WO2022000989A1 - 混合阻尼模块、振动抑制装置、抑振方法及风力发电机组 - Google Patents

混合阻尼模块、振动抑制装置、抑振方法及风力发电机组 Download PDF

Info

Publication number
WO2022000989A1
WO2022000989A1 PCT/CN2020/133399 CN2020133399W WO2022000989A1 WO 2022000989 A1 WO2022000989 A1 WO 2022000989A1 CN 2020133399 W CN2020133399 W CN 2020133399W WO 2022000989 A1 WO2022000989 A1 WO 2022000989A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
damping
damping unit
hybrid
temperature value
Prior art date
Application number
PCT/CN2020/133399
Other languages
English (en)
French (fr)
Inventor
高杨
张志弘
徐志良
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to AU2020456546A priority Critical patent/AU2020456546A1/en
Priority to BR112022024888A priority patent/BR112022024888A2/pt
Priority to CA3181335A priority patent/CA3181335A1/en
Priority to EP20943127.9A priority patent/EP4130511A4/en
Priority to US17/997,221 priority patent/US20230160455A1/en
Publication of WO2022000989A1 publication Critical patent/WO2022000989A1/zh
Priority to ZA2022/12232A priority patent/ZA202212232B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • F16F15/0235Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means where a rotating member is in contact with fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • F16F15/027Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means comprising control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to the technical field of wind power generation, and in particular, to a hybrid damping module for suppressing vibration, a vibration suppressing device, a vibration suppressing method, and a wind power generator set.
  • a wind turbine is a green energy device that converts wind energy into electrical energy, which can be roughly divided into onshore wind turbines and offshore wind turbines. Whether it is an onshore wind turbine or an offshore wind turbine, the external environment of a wind turbine is complex and accompanied by uncertainties. These factors constitute various excitation sources corresponding to the operation of the wind turbine, which include external excitation sources (such as external uncertain wind loads, wave loads with no rules to follow, etc.) and self-excitation sources (such as the unbalance of the impeller itself). , the impeller itself rotates, etc.).
  • external excitation sources such as external uncertain wind loads, wave loads with no rules to follow, etc.
  • self-excitation sources such as the unbalance of the impeller itself. , the impeller itself rotates, etc.
  • the input of these excitation sources will cause various uncertainties and abnormal performance of the operating characteristics of the wind turbine.
  • the most intuitive response is the vibration of the wind turbine.
  • the wind turbine may vibrate (eg, swing) in the front-rear direction and the left-right direction.
  • Such vibration directly affects the stability and safety of the operation of the wind turbine, and when the vibration is relatively large, it will cause the wind turbine to start and shut down for protection, resulting in a loss of power generation.
  • the purpose of the present disclosure is to provide a novel hybrid damping module for suppressing vibration, a vibration suppressing device, a vibration suppressing method and a wind turbine, so as to solve the problem of power generation loss caused by vibration shutdown of the wind turbine.
  • a hybrid damping module including: a first damping unit, the first damping unit including a rotor part and a stator part arranged in parallel with the rotor part, and the rotor part is configured to be able to be relative to the rotor part
  • the stator part is rotated to generate electromagnetic damping, a flow channel is formed in at least one of the rotor part and the stator part, a second damping unit, the second damping unit includes a liquid damper, the liquid damper communicates with the flow channel and forms a circulation loop, The liquid in the damper can circulate in the circulation loop.
  • a vibration suppression device comprising the above-mentioned hybrid damping module, a suspension device, a pendulum rod and a mass, wherein the mass block is connected to the suspension device through the pendulum rod to make the pendulum
  • the rod can drive the mass block to swing, and the first end of the hybrid damping module is connected to the mass block, and the second end of the hybrid damping module can be used for connecting to the vibration device to be damped.
  • a wind turbine comprising the above-mentioned vibration suppression device and a tower, wherein the vibration suppression device is provided in the tower, and the second end of the hybrid damping module is connected to the tower the inner wall of the rack.
  • a method for suppressing vibration using the above-mentioned hybrid damping module comprising: measuring a current temperature value of a first damping unit; when the measured current temperature value of the first damping unit is greater than the first When the temperature threshold is reached, the control liquid circulates in the circulation loop.
  • the hybrid damping module of the embodiment of the present disclosure by using the first damping unit and the second damping unit in combination, the effect of suppressing the vibration of the hybrid damping module can be improved.
  • a connecting pipeline is constructed between the first damping unit and the second damping unit, so that the damping in the second damping unit is The liquid flows through the cooling channel in the first damping unit as a circulating cooling medium, and dynamically adjusts the flow rate of the damping liquid according to the real-time temperature of the first damping unit, so that the automatic, efficient and energy-saving operation of the second damping unit can be realized.
  • Cooling and heat dissipation to solve the problems of demagnetization and damping force attenuation caused by the temperature rise of the first damping unit.
  • This technical solution can solve the problems of complex structure and high cost caused by arranging additional cooling equipment for the permanent magnet eddy current damper, and also realizes the interaction and coordination between the permanent magnet eddy current damper and the tuned liquid damper, giving full play to the
  • the advantageous characteristics of the two damping devices are realized, and the TMD (Tuned Mass Damper, tuned mass damper) and TLD (Tuned liquid Damper, tuned liquid damper) linkage are realized for synergistic compound vibration suppression, and the work of TMD is optimized and enhanced by TLD. performance, preventing TMD from demagnetization or damping force attenuation caused by over temperature.
  • 1 is a schematic diagram illustrating a physical model of a tuned mass damper
  • FIG. 2 is a schematic diagram of a partial structure of a first damping unit of a hybrid damping module according to an embodiment of the present disclosure
  • Fig. 3 is the sectional view of the A-A section in Fig. 2;
  • FIG. 4 is a schematic diagram of a second damping unit of a hybrid damping module according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a first damping unit and a second damping unit of a hybrid damping module forming a circulation loop according to an embodiment of the present disclosure
  • FIG. 6 is a control logic diagram for damping vibration using a hybrid damping module according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a vibration suppression device applied to a wind turbine according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a first damping unit according to an embodiment of the present disclosure.
  • 8a rotor part
  • 8b stator part
  • 8c rotating shaft
  • 8b1 stator support plate
  • 8b2 magnet
  • 8b3 outer channel
  • 8b4 middle channel
  • 8b5 inner channel
  • 8b6 liquid inlet
  • 10a first valve
  • 10b circulation pump
  • 10c second valve
  • 10d pressure sensor
  • 10e surge tank
  • 10f first temperature sensor
  • 10g second temperature sensor
  • 10h third valve
  • 10m filter
  • 10n container
  • 10p liquid
  • 10r cooling fins
  • 10s cooling device
  • the embodiments of the present disclosure propose a compound vibration suppression solution combining tuned mass damper (TMD) and tuned liquid damper (TLD) on the one hand, and solve the problem of damping force of permanent magnet eddy current damping device due to temperature rise on the other hand attenuation problem.
  • TMD tuned mass damper
  • TLD tuned liquid damper
  • tuned mass dampers are used to damp vibrations, and a schematic diagram of the physical model of a tuned mass damper is shown in Figure 1.
  • m, k, c represent the primary structure (i.e., the occurrence of vibration, e.g., wind turbine) mass, stiffness, damping
  • m d, k d, c d are additional structures (i.e. , tuned mass damper) mass, stiffness, damping.
  • the tuned mass damper can occur out of phase with the motion of the primary structure in the event of vibration of the primary structure movement, thereby absorbing and dissipating the vibration energy of the main structure. That is, the process of suppressing vibration by tuning the mass damper is the process of vibration energy transfer and dissipation.
  • damping elements are basically fluid viscous damping elements.
  • This kind of damping element has high cost performance, but it is only suitable for the application scene of the construction industry with relatively low shaking frequency and the swing amplitude is centimeter level.
  • the vibration frequency of wind turbines is relatively high and the swing amplitude is about meters, so this type of damping element is not suitable for wind turbines alone.
  • the magnetic field strength will attenuate to a certain extent, and the magnetic field strength corresponds to the damping force.
  • the increase in temperature directly leads to insufficient output force or insufficient energy consumption of the permanent magnetic eddy current damping device. , which will directly affect the effect of suppressing vibration; on the other hand, as the temperature increases, the risk of permanent magnet demagnetization increases, which in turn leads to the failure of the entire permanent magnet eddy current damping device.
  • the application scenarios of wind turbines of different capacities are different.
  • the external excitation sources corresponding to onshore and offshore turbines are different, so the requirements for the effect of vibration suppression are different;
  • the internal layout is different.
  • the damper is usually installed in the tower, but devices such as cables, elevators, and ladders in the tower occupy most of the space in the tower. Therefore, the developed damper also needs to consider the installation space.
  • the present disclosure provides a novel hybrid damping module.
  • the constitution of the hybrid damping module according to the present disclosure will be described in detail with reference to FIGS. 2 to 7 .
  • the hybrid damping module may include a first damping unit 8 (shown in FIG. 2 ) and a second damping unit 10 (shown in FIG. 4 ).
  • the first damping unit 8 may be a permanent magnet eddy current damper, for example, may include a rotor part and a stator part arranged in parallel with the rotor part, and the rotor part may be configured to be rotatable relative to the stator part to generate electromagnetic damping.
  • the second damping unit 10 may include a liquid damper, eg, a tuned liquid damper.
  • the vibration generated by the main structure (such as a wind turbine) can be converted by the electromagnetic damping generated by the permanent magnet eddy current damper and the vibration of the liquid in the tuned liquid damper. Energy transfer and dissipation (described later).
  • a flow channel may be formed in at least one of the rotor part and the stator part of the first damping unit 8, and the tuning liquid damper may communicate with the flow channel through the connecting pipe 9 and form a circulation loop, in the tuning liquid damper
  • the liquid can circulate in the circulation loop.
  • the first damping unit 8 may include a rotor portion 8a and a stator portion 8b disposed in parallel with the rotor portion 8a, one of which includes a magnet, and the other of which includes a conductor , so that electromagnetic damping is generated when the rotor part 8a rotates relative to the stator part 8b.
  • a plurality of rotor portions 8a may be provided, and a plurality of stator portions 8b may be provided.
  • the plurality of rotor portions 8a and the plurality of stator portions 8b may be alternately arranged in sequence along the axis of the rotation shaft 8c of the rotor portion 8a.
  • Each rotor part 8a may be disposed between adjacent two stator parts 8b, and the rotation shaft 8c of the rotor part 8a may pass through the stator part 8b and rotate relative to the stator part 8b.
  • Each of the rotor part 8a and the stator part 8b may be formed in a disk shape.
  • the stator portion 8b may include a stator support plate 8b1 and magnets 8b2 provided on both surfaces of the stator support plate 8b1.
  • the rotor portion 8a may be integrally formed as a conductor disk and face the magnet 8b2. From a modular design dimension, the magnets 8b2 are formed on both surfaces of the stator support plate 8b1, but not limited thereto, for example, the stator part 8b disposed on the outermost side may provide the magnets 8b2 only on one surface facing the rotor part 8a .
  • the magnets 8b2 may be disc-shaped, or may include a plurality of magnet bars, which are arranged radially on the surface of the stator support disc 8b1.
  • the disposition form of the rotor portion 8a and the stator portion 8b of the first damping unit 8 is described, the disposition form thereof is not limited thereto, for example, magnets may be disposed on the rotor portion 8a, and corresponding conductor disks may be disposed on the stator portion 8b . That is, the arrangement form of the rotor portion 8a and the stator portion 8b may be changed based on requirements.
  • a flow passage may be formed in the stator portion 8b for communicating with the second damping unit 10 .
  • the flow channel can be formed in the entire stator part 8b as much as possible to increase the heat dissipation area.
  • the flow channel may be formed as a plurality of sub-flow channels, as shown in FIG. 3 , a plurality of sub-flow channels may be formed in the stator support plate 8b1 of the stator part 8b, and the plurality of sub-flow channels may include an outer flow channel 8b3, a middle flow channel 8b4 and inner runner 8b5.
  • the outer flow channel 8b3, the middle flow channel 8b4 and the inner flow channel 8b5 can be formed in a ring shape along the circumferential direction of the stator support plate 8b1, and each annular sub-channel can facilitate the flow of the liquid 10p, and can make the cooling more uniform, and can take into account
  • the radial distribution of cooling capacity is more conducive to the cooling of the magnet 8b2.
  • the flow channel can also include a liquid inlet 8b6 and a liquid outlet 8b7, and the liquid 10p can flow into the outer flow channel 8a3, the middle flow channel 8a4 and the inner flow channel 8a5 through the liquid inlet 8b6, so as to cool the magnet 8b2 and absorb heat.
  • the liquid 10p can flow back into the second damping unit 10 through the liquid outlet 8b7, that is, the liquid inlet 8b6 is used to flow in the liquid with relatively low temperature, and the liquid outlet 8b7 is used to flow out the liquid with relatively high temperature.
  • the liquid inlet port 8b6 and the liquid outlet port 8b7 may be formed at positions separated from each other (for example, on both sides in the diameter direction of the stator support plate 8b1), and may extend in the radial direction of the stator support plate 8b1 and be connected to the outer flow channel 8b3.
  • the middle flow channel 8b4 communicates with the inner flow channel 8b5.
  • the liquid inlet 8b6 and the liquid outlet 8b7 can be communicated with the tuning liquid damper through the connecting pipeline 9 to form a circulation loop.
  • the figure shows a liquid inlet 8b6 and a liquid outlet 8b7, which can reduce the number of interfaces, thereby improving the reliability and stability of the system and reducing failure points; of course, multiple liquid inlets 8b6 and multiple The liquid outlet 8b7, or one liquid inlet 8b6 and multiple liquid outlets 8b7, or the multiple liquid inlets 8b6 can be combined into one and the multiple liquid outlets 8b7 can be combined into one through the transition structure.
  • the flow channel may include a sub-flow channel, a liquid inlet and a liquid outlet
  • the sub-flow channel may be formed in a plane spiral shape
  • the liquid inlet is formed at the first end of the sub-flow channel
  • the liquid outlet is formed in the sub-flow channel
  • both the liquid inlet and the liquid outlet communicate with the tuned liquid damper.
  • the planar spiral-shaped flow channel can increase the flow time of the liquid 10p in the stator part 8b, and thus can take away relatively more heat, thereby improving the cooling efficiency of the magnet 8b2.
  • the sub-flow channels may be arranged as radial flow channels according to the distribution of the magnets 8b2, so as to cool the magnets 8b2 in a targeted manner.
  • the form of the flow channel is not limited to the above examples, and it is sufficient to realize the function of cooling the magnet 8b2.
  • the flow channel is formed in the stator part 8b, which can facilitate the direct cooling and heat dissipation of the magnet 8b2 provided on the stator support plate 8b1, but the formation position of the flow channel is not limited to this, and it can also be formed in the rotor Section 8a.
  • the second damping unit 10 may communicate with the second damping unit 10 through the connecting pipe 9 and a liquid slip ring (a device for rotating 360 degrees and transmitting various media). By providing the liquid slip ring, the connecting line 9 can be prevented from rotating with the rotor portion 8a.
  • the second damping unit 10 is a tuned liquid damper, and includes a liquid 10p and a container 10n for containing the liquid 10p.
  • the liquid 10p can flow into the outer flow channel 8a3, the middle flow channel 8a4 and the inner flow channel 8a5 of the first damping unit 8 through the first part of the connecting pipeline 9 through the liquid inlet 8b6 under the action of the circulating pump 10b, and flow into the first damping unit
  • the liquid 10p in Perform a cooling.
  • the first damping unit 8 can be arranged below the tuned liquid damper, so that a height difference can be formed, so that the liquid 10p can easily flow into the first damping unit 8 .
  • the liquid 10p can directly dissipate heat to the magnets 8b2, thereby reducing the increase in temperature of the magnets 8b2 The resulting magnetic field strength is attenuated, thereby reducing the risk of demagnetization of the magnet 8b2.
  • the outer surface of the container 10n may be provided with heat dissipation fins 10r for dissipating heat from the liquid 10p that has absorbed heat.
  • a cooling device 10s (eg, a cooling fan, a water cooling device or other similar cooling device) may be provided outside the container 10n, and the cooling device 10s is arranged around the cooling fins 10r for cooling the cooling fins 10r.
  • the stator part 8b may also be provided with a heat-absorbing material layer or a heat-dissipating fin, and the heat-absorbing material layer or heat-dissipating fin can absorb the heat generated by the magnet 8b2 and exchange heat with the outside air when the temperature of the magnet 8b2 is relatively low.
  • the magnet 8b2 dissipates heat, so the frequent start and stop of the circulation pump 10b in the above-mentioned circulation loop can be reduced, so that the heat dissipation effect can be achieved, and energy can be saved.
  • the heat absorbing material layer can be further disposed (coated) on the flow channel to absorb the heat generated by the magnet 8b2 quickly and efficiently, and then take the heat away through the liquid 10p in the circulation loop.
  • the liquid inlet side of the first damping unit 8 may be provided with a first temperature sensor 10 f for measuring the temperature value of the liquid 10 p before entering the first damping unit 8 .
  • the first damping unit 8 may be provided with a second temperature sensor 10g for measuring the current temperature value of the first damping unit 8 itself.
  • a pressure sensor 10d and a surge tank 10e may also be provided on the liquid inlet side of the first damping unit 8 for measuring and adjusting the pressure of the liquid 10p.
  • a filter 10m may be provided on the liquid outlet side of the first damping unit 8 for filtering impurities in the liquid 10p to avoid blockage of the pipeline.
  • a plurality of on-off valves may also be arranged on the connecting pipeline 9.
  • the first valve 10a is arranged between the second damping unit 10 and the circulation pump 10b
  • the second valve 10c may be arranged between the Between the circulation pump 10b and the pressure sensor 10d
  • the third valve 10h may be provided between the filter 10m and the liquid outlet 8b7 of the first damping unit 8 .
  • the number and arrangement positions of the valves are not limited to this, and they can be designed according to actual needs.
  • the hybrid damping module may further include a controller, which may control whether the liquid 10p flows through the first damping unit 8 based on the current temperature value of the first damping unit 8 measured by the second temperature sensor 10g. Specifically, when the temperature of the first damping unit 8 is less than or equal to the first temperature threshold, the controller may control the circulation pump 10b to be turned off without allowing the liquid 10p to flow through the first damping unit 8.
  • the first damping unit 8 may Self-dissipated heat by external air; when the temperature of the first damping unit 8 is greater than the first temperature threshold, the controller can control the circulation pump 10b to turn on so that the liquid 10p flows through the first damping unit 8 to dissipate heat from the first damping unit 8 . In addition, the controller can also adjust the flow rate of the liquid 10p based on the current temperature value of the first damping unit 8 , so as to effectively dissipate heat from the first damping unit 8 and achieve energy saving.
  • the state where the current temperature value of the first damping unit 8 is greater than the first temperature threshold can be simply divided into the state where the current temperature value of the first damping unit 8 is in an overtemperature state (also referred to as a first abnormal temperature state) and The current temperature value of the first damping unit 8 is in a high temperature state (also referred to as a second abnormal temperature state).
  • the over temperature state may include that the current temperature value of the first damping unit 8 is greater than the first temperature threshold and less than the second temperature threshold
  • the high temperature state may include that the current temperature value of the first damping unit 8 is greater than or equal to the second temperature threshold.
  • the controller may control the circulating pump 10b to run at half-load, so that the liquid 10p is at the first flow rate flow in a loop.
  • the controller may control the circulating pump 10b to operate at full load, so that the liquid 10p is at a second flow rate greater than the first flow rate at flow in a loop.
  • the controller may further control the cooling device 10s (eg, a cooling fan) to operate to Liquid 10p is cooled.
  • the cooling device 10s eg, a cooling fan
  • the controller can also be configured to be able to determine the time for which the current temperature value of the first damping unit 8 is in the over-temperature state, when the duration of the over-temperature state is less than At the first time threshold, the liquid 10p can be allowed to flow in the circulation loop at a first flow rate. If the duration of the over-temperature state is longer than the first time threshold, that is, the current temperature value of the first damping unit 8 is still in the over-temperature state. In order to improve the heat dissipation efficiency, the controller can control the circulating pump 10b to run at full load at this time, so that the The liquid 10p flows in the circulation loop at the second flow rate.
  • the controller directly determines that the current temperature value of the first damping unit 8 is in a high temperature state, the controller can directly control the circulation pump 10b to operate at full load, so that the liquid 10p flows in the circulation loop at the second flow rate.
  • the temperature value of the first damping unit 8 may be measured within a predetermined period of time to more accurately determine the temperature state of the first damping unit 8 to avoid The temperature value is unstable and causes unnecessary operation of the circulating pump 10b.
  • the present disclosure can also provide a method for damping vibration using the above hybrid damping module.
  • a method of suppressing vibration using the hybrid damping module will be described in detail with reference to FIG. 6 .
  • the method includes: measuring the current temperature value T of the first damping unit 8; when the measured current temperature value T of the first damping unit 8 is greater than the first temperature threshold T1, the liquid 10p can be controlled to circulate in the circulation loop.
  • the control liquid 10p when the measured current temperature value T of the first damping unit 8 is greater than the first temperature threshold value T1 and less than the second temperature threshold value T2 (ie, in an over-temperature state), the control liquid 10p is in the circulation loop at the first flow rate Circulating flow; when the measured current temperature value T of the first damping unit 8 is greater than or equal to the second temperature threshold T2 (ie, in a high temperature state), the control liquid 10p circulates in the circulation loop at a second flow rate greater than the first flow rate flow, and the operation of the cooling device 10s (eg, cooling fan) may be controlled to cool the liquid 10p at this time.
  • the cooling device 10s eg, cooling fan
  • the method further includes: determining the time t for which the current temperature value of the first damping unit 8 is in the over-temperature state, and when the time t for the over-temperature state is less than the first time threshold t1, controlling the circulating pump 10b to run at half load , so that the liquid 10p circulates in the circulation loop at the first flow rate; when the duration t of the over-temperature state is greater than or equal to the first time threshold t1, the circulating pump 10b is controlled to run at full load, so that the liquid 10p flows at a rate greater than or equal to the first time threshold t1.
  • the second flow rate of the flow rate circulates in the circulation loop to speed up heat dissipation.
  • the operation of the cooling device 10s may be controlled to cool the liquid 10p after the high temperature state continues for a predetermined time.
  • the current temperature value of the first damping unit 8 is not limited to be divided into two states (ie, an over-temperature state and a high-temperature state).
  • the current temperature value of the first damping unit 8 can be further divided in detail, for example, it can be divided into three or more states, and the liquid can be finely adjusted based on the state of the current temperature value of the first damping unit 8 10p flow rate to achieve energy saving effect.
  • the first damping unit 8 can be effectively dissipated while energy is saved, thereby preventing the hybrid damping module from If it is too high, the damping force will decrease, which ensures the vibration suppression effect of the hybrid damping module.
  • the problems of complex structure and high cost caused by arranging additional cooling equipment for the first damping unit 8 can be solved, and the permanent magnet
  • the interaction and synergy between the eddy current damping device and the tuned liquid damper give full play to the advantages of the two damping devices.
  • TMD While realizing the synergistic composite vibration suppression of TMD and TLD, the working performance of TMD is optimized and enhanced by TLD, preventing the The permanent magnet eddy current damping device causes demagnetization or damping force attenuation due to overtemperature.
  • the structure of the hybrid damping module and the method for using the hybrid damping module to suppress vibration have been described above.
  • the following will describe the principle of the hybrid damping module for suppressing vibration by taking it as an example in a wind turbine.
  • the wind turbine may include a hub 1 , blades 2 , a generator 3 , a nacelle 4 and a tower 5 .
  • the first damping unit 8 may be arranged in the tower 5 of the wind turbine, for example, the first end 81 of the first damping unit 8 may be connected to the mass 12 and the second end 82 of the first damping unit 8 may be connected to the tower The inner wall of the shelf 5.
  • the mass block 12 can be connected to the suspension device 6 installed on the suspension platform 13 through the pendulum rod 7, so that when the wind turbine generator vibrates, the pendulum rod 7 can drive the mass block 12 to be out of phase with the vibration of the wind turbine generator set.
  • the single pendulum motion of the mass block 12 can dissipate the kinetic energy of the single pendulum motion through the first damping unit 8, so that the vibration can be suppressed.
  • the first damping unit 8 , the second damping unit 10 , the suspension device 6 , the pendulum rod 7 and the mass 12 may be collectively referred to as a vibration damping device.
  • the vibration suppression device may further include a frequency modulation component, and the frequency modulation component may be connected with the mass block 12 and the first damping unit 8 .
  • the frequency modulation assembly may include an elastic member 11 and a frequency modulation platform 14, a first end of the elastic member 11 may be connected to the mass block 12, and then connected to the first damping unit 8, and a second end of the elastic member 11 may be connected to the On the FM platform 14 on the inner wall of the tower 5 .
  • the vibration suppression device may include a plurality of first damping units 8 and a plurality of second damping units 10 , and the plurality of first damping units 8 may be evenly spaced along the axial direction of the tower 5 , and the diameter of the tower 5
  • the plurality of second damping units 10 may be arranged at predetermined angular intervals upward, and accordingly, a plurality of second damping units 10 may be arranged at predetermined angular intervals in the radial direction of the tower 5 and communicate with the first damping units 8 .
  • the second damping unit 10 can be arranged on the frequency modulation platform 14.
  • the second damping unit 10 can also be arranged above the first damping unit 8 to reduce the power consumption of the circulating pump 10b.
  • the kinetic energy of the pendulum motion of the mass 12 can be dissipated by the first damping unit 8 via the rack and pinion.
  • one stator part 8b of the first damping unit 8 may be fixed to the outer side of the support frame 15 and fixedly connected with the other stator part 8b.
  • the rotating shaft 8c of the rotor part 8a can be inserted into the supporting frame 15 from the outside of the supporting frame 15 and is formed into a gear structure.
  • the supporting frame 15 is provided with a rack 16 engaged with the rotating shaft 8c, and one end of the rack 16 passes through
  • the first connecting piece 17 is mounted on the inner wall of the tower 5 .
  • the mass 12 can be connected to the support frame 15 through the second connecting member 18 , so when the mass 12 swings, the mass 12 can engage with the rack 16 through the rotating shaft 8c to drive the support frame 15 to move linearly on the rack 16 . Also, as the support frame 15 moves on the rack 16, the rotor portion 8a is rotatable relative to the stator portion 8b, so the rotor portion 8a formed as a conductor disk can cut the magnetic field lines to generate an induced electromotive force.
  • the above example is only an implementation form of energy transfer, and is not limited thereto.
  • the energy transmission can also be realized by means of a ball screw, a toothed belt, etc., the principle of which is similar to the above, and will not be repeated here.
  • the tuned liquid damper converts the vibration energy of the wind turbine into kinetic energy and thermal energy, thereby dissipating the vibration energy of the wind turbine and suppressing the vibration of the wind turbine.
  • the vibration suppressing effect of the hybrid damping module can be improved.
  • a connecting pipeline is constructed between the first damping unit and the second damping unit, so that the damping in the second damping unit is The liquid flows through the cooling channel in the first damping unit as a circulating cooling medium, and dynamically adjusts the flow rate of the damping liquid according to the real-time temperature of the first damping unit, so as to realize automatic, efficient and energy-saving cooling of the second damping unit and heat dissipation, so the problems of demagnetization and damping force attenuation of the first damping unit caused by temperature increase can be solved.
  • this technical solution can solve the problems of complex structure and high cost caused by arranging additional cooling equipment for the permanent magnet eddy current damping device, and also realize the interaction and coordination between the permanent magnetic eddy current damping device and the tuned liquid damper,
  • the advantages of the two types of damping devices are fully utilized, and the TMD and TLD are linked together for synergistic compound vibration suppression.
  • the TLD is used to optimize and enhance the working performance of the TMD to prevent the permanent magnet eddy current damping device from demagnetizing or damping force attenuation caused by over-temperature.
  • vibration suppressing device according to the embodiment of the present disclosure can have the same technical effect as the above, and thus will not be described again.
  • the embodiments of the present disclosure also provide a wind power generating set, which includes a vibration suppressing device and a tower and has the same technical effect as the above, and thus will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Vibration Prevention Devices (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种混合阻尼模块、振动抑制装置、抑振方法及风力发电机组,混合阻尼模块包括:第一阻尼单元(8),第一阻尼单元(8)包括转子部(8a)和与转子部(8a)平行设置的定子部(8b),并且转子部(8a)被构造为能够相对于定子部(8b)转动以产生电磁阻尼,转子部(8a)和定子部(8b)中的至少一者中形成有流道;第二阻尼单元(10),第二阻尼单元(10)包括液体阻尼器,液体阻尼器与流道连通并且形成循环回路,液体阻尼器中的液体(10p)能够在循环回路中循环流动。混合阻尼模块一方面提出了一种结合TMD、TLD的复合抑振解决方案,通过TMD、TLD组合使用,可提高混合阻尼模块的抑制振动的效果,另一方面解决了永磁涡流阻尼装置由于温升阻尼力衰减的问题。

Description

混合阻尼模块、振动抑制装置、抑振方法及风力发电机组 技术领域
本公开涉及风力发电技术领域,具体涉及一种用于抑制振动的混合阻尼模块、振动抑制装置、抑振方法及风力发电机组。
背景技术
风力发电机组是一种将风能转换为电能的绿色能源设备,其可大致分为陆上风力发电机组和海上风力发电机组。无论是陆上风力发电机组还是海上风力发电机组,风力发电机组的外部环境复杂且伴随不确定性。这些因素构成了风力发电机组运行中对应的各种激励源,其包括外部激励源(诸如外部不确定的风载荷、没有规律可循的波浪载荷等)和自身激励源(诸如叶轮自身的不平衡、叶轮自身旋转等)。
这些激励源的输入,会引起风力发电机组的运行特征的各种不确定性以及异常的表现,最为直观的响应就是风力发电机组的振动。例如,在外部激励源的作用下,风力发电机组会发生前后方向以及左右方向的振动(例如,摆动)。这样的振动直接影响风力发电机组运行的稳定性和安全性,并且在振动相对大的情况下,会导致风力发电机组启动停机保护,从而造成发电量损失。
因此,亟需开发一种抑制振动的装置,以抑制风力发电机组由于外部和内部的复杂多变的激励源而导致的振动,从而确保风力发电机组持续可靠运行,减小风力发电机组由于停机而引起的发电量损失。
发明内容
因此,本公开的目的在于提供一种新型的用于抑制振动的混合阻尼模块、振动抑制装置、抑振方法及风力发电机组,以解决风力发电机组由于振动停机而导致的发电量损失的问题。
根据本公开的一方面,提供一种混合阻尼模块,混合阻尼模块包括:第一阻尼单元,第一阻尼单元包括转子部和与转子部平行设置的定子部,并且 转子部被构造为能够相对于定子部转动以产生电磁阻尼,转子部和定子部中的至少一者中形成有流道,第二阻尼单元,第二阻尼单元包括液体阻尼器,液体阻尼器与流道连通并且形成循环回路,阻尼器中的液体能够在循环回路中循环流动。
根据本公开的另一方面,提供一种振动抑制装置,振动抑制装置包括上述的混合阻尼模块、悬吊装置、摆杆和质量块,其中,质量块通过摆杆连接到悬吊装置以使摆杆能够带动质量块摆动,并且混合阻尼模块的第一端连接到质量块,混合阻尼模块的第二端可用于连接到待抑振的振动装置。
根据本公开的另一方面,提供一种风力发电机组,风力发电机组包括上述的振动抑制装置和塔架,其中,振动抑制装置设置在塔架内,并且混合阻尼模块的第二端连接到塔架的内壁。
根据本公开的另一方面,提供一种使用上述的混合阻尼模块抑制振动的方法,该方法包括:测量第一阻尼单元的当前温度值;当测量的第一阻尼单元的当前温度值大于第一温度阈值时,控制液体在循环回路中循环流动。
根据本公开的实施例的混合阻尼模块,通过第一阻尼单元和第二阻尼单元组合使用,可提高混合阻尼模块的抑制振动的效果。此外,根据本公开的实施例的混合阻尼模块,通过在第一阻尼单元中配置冷却流道,在第一阻尼单元和第二阻尼单元之间构建连接管路,使第二阻尼单元中的阻尼液体作为循环冷却介质流经第一阻尼单元中的冷却流道,并根据第一阻尼单元的实时温度动态调节阻尼液体的流速,从而可实现对第二阻尼单元的自动化的、高效的、节能地冷却和散热,解决第一阻尼单元由于温度升高而引起的退磁和阻尼力衰减等问题。该技术方案可以解决为永磁涡流阻尼装置布置额外的冷却设备带来的结构复杂,成本过高的问题,也实现了永磁涡流阻尼装置和调谐液体阻尼器之间的交互与协同,充分发挥了两种阻尼装置的优势特性,实现TMD(Tuned Mass Damper,调谐质量阻尼器)、TLD(Tuned liquid Damper,调谐液体阻尼器)联动进行协同复合抑振的同时,通过TLD来优化增强TMD的工作性能,防止TMD因过温引起退磁或阻尼力衰减。
附图说明
通过下面结合附图对实施例进行的描述,本公开的上述以及其他目的和特点将会变得更加清楚,在附图中:
图1是示出调谐质量阻尼器的物理模型的示意图;
图2是根据本公开的实施例的混合阻尼模块的第一阻尼单元的部分结构的示意图;
图3是图2中的A-A剖面的剖面图;
图4是根据本公开的实施例的混合阻尼模块的第二阻尼单元的示意图;
图5是根据本公开的实施例的混合阻尼模块的第一阻尼单元和第二阻尼单元构成循环回路的示意图;
图6是根据本公开的实施例的使用混合阻尼模块抑制振动的控制逻辑图;
图7是根据本公开的实施例的振动抑制装置应用于风力发电机组的示意图;
图8是根据本公开的实施例的第一阻尼单元的结构示意图。
附图标号说明:
1:轮毂;2:叶片;3:发电机4:机舱;5:塔架;6:悬吊装置;7:摆杆;8:第一阻尼单元;9:连接管路;10:第二阻尼单元;11:弹性构件;12:质量块;13:悬吊平台;14:调频平台;
8a:转子部;8b:定子部;8c:旋转轴;8b1:定子支撑盘;8b2:磁体;8b3:外侧流道;8b4:中间流道;8b5:内侧流道;8b6:进液口;8b7:出液口;10a:第一阀;
10b:循环泵;10c:第二阀;10d:压力传感器;10e:稳压罐;10f:第一温度传感器;10g:第二温度传感器;10h:第三阀;10m:过滤器;10n:容器;10p:液体;10r:散热翅片;10s:冷却装置;
15:支撑框架;16:齿条;17:第一连接件;18:第二连接件;81:第一端;82:第二端。
具体实施方式
现在,将参照附图详细地描述根据本公开的实施例,其示例在附图中示出,其中,相同的标号始终表示相同的组件。
本公开的实施例一方面提出了一种结合调谐质量阻尼器(TMD)、调谐液体阻尼器(TLD)的复合抑振解决方案,另一方面解决了永磁涡流阻尼装置由于温升而阻尼力衰减的问题。以下将对本公开的实施例进行详细阐述。
通常,调谐质量阻尼器被用来抑制振动,图1中示出了调谐质量阻尼器 的物理模型的示意图。如图1所示,m、k、c分别表示主结构(即,发生振动的结构,例如,风力发电机组)的质量、刚度、阻尼;m d、k d、c d分别为附加结构(即,调谐质量阻尼器)的质量、刚度、阻尼。
通过设置调谐质量阻尼器并且调整其质量(m d)、刚度(k d)和阻尼(c d),在主结构发生振动的情况下,调谐质量阻尼器可发生与主结构的运动反相位的运动,从而吸收和耗散主结构的振动能量。也就是说,通过调谐质量阻尼器抑制振动的过程为振动能量转移和耗散的过程。
目前,调谐质量阻尼器在建筑行业有广泛的应用,并且其阻尼元件基本上为流体粘滞型阻尼元件。这种阻尼元件具有较高的性价比,但其仅适合于相对低的晃动频次且摆幅为厘米级的建筑业的应用场景。风力发电机组的晃动频次相对高且摆幅大约为米级,因此这种类型的阻尼元件并不适合单独应用于风力发电机组。
基于此,一种新型的永磁涡流阻尼装置应运而生,其阻尼特性具有如下优点:(1)具有优异的线性且易于设计和调整;(2)在相对宽的温度范围上具有稳定的阻尼特性;(3)无需机械接触,容易设置,可避免不必要的摩擦;(4)在真空环境中也可使用,因此其适用于抑制风力发电机组的振动。
然而,对于永磁涡流阻尼装置,随着温度升高,磁场强度会有一定程度的衰减,而磁场强度与阻尼力相对应,温度升高直接导致永磁涡流阻尼装置输出力不足或能耗不足,这样会直接影响抑制振动的效果;另一方面,随着温度升高,永磁体退磁的风险提高,进而导致整个永磁涡流阻尼装置失效。
另外,就风力发电机组而言,不同容量的风力发电机组的应用场景不同,例如,陆上机组和海上机组对应的外部激励源不同,因此对于振动抑制的效果需求不同;而且,不同风力发电机组内部的布局不同,阻尼器通常安装于塔架内,但塔架内的诸如电缆、电梯、爬梯等装置占据了塔架内的大部分空间,因此所开发的阻尼器还需考虑安装空间问题。
因此,基于上述问题,本公开提供了一种新型的混合阻尼模块。下面,将参照图2至图7来具体描述根据本公开的混合阻尼模块的构成。
根据本公开的混合阻尼模块可包括第一阻尼单元8(如图2所示)和第二阻尼单元10(如图4所示)。第一阻尼单元8可以为永磁涡流阻尼器,例如,可包括转子部和与转子部平行设置的定子部,转子部可被构造为能够相对于定子部转动以产生电磁阻尼。第二阻尼单元10可包括液体阻尼器,例如, 调谐液体阻尼器。由于同时设置永磁涡流阻尼器和调谐液体阻尼器,因此可通过永磁涡流阻尼器产生的电磁阻尼以及调谐液体阻尼器中的液体的振动,将主结构(诸如,风力发电机组)产生的振动能量转移和耗散(将在后续描述)。
此外,第一阻尼单元8的转子部和定子部中的至少一者中可形成有流道,调谐液体阻尼器可通过连接管路9与该流道连通并且形成循环回路,调谐液体阻尼器中的液体能够在该循环回路中循环流动。通过使调谐液体阻尼器中的液体在第一阻尼单元8的流道中循环流动,可对第一阻尼单元8进行冷却或散热,因此可解决第一阻尼单元8由于温升导致阻尼力衰减的问题,从而可确保第一阻尼单元8的输出力。
下面,将参照图2和图3具体描述第一阻尼单元的结构。
第一阻尼单元8可包括转子部8a和与转子部8a平行设置的定子部8b,转子部8a和定子部8b中的一者包括磁体,转子部8a和定子部8b中的另一者包括导体,以使得转子部8a相对于定子部8b转动时产生电磁阻尼。
如图2所示,转子部8a可设置为多个,定子部8b也可设置为多个。多个转子部8a和多个定子部8b可沿转子部8a的旋转轴8c的轴线依次交替布置。每个转子部8a可设置在相邻的两个定子部8b之间,转子部8a的旋转轴8c可穿过定子部8b并且相对于定子部8b旋转。转子部8a和定子部8b中的每者可形成为盘状。
定子部8b可包括定子支撑盘8b1和设置在定子支撑盘8b1的两个表面上的磁体8b2。转子部8a可整体地形成为导体盘,并且面对磁体8b2。从模块化设计维度,磁体8b2形成在定子支撑盘8b1的两个表面上,但不限于此,例如,设置在最外侧的定子部8b可仅在面对转子部8a的一个表面上设置磁体8b2。磁体8b2可以为盘状,或者可包括多个磁体条,多个磁体条以辐射状设置在定子支撑盘8b1的表面上。
虽然描述了第一阻尼单元8的转子部8a和定子部8b的设置形式,但其设置形式不限于此,例如,磁体可设置在转子部8a上,相应的导体盘可设置在定子部8b上。即,转子部8a和定子部8b的设置形式可基于需求而改变。
此外,定子部8b中可形成有流道,用于与第二阻尼单元10连通。流道可尽量形成在整个定子部8b中,以增大散热面积。作为示例,流道可形成为多个子流道,如图3所示,多个子流道可形成在定子部8b的定子支撑盘8b1 中,多个子流道可包括外侧流道8b3、中间流道8b4和内侧流道8b5。外侧流道8b3、中间流道8b4和内侧流道8b5可沿定子支撑盘8b1的周向形成为环形,环形的各个子流道可便于液体10p的流动,并且可使冷却更均匀,且可兼顾径向分布冷却能力,更有利于磁体8b2的冷却。另外,流道还可包括进液口8b6和出液口8b7,液体10p可经由进液口8b6流入外侧流道8a3、中间流道8a4和内侧流道8a5,对磁体8b2进行冷却而吸收热量的液体10p可经由出液口8b7流回第二阻尼单元10中,也就是说,进液口8b6用于流入温度相对低的液体,出液口8b7用于流出温度相对高的液体。进液口8b6和出液口8b7可形成在彼此分开的位置(例如,在定子支撑盘8b1的直径方向上的两侧),并且可沿定子支撑盘8b1的径向延伸且与外侧流道8b3、中间流道8b4和内侧流道8b5连通。进液口8b6和出液口8b7可通过连接管路9与调谐液体阻尼器连通,以形成循环回路。图中示出了一个进液口8b6和一个出液口8b7,如此可减少接口数量,从而提高系统的可靠性与稳定性,减少故障点;当然也可设置多个进液口8b6和多个出液口8b7,或者一个进液口8b6和多个出液口8b7,或者可通过转接结构将多个进液口8b6单独合并为一个且将多个出液口8b7单独合并为一个。
以上仅以示例的形式示出了流道的形式,但不限于此。例如,流道可包括子流道、进液口和出液口,子流道可形成为平面螺旋形状,进液口形成在子流道的第一端,而出液口形成在子流道的第二端,进液口和出液口均与调谐液体阻尼器连通。平面螺旋形状的流道可增加液体10p在定子部8b中的流动时间,因此可带走相对多的热量,从而可提高磁体8b2的冷却效率。又例如,子流道可根据磁体8b2的分布而设置为辐射状流道,从而对磁体8b2有针对性地进行冷却。当然,流道的形式并不限于上述举例,其可实现冷却磁体8b2的作用即可。
此外,在上述示例中,流道形成在定子部8b中,如此可便于对设置在定子支撑盘8b1上的磁体8b2直接冷却散热,但流道的形成位置不限于此,其也可形成在转子部8a中。在流道形成在转子部8a中的情况下,第二阻尼单元10可通过连接管路9和液体滑环(用于360度旋转并传输各种介质的器件)与第二阻尼单元10连通。通过设置液体滑环,可避免连接管路9随着转子部8a转动。
下面,将参照图4和图5描述第二阻尼单元的结构。
如图4和图5所示,第二阻尼单元10为调谐液体阻尼器,并且包括液体10p和用于容纳液体10p的容器10n。液体10p可在循环泵10b的作用下通过连接管路9的第一部分经由进液口8b6流入第一阻尼单元8的外侧流道8a3、中间流道8a4和内侧流道8a5,流入第一阻尼单元8中的液体10p可吸收第一阻尼单元8所产生的热量,吸收热量的液体10p可经由出液口8b7通过连接管路9的第二部分流回容器10n中,从而对第一阻尼单元8进行一次散热。可选地,为了减小循环泵10b的功耗,在待减振的主结构的竖直方向上,第一阻尼单元8可设置在调谐液体阻尼器的下方,如此可形成高度差,从而液体10p可容易流入第一阻尼单元8中。
由于磁体8b2设置在第一阻尼单元8的定子部8b的两个表面上并且流道形成在定子部8b中,因此液体10p可直接对磁体8b2进行散热,从而可减小磁体8b2因温度升高而导致的磁场强度衰减,进而可减小磁体8b2退磁的风险。优选地,为了进一步提高散热效率,容器10n的外表面上可设置有散热翅片10r,用于对吸收了热量的液体10p进行散热。进一步地,容器10n的外部还可设置有冷却装置10s(例如,冷却风扇、水冷装置或其他类似冷却装置),冷却装置10s设置在散热翅片10r周边,用于对散热翅片10r进行冷却。另外,定子部8b上还可设置有吸热材料层或者散热翅片,吸热材料层或者散热翅片可在磁体8b2的温度相对低时通过吸收磁体8b2产生的热量且与外部空气换热对磁体8b2进行散热,因此可减少上述循环回路中的循环泵10b的频繁启停,从而在实现散热效果的同时,还可节能。当然,吸热材料层还可进一步设置(涂覆)在流道上,以快速高效地吸收磁体8b2产生的热量,进而通过循环回路中的液体10p将热量带走。
另外,如图5所示,第一阻尼单元8的进液口侧可设置有第一温度传感器10f,用于测量液体10p进入第一阻尼单元8之前的温度值。第一阻尼单元8可设置有第二温度传感器10g,用于测量第一阻尼单元8自身的当前温度值。此外,在第一阻尼单元8的进液口侧还可设置有压力传感器10d和稳压罐10e,用于测量并且调整液体10p的压力。在第一阻尼单元8的出液口侧可设置有过滤器10m,用于过滤液体10p中的杂质,以避免管路堵塞。另外,为了便于控制整个循环回路,连接管路9上还可设置有多个开关阀,例如,第一阀10a设置在第二阻尼单元10与循环泵10b之间,第二阀10c可设置在循环泵10b与压力传感器10d之间,第三阀10h可设置在过滤器10m与第一阻尼单 元8的出液口8b7之间。当然,阀的数量和设置位置不限于此,其可根据实际需要而设计。
为了避免由于长时间运行或激励过大所造成的混合阻尼模块负荷过大所引起的温度升高,进而导致阻尼力下降所带来的抑振效果变差的问题,需要适当调节混合阻尼模块的温度。为此,混合阻尼模块还可包括控制器,控制器可基于第二温度传感器10g所测量的第一阻尼单元8的当前温度值,来控制液体10p是否流经第一阻尼单元8。具体地,当第一阻尼单元8的温度小于或等于第一温度阈值,控制器可控制循环泵10b关闭,而不使液体10p流经第一阻尼单元8,此时,第一阻尼单元8可通过外部空气自行散热;当第一阻尼单元8的温度大于第一温度阈值,控制器可控制循环泵10b开启使液体10p流经第一阻尼单元8,以对第一阻尼单元8进行散热。此外,控制器还可基于第一阻尼单元8的当前温度值调节液体10p的流速,以对第一阻尼单元8有效进行散热的同时实现节能。例如,第一阻尼单元8的当前温度值越高,则液体10p在循环回路中循环流动的流速越快,第一阻尼单元8的当前温度值越低,则液体10p在循环回路中循环流动的流速越慢。
作为示例,可将第一阻尼单元8的当前温度值大于第一温度阈值的状态可简单分为第一阻尼单元8的当前温度值处于过温状态(也可称作第一温度异常状态)和第一阻尼单元8的当前温度值处于高温状态(也可称作第二温度异常状态)。这里,过温状态可包括第一阻尼单元8的当前温度值大于第一温度阈值且小于第二温度阈值,高温状态可包括第一阻尼单元8的当前温度值大于或者等于第二温度阈值。
当第一阻尼单元8的当前温度值处于过温状态(即,大于第一温度阈值且小于第二温度阈值)时,控制器可控制循环泵10b半负荷运行,以使液体10p以第一流速在循环回路中流动。当第一阻尼单元8的当前温度值处于高温状态(即,大于等于第二温度阈值)时,控制器可控制循环泵10b全负荷运行,以使液体10p以大于第一流速的第二流速在循环回路中流动。优选地,为了提高散热效率,当第一阻尼单元8的当前温度值处于高温状态(即,大于等于第二温度阈值)时,控制器还可控制冷却装置10s(例如,冷却风扇)运行,以对液体10p进行冷却。
此外,为了基于温度升高过度过程更好地进行温度控制,控制器还可被配置为能够确定第一阻尼单元8的当前温度值处于过温状态持续的时间,当 过温状态持续的时间小于第一时间阈值时,可使液体10p以第一流速在循环回路中流动。如若过温状态持续的时间大于第一时间阈值,即,第一阻尼单元8的当前温度值仍处于过温状态,为了提高散热效率,此时控制器可控制循环泵10b全负荷运行,以使液体10p以第二流速在循环回路中流动。如若控制器直接确定第一阻尼单元8的当前温度值处于高温状态,则控制器可直接控制循环泵10b全负荷运行,以使液体10p以第二流速在循环回路中流动。另外,为了提高温度测量的准确性,可在预定时间段内测量第一阻尼单元8的温度值,以更准确地确定第一阻尼单元8所处的温度状态,以避免由于第一阻尼单元8的温度值不稳定而导致循环泵10b不必要的操作。
因此,基于上述对混合阻尼模块进行温度调节的描述,本公开还可提供一种使用上述的混合阻尼模块抑制振动的方法。下面,将参照图6来详细描述使用混合阻尼模块抑制振动的方法。
该方法包括:测量第一阻尼单元8的当前温度值T;当测量的第一阻尼单元8的当前温度值T大于第一温度阈值T1时,可控制液体10p在循环回路中循环流动。
具体地,当测量的第一阻尼单元8的当前温度值T大于第一温度阈值T1且小于第二温度阈值T2(即,处于过温状态)时,控制液体10p以第一流速在循环回路中循环流动;当测量的第一阻尼单元8的当前温度值T大于或等于第二温度阈值T2(即,处于高温状态)时,控制液体10p以大于第一流速的第二流速在循环回路中循环流动,并且此时可控制冷却装置10s(例如,冷却风扇)运行以对液体10p进行冷却。进一步地,该方法还包括:确定第一阻尼单元8的当前温度值处于过温状态持续的时间t,当过温状态持续的时间t小于第一时间阈值t1时,控制循环泵10b半负荷运行,以使液体10p以第一流速在循环回路中循环流动;当过温状态持续的时间t大于或者等于第一时间阈值t1时,控制循环泵10b全负荷运行,以使液体10p以大于第一流速的第二流速在循环回路中循环流动,以加快散热。可选地,考虑到第一阻尼单元8的温度值存在不稳定性,因此可在高温状态持续预定时间后,控制冷却装置10s运行来对液体10p进行冷却。
以上仅以示例的形式描述了混合阻尼模块的温度调节,但不限于此,第一阻尼单元8的当前温度值不限于划分为两个状态(即,过温状态和高温状态),为了精准控温,第一阻尼单元8的当前温度值还可继续详细划分,例如, 可分为三个状态或更多的状态,并且基于第一阻尼单元8的当前温度值所处的状态来精细调节液体10p的流速,以实现节能的效果。
如上所述,根据第一阻尼单元8的当前温度值所处的温度状态来控制液体10p的流动,可对第一阻尼单元8进行有效的散热的同时实现节能,因此可防止混合阻尼模块由于温度过高而导致阻尼力下降,从而可确保混合阻尼模块的抑振效果。此外,通过调谐液体阻尼器中的液体10p对第一阻尼单元8进行散热,可解决为第一阻尼单元8布置额外的冷却设备带来的结构复杂、成本过高的问题,也实现了永磁涡流阻尼装置和调谐液体阻尼器之间的交互与协同,充分发挥了两种阻尼装置的优势特性,实现TMD、TLD联动进行协同复合抑振的同时,通过TLD来优化增强TMD的工作性能,防止永磁涡流阻尼装置因过温引起退磁或阻尼力衰减。
以上描述了混合阻尼模块的结构以及使用混合阻尼模块抑制振动的方法,下面将以其应用于风力发电机组为例来具体描述混合阻尼模块抑制振动的原理。
如图7所示,风力发电机组可包括轮毂1、叶片2、发电机3、机舱4和塔架5。第一阻尼单元8可设置在风力发电机组的塔架5内,例如,第一阻尼单元8的第一端81可连接到质量块12,第一阻尼单元8的第二端82可连接到塔架5的内壁。质量块12可通过摆杆7连接到安装在悬吊平台13上的悬吊装置6,以使得在风力发电机组振动时,摆杆7可带动质量块12进行与风力发电机组的振动反相位的单摆运动,使得质量块12的单摆运动的动能可通过第一阻尼单元8耗散,从而可起到抑制振动的效果。
第一阻尼单元8、第二阻尼单元10、悬吊装置6、摆杆7和质量块12可整体称为振动抑制装置。可选地,振动抑制装置还可包括调频组件,调频组件可与质量块12和第一阻尼单元8连接。例如,调频组件可包括弹性构件11和调频平台14,弹性构件11的第一端可与质量块12连接,进而与第一阻尼单元8连接,并且弹性构件11的第二端可连接到固定在塔架5的内壁上的调频平台14上。此外,振动抑制装置可包括多个第一阻尼单元8和多个第二阻尼单元10,多个第一阻尼单元8可在沿塔架5的轴向均匀间隔分布,并且在塔架5的径向上以预定的角度间隔设置,相应地,多个第二阻尼单元10可在塔架5的径向上以预定的角度间隔设置并且与第一阻尼单元8连通。另外,第二阻尼单元10可设置在调频平台14上,可选地,如上所述,第二阻尼单 元10还可设置在第一阻尼单元8的上方,以减小循环泵10b的功耗。
下面,将具体描述振动抑制装置的抑振原理。
质量块12的单摆运动的动能可通过齿轮齿条被第一阻尼单元8耗散。参照图8,第一阻尼单元8的一个定子部8b可固定在支撑框架15的外侧并且与另一定子部8b固定连接。转子部8a的旋转轴8c可从支撑框架15的外侧插设在支撑框架15中并且形成为齿轮结构,支撑框架15内设置有与旋转轴8c相啮合的齿条16,齿条16的一端通过第一连接件17安装在塔架5的内壁上。质量块12可通过第二连接构件18连接在支撑框架15上,因此在质量块12摆动时,质量块12可通过旋转轴8c与齿条16啮合而带动支撑框架15在齿条16上直线运动。而且,随着支撑框架15在齿条16上运动,转子部8a可相对于定子部8b旋转,因此形成为导体盘的转子部8a可切割磁感线而产生感应电动势。若转子部8a的外电路闭合,则产生感应电流,磁场对感应电流将产生安培力,形成与转子部8a的原转动方向相反的力偶矩,因此对转子部8a的转动起阻尼作用。由于转子部8a和定子部8b为圆盘形,因此转子部8a相对于定子部8b旋转时会由于电磁感应产生环形感应电流,形成涡流的现象,从而在转子部8a和定子部之间产生阻尼力,该阻尼力可耗散质量块12的单摆运动的动能。上述示例仅为能量传递的一种实现形式,并不局限于此。例如,能量传递还可通过滚珠丝杠、齿形带等方式实现,其原理与上述类似,不再赘述。
另外,在风力发电机组振动时,调谐液体阻尼器中的液体10p发生与风力发电机组的振动反相位的运动,液体10p会撞击容器10n的内壁并且沿着内壁上下运动,并且液体10p运动过程中会发热,因此调谐液体阻尼器将风力发电机组的振动能量转化为动能和热能,从而耗散风力发电机组的振动能量而抑制风力发电机组的振动。
根据本公开的混合阻尼模块,通过第一阻尼单元和第二阻尼单元组合使用,可提高混合阻尼模块的抑制振动的效果。此外,根据本公开的实施例的混合阻尼模块,通过在第一阻尼单元中配置冷却流道,在第一阻尼单元和第二阻尼单元之间构建连接管路,使第二阻尼单元中的阻尼液体作为循环冷却介质流经第一阻尼单元中的冷却流道,并根据第一阻尼单元的实时温度动态调节阻尼液体的流速,从而可实现对第二阻尼单元自动化的、高效的、节能地冷却和散热,因此可解决第一阻尼单元由于温度升高而引起的退磁和阻尼 力衰减等问题。此外,该技术方案可以解决为永磁涡流阻尼装置布置额外的冷却设备带来的结构复杂,成本过高的问题,也实现了永磁涡流阻尼装置和调谐液体阻尼器之间的交互与协同,充分发挥了两种阻尼装置的优势特性,实现TMD、TLD联动进行协同复合抑振的同时,通过TLD来优化增强TMD的工作性能,防止永磁涡流阻尼装置因过温引起退磁或阻尼力衰减。
此外,根据本公开的实施例的振动抑制装置可具有与上述相同的技术效果,因此不再赘述。
此外,本公开的实施例还提供了一种风力发电机组,其包括振动抑制装置和塔架并且具有与上述相同的技术效果,因此也不再赘述。
虽然上面已经详细描述了本公开的实施例,但本领域技术人员在不脱离本公开的精神和范围内,可对本公开的实施例做出各种修改和变形。但是应当理解,在本领域技术人员看来,这些修改和变形仍将落入权利要求所限定的本公开的实施例的精神和范围内。

Claims (20)

  1. 一种混合阻尼模块,其特征在于,所述混合阻尼模块包括:
    第一阻尼单元(8),所述第一阻尼单元(8)包括转子部(8a)和与所述转子部(8a)平行设置的定子部(8b),并且所述转子部(8a)被构造为能够相对于所述定子部(8b)转动以产生电磁阻尼,所述转子部(8a)和所述定子部(8b)中的至少一者中形成有流道,
    第二阻尼单元(10),所述第二阻尼单元(10)包括液体阻尼器,所述液体阻尼器与所述流道连通并且形成循环回路,所述液体阻尼器中的液体(10p)能够在所述循环回路中循环流动。
  2. 根据权利要求1所述的混合阻尼模块,其特征在于,所述转子部(8a)和所述定子部(8b)中的一者包括磁体,并且所述转子部(8a)和所述定子部(8b)中的另一者包括导体,以使得所述转子部(8a)相对于所述定子部(8b)转动时产生电磁阻尼。
  3. 根据权利要求2所述的混合阻尼模块,其特征在于,所述定子部(8b)包括所述磁体,并且所述流道形成在所述定子部(8b)中。
  4. 根据权利要求2所述的混合阻尼模块,其特征在于,所述流道包括:
    多个子流道(8b3,8b4,8b5),所述多个子流道(8b3,8b4,8b5)沿所述转子部(8a)和所述定子部(8b)中的所述至少一者的周向形成为环形;
    进液口(8b6)和出液口(8b7),所述进液口(8b6)和所述出液口(8b7)中的每者沿所述转子部(8a)和所述定子部(8b)中的所述至少一者的径向延伸且连通所述多个子流道(8b3,8b4,8b5),所述进液口(8a6)和所述出液口(8a7)均与所述液体阻尼器连通。
  5. 根据权利要求2所述的混合阻尼模块,其特征在于,所述流道包括:
    子流道,所述子流道以平面螺旋形状形成在所述转子部(8a)和所述定子部(8b)中的所述至少一者中;
    进液口和出液口,所述进液口形成在所述子流道的第一端,所述出液口形成在所述子流道的第二端,并且所述进液口和所述出液口均与所述液体阻尼器连通。
  6. 根据权利要求1所述的混合阻尼模块,其特征在于,所述液体阻尼器设置在所述第一阻尼单元(8)的上方。
  7. 根据权利要求4或5所述的混合阻尼模块,其特征在于,所述进液口(8b6)侧设置有第一温度传感器(10f),用于测量所述液体(10p)的当前温度值,
    和/或,所述第一阻尼单元(8)上设置有第二温度传感器(10g),用于测量所述第一阻尼单元(8)的当前温度值,
    和/或,所述进液口(8b6)侧还设置有压力传感器(10d)和/或稳压罐(10e),
    和/或,所述出液口(8b7)侧设置有过滤器(10m)。
  8. 根据权利要求7所述的混合阻尼模块,其特征在于,所述液体阻尼器包括容纳所述液体(10p)的容器(10n)、散热翅片(10r)和/或冷却装置(10s),
    其中,所述散热翅片(10r)设置在所述容器(10n)的外表面上,并且所述冷却装置(10s)设置在所述散热翅片(10r)周边,用于冷却所述散热翅片(10r)。
  9. 根据权利要求8所述的混合阻尼模块,其特征在于,所述混合阻尼模块还包括控制器,所述控制器被配置为执行如下操作:
    当确定所述第一阻尼单元(8)的当前温度值大于第一温度阈值时,控制所述液体(10p)在所述循环回路中循环流动。
  10. 根据权利要求9所述的混合阻尼模块,其特征在于,所述控制器还被配置为:基于所述第一阻尼单元(8)的当前温度值调节在所述循环回路中循环流动的所述液体(10p)的流速,
    其中,所述第一阻尼单元(8)的当前温度值越高,则所述液体(10p)在所述循环回路中循环流动的流速越快,所述第一阻尼单元(8)的当前温度值越低,则所述液体(10p)在所述循环回路中循环流动的流速越慢。
  11. 根据权利要求10所述的混合阻尼模块,其特征在于,所述控制器还被配置为:
    当确定所述第一阻尼单元(8)的当前温度值处于第一温度异常状态时,控制所述液体(10p)以第一流速在所述循环回路中循环流动;
    当确定所述第一阻尼单元(8)的当前温度值处于第二温度异常状态时,控制所述液体(10p)以第二流速在所述循环回路中循环流动,
    其中,所述第二流速大于所述第一流速,所述第一温度异常状态包括所述第一阻尼单元(8)的当前温度值大于所述第一温度阈值且小于第二温度阈值,所述第二温度异常状态包括所述第一阻尼单元(8)的当前温度值大于或 者等于所述第二温度阈值。
  12. 根据权利要求11所述的混合阻尼模块,其特征在于,所述控制器还被配置为执行如下操作:
    当确定所述第一阻尼单元(8)的当前温度值处于所述第二温度异常状态时,控制所述冷却装置(10s)运行。
  13. 根据权利要求11所述的混合阻尼模块,其特征在于,所述控制器还被配置为确定所述第一阻尼单元(8)的当前温度值处于所述第一温度异常状态持续的时间,
    其中,当确定所述第一温度异常状态持续的时间小于第一时间阈值时,控制所述液体(10p)以所述第一流速在所述循环回路中循环流动;
    当确定所述第一温度异常状态持续的时间大于或者等于所述第一时间阈值时,控制所述液体(10p)以所述第二流速在所述循环回路中循环流动。
  14. 一种振动抑制装置,其特征在于,所述振动抑制装置包括根据权利要求1至13中任一项所述的混合阻尼模块(8)、悬吊装置(6)、摆杆(7)和质量块(12),
    其中,所述质量块(12)通过所述摆杆(7)连接到所述悬吊装置(6)以使所述摆杆(7)能够带动所述质量块(12)摆动,并且所述混合阻尼模块(8)的第一端(81)连接到所述质量块(12),所述混合阻尼模块(8)的第二端(82)用于连接到待抑振的振动装置。
  15. 根据权利要求14所述的振动抑制装置,其特征在于,所述振动抑制装置还包括调频组件,所述调频组件用于调节所述振动抑制装置的频率并且包括弹性构件(11)和固定在所述待抑振的振动装置上的调频平台(14),
    其中,所述弹性构件(11)的第一端连接到所述质量块(12),所述弹性构件(11)的第二端连接到所述调频平台(14)。
  16. 一种风力发电机组,其特征在于,所述风力发电机组包括根据权利要求14或者权利要求15所述的振动抑制装置和塔架(5),
    其中,所述振动抑制装置设置在所述塔架(5)内,并且所述混合阻尼模块(8)的所述第二端(82)连接到所述塔架(5)的内壁。
  17. 一种使用根据权利要求1至13中任一项所述的混合阻尼模块抑制振动的方法,其特征在于,所述方法包括:
    测量所述第一阻尼单元(8)的当前温度值;
    当测量的所述第一阻尼单元(8)的当前温度值大于第一温度阈值时,控制所述液体(10p)在所述循环回路中循环流动。
  18. 根据权利要求17所述的方法,其特征在于,基于所述第一阻尼单元(8)的当前温度值调节在所述循环回路中循环流动的所述液体(10p)的流速,
    其中,所述第一阻尼单元(8)的当前温度值越高,则所述液体(10p)在所述循环回路中循环流动的流速越快,所述第一阻尼单元(8)的当前温度值越低,则所述液体(10p)在所述循环回路中循环流动的流速越慢。
  19. 根据权利要求17所述的方法,其特征在于,当测量的所述第一阻尼单元(8)的当前温度值处于第一温度异常状态时,控制所述液体(10p)以第一流速在所述循环回路中循环流动;
    当测量的所述第一阻尼单元(8)的当前温度值处于第二温度异常状态时,控制所述液体(10p)以第二流速在所述循环回路中循环流动,
    其中,所述第二流速大于所述第一流速,所述第一温度异常状态包括所述第一阻尼单元(8)的当前温度值大于所述第一温度阈值且小于第二温度阈值,所述第二温度异常状态包括所述第一阻尼单元(8)的当前温度值大于或者等于所述第二温度阈值。
  20. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    当测量的所述第一阻尼单元(8)的当前温度值处于所述第二温度异常状态时,控制设置于所述液体阻尼器外部的冷却装置(10s)运行,以对所述液体(10p)进行冷却。
PCT/CN2020/133399 2020-06-29 2020-12-02 混合阻尼模块、振动抑制装置、抑振方法及风力发电机组 WO2022000989A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2020456546A AU2020456546A1 (en) 2020-06-29 2020-12-02 Hybrid damping module, vibration suppression device, vibration suppression method, and wind turbine set
BR112022024888A BR112022024888A2 (pt) 2020-06-29 2020-12-02 Módulo de amortecimento híbrido, dispositivo de supressão de vibração, método de supressão de vibração e conjunto de turbinas eólicas
CA3181335A CA3181335A1 (en) 2020-06-29 2020-12-02 Hybrid damping module, vibration suppression device, vibration suppression method, and wind turbine set
EP20943127.9A EP4130511A4 (en) 2020-06-29 2020-12-02 HYBRID DAMPING MODULE, VIBRATION SUPPRESSION DEVICE, VIBRATION SUPPRESSION METHOD AND WIND TURBINE SET
US17/997,221 US20230160455A1 (en) 2020-06-29 2020-12-02 Hybrid damping module, vibration suppression device, vibration suppression method, and wind turbine set
ZA2022/12232A ZA202212232B (en) 2020-06-29 2022-11-09 Hybrid damping module, vibration suppression device, vibration suppression method, and wind turbine set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010606894.4 2020-06-29
CN202010606894.4A CN111692273B (zh) 2020-06-29 2020-06-29 混合阻尼模块、振动抑制装置、抑振方法及风力发电机组

Publications (1)

Publication Number Publication Date
WO2022000989A1 true WO2022000989A1 (zh) 2022-01-06

Family

ID=72484463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133399 WO2022000989A1 (zh) 2020-06-29 2020-12-02 混合阻尼模块、振动抑制装置、抑振方法及风力发电机组

Country Status (9)

Country Link
US (1) US20230160455A1 (zh)
EP (1) EP4130511A4 (zh)
CN (1) CN111692273B (zh)
AU (1) AU2020456546A1 (zh)
BR (1) BR112022024888A2 (zh)
CA (1) CA3181335A1 (zh)
CL (1) CL2022003471A1 (zh)
WO (1) WO2022000989A1 (zh)
ZA (1) ZA202212232B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692273B (zh) * 2020-06-29 2022-02-01 北京金风科创风电设备有限公司 混合阻尼模块、振动抑制装置、抑振方法及风力发电机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195270A (ja) * 2009-02-26 2010-09-09 Toyota Motor Corp 車両用ショックアブソーバ装置
CN103967608A (zh) * 2014-05-05 2014-08-06 奉化市远东深海采矿技术研究所 防止发动机飞车事故的电磁涡流阻尼限速装置
CN105240451A (zh) * 2015-10-23 2016-01-13 中国船舶重工集团公司第七○二研究所 主被动集成式隔振器及隔振方法
CN107289061A (zh) * 2017-08-02 2017-10-24 汤树人 一种具有多模阻尼特性的电磁流体阻尼器
CN207315575U (zh) * 2017-10-26 2018-05-04 北京金风科创风电设备有限公司 塔筒及风力发电机组
CN111692273A (zh) * 2020-06-29 2020-09-22 北京金风科创风电设备有限公司 混合阻尼模块、振动抑制装置、抑振方法及风力发电机组

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622707A (en) * 1950-02-28 1952-12-23 Gen Electric Liquid magnetic damper
FR2489939A1 (fr) * 1980-09-09 1982-03-12 Commerce Internal Echanges Tec Procede et appareil de production de chaleur applicables a la fourniture d'eau chaude
JP2002153036A (ja) * 2000-11-08 2002-05-24 Sumitomo Special Metals Co Ltd 回転機およびそれを用いた風力発電機
CN102287342A (zh) * 2011-06-24 2011-12-21 吕怀民 联合能源装置及其建造方法和用途
CN103001450A (zh) * 2011-09-14 2013-03-27 新疆金风科技股份有限公司 一种风力发电机组
CN102852732A (zh) * 2012-10-18 2013-01-02 镇江市博林光电科技有限公司 磁涡流式动能转热能蓄热装置
EP2884095B1 (en) * 2013-12-12 2016-08-24 Siemens Aktiengesellschaft Tuned liquid damper of a wind turbine
JP6572905B2 (ja) * 2014-11-06 2019-09-11 日本製鉄株式会社 渦電流式発熱装置
CN204851548U (zh) * 2015-08-11 2015-12-09 北京三力新能科技有限公司 一种风力发电机组冷却装置
CN105066423B (zh) * 2015-08-18 2018-01-23 上海海事大学 一种电磁搅拌阻尼型风力致热装置
CN105672514B (zh) * 2016-03-10 2017-11-28 苏州科技学院 涡振耗能式调频液体阻尼器
WO2018150508A1 (ja) * 2017-02-16 2018-08-23 三菱重工コンプレッサ株式会社 回転機械
CN107268822B (zh) * 2017-06-19 2019-09-27 同济大学 一种电涡流液体阻尼器
CN109578228B (zh) * 2019-01-17 2022-10-25 北京金风科创风电设备有限公司 风力发电机组、冷却系统及其控制方法
CN109826903B (zh) * 2019-02-13 2024-06-07 杨泽达 一种带沉降主动分散装置的底置通道磁流变阻尼器
CN110273972B (zh) * 2019-07-08 2023-05-23 北京金风科创风电设备有限公司 阻尼器、风力发电机组的塔筒和风力发电机组
CN110761951A (zh) * 2019-11-18 2020-02-07 成都六九一四科技有限公司 一种具有防雷电功能的磁能涡流风力制热装置
CN110985589B (zh) * 2019-12-02 2021-01-22 江苏科技大学 磁流变液涡轮阻尼器
CN111237133B (zh) * 2020-01-13 2021-04-23 上海电气风电集团股份有限公司 一种可自动调节阻尼属性的风力发电机组塔架
CN111236461A (zh) * 2020-02-17 2020-06-05 迈格钠磁动力股份有限公司 磁涡流阻尼装置、调频质量磁涡流阻尼器和抑制振动的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195270A (ja) * 2009-02-26 2010-09-09 Toyota Motor Corp 車両用ショックアブソーバ装置
CN103967608A (zh) * 2014-05-05 2014-08-06 奉化市远东深海采矿技术研究所 防止发动机飞车事故的电磁涡流阻尼限速装置
CN105240451A (zh) * 2015-10-23 2016-01-13 中国船舶重工集团公司第七○二研究所 主被动集成式隔振器及隔振方法
CN107289061A (zh) * 2017-08-02 2017-10-24 汤树人 一种具有多模阻尼特性的电磁流体阻尼器
CN207315575U (zh) * 2017-10-26 2018-05-04 北京金风科创风电设备有限公司 塔筒及风力发电机组
CN111692273A (zh) * 2020-06-29 2020-09-22 北京金风科创风电设备有限公司 混合阻尼模块、振动抑制装置、抑振方法及风力发电机组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130511A4 *

Also Published As

Publication number Publication date
AU2020456546A1 (en) 2022-12-01
CN111692273B (zh) 2022-02-01
US20230160455A1 (en) 2023-05-25
ZA202212232B (en) 2024-04-24
BR112022024888A2 (pt) 2023-01-24
EP4130511A4 (en) 2023-10-11
EP4130511A1 (en) 2023-02-08
CA3181335A1 (en) 2022-01-06
CL2022003471A1 (es) 2023-06-09
CN111692273A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
CN106451866B (zh) 电机转子支架以及电机
EP3819497B1 (en) Generator and wind turbine
WO2022000989A1 (zh) 混合阻尼模块、振动抑制装置、抑振方法及风力发电机组
CN105811735A (zh) 一体化永磁调速变速器
JP6165492B2 (ja) 風力発電設備
CN106787368B (zh) 一种给水泵用驱动装置及给水泵
WO2021093547A1 (zh) 一种立式风冷双筒型永磁调速器
WO2020220834A1 (zh) 冷却系统、电机及风力发电机组
CN110336434B (zh) 一种双面传动永磁涡流磁滞联轴器
JP3235100U (ja) 調速機能が標準装備されるモータ
TW202113228A (zh) 風力渦輪機冷卻系統
CN113048020B (zh) 风力发电机
CN212486367U (zh) 设置散热结构的永磁涡流柔性传动装置
CN104734459B (zh) 磁涡流节能调速器
CN212772936U (zh) 阻尼单元、阻尼模块、振动抑制装置及风力发电机组
CN204967599U (zh) 一体化永磁调速变速器
WO2020220835A1 (zh) 冷却系统、电机及风力发电机组
CN209233613U (zh) 一种电机气冷壳体和气冷电机
CN112994309A (zh) 自动降温的电机装置
CN216290629U (zh) 一种高效散热低噪声空冷型永磁调速器
CN110676979A (zh) 一种具有散热结构的永磁调速器
CN220869682U (zh) 一种液冷离心风机
JP6544063B2 (ja) 渦電流式発熱装置
TH2201007765A (th) มอดูลหน่วงแบบลูกผสม, อุปกรณ์การหยุดยั้งการสั่นสะเทือน, วิธีการหยุดยั้งการสั่นสะเทือน, และชุดกังหันลม
CN216959526U (zh) 一种双盘轴向磁场式开关磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3181335

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20943127.9

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020943127

Country of ref document: EP

Effective date: 20221028

ENP Entry into the national phase

Ref document number: 2020456546

Country of ref document: AU

Date of ref document: 20201202

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022024888

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022024888

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221206

NENP Non-entry into the national phase

Ref country code: DE