WO2022001935A1 - 空调控制方法以及装置、电子设备、介质 - Google Patents
空调控制方法以及装置、电子设备、介质 Download PDFInfo
- Publication number
- WO2022001935A1 WO2022001935A1 PCT/CN2021/102691 CN2021102691W WO2022001935A1 WO 2022001935 A1 WO2022001935 A1 WO 2022001935A1 CN 2021102691 W CN2021102691 W CN 2021102691W WO 2022001935 A1 WO2022001935 A1 WO 2022001935A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air conditioner
- predicted
- time
- target time
- temperature
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000004378 air conditioning Methods 0.000 claims description 40
- 238000003062 neural network model Methods 0.000 claims description 33
- 238000001816 cooling Methods 0.000 claims description 13
- 238000004590 computer program Methods 0.000 claims description 6
- 238000012549 training Methods 0.000 description 21
- 239000013598 vector Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 10
- 238000003860 storage Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000005057 refrigeration Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 241000277331 Salmonidae Species 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000013021 overheating Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/61—Control or safety arrangements characterised by user interfaces or communication using timers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
- F24F2110/12—Temperature of the outside air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2130/00—Control inputs relating to environmental factors not covered by group F24F2110/00
- F24F2130/10—Weather information or forecasts
Definitions
- FIG. 4 is a block diagram of the composition of the air-conditioning control device provided by the present disclosure.
- a preset deep neural network (NN, Neural Network) model can be used to obtain the predicted running time period.
- the deep neural network model may include three sub-models, and the three sub-models may all be deep neural network models.
- the indoor temperature of the base station is mainly determined by the load of the base station (which is related to the calorific value of the equipment of the base station) and the outdoor temperature. Therefore, after training, the second sub-model can use the predicted load and predicted outdoor temperature obtained by the first sub-model to predict the predicted indoor temperature of the base station at the target time when the air conditioner is not turned on.
- the third sub-model can use the predicted indoor temperature obtained by the second sub-model to calculate the indoor temperature of the base station under various operating modes of the air conditioner (that is, various operating periods of the air conditioner) (that is, the indoor temperature after the air conditioner is turned on) , and determine in which operation mode the power consumption of the air conditioner meets the second predetermined standard (eg, power consumption minimum), and output the operating mode as the predicted operating time period.
- various operating modes of the air conditioner that is, various operating periods of the air conditioner
- the second predetermined standard eg, power consumption minimum
- Refrigeration parameters of the air conditioner refers to the actual cooling capacity of the air conditioner (or the ability to reduce the indoor temperature) under the current actual conditions of the base station and the air conditioner, which can be expressed in the form of a "refrigeration efficiency factor”.
- the division of the above three sub-models is only to obtain the predicted running time period more accurately, rather than to limit the protection scope of the embodiments of the present disclosure.
- the deep neural network model of the present disclosure may also have other different structures.
- the training of the deep neural network model can be "one-time", that is, after the deep neural network model reaches the required performance through centralized training of a large amount of training data, the training is not continued.
- the three sub-models in the deep neural network model of the present disclosure are relatively independent, the three sub-models can be trained independently. That is, although the output of the previous sub-model is used as the input of the latter sub-model in practical applications, during training, the measured data can be directly input into the latter sub-model to make the training process more accurate and efficient. .
- step A2 a large number of sample data such as the outdoor temperature of the base station, the indoor temperature (when the air conditioner is not turned on), and the load amount of the base station in different historical times are collected.
- each air-conditioning control optimal solution vector may include the start-up time and corresponding start-up duration of multiple sets of air conditioners.
- X* is the normalized sample data
- Xreal is the real value of the sample data
- Xmax is the maximum or upper limit of this type of sample data
- Xmin is the minimum or lower limit of this type of sample data.
- the training set is used to train the model (or used in the pre-training stage), the validation set is used to verify whether the model is trained (or used in the later stage of training), and the test set is used to test the trained model (or used for testing). training results).
- the second sub-model is used to output the predicted indoor temperature of the historical time, and compared with the actual indoor temperature of the historical time to train the second sub-model.
- the third sub-model is used to output the optimal solution vector of air-conditioning control for this historical time as the output, and it is combined with the corresponding time obtained in step A3 above.
- the optimal solution vectors for air conditioning control are compared to train the third sub-model.
- step B01 additional rules are preset.
- the air conditioner of the base station is generally turned on when the indoor temperature exceeds 35°C and is turned off when the temperature drops to about 25°C, the following parameters can be configured on the FSU or UME:
- VHT Very high temperature threshold
- VLT Very low temperature threshold
- step B02 data collection is performed to obtain sample data.
- the daily air conditioner should not be started frequently.
- the maximum number of starts per day can be set to 12. Therefore, if the Tmoment/Thours tag group has 2 valid values, it means that the air conditioner should start and run twice, start at each Tmoment arrival time, and run the corresponding The duration of Thours.
- X* is the normalized sample data
- Xreal is the real value of the sample data
- Xmax is the maximum or upper limit of this type of sample data
- Xmin is the minimum or lower limit of this type of sample data.
- the sum of Xmax in normalization can be set as required.
- Xmax can be set as the value when the base station is fully loaded, and Xmin is 0.
- Xmax can be set as the upper limit value of 24 (24 hours a day), and Xmin can be set as 0.
- step B05 the sample data at different times are divided into training set, verification set and test set.
- the number of samples in the training set, validation set and test set can be distributed in a ratio of 6:2:2.
- the regional event parameter Fevent can be a characteristic parameter between (0, 1). According to human experience, if a certain area is normally 0, it is 0.1 for commercial marketing activities, 0.2 for gatherings, and 0.3 for concerts. Wait.
- step B08 a third sub-model (air conditioning control prediction model) is constructed and trained.
- the value of the cooling efficiency factor is usually unchanged.
- the deep neural network model After the deep neural network model is trained and optimized, it is deployed according to the actual operating environment. For example, the three sub-models are all deployed on the UME, making full use of the powerful computing resources of the cloud to realize real-time or online training.
- step B10 the FSU collects real-time information such as indoor temperature, outdoor temperature, and load and uploads it to the UME.
- the FSU collects various parameters in real time and uploads them to the UME.
- Each sub-model works on its own function, outputting a predicted operating period of the air conditioner for a target time in the future (eg, a day).
- step B12 the air-conditioning control command is calculated.
- Air conditioner initialization the initial state of the air conditioner is off, and the operating time Ton of the air conditioner and the off time Toff of the air conditioner are reset;
- Toff starts timing when the air conditioner is turned off
- the FSU can also have a built-in corresponding program for the traditional temperature control start-stop method. If the UME's air-conditioning control command cannot be received in time (for example, the communication network is interrupted for a long time), the FSU automatically executes the built-in corresponding program, and temporarily uses the traditional temperature control start-stop method. Control the air conditioner.
- step B14 real-time training.
- steps B01 to B09 can be performed once before the subsequent steps; and steps B10, B11, B12, B13, and B14 can be designed as tasks (or processes) that run independently, and each task can be executed concurrently.
- Step B10 can be run periodically (for example, the running period is 5 minutes)
- Step B11 can be executed once every day before 0:00, and output the optimal solution vector of air-conditioning control of the day
- Step B12 can be run in real time
- Step B13 can be executed after receiving It is executed immediately after the air-conditioning control command issued.
- the air conditioning control device includes a determination module, a prediction module and a control module.
- the prediction module is configured to determine the predicted operation time period of the air conditioner at the target time according to the target time and the predicted outdoor temperature, where the predicted operation time period is to make the total power consumption of the air conditioner meet the A second predetermined standard operating time period.
- the control module is configured to control the air conditioner according to the predicted operating time period at the target time.
- the predicted operation time period of the target time is obtained, that is, the optimal operation of the air conditioner at the target time is predicted. mode, and at the target time, the air conditioner is controlled to be activated or deactivated according to the preferred operation mode, so as to ensure that the equipment of the base station does not overheat, and to reduce energy consumption as much as possible.
- an electronic device provided by the present disclosure includes: one or more processors; and a memory on which one or more programs are stored, and when the one or more programs are executed by the one or more processors, one or more A plurality of processors implement the air conditioning control method according to the present disclosure.
- the electronic device may also include one or more I/O interfaces, connected between the processor and the memory, for realizing information interaction between the processor and the memory.
- the present disclosure provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a processor, causes the processor to implement the air conditioning control method according to the present disclosure.
- the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components Components execute cooperatively.
- Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit (CPU), digital signal processor or microprocessor, or as hardware, or as an integrated circuit such as Application-specific integrated circuits.
- a processor such as a central processing unit (CPU), digital signal processor or microprocessor, or as hardware, or as an integrated circuit such as Application-specific integrated circuits.
- Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
- computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
- Computer storage media include, but are not limited to, random access memory (RAM, more specifically SDRAM, DDR, etc.), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), flash memory (FLASH), or other disk storage ; compact disc read only (CD-ROM), digital versatile disk (DVD), or other optical disk storage; magnetic cartridge, tape, magnetic disk storage or other magnetic storage; any other storage that can be used to store desired information and that can be accessed by a computer medium.
- communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
Claims (10)
- 一种空调控制方法,包括:确定未来的目标时间的预测室外温度;根据所述目标时间和所述预测室外温度,确定所述空调在所述目标时间的预测运行时间段,所述预测运行时间段为在室内温度不超过第一预定标准的情况下,使所述空调的总功耗符合第二预定标准的运行时间段;以及在所述目标时间,根据所述预测运行时间段控制所述空调。
- 根据权利要求1所述的方法,其中,在所述目标时间,根据所述预测运行时间段控制所述空调的步骤包括:在所述目标时间,根据实时室内温度、预设的附加规则以及所述预测运行时间段控制所述空调。
- 根据权利要求2所述的方法,其中,所述附加规则包括:响应于所述实时室内温度超过预设的甚高温阈值且所述空调未运行,控制所述空调启动;响应于所述实时室内温度低于预设的甚低温阈值且所述空调正在运行,控制所述空调关闭;响应于所述实时室内温度超过预设的工作高温阈值且处于所述预测运行时间段内,控制所述空调处于运行状态。
- 根据权利要求1所述的方法,其中,根据所述目标时间和所述预测室外温度,确定所述空调在所述目标时间的预测运行时间段的步骤包括:将所述目标时间和所述预测室外温度输入预设的深度神经网络模型,获取所述深度神经网络模型输出的所述预测运行时间段。
- 根据权利要求4所述的方法,其中,所述空调应用于基站中, 并且所述深度神经网络模型包括第一子模型、第二子模型以及第三子模型;所述第一子模型配置为确定所述基站在所述目标时间的预测负荷量,并将所述预测负荷量输入第二子模型;所述第二子模型配置为根据所述预测负荷量以及所述预测室外温度,确定在不运行所述空调的情况下所述基站的预测室内温度,并将所述预测室内温度输入第三子模型;所述第三子模型配置为根据所述预测室内温度以及所述空调的制冷参数,确定所述预测运行时间段,并且将所述目标时间和所述预测室外温度输入预设的深度神经网络模型的步骤包括:将所述目标时间输入所述第一子模型,并且将所述预测室外温度输入所述第二子模型。
- 根据权利要求4所述的方法,其中,在将所述目标时间和所述预测室外温度输入预设的深度神经网络模型的步骤之前,还包括:训练所述深度神经网络模型。
- 根据权利要求1所述的方法,其中,确定未来的目标时间的预测室外温度的步骤包括:获取实际室外温度以及所述目标时间的天气预报的预报温度,并根据所述实际室外温度以及所述预报温度计算所述目标时间的预测室外温度。
- 一种空调控制装置,包括:确定模块,配置为确定未来的目标时间的预测室外温度;预测模块,配置为根据所述目标时间和所述预测室外温度,确定所述空调在所述目标时间的预测运行时间段,所述预测运行时间段为在室内温度不超过第一预定标准的情况下,使空调的总功耗符合第二预定标准的运行时间段;以及控制模块,配置为在所述目标时间,根据所述预测运行时间段控制所述空调。
- 一种电子设备,包括:一个或多个处理器;以及存储器,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现根据权利要求1至7中任意一项所述的空调控制方法。
- 一种计算机可读介质,其上存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器实现根据权利要求1至7中任意一项所述的空调控制方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112022026881A BR112022026881A2 (pt) | 2020-06-28 | 2021-06-28 | Dispositivo eletrônico, meio, método e dispositivo de controle para condicionador de ar |
EP21833477.9A EP4170249A4 (en) | 2020-06-28 | 2021-06-28 | AIR CONDITIONER CONTROL METHOD AND APPARATUS, ELECTRONIC DEVICE, AND MEDIUM |
JP2022580480A JP7583072B2 (ja) | 2020-06-28 | 2021-06-28 | 空調制御方法及び装置、電気機器、媒体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010599919.2 | 2020-06-28 | ||
CN202010599919.2A CN113847715B (zh) | 2020-06-28 | 2020-06-28 | 基站的空调调控的方法以及装置、电子设备、介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022001935A1 true WO2022001935A1 (zh) | 2022-01-06 |
Family
ID=78972538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/102691 WO2022001935A1 (zh) | 2020-06-28 | 2021-06-28 | 空调控制方法以及装置、电子设备、介质 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4170249A4 (zh) |
JP (1) | JP7583072B2 (zh) |
CN (1) | CN113847715B (zh) |
BR (1) | BR112022026881A2 (zh) |
WO (1) | WO2022001935A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114980182A (zh) * | 2022-05-17 | 2022-08-30 | 中国电信股份有限公司 | 基站控制方法、装置、非易失性存储介质及电子设备 |
CN115614905A (zh) * | 2022-09-19 | 2023-01-17 | 珠海格力电器股份有限公司 | 一种空调器及其室内温度预测方法和装置 |
CN116007152A (zh) * | 2022-12-12 | 2023-04-25 | 珠海格力电器股份有限公司 | 空调控制方法、装置、空调设备和存储介质 |
CN116321243A (zh) * | 2023-01-05 | 2023-06-23 | 杭州纵横通信股份有限公司 | 一种基站的移动性管理方法 |
WO2023241056A1 (zh) * | 2022-06-13 | 2023-12-21 | 青岛海尔空调器有限总公司 | 空调器控制方法、装置、设备及存储介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114967492A (zh) * | 2022-06-13 | 2022-08-30 | 珠海格力节能环保制冷技术研究中心有限公司 | 智能家居的信息反馈方法以及其装置 |
CN119450656A (zh) * | 2023-07-31 | 2025-02-14 | 中兴通讯股份有限公司 | 一种基站的节能方法、设备和计算机可读存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272533A (zh) * | 2008-12-25 | 2011-12-07 | 三洋电机株式会社 | 空调控制装置、冷却系统以及空调控制程序 |
CN102821581A (zh) * | 2011-06-08 | 2012-12-12 | 上海启电信息科技有限公司 | 一种通信机房节能方法 |
US20160138819A1 (en) * | 2014-11-17 | 2016-05-19 | Vivint, Inc. | Hvac workload and cost logic |
CN110701732A (zh) * | 2019-12-10 | 2020-01-17 | 南昌掘策数据服务有限公司 | 能耗数据分析方法、系统及中央空调的节能方法和系统 |
CN111237989A (zh) * | 2020-02-04 | 2020-06-05 | 青岛海信网络科技股份有限公司 | 一种基于负荷预测的楼宇通风空调控制方法及装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3622657B2 (ja) | 2000-09-18 | 2005-02-23 | 株式会社日立製作所 | 空調制御システム |
JP2014081123A (ja) | 2012-10-16 | 2014-05-08 | Mitsubishi Electric Corp | 空調省エネ制御装置 |
WO2015029177A1 (ja) * | 2013-08-29 | 2015-03-05 | 三菱電機株式会社 | 空気調和システム |
CN204438426U (zh) * | 2015-01-13 | 2015-07-01 | 中国联合网络通信集团有限公司 | 一种基站环境控制系统 |
JP6807556B2 (ja) * | 2015-10-01 | 2021-01-06 | パナソニックIpマネジメント株式会社 | 空調制御方法、空調制御装置及び空調制御プログラム |
CN108302719B (zh) * | 2018-01-29 | 2020-06-05 | 广东美的暖通设备有限公司 | 多联机空调系统的控制方法、装置、系统和存储介质 |
KR102440118B1 (ko) * | 2018-03-05 | 2022-09-05 | 삼성전자주식회사 | 공조 장치 및 그 제어 방법 |
CA3078441C (en) * | 2018-08-20 | 2021-10-19 | Grid4C | Method and system for hvac inefficiency prediction using household electrical smart meter data |
CN111079890B (zh) | 2018-10-19 | 2025-02-14 | 中兴通讯股份有限公司 | 一种数据处理方法及装置、计算机可读存储介质 |
CN110864414B (zh) * | 2019-10-30 | 2021-09-24 | 郑州电力高等专科学校 | 基于大数据分析的空调用电负荷智能控制调度方法 |
CN110895032B (zh) * | 2019-12-31 | 2023-12-12 | 福建省南鸿通讯科技有限公司 | 一种通信机房空调故障自动诊断与定位的方法与装置 |
CN113776171B (zh) | 2020-06-10 | 2024-02-13 | 中兴通讯股份有限公司 | 制冷设备控制方法、装置、计算机设备和计算机可读介质 |
-
2020
- 2020-06-28 CN CN202010599919.2A patent/CN113847715B/zh active Active
-
2021
- 2021-06-28 BR BR112022026881A patent/BR112022026881A2/pt unknown
- 2021-06-28 JP JP2022580480A patent/JP7583072B2/ja active Active
- 2021-06-28 EP EP21833477.9A patent/EP4170249A4/en active Pending
- 2021-06-28 WO PCT/CN2021/102691 patent/WO2022001935A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272533A (zh) * | 2008-12-25 | 2011-12-07 | 三洋电机株式会社 | 空调控制装置、冷却系统以及空调控制程序 |
CN102821581A (zh) * | 2011-06-08 | 2012-12-12 | 上海启电信息科技有限公司 | 一种通信机房节能方法 |
US20160138819A1 (en) * | 2014-11-17 | 2016-05-19 | Vivint, Inc. | Hvac workload and cost logic |
CN110701732A (zh) * | 2019-12-10 | 2020-01-17 | 南昌掘策数据服务有限公司 | 能耗数据分析方法、系统及中央空调的节能方法和系统 |
CN111237989A (zh) * | 2020-02-04 | 2020-06-05 | 青岛海信网络科技股份有限公司 | 一种基于负荷预测的楼宇通风空调控制方法及装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4170249A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114980182A (zh) * | 2022-05-17 | 2022-08-30 | 中国电信股份有限公司 | 基站控制方法、装置、非易失性存储介质及电子设备 |
WO2023241056A1 (zh) * | 2022-06-13 | 2023-12-21 | 青岛海尔空调器有限总公司 | 空调器控制方法、装置、设备及存储介质 |
CN115614905A (zh) * | 2022-09-19 | 2023-01-17 | 珠海格力电器股份有限公司 | 一种空调器及其室内温度预测方法和装置 |
CN116007152A (zh) * | 2022-12-12 | 2023-04-25 | 珠海格力电器股份有限公司 | 空调控制方法、装置、空调设备和存储介质 |
CN116321243A (zh) * | 2023-01-05 | 2023-06-23 | 杭州纵横通信股份有限公司 | 一种基站的移动性管理方法 |
CN116321243B (zh) * | 2023-01-05 | 2023-09-26 | 杭州纵横通信股份有限公司 | 一种基站的移动性管理方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4170249A1 (en) | 2023-04-26 |
CN113847715B (zh) | 2024-01-02 |
BR112022026881A2 (pt) | 2023-01-24 |
JP2023532492A (ja) | 2023-07-28 |
CN113847715A (zh) | 2021-12-28 |
EP4170249A4 (en) | 2023-12-06 |
EP4170249A9 (en) | 2023-06-14 |
JP7583072B2 (ja) | 2024-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022001935A1 (zh) | 空调控制方法以及装置、电子设备、介质 | |
JP7012126B2 (ja) | 空間の設定点境界を自動的に調整するhvacシステムと、居住者快適性を維持するために温度設定点境界を調整する方法 | |
WO2021249461A1 (zh) | 制冷设备控制方法、装置、计算机设备和计算机可读介质 | |
US11523545B2 (en) | High-efficiency data center cooling | |
US9696735B2 (en) | Context adaptive cool-to-dry feature for HVAC controller | |
CN104823119A (zh) | 用于环境控制系统的辐射供热控制和方法 | |
Goiri et al. | Coolair: Temperature-and variation-aware management for free-cooled datacenters | |
WO2023056617A1 (en) | Systems and methods for controlling variable refrigerant flow systems using artificial intelligence | |
WO2020199682A1 (zh) | 空调控制方法、空调控制装置、存储介质、存储器以及空调 | |
US11188039B2 (en) | Building management system with dynamic energy prediction model updates | |
US20180238572A1 (en) | Modeling and controlling heating, ventilation, and air conditioning systems | |
CN112822903A (zh) | 一种基于人工智能的数据中心制冷和系统 | |
CN114115395A (zh) | 一种基于ai的机房环境监控方法及系统 | |
CN110762739B (zh) | 数据中心空调控制方法、装置、设备及存储介质 | |
CN112856737B (zh) | 空调器的预热控制方法 | |
CN107300278B (zh) | 用于最小化hvac系统中的压缩机使用的系统和方法 | |
CN112364999B (zh) | 冷水机调节模型的训练方法、装置及电子设备 | |
CN118794093A (zh) | 一种多空调机组调控方法、装置、电子设备以及存储介质 | |
CN115013952B (zh) | 一种空调系统的控制方法和装置 | |
CN113465109A (zh) | 多联机的低能耗待机控制方法及装置、介质 | |
CN114608187B (zh) | 一种冷机调节方式确定方法、装置、设备及存储介质 | |
CN109325668A (zh) | 能源系统的调控方法和装置 | |
US12339020B1 (en) | Smart controls for hybrid refrigeration cycles | |
CN118328522A (zh) | 多联机空调系统的控制方法、装置和存储介质 | |
CN117804030A (zh) | 基于云边协同的空调冷站运行调优方法、装置及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21833477 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022580480 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022026881 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112022026881 Country of ref document: BR Kind code of ref document: A2 Effective date: 20221228 |
|
ENP | Entry into the national phase |
Ref document number: 2021833477 Country of ref document: EP Effective date: 20230118 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |