施の形態2におけるワイヤ自動結線装置の動作手順を示すフローチャートである。図5に示すステップS1からステップS5は、図2に示すステップS1からステップS5と同様である。なお、切断状態が良判定の基準を満たさない場合(ステップS4,No)、ワイヤ自動結線装置2は、後述するステップS7へ手順を進める。また、ワイヤ自動結線装置2は、ステップS5に続いて、次に説明するステップS6へ手順を進める。
 ステップS6において、ワイヤ自動結線装置2は、結線が成功したか否かを、結線検出部42において判断する。結線が成功した場合(ステップS6,Yes)、ワイヤ自動結線装置2は、図5に示す手順による動作を終了する。一方、結線が失敗した場合(ステップS6,No)、ワイヤ自動結線装置2は、次に説明するステップS7へ手順を進める。
 ステップS7では、ワイヤ自動結線装置2は、パラメータ調整部43においてパラメータを調整する。すなわち、パラメータ調整部43は、切断状態が良判定の基準を満たさなかった場合、または、結線が失敗した場合に、パラメータ設定部32に設定されているパラメータを調整する。このように、パラメータ調整部43は、判定部34による良否判定の結果と、自動結線の成否とに基づいてパラメータを調整する。ステップS7によるパラメータの調整を終えると、結線実行部35は、調整後のパラメータによる結線動作の実行を決定し、結線動作を電源制御部31へ指示する。ワイヤ自動結線装置2は、手順をステップS2へ戻し、調整後のパラメータによる結線動作を行う。これにより、ワイヤ自動結線装置2は、ワイヤ電極11の切断が不良である場合、または、自動結線が失敗した場合に、パラメータを調整して、ワイヤ電極11の切断と結線動作とを再度試みる。
 ここで、パラメータ調整部43によるパラメータの調整について説明する。ワイヤ電極11の切断が不良である場合、不良の要因としては、切断電流が過大であること、および、切断時の張力が過小であることが考えられる。パラメータ調整部43は、ワイヤ電極11の切断が不良である場合に、切断電流パラメータを減少する調整、または、切断張力パラメータを増加する調整を行う。
 ワイヤ電極11の切断が良であって、かつ結線が失敗した場合、ワイヤ電極11の先端部には問題が無い一方、アニール処理後のワイヤ電極11の真直性が不十分であったことが考えられる。すなわち、アニール処理に不備があったことが考えられる。パラメータ調整部43は、アニール電流パラメータと、アニール張力パラメータとのうちの少なくとも一方を調整する。パラメータ調整部43は、アニール電流パラメータまたはアニール張力パラメータを調整するほか、アニール処理の時間を長くする調整、またはアニール処理の時間を短くする調整を行っても良い。
 パラメータ調整部43は、検出された切断電流の値と切断電流の基準値との差分を求めて、基準値を含む範囲に切断電流の値が収まるように切断電流パラメータを調整しても良い。パラメータ調整部43は、切断時において検出された張力の値と切断張力の基準値との差分を求めて、基準値を含む範囲に切断張力の値が収まるように切断張力パラメータを調整しても良い。パラメータ調整部43は、検出されたアニール電流の値とアニール電流の基準値との差分を求めて、基準値を含む範囲にアニール電流の値が収まるようにアニール電流パラメータを調整しても良い。パラメータ調整部43は、アニール処理の際に検出された張力の値とアニール張力の基準値との差分を求めて、基準値を含む範囲にアニール張力の値が収まるように切断張力パラメータを調整しても良い。基準値と、基準値を含む範囲とは、ワイヤ電極11の切断を実験した結果、またはワイヤ電極11の切断をシミュレーションした結果を基に、ワイヤ自動結線装置2にあらかじめ設定される。設定された基準値と、基準値を含む範囲の情報とは、ワイヤ自動結線装置2の記憶部に格納される。記憶部の図示は省略する。
 切断電流、切断張力、アニール電流およびアニール張力の各基準値には、ワイヤ情報に紐付けられた基準値が設定されても良い。パラメータ調整部43は、ワイヤ情報入力部41から入力されたワイヤ情報を基に、当該ワイヤ情報に紐付けられた基準値と、基準値を含む範囲の情報とを記憶部から読み出す。これにより、パラメータ調整部43は、ワイヤ情報に紐付けられた基準値と、ワイヤ情報に紐付けられた範囲の情報とを使用して、パラメータを調整する。このように、パラメータ調整部43は、ワイヤ情報入力部41から入力されたワイヤ情報に基づいて、パラメータを調整する。
 実施の形態2によると、ワイヤ自動結線装置2は、切断についての良否判定の結果と自動結線の成否とに基づいてパラメータを調整することによって、ワイヤ電極11の切断と結線動作とを再度試みる。これにより、ワイヤ自動結線装置2は、設定されているパラメータが適切なパラメータではない場合に、パラメータを調整して、ワイヤ電極11の切断と結線動作とを再度実行することができる。また、ワイヤ自動結線装置2は、ワイヤ情報に基づいてパラメータを調整することによって、ワイヤ電極11の種類ごとに、ワイヤ電極11の種類に適したパラメータ調整を行うことができる。
実施の形態3.
 図6は、実施の形態3にかかるワイヤ放電加工機のうちワイヤ自動結線装置を示す図である。実施の形態3において、ワイヤ自動結線装置3の自動結線調整部50に設けられているパラメータ調整部51は、学習済モデルを使用してパラメータを学習する。実施の形態3では、上記の実施の形態1または2と同一の構成要素には同一の符号を付し、実施の形態1または2とは異なる構成について主に説明する。
 パラメータ調整部51は、自動結線を可能とするパラメータを学習する学習装置52と、自動結線を可能とするパラメータを推論する推論装置53と、学習済モデルを記憶するモデル記憶部54とを有する。学習装置52は、自動結線を可能とするパラメータを推論するための学習済モデルを生成する。学習装置52は、機械学習によって、学習済モデルを生成する。推論装置53は、学習装置52によって生成された学習済モデルを用いてパラメータを推論する。
 ワイヤ情報入力部41は、入力されたワイヤ情報をパラメータ調整部51へ出力する。結線検出部42は、パラメータ調整部51へ成否情報を出力する。成否情報は、自動結線の成否を示す情報である。結線実行部35は、判定部34から入力された判定情報をパラメータ調整部51へ出力する。判定情報は、判定部34における良否判定の結果を示す情報である。パラメータ調整部51は、ワイヤ情報と成否情報と判定情報とに基づいてパラメータを調整する。
 次に、ワイヤ自動結線装置3による自動結線の動作について説明する。図7は、実施の形態3におけるワイヤ自動結線装置の動作手順を示すフローチャートである。図7に示すステップS1からステップS6は、図5に示すステップS1からステップS6と同様である。なお、切断状態が良判定の基準を満たさない場合(ステップS4,No)、または、結線が失敗した場合(ステップS6,No)、ワイヤ自動結線装置3は、後述するステップS9へ手順を進める。結線が成功した場合(ステップS6,Yes)、ワイヤ自動結線装置3は、次に説明するステップS8へ手順を進める。
 ステップS8において、ワイヤ自動結線装置3は、学習装置52において、ワイヤ情報と判定情報と成否情報とパラメータとを取得する。学習装置52は、ワイヤ情報と判定情報と成否情報とパラメータとを含むデータセットを使用して、パラメータを学習する。学習装置52が学習を行うと、ワイヤ自動結線装置3は、図7に示す手順による動作を終了する。
 ステップS9において、ワイヤ自動結線装置3は、学習装置52において、ワイヤ情報と判定情報と成否情報とパラメータとを取得する。学習装置52は、ワイヤ情報と判定情報と成否情報とパラメータとを含むデータセットを使用して、パラメータを学習する。次に、ワイヤ自動結線装置3は、自動結線を可能とするパラメータを推論装置53において推論する。ステップS10において、ワイヤ自動結線装置3は、推論装置53からパラメータ設定部32へ、推論結果であるパラメータを出力する。ステップS10により推論装置53からパラメータを出力すると、ワイヤ自動結線装置3は、手順をステップS2へ戻す。
 ここで、パラメータ調整部51における処理について説明する。図8は、実施の形態3のワイヤ自動結線装置が有する学習装置の機能構成を示すブロック図である。学習装置52は、データ取得部55とモデル生成部56とを有する。
 データ取得部55は、パラメータ調整部51へ入力された、ワイヤ情報と判定情報と成否情報とを取得する。また、データ取得部55は、パラメータ設定部32からパラメータを読み出すことによって、設定されているパラメータを取得する。データ取得部55は、ワイヤ情報と判定情報と成否情報とパラメータとをまとめ合わせたデータセットを作成する。データ取得部55は、作成されたデータセットをモデル生成部56へ出力する。モデル生成部56は、ワイヤ情報と判定情報と成否情報とパラメータとに基づいて作成されるデータセットを用いて学習済モデルを生成する。
 モデル生成部56が用いる学習アルゴリズムは、どのようなものであっても良い。一例として、強化学習(Reinforcement Learning)を適用した場合について説明する。強化学習は、ある環境内におけるエージェントである行動主体が、現在の状態を観測し、取るべき行動を決定する、というものである。エージェントは行動を選択することで環境から報酬を得て、一連の行動を通じて報酬が最も多く得られるような方策を学習する。強化学習の代表的な手法として、Q学習(Q-Learning)およびTD学習(TD-Learning)などが知られている。例えば、Q学習の場合、行動価値関数Q(s,a)の一般的な更新式である行動価値テーブルは、次の式(1)で表される。行動価値関数Q(s,a)は、環境「s」のもとで行動「a」を選択する行動の価値である行動価値Qを表す。
Figure JPOXMLDOC01-appb-M000001
 上記の式(1)において、「s」は、時刻「t」における環境の状態を表す。「a」は、時刻「t」における行動を表す。行動「a」により、状態は「s」から「st+1」へ変わる。「rt+1」は、状態が「s」から「st+1」へ変わることによってもらえる報酬を表す。「γ」は、割引率を表し、0<γ≦1を満たす。「α」は、学習係数を表し、0<α≦1を満たす。実施の形態3において、行動「a」は、ワイヤ情報およびパラメータである。状態「s」は、判定情報および成否情報である。モデル生成部56は、時刻「t」の状態「s」における最良の行動「a」を学習する。
 上記の式(1)により表される更新式は、時刻「t+1」における最良の行動「a」の行動価値が、時刻「t」において実行された行動「a」の行動価値Qよりも大きければ、行動価値Qを大きくし、逆の場合は、行動価値Qを小さくする。換言すれば、時刻「t」における行動「a」の行動価値Qを、時刻「t+1」における最良の行動価値に近づけるように、行動価値関数Q(s,a)を更新する。それにより、ある環境における最良の行動価値が、それ以前の環境における行動価値に順次伝播する。
 モデル生成部56は、報酬計算部57と関数更新部58とを有する。報酬計算部57は、判定情報と成否情報とに基づいて、ワイヤ情報と自動結線に使用されたパラメータとの組み合わせに対する報酬を計算する。関数更新部58は、報酬計算部57によって計算される報酬に従って、パラメータを決定するための関数を更新する。関数更新部58は、関数の更新によって作成された学習済モデルをモデル記憶部54へ出力する。
 報酬計算部57は、判定情報と成否情報に基づいて、ワイヤ情報と自動結線に使用されたパラメータとの組み合わせに対する報酬「r」を計算する。例えば、判定情報が「良」かつ成否情報が「成功」であった場合に、報酬計算部57は、報酬の値である「+2」を与えることによって報酬「r」を増大させる。判定情報が「良」かつ成否情報が「失敗」であった場合に、報酬計算部57は、報酬の値である「-1」を与えることによって報酬「r」を低減させる。判定情報が「不良」であった場合、報酬計算部57は、報酬の値である「-2」を与えることによって報酬「r」を低減させる。なお、報酬の値は任意であるものとする。
 図9は、実施の形態3における学習装置の処理手順を示すフローチャートである。図9のフローチャートを参照して、行動価値関数Q(s,a)を更新する強化学習方法について説明する。
 ステップS11において、学習装置52は、ワイヤ情報と判定情報と成否情報とパラメータとを取得する。ステップS12において、学習装置52は、判定情報と成否情報に基づいて、ワイヤ情報と自動結線に使用されたパラメータとの組み合わせに対する報酬を算出する。ステップS13において、学習装置52は、報酬に基づいて行動価値関数Q(s,a)を更新する。ステップS14において、学習装置52は、行動価値関数Q(s,a)が収束したか否かを判断する。学習装置52は、ステップS13における行動価値関数Q(s,a)の更新が行われなくなることによって行動価値関数Q(s,a)が収束したと判定する。
 行動価値関数Q(s,a)が収束していないと判定された場合(ステップS14,No)、学習装置52は、動作手順をステップS11へ戻す。行動価値関数Q(s,a)が収束したと判定された場合(ステップS14,Yes)、学習装置52は、図9に示す手順による学習を終了する。なお、学習装置52は、ステップS14による判定を行わず、ステップS13からステップS11へ動作手順を戻すことによって学習を継続させることとしても良い。モデル記憶部54は、生成された行動価値関数Q(s,a)を学習済モデルとして記憶する。
 図10は、実施の形態3のワイヤ自動結線装置が有する推論装置の機能構成を示すブロック図である。推論装置53は、学習済モデルとワイヤ情報とに基づいて、自動結線を可能とするパラメータを推論する。推論装置53は、データ取得部59と推論部60とを有する。
 データ取得部59は、パラメータ調整部51へ入力された、ワイヤ情報を取得する。データ取得部59は、取得されたワイヤ情報を推論部60へ出力する。推論部60は、モデル記憶部54から読み出された学習済モデルを使用して、自動結線を可能とするパラメータを推論する。推論部60は、学習済モデルへワイヤ情報を入力することで、自動結線を成功させ得るパラメータを推論することができる。
 図11は、実施の形態3における推論装置の処理手順を示すフローチャートである。ステップS15において、推論装置53は、データ取得部59において、ワイヤ情報を取得する。ステップS16において、推論装置53は、推論部60において、学習済モデルへワイヤ情報を入力し、パラメータを求める。ステップS17において、推論装置53は、推論部60からパラメータ設定部32へパラメータを出力する。これにより、推論装置53は、図11に示す手順による処理を終了する。
 実施の形態3では、学習装置52が用いる学習アルゴリズムに強化学習を適用する場合について説明したが、学習アルゴリズムには、強化学習以外の学習が適用されても良い。学習装置52は、強化学習以外の公知の学習アルゴリズム、例えば、深層学習(Deep Learning)、ニューラルネットワーク、遺伝的プログラミング、機能論理プログラミングあるいはサポートベクターマシンといった学習アルゴリズムを用いて機械学習を実行しても良い。
 実施の形態3では、学習装置52は、自動結線調整部50に内蔵されている。学習装置52は、ワイヤ自動結線装置3に含まれる装置に限られず、ワイヤ自動結線装置3の外部の装置であっても良い。学習装置52は、ネットワークを介してワイヤ自動結線装置3に接続可能な装置であっても良い。学習装置52は、クラウドサーバ上に存在する装置であっても良い。
 学習装置52は、複数のワイヤ自動結線装置3に対して作成されたデータセットに従って、パラメータを学習しても良い。学習装置52は、同一の現場で使用される複数のワイヤ自動結線装置3からデータセットを取得しても良く、あるいは、互いに異なる現場で使用される複数のワイヤ自動結線装置3からデータセットを取得しても良い。データセットは、複数の現場において互いに独立して稼働する複数のワイヤ自動結線装置3から収集されたものであっても良い。複数のワイヤ自動結線装置3からのデータセットの収集を開始した後に、データセットが収集される対象に新たなワイヤ自動結線装置3が追加されても良い。また、複数のワイヤ自動結線装置3からのデータセットの収集を開始した後に、データセットが収集される対象から、複数のワイヤ自動結線装置3のうちの一部が除外されても良い。
 ある1つのワイヤ自動結線装置3について学習を行った学習装置52は、当該ワイヤ自動結線装置3以外の他のワイヤ自動結線装置3についての学習を行っても良い。当該他のワイヤ自動結線装置3についての学習を行う学習装置52は、当該他のワイヤ自動結線装置3における再学習によって、出力の予測モデルを更新することができる。
 実施の形態3によると、ワイヤ自動結線装置3は、自動結線を可能とするパラメータを推論するための学習済モデルを使用して、パラメータを調整する。ワイヤ自動結線装置3は、学習済モデルに基づくパラメータ調整によって、自動結線を成功させることが可能となる。
 次に、実施の形態1から3にかかる自動結線調整部30,40,50が有するハードウェア構成について説明する。図12は、実施の形態1から3にかかる自動結線調整部が有するハードウェア構成の例を示す図である。図12には、プログラムを実行するハードウェアを用いることによって自動結線調整部30,40,50の機能が実現される場合におけるハードウェア構成を示している。
 自動結線調整部30,40,50は、各種処理を実行するプロセッサ61と、内蔵メモリであるメモリ62と、情報を記憶する記憶装置63と、自動結線調整部30,40,50への情報の入力と自動結線調整部30,40,50からの情報の出力のためのインタフェース回路64とを有する。
 プロセッサ61は、CPU(Central Processing Unit)である。プロセッサ61は、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)であっても良い。メモリ62は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)またはEEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)である。
 記憶装置63は、HDD(Hard Disk Drive)またはSSD(Solid State Drive)である。コンピュータを自動結線調整部30,40,50として機能させるプログラムは、記憶装置63に格納される。プロセッサ61は、記憶装置63に格納されているプログラムをメモリ62に読み出して実行する。
 プログラムは、コンピュータシステムによる読み取りが可能とされた記憶媒体に記憶されたものであっても良い。自動結線調整部30,40,50は、記憶媒体に記録されたプログラムをメモリ62へ格納しても良い。記憶媒体は、フレキシブルディスクである可搬型記憶媒体、あるいは半導体メモリであるフラッシュメモリであっても良い。プログラムは、他のコンピュータあるいはサーバ装置から通信ネットワークを介してコンピュータシステムへインストールされても良い。
 電源制御部31、パラメータ設定部32、切断状態検出部33、判定部34、結線実行部35、結線検出部42、パラメータ調整部43、学習装置52および推論装置53の各機能は、プロセッサ61とソフトウェアの組み合わせによって実現される。当該各機能は、プロセッサ61およびファームウェアの組み合わせによって実現されても良く、プロセッサ61、ソフトウェアおよびファームウェアの組み合わせによって実現されても良い。ソフトウェアまたはファームウェアは、プログラムとして記述され、記憶装置63に格納される。自動結線調整部30,40,50の記憶部、およびモデル記憶部54の各機能は、記憶装置63の使用により実現される。
 インタフェース回路64は、ハードウェアに接続される外部機器からの信号を受信する。外部機器は、切断電流を検出するセンサと、アニール電流を検出するセンサと、ワイヤ電極11の張力を検出するセンサと、カメラ22とを含む。ワイヤ情報入力部41の機能は、インタフェース回路64の使用により実現される。
 以上の各実施の形態に示した構成は、本開示の内容の一例を示すものである。各実施の形態の構成は、別の公知の技術と組み合わせることが可能である。各実施の形態の構成同士が適宜組み合わせられても良い。本開示の要旨を逸脱しない範囲で、各実施の形態の構成の一部を省略または変更することが可能である。
 1,2,3 ワイヤ自動結線装置、10 ワイヤボビン、11 ワイヤ電極、11a 玉、12a,12b プーリ、13 送給ローラ、14a,14b,23 ピンチローラ、15a,15b 給電子、16a 上ガイド部、16b 下ガイド部、17 被加工物、18 ガイドローラ、19 ワイヤ回収部、20 アニール処理部、21 切断部、22 カメラ、24a,24b,25 電極、30,40,50 自動結線調整部、31 電源制御部、32 パラメータ設定部、33 切断状態検出部、34 判定部、35 結線実行部、36 張力検出部、37 アニール電流検出部、38 切断電流検出部、39 画像取得部、41 ワイヤ情報入力部、42 結線検出部、43,51 パラメータ調整部、52 学習装置、53 推論装置、54 モデル記憶部、55,59 データ取得部、56 モデル生成部、57 報酬計算部、58 関数更新部、60 推論部、61 プロセッサ、62 メモリ、63 記憶装置、64 インタフェース回路。

Claims (15)

  1.  ワイヤ放電加工機におけるワイヤ電極の自動結線を行うワイヤ自動結線装置であって、
     前記ワイヤ電極が切断された際における切断状態を検出する切断状態検出部と、
     前記切断状態に基づいて前記ワイヤ電極の切断についての良否判定を行う判定部と、
     前記良否判定の結果に基づいて結線動作の実行を決定する結線実行部と、を備えることを特徴とするワイヤ自動結線装置。
  2.  前記ワイヤ電極が切断される際に前記ワイヤ電極には張力がかけられ、
     前記切断状態には、前記張力の状態が含まれることを特徴とする請求項1に記載のワイヤ自動結線装置。
  3.  前記ワイヤ電極に電流が流されることによって、前記ワイヤ電極にはアニール処理が施され、
     前記切断状態には、前記アニール処理において前記ワイヤ電極を流れた電流であるアニール電流の状態が含まれることを特徴とする請求項1または2に記載のワイヤ自動結線装置。
  4.  前記ワイヤ電極に電流が流されることによって前記ワイヤ電極は溶断され、
     前記切断状態には、前記ワイヤ電極の溶断において前記ワイヤ電極を流れた電流である切断電流の状態が含まれることを特徴とする請求項1から3のいずれか1つに記載のワイヤ自動結線装置。
  5.  前記切断状態には、前記ワイヤ電極のうち切断された部分の形状が含まれることを特徴とする請求項1から4のいずれか1つに記載のワイヤ自動結線装置。
  6.  前記切断状態には、前記ワイヤ電極が切断される際の発光状態が含まれることを特徴とする請求項1から5のいずれか1つに記載のワイヤ自動結線装置。
  7.  前記ワイヤ電極の切断のために設定されたパラメータを前記良否判定の結果に基づいて調整するパラメータ調整部を備えることを特徴とする請求項1から6のいずれか1つに記載のワイヤ自動結線装置。
  8.  前記結線実行部は、前記パラメータ調整部による調整後の前記パラメータによる前記結線動作の実行を決定することを特徴とする請求項7に記載のワイヤ自動結線装置。
  9.  前記パラメータは、前記ワイヤ電極へアニール処理を施すために前記ワイヤ電極へ流されるアニール電流を示すパラメータと、前記ワイヤ電極を切断するために前記ワイヤ電極へ流される切断電流を示すパラメータと、前記ワイヤ電極が切断される際に前記ワイヤ電極に加えられる張力を示すパラメータとの少なくとも1つを含むことを特徴とする請求項7または8に記載のワイヤ自動結線装置。
  10.  前記パラメータ調整部は、前記良否判定の結果と、前記自動結線の成否とに基づいて前記パラメータを調整することを特徴とする請求項7から9のいずれか1つに記載のワイヤ自動結線装置。
  11.  前記パラメータ調整部は、さらに、前記ワイヤ電極の材料と前記ワイヤ電極の太さとについての情報であるワイヤ情報に基づいて前記パラメータを調整することを特徴とする請求項10に記載のワイヤ自動結線装置。
  12.  前記パラメータ調整部は、前記自動結線を可能とする前記パラメータを推論するための学習済モデルを生成する学習装置を有することを特徴とする請求項11に記載のワイヤ自動結線装置。
  13.  前記学習装置は、
     前記ワイヤ情報と、前記良否判定の結果を示す情報と、前記自動結線の成否を示す情報と、前記パラメータとを取得するデータ取得部と、
     前記ワイヤ情報と前記良否判定の結果を示す情報と前記自動結線の成否を示す情報と前記パラメータとに基づいて作成されるデータセットを用いて前記学習済モデルを生成するモデル生成部と、を有することを特徴とする請求項12に記載のワイヤ自動結線装置。
  14.  前記パラメータ調整部は、前記学習済モデルと前記ワイヤ情報とに基づいて、前記自動結線を可能とする前記パラメータを推論する推論装置を有することを特徴とする請求項12または13に記載のワイヤ自動結線装置。
  15.  請求項1から14のいずれか1つに記載のワイヤ自動結線装置を備えることを特徴とするワイヤ放電加工機。
PCT/JP2020/026229 2020-07-03 2020-07-03 ワイヤ自動結線装置およびワイヤ放電加工機 WO2022003961A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020565511A JP6847335B1 (ja) 2020-07-03 2020-07-03 ワイヤ自動結線装置およびワイヤ放電加工機
CN202080098156.1A CN115243818B (zh) 2020-07-03 2020-07-03 线自动接线装置及线放电加工机
PCT/JP2020/026229 WO2022003961A1 (ja) 2020-07-03 2020-07-03 ワイヤ自動結線装置およびワイヤ放電加工機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026229 WO2022003961A1 (ja) 2020-07-03 2020-07-03 ワイヤ自動結線装置およびワイヤ放電加工機

Publications (1)

Publication Number Publication Date
WO2022003961A1 true WO2022003961A1 (ja) 2022-01-06

Family

ID=74879233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026229 WO2022003961A1 (ja) 2020-07-03 2020-07-03 ワイヤ自動結線装置およびワイヤ放電加工機

Country Status (3)

Country Link
JP (1) JP6847335B1 (ja)
CN (1) CN115243818B (ja)
WO (1) WO2022003961A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132420A (ja) * 1982-01-29 1983-08-06 Sodeitsuku:Kk ワイヤカツト放電加工機におけるワイヤセツト方法及び装置
JPS62152617A (ja) * 1985-12-27 1987-07-07 Fanuc Ltd ワイヤカツト放電加工方法
JPH09108950A (ja) * 1995-10-11 1997-04-28 Sodick Co Ltd ワイヤカット放電加工装置に於けるワイヤ電極挿通方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5180363B1 (ja) * 2011-12-22 2013-04-10 ファナック株式会社 自動結線パラメータの自動選択機能を備えたワイヤ放電加工機
JP5674848B2 (ja) * 2013-03-29 2015-02-25 ファナック株式会社 自動結線機能を有するワイヤ放電加工機
JP6017522B2 (ja) * 2014-12-09 2016-11-02 ファナック株式会社 ワイヤ交換機能を有するワイヤ放電加工機用制御装置
JP2017024114A (ja) * 2015-07-21 2017-02-02 ファナック株式会社 自動結線装置を備えたワイヤ放電加工機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132420A (ja) * 1982-01-29 1983-08-06 Sodeitsuku:Kk ワイヤカツト放電加工機におけるワイヤセツト方法及び装置
JPS62152617A (ja) * 1985-12-27 1987-07-07 Fanuc Ltd ワイヤカツト放電加工方法
JPH09108950A (ja) * 1995-10-11 1997-04-28 Sodick Co Ltd ワイヤカット放電加工装置に於けるワイヤ電極挿通方法

Also Published As

Publication number Publication date
CN115243818B (zh) 2023-09-29
CN115243818A (zh) 2022-10-25
JPWO2022003961A1 (ja) 2022-01-06
JP6847335B1 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
CN109834366B (zh) 起弧调整装置、焊接系统以及起弧调整方法
JP6126174B2 (ja) 機械学習装置、アーク溶接制御装置、アーク溶接ロボットシステムおよび溶接システム
JP6680714B2 (ja) ワイヤ放電加工機の制御装置及び機械学習装置
CN110769960B (zh) 收弧调整装置、焊接系统、收弧调整方法以及计算机程序
US8653401B2 (en) Wire electric discharge machining apparatus having function of automatically selecting automatic wire connecting parameter
WO2022003961A1 (ja) ワイヤ自動結線装置およびワイヤ放電加工機
JP7045243B2 (ja) コンピュータプログラム、溶接情報算出装置、溶接トーチ、溶接電源、溶接システム
US20090101627A1 (en) Electric discharge machine having wire electrode cutting function, and wire electrode cutting method
TWI770910B (zh) 焊接條件調整裝置
US11117207B2 (en) Wire electrical discharge machine
WO2021001974A1 (ja) 機械学習装置、数値制御装置、ワイヤ放電加工機および機械学習方法
JP7079592B2 (ja) 消費量調整装置、溶接システム、消費量調整方法及びコンピュータプログラム
JP7059099B2 (ja) 溶接監視装置、溶接監視方法、及びプログラム
CN111496336A (zh) 线电极断线预测装置
JP6661065B1 (ja) 機械学習装置、ワイヤ放電加工システム、および機械学習方法
JP2023095820A (ja) 学習モデルの生成方法、制御装置、学習モデル、溶接システム、およびプログラム
JP2003285227A (ja) ワイヤ放電加工機及びその制御方法
WO2021186545A1 (ja) ワイヤ放電加工装置および機械学習装置
CN107790831B (zh) 线放电加工机
JP2642501B2 (ja) 金属圧延目標形状調整装置
JP6861072B2 (ja) 溶接良否判定装置、溶接システム、溶接良否判定方法及び溶接良否判定プログラム
JP2021094563A (ja) 機械学習装置、ノズル状態予測装置、及び制御装置
JP2020049509A (ja) 溶接電流波形調整量算出装置及び学習方法
CN117425901A (zh) 提示方法以及提示系统
JP2020075266A (ja) 調整装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020565511

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943442

Country of ref document: EP

Kind code of ref document: A1