WO2022000760A1 - 一种保偏光纤环的光学多次倍增装置及方法 - Google Patents

一种保偏光纤环的光学多次倍增装置及方法 Download PDF

Info

Publication number
WO2022000760A1
WO2022000760A1 PCT/CN2020/112788 CN2020112788W WO2022000760A1 WO 2022000760 A1 WO2022000760 A1 WO 2022000760A1 CN 2020112788 W CN2020112788 W CN 2020112788W WO 2022000760 A1 WO2022000760 A1 WO 2022000760A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
optical
optical signal
port
switch
Prior art date
Application number
PCT/CN2020/112788
Other languages
English (en)
French (fr)
Inventor
张登伟
梁璀
陈侃
佘玄
杨建华
周一览
王磊
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022000760A1 publication Critical patent/WO2022000760A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another

Definitions

  • the invention relates to the technical field of optical fiber sensing, in particular to an optical multiplexing device and method for a polarization-maintaining optical fiber ring.
  • Fiber optic gyroscopes have the advantages of high theoretical accuracy, all-solid-state, and high reliability, and are widely used in many fields. In order to adapt to more complex and severe application requirements, especially in military applications, researchers in various countries have carried out in-depth research on the improvement of the accuracy of fiber optic gyroscopes. As the sensitive unit of the fiber optic gyroscope, the performance of the polarization-maintaining fiber loop largely determines the overall accuracy of the fiber optic gyroscope.
  • the non-reciprocal phase difference generated by the angular velocity can be accumulated, thereby improving the accuracy of the fiber optic gyroscope, but its fatal disadvantage is that the adaptability to the environment such as temperature is greatly reduced, which limits the accuracy. improvement. Therefore, there is an urgent need for a device and method that can improve the accuracy of the fiber optic gyroscope without reducing the environmental stability of the fiber optic gyroscope, and at the same time keep the volume of the fiber optic ring basically unchanged.
  • the purpose of the present invention is to overcome the shortcomings of poor stability and low precision of the existing fiber optic gyroscope, and propose an optical multiplexing device and method for a polarization-maintaining fiber ring.
  • the beamer/combiner and polarization switch can make the optical signal cyclically transmit in the polarization-maintaining fiber ring, improve the phase accumulation caused by the angular velocity, and thus improve the accuracy of the fiber optic gyroscope, without affecting its environmental adaptability and size.
  • An optical multiplexing device for a polarization-maintaining fiber ring comprising a light source, a 2 ⁇ 2 fiber coupler, an integrated optical chip, a polarization beam splitter/combiner, a first polarization switch, a second polarization switch, and a polarization-maintaining fiber sensitive coil and detectors;
  • the output end of the light source and the receiving end of the detector are respectively connected with two ports on the same side of the 2 ⁇ 2 fiber coupler through a polarization maintaining fiber, and one port on the other side of the 2 ⁇ 2 fiber coupler is integrated with the polarization maintaining fiber.
  • the input port of the optical chip is connected, and the two output ports of the integrated optical chip are connected to the polarization beam splitter/beam combiner;
  • the polarization beam splitter/beam combiner includes four ports: A port, B port, C port and D port , the B port and the C port are respectively connected with the two output ports of the integrated optical chip through the polarization maintaining fiber, and the A port and the D port are respectively connected with the same side ports of the first polarization switch and the second polarization switch through the polarization maintaining fiber,
  • the other side ports of the first polarization switch and the second polarization switch are respectively connected to two ends of the polarization-maintaining fiber sensitive coil through polarization-maintaining fibers.
  • the integrated optical chip is composed of a polarizer, a phase modulator and a Y waveguide.
  • the polarizer is used to polarize the optical signal for transmission along the slow axis (or fast axis), preferably the slow axis, of the polarization maintaining fiber.
  • the present invention Compared with the typical fiber optic gyroscope polarization-maintaining fiber ring structure, the present invention only adds one polarization beam splitter/combiner and two polarization switches, and the light transmitted along the fast axis of the polarization-maintaining fiber enters the polarization through ports A, B, C, and D.
  • the beam splitter/combiner When the beam splitter/combiner is used, a coupling effect is generated in the polarization beam splitter/combiner, and the optical signal is output through the D, C, B, and A ports respectively; When the C and D ports enter the polarization beam splitter/beam combiner, there is no coupling effect in the polarization beam splitter/beam combiner, and the optical signals are output through the C, D, A, and B ports respectively.
  • the initial optical signal is polarized to be transmitted along the slow axis, and then the polarization state of the optical signal can be controlled by specific modulation of the polarization switch voltage, so that the optical signal that should be directly output enters the optical path again.
  • the 90° deflection of the optical signal is realized, so that the light originally transmitted along the fast axis is transformed into transmission along the slow axis, and the light originally transmitted along the slow axis is transformed into transmission along the fast axis.
  • the optical signal can be transmitted in an infinite loop in the optical path, so as to achieve the effect of multiple doublings.
  • the proposed method is simple in principle and simple in operation. For the fiber optic gyroscope, which has become stable and mature at present, it is difficult to try to improve the accuracy through the breakthrough of hardware and software, but the device and method proposed in the present invention can effectively improve the accuracy of the fiber optic gyroscope, and has the advantages in engineering applications. Significance.
  • Fig. 1 is the schematic diagram of the optical multiplexing device of polarization maintaining fiber ring in the present invention
  • an optical multiplexing device for a polarization-maintaining fiber ring includes a light source 1, a 2 ⁇ 2 fiber coupler 2, an integrated optical chip 3, a polarization beam splitter/combiner 4, and a first polarization switch 5 , the second polarization switch 6, the polarization maintaining fiber sensitive coil 7 and the detector 8;
  • the output end of the light source 1 and the receiving end of the detector 8 are respectively connected to the two ports on the same side of the 2 ⁇ 2 fiber coupler 2 through the polarization maintaining fiber, and one port on the other side of the 2 ⁇ 2 fiber coupler 2 is connected to the other side through the polarization maintaining fiber.
  • the polarized fiber is connected to the input port of the integrated optical chip 3, and the two output ports of the integrated optical chip 3 are connected to the polarization beam splitter/beam combiner 4;
  • the polarization beam splitter/beam combiner includes four ports: A port, B port, C port and D port, the B port and C port are respectively connected with the two output ports of the integrated optical chip 3 through the polarization maintaining fiber, and the A port and the D port are respectively connected with the first polarization switch 5 and the first polarization switch 5 through the polarization maintaining fiber.
  • the ports on the same side of the two polarization switches 6 are connected, and the ports on the other side of the first polarization switch 5 and the second polarization switch 6 are respectively connected to both ends of the polarization-maintaining fiber sensitive coil 7 through polarization-maintaining fibers.
  • a coupling effect is generated in the polarization beam splitter/combiner, That is, the optical signal will be output through the D, C, B, and A ports respectively; while the light transmitted along the slow axis of the polarization maintaining fiber enters the polarization beam splitter/combiner through the A, B, C, and D ports, the polarization beam splitter/combiner There is no coupling effect in the beamer, that is, the optical signal will be output through the C, D, A, and B ports respectively.
  • the first polarization switch and the second polarization switch make the optical signal rotate by 90° or keep it unchanged by modulating the working voltage.
  • the polarization switch by applying a control voltage to it, the lithium niobate inside can be birefringent, and the phase of the optical signal passing through it can be changed, so that its function is similar to the tunable wave plate, and the multi-wave plate (such as The combination of quarter wave plate, half wave plate, quarter wave plate) can adjust the polarization state of the optical signal, so the optical signal transmitted through it can be generated by controlling the working voltage of the polarization switch. degrees of polarization rotation, thereby changing the transmission axis of the optical signal along the fiber.
  • the integrated optical chip is composed of a polarizer, a phase modulator and a Y waveguide.
  • the two output ports of the Y waveguide are used as output ports of the integrated optical chip, and the polarizer is used to convert the light
  • the signal polarization is to fix the light transmitted along the slow axis or the fast axis of the polarization maintaining fiber;
  • the integrated optical chip is made of lithium niobate.
  • the first polarization switch and the second polarization switch are made of lithium niobate.
  • the polarization beam splitter/combiner 4 is made of fused optical fibers.
  • the diameter of the polarization-maintaining optical fiber sensitive coil is 90 mm.
  • the optical signal emitted by the light source is divided into two parts after passing through a 2 ⁇ 2 fiber coupler and an integrated optical chip, and the integrated optical chip polarizes the optical signal to transmit along the slow axis of the polarization-maintaining fiber.
  • the optical signal enters the polarization beam splitter/combiner from port B. Since the optical signal is along the slow axis of the polarization maintaining fiber at this time, no coupling effect occurs in the polarization beam splitter/combiner, and the optical signal is output from port D Enter the second polarization switch. At this time, the voltage of the second polarization switch is modulated so that the optical signal passing through the second polarization switch does not undergo polarization rotation, and the optical signal enters the first polarization switch after going around the polarization-maintaining fiber sensitive coil along the slow axis.
  • the optical signal enters the polarization beam splitter/combiner through port A along the fast axis of the polarization-maintaining fiber, and a coupling effect occurs.
  • the optical signal is output from port D and enters the second polarization switch.
  • the second polarization switch voltage is modulated to make the The optical signal of the second polarization switch does not undergo polarization rotation, and the optical signal enters the first polarization switch along the fast axis of the polarization-maintaining optical fiber and then goes around the sensitive coil of the polarization-maintaining optical fiber once again;
  • step (c) modulate the first polarization switch voltage so that the optical signal passing through the first polarization switch does not undergo polarization rotation, and repeat step (b);
  • the first polarization switch voltage is modulated so that the optical signal passing through the first polarization switch generates a 90-degree polarization rotation, and the optical signal enters the polarization beam splitting/combining through the A port along the slow axis of the polarization maintaining fiber.
  • the optical signal is output from the C port and returns to the integrated optical chip to complete the transmission of the counterclockwise optical path.
  • the optical signal circles n+1 times in the polarization-maintaining fiber coil, realizing the n+1 multiplication of the optical path. .
  • the optical signal enters the polarization beam splitter/beam combiner from the C port. Since the optical signal is along the slow axis of the polarization maintaining fiber at this time, the coupling effect does not occur in the polarization beam splitter/beam combiner, and the optical signal is output from the A port. Enter the first polarization switch. At this time, the voltage of the first polarization switch is modulated so that the optical signal passing through the first polarization switch does not undergo polarization rotation, and the optical signal enters the second polarization switch after going around the polarization-maintaining fiber sensitive coil along the slow axis.
  • the optical signal enters the polarization beam splitter/beam combiner through the D port along the fast axis of the polarization maintaining fiber, a coupling effect occurs, and the optical signal is output from the A port into the first polarization switch, and the first polarization switch voltage is modulated at this time to pass through
  • the optical signal of the first polarization switch does not undergo polarization rotation, and the optical signal enters the second polarization switch along the fast axis of the polarization-maintaining optical fiber and then goes around the sensitive coil of the polarization-maintaining optical fiber once again;
  • step (h) modulate the second polarization switch voltage so that the optical signal passing through the second polarization switch does not undergo polarization rotation, and repeat step (g);
  • the second polarization switch voltage is modulated so that the optical signal passing through the second polarization switch produces a 90-degree polarization rotation, and the optical signal enters the polarization beam splitting/combining through the D port along the slow axis of the polarization maintaining fiber There is no coupling effect, so the optical signal is output from port B and returns to the integrated optical chip to complete the clockwise optical path transmission.
  • the optical signal circles m+1 times in the polarization-maintaining fiber coil, realizing the multiplication of the optical path m+1. .
  • the number of turns n+1 and m+1 of the optical signal transmitted in the counterclockwise and clockwise direction should be the same around the polarization-maintaining fiber sensitive coil.
  • the clockwise and counterclockwise optical signals enter the integrated optical chip IOC at the same time and interfere, and the interference optical signal passes through.
  • the 2 ⁇ 2 fiber coupler is then detected by the detector.
  • the polarization beam splitter/beam combiner and polarization switch can use any device with the described working principle.
  • Thorlab's fused fiber polarization beam combiner/beam splitter and Photline's lithium niobate are used.
  • Polarization switch is used.
  • the invention utilizes the evanescent coupling effect of the polarization beam splitter/beam combiner to realize the mutual coupling of light in a specific mode between optical fibers.
  • the polarization switch can rotate the polarization of linearly polarized light through it by 90 degrees or keep it constant by controlling the voltage. By modulating the voltages of the two polarization switches, the incident light signal can be cyclically transmitted along the polarization-maintaining fiber sensitive coil, so as to achieve the effect of multiple doublings. This improves the effective optical path length of the fiber optic gyroscope.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种保偏光纤环的光学多次倍增装置及方法,装置主要包括光源(1)、2×2光纤耦合器(2)、集成光学芯片(3)、偏振分束/合束器(4)、两个偏振开关(5、6)、保偏光纤敏感线圈(7)以及探测器(8)。偏振分束/合束器(4)基于倏逝耦合效应,可以实现特定模式光在光纤之间的相互耦合。偏振开关(5、6)可以通过控制电压使通过其中的线偏振光实现90度的偏振旋转或保持不变。通过调制两个偏振开关(5、6)的电压,可以使入射光信号沿保偏光纤敏感线圈(7)循环传输,从而达到多次倍增的效果,方案简单高效且成本低廉,在不增加光纤长度的前提下可多倍次提高光纤陀螺的有效光路长度。

Description

一种保偏光纤环的光学多次倍增装置及方法 技术领域
本发明涉及光纤传感技术领域,具体涉及一种保偏光纤环的光学多次倍增装置及方法。
背景技术
光纤陀螺具有高理论精度、全固态、高可靠性等优势,在诸多领域都有着广泛的应用。为了适应更复杂和严苛的应用需求,尤其是在军事方面的应用,各国研究人员都对光纤陀螺精度的提升开展了深入的研究。保偏光纤环作为光纤陀螺的敏感单元,其性能很大程度上决定了光纤陀螺整体的精度。因此在光纤陀螺精度提升的研究过程中,人们提出了诸多方法,如采用特殊的绕环方式减少保偏光纤环的扭曲、研制偏振消光比更高的保偏光纤等,但这些方法或者提升效果不明显,或者成本高、研发周期长,难以取得理想的效果。
除此之外,通过增加保偏光纤长度和光纤环直径可以累积角速度产生的非互易相位差,从而提升光纤陀螺的精度,但其致命缺点是对温度等环境适应性大大降低,限制了精度的提高。因此,亟需一种能在不降低光纤陀螺环境稳定性的前提下提高光纤陀螺的精度,同时能保持光纤环体积基本不变的装置及方法,在光纤陀螺的技术提升上具有重要工程意义。
发明内容
本发明的目的是为了克服现有的光纤陀螺稳定性差、精度低的不足,提出一种保偏光纤环的光学多次倍增装置及方法,在不增加光纤长度的条件下,通过配合使用偏振分束器/合束器以及偏振开关,可以使光信号在保偏光纤环中循环传输,提高角速度引起的相位累积,从而提升光纤陀螺的精度,同时不影响其环境适应性和尺寸。
为了实现上述目的,本发明采用如下技术方案:
一种保偏光纤环的光学多次倍增装置,包括光源、2×2光纤耦合器、集成光学芯片、偏振分束/合束器、第一偏振开关、第二偏振开关、保偏光纤敏感线 圈以及探测器;
所述光源的输出端和探测器的接收端通过保偏光纤分别与2×2光纤耦合器同一侧的两个端口连接,2×2光纤耦合器另一侧的一个端口通过保偏光纤与集成光学芯片的输入端口连接,集成光学芯片的两个输出端口连接偏振分束/合束器;所述的偏振分束/合束器包括四个端口:A端口、B端口、C端口和D端口,所述B端口和C端口通过保偏光纤分别与集成光学芯片的两个输出端口连接,A端口和D端口通过保偏光纤分别与第一偏振开关和第二偏振开关的同侧端口连接,第一偏振开关和第二偏振开关的另一侧端口通过保偏光纤分别与保偏光纤敏感线圈的两端连接。
作为本发明的优选实施方式,所述的集成光学芯片由起偏器、相位调制器以及Y波导组成。起偏器用于将光信号起偏为沿保偏光纤慢轴(或快轴)传输,优选为慢轴。
本发明与典型光纤陀螺保偏光纤环结构相比,仅增加一个偏振分束/合束器和两个偏振开关,沿保偏光纤快轴传输的光通过A、B、C、D端口进入偏振分束/合束器时,在偏振分束/合束器中产生耦合效应,光信号分别通过D、C、B、A端口输出;而沿保偏光纤慢轴传输的光通过A、B、C、D端口进入偏振分束/合束器时,在偏振分束/合束器中不产生耦合效应,光信号分别通过C、D、A、B端口输出。将初始光信号起偏为沿慢轴传输,之后通过对偏振开关电压的特定调制,可以控制光信号的偏振态,使本应直接输出的光信号再次进入光路。具体为:通过改变偏振开关的电压,实现光信号的90°偏转,使原本沿快轴传输的光转变为沿慢轴传输,使原本沿慢轴传输的光转变为沿快轴传输。在不考虑损耗和误差的理想情况下,光信号可以在光路中无限循环传输,从而达到多次倍增的效果。所提出的方法原理简单、操作简洁。针对目前已趋于稳定和成熟的光纤陀螺来说,试图通过硬件和软件的突破来提升精度显得较为困难,而本发明所提出的装置及方法可高效提升光纤陀螺的精度,在工程应用中具有重要的意义。
附图说明
图1是本发明中保偏光纤环的光学多次倍增装置的示意图;
图中:1.光源,2.2×2光纤耦合器,3.集成光学芯片(IOC),4.偏振分束/合束器,5.第一偏振开关,6.第二偏振开关,7.保偏光纤敏感线圈,8.探测器。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图1所示,一种保偏光纤环的光学多次倍增装置,包括光源1、2×2光纤耦合器2、集成光学芯片3、偏振分束/合束器4、第一偏振开关5、第二偏振开关6、保偏光纤敏感线圈7以及探测器8;
所述光源1的输出端和探测器8的接收端通过保偏光纤分别与2×2光纤耦合器2同一侧的两个端口连接,2×2光纤耦合器2另一侧的一个端口通过保偏光纤与集成光学芯片3的输入端口连接,集成光学芯片3的两个输出端口连接偏振分束/合束器4;所述的偏振分束/合束器包括四个端口:A端口、B端口、C端口和D端口,所述B端口和C端口通过保偏光纤分别与集成光学芯片3的两个输出端口连接,A端口和D端口通过保偏光纤分别与第一偏振开关5和第二偏振开关6的同侧端口连接,第一偏振开关5和第二偏振开关6的另一侧端口通过保偏光纤分别与保偏光纤敏感线圈7的两端连接。
在本发明的一项具体实施中,沿保偏光纤快轴传输的光通过A、B、C、D端口进入偏振分束/合束器时,偏振分束/合束器中产生耦合效应,即光信号会分别通过D、C、B、A端口输出;而沿保偏光纤慢轴传输的光通过A、B、C、D端口进入偏振分束/合束器时,偏振分束/合束器中不产生耦合效应,即光信号会分别通过C、D、A、B端口输出。
也可以设计为:沿保偏光纤慢轴传输的光通过A、B、C、D端口进入偏振分束/合束器时,偏振分束/合束器中产生耦合效应,即光信号会分别通过D、C、B、A端口输出;而沿保偏光纤快轴传输的光通过A、B、C、D端口进入偏振分束/合束器时,偏振分束/合束器中不产生耦合效应,即光信号会分别通过C、D、A、B端口输出。
第一偏振开关和第二偏振开关通过调制工作电压使光信号发生90°的偏振旋转或保持不变。偏振开关在工作时,通过给其施加控制电压可以使其内部的铌酸锂产生双折射,改变经过其内部的光信号的相位,使其功能类似于可调波片,而多波片(如四分之一波片、二分之一波片、四分之一波片)的组合即可以调节光信号的偏振态,因此通过控制偏振开关的工作电压可以使通过其传输的光信号发生90度的偏振旋转,从而改变光信号沿光纤的传输轴。
在本发明的一项具体实施中,所述的集成光学芯片由起偏器、相位调制器以及Y波导组成,Y波导的两个输出端口作为集成光学芯片的输出端口,起偏器用于将光信号起偏为固定沿保偏光纤慢轴或快轴传输的光;所述的集成光学芯片采用铌酸锂制成。所述的第一偏振开关和第二偏振开关采用铌酸锂制成。所述的偏振分束/合束器4采用熔融光纤制成。所述的保偏光纤敏感线圈直径为90mm。
以此方案为例:沿保偏光纤快轴传输的光通过A、B、C、D端口进入偏振分束/合束器时,偏振分束/合束器中产生耦合效应,即光信号会分别通过D、C、B、A端口输出;而沿保偏光纤慢轴传输的光通过A、B、C、D端口进入偏振分束/合束器时,偏振分束/合束器中不产生耦合效应,即光信号会分别通过C、D、A、B端口输出。本发明的保偏光纤环的光学多次倍增装置的光束绕行方法具体为:
1)光源出射的光信号经过2×2光纤耦合器和集成光学芯片后一分为二,且由集成光学芯片将光信号起偏为沿保偏光纤慢轴传输,通过保偏光纤分别输入至偏振分束/合束器的B端口和C端口;
2)逆时针光路传输的光传输过程如下:
(a)、光信号从B端口进入偏振分束/合束器,由于光信号此时沿保偏光纤慢轴,因此偏振分束/合束器中不发生耦合效应,光信号从D端口输出进入第二偏振开关,此时调制第二偏振开关电压使经过第二偏振开关的光信号不发生偏振旋转,光信号沿慢轴绕保偏光纤敏感线圈一圈后进入第一偏振开关,此时调制第一偏振开关电压使经过第一偏振开关的光信号产生90度偏振旋转,光信号从第一偏振开关出射时偏振态位于快轴;
(b)、光信号沿保偏光纤快轴通过A端口进入偏振分束/合束器,发生耦合效应,光信号从D端口输出进入第二偏振开关,此时调制第二偏振开关电压使经过第二偏振开关的光信号不发生偏振旋转,光信号沿保偏光纤快轴再绕保偏光纤敏感线圈一圈后进入第一偏振开关;
(c)、调制第一偏振开关电压使经过第一偏振开关的光信号不发生偏振旋转,重复步骤(b);
(d)、根据需要重复步骤(c)n次;
(e)、当需要输出光信号时,调制第一偏振开关电压使经过第一偏振开关的光信号产生90度偏振旋转,光信号沿保偏光纤慢轴通过A端口进入偏振分束/合束器,不发生耦合效应,因此光信号从C端口输出,返回集成光学芯片,完成 逆时针光路的传输,此时光信号在保偏光纤线圈中绕行n+1次,实现了光路n+1倍增。
3)顺时针光路传输的光传输过程如下:
(f)、光信号从C端口进入偏振分束/合束器,由于光信号此时沿保偏光纤慢轴,因此偏振分束/合束器中不发生耦合效应,光信号从A端口输出进入第一偏振开关,此时调制第一偏振开关电压使经过第一偏振开关的光信号不发生偏振旋转,光信号沿慢轴绕保偏光纤敏感线圈一圈后进入第二偏振开关,此时调制第二偏振开关电压使经过第二偏振开关的光信号产生90度偏振旋转,光信号从第二偏振开关出射时偏振态位于快轴;
(g)、光信号沿保偏光纤快轴通过D端口进入偏振分束/合束器,发生耦合效应,光信号从A端口输出进入第一偏振开关,此时调制第一偏振开关电压使经过第一偏振开关的光信号不发生偏振旋转,光信号沿保偏光纤快轴再绕保偏光纤敏感线圈一圈后进入第二偏振开关;
(h)、调制第二偏振开关电压使经过第二偏振开关的光信号不发生偏振旋转,重复步骤(g);
(i)、根据需要重复步骤(h)m次;
(j)、当需要输出光信号时,调制第二偏振开关电压使经过第二偏振开关的光信号产生90度偏振旋转,光信号沿保偏光纤慢轴通过D端口进入偏振分束/合束器,不发生耦合效应,因此光信号从B端口输出,返回集成光学芯片,完成顺时针光路的传输,此时光信号在保偏光纤线圈中绕行m+1次,实现了光路m+1倍增。
沿逆时针和顺时针传输的光信号应绕保偏光纤敏感线圈绕过的圈数n+1和m+1相同,顺时针和逆时针光信号同时进入集成光学芯片IOC发生干涉,干涉光信号经过2×2光纤耦合器后被探测器检测。
所述的偏振分束/合束器和偏振开关可以采用任意具有所述工作原理的器件,本例中采用Thorlab公司的熔融光纤偏振光束合束器/分束器,以及Photline公司的铌酸锂偏振开关。
本发明利用偏振分束/合束器的倏逝耦合效应,实现了特定模式光在光纤之间的相互耦合。偏振开关可以通过控制电压使通过其中的线偏振光实现90度的偏振旋转或保持不变。通过调制两个偏振开关的电压,可以使入射光信号沿保偏 光纤敏感线圈循环传输,从而达到多次倍增的效果,该方案简单高效且成本低廉,在不增加光纤长度的前提下可多倍次提高光纤陀螺的有效光路长度。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本实用新型的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

  1. 一种保偏光纤环的光学多次倍增装置,其特征在于,包括光源(1)、2×2光纤耦合器(2)、集成光学芯片(3)、偏振分束/合束器(4)、第一偏振开关(5)、第二偏振开关(6)、保偏光纤敏感线圈(7)以及探测器(8);
    所述光源(1)的输出端和探测器(8)的接收端通过保偏光纤分别与2×2光纤耦合器(2)同一侧的两个端口连接,2×2光纤耦合器(2)另一侧的一个端口通过保偏光纤与集成光学芯片(3)的输入端口连接,集成光学芯片(3)的两个输出端口连接偏振分束/合束器(4);所述的偏振分束/合束器包括四个端口:A端口、B端口、C端口和D端口,所述B端口和C端口通过保偏光纤分别与集成光学芯片(3)的两个输出端口连接,A端口和D端口通过保偏光纤分别与第一偏振开关(5)和第二偏振开关(6)的同侧端口连接,第一偏振开关(5)和第二偏振开关(6)的另一侧端口通过保偏光纤分别与保偏光纤敏感线圈(7)的两端连接。
  2. 如权利要求书1所述的一种保偏光纤环的光学多次倍增装置,其特征在于,所述的集成光学芯片由起偏器、相位调制器以及Y波导组成。
  3. 如权利要求书2所述的一种保偏光纤环的光学多次倍增装置,其特征在于,所述的集成光学芯片采用铌酸锂制成。
  4. 如权利要求1所述的一种保偏光纤环的光学多次倍增装置,其特征在于,所述的第一偏振开关和第二偏振开关通过调制工作电压使光信号发生90°的偏振旋转或保持不变。
  5. 如权利要求4所述的一种保偏光纤环的光学多次倍增装置,其特征在于,所述的第一偏振开关和第二偏振开关采用铌酸锂制成。
  6. 如权利要求1所述的一种保偏光纤环的光学多次倍增装置,其特征在于,所述的偏振分束/合束器(4)采用熔融光纤制成。
  7. 如权利要求1所述的一种保偏光纤环的光学多次倍增装置,其特征在于,所述的保偏光纤敏感线圈直径为90mm。
  8. 如权利要求1所述的一种保偏光纤环的光学多次倍增装置,其特征在于,沿保偏光纤快轴传输的光通过A、B、C、D端口进入偏振分束/合束器时,在偏振分束/合束器中产生耦合效应,光信号分别通过D、C、B、A端口输出;而沿保偏光纤慢轴传输的光通过A、B、C、D端口进入偏振分束/合束器时,在偏振 分束/合束器中不产生耦合效应,光信号分别通过C、D、A、B端口输出。
  9. 一种采用权利要求1所述的保偏光纤环的光学多次倍增装置的光束绕行方法,其特征在于,包括以下步骤:
    1)光源出射的光信号经过2×2光纤耦合器和集成光学芯片后一分为二,且由集成光学芯片将光信号起偏为沿保偏光纤慢轴传输,通过保偏光纤分别输入至偏振分束/合束器的B端口和C端口;
    2)逆时针光路传输的光传输过程如下:
    (a)光信号从B端口进入偏振分束/合束器,由于光信号此时沿保偏光纤慢轴,因此偏振分束/合束器中不发生耦合效应,光信号从D端口输出进入第二偏振开关,此时调制第二偏振开关电压使经过第二偏振开关的光信号不发生偏振旋转,光信号沿慢轴绕保偏光纤敏感线圈一圈后进入第一偏振开关,此时调制第一偏振开关电压使经过第一偏振开关的光信号产生90度偏振旋转,光信号从第一偏振开关出射时偏振态位于快轴;
    (b)、光信号沿保偏光纤快轴通过A端口进入偏振分束/合束器,发生耦合效应,光信号从D端口输出进入第二偏振开关,此时调制第二偏振开关电压使经过第二偏振开关的光信号不发生偏振旋转,光信号沿保偏光纤快轴再绕保偏光纤敏感线圈一圈后进入第一偏振开关;
    (c)、重复步骤(b)n次;当需要输出光信号时,调制第一偏振开关电压使经过第一偏振开关的光信号产生90度偏振旋转,光信号沿保偏光纤慢轴通过A端口进入偏振分束/合束器,不发生耦合效应,因此光信号从C端口输出,返回集成光学芯片,完成逆时针光路的传输,此时光信号在保偏光纤线圈中绕行n+1次,实现了光路n+1倍增;
    3)顺时针光路传输的光传输过程如下:
    (d)、光信号从C端口进入偏振分束/合束器,由于光信号此时沿保偏光纤慢轴,因此偏振分束/合束器中不发生耦合效应,光信号从A端口输出进入第一偏振开关,此时调制第一偏振开关电压使经过第一偏振开关的光信号不发生偏振旋转,光信号沿慢轴绕保偏光纤敏感线圈一圈后进入第二偏振开关,此时调制第二偏振开关电压使经过第二偏振开关的光信号产生90度偏振旋转,光信号从第二偏振开关出射时偏振态位于快轴;
    (e)、光信号沿保偏光纤快轴通过D端口进入偏振分束/合束器,发生耦 合效应,光信号从A端口输出进入第一偏振开关,此时调制第一偏振开关电压使经过第一偏振开关的光信号不发生偏振旋转,光信号沿保偏光纤快轴再绕保偏光纤敏感线圈一圈后进入第二偏振开关;
    (f)、重复步骤(e)m次;当需要输出光信号时,调制第二偏振开关电压使经过第二偏振开关的光信号产生90度偏振旋转,光信号沿保偏光纤慢轴通过D端口进入偏振分束/合束器,不发生耦合效应,因此光信号从B端口输出,返回集成光学芯片,完成顺时针光路的传输,此时光信号在保偏光纤线圈中绕行m+1次,实现了光路m+1倍增;
    4)顺时针和逆时针光信号同时进入集成光学芯片发生干涉,干涉光信号经过2×2光纤耦合器后被探测器检测。
  10. 如权利要求9所述的光束绕行方法,其特征在于,沿逆时针和顺时针传输的光信号在保偏光纤敏感线圈中绕行的圈数相同。
PCT/CN2020/112788 2020-07-03 2020-09-01 一种保偏光纤环的光学多次倍增装置及方法 WO2022000760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010636952.8 2020-07-03
CN202010636952.8A CN111811495B (zh) 2020-07-03 2020-07-03 一种保偏光纤环的光学多次倍增装置及方法

Publications (1)

Publication Number Publication Date
WO2022000760A1 true WO2022000760A1 (zh) 2022-01-06

Family

ID=72855145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112788 WO2022000760A1 (zh) 2020-07-03 2020-09-01 一种保偏光纤环的光学多次倍增装置及方法

Country Status (2)

Country Link
CN (1) CN111811495B (zh)
WO (1) WO2022000760A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115164865A (zh) * 2022-07-12 2022-10-11 中国船舶重工集团公司第七0七研究所 一种基于光量子高阶干涉效应的光纤陀螺及其工作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112797970A (zh) * 2020-12-11 2021-05-14 浙江大学 一种基于多芯光纤实现光纤陀螺灵敏度倍增的装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694386A (zh) * 2009-10-22 2010-04-14 浙江大学 高灵敏度的光纤陀螺仪
CN101825465A (zh) * 2010-04-06 2010-09-08 北京大学 一种再入式干涉型光纤陀螺仪
WO2012141746A1 (en) * 2011-01-28 2012-10-18 Massachusetts Institute Of Technology Recycled light interferometric fiber optic gyroscope
CN103852074A (zh) * 2012-11-30 2014-06-11 田振鹏 一种光学陀螺仪
WO2014203040A1 (en) * 2013-06-20 2014-12-24 Tubitak (Turkiye Bilimsel Ve Teknolojik Arastirma Kurumu) Dynamically monitoring the instantaneous zero rotation rate voltage of interferometric fiber optic gyroscope (ifog)
CN110426027A (zh) * 2019-08-09 2019-11-08 浙江大学 一种基于磁光开关的实现多圈绕行的光纤陀螺仪及其方法
CN111024058A (zh) * 2019-12-10 2020-04-17 浙江大学 一种基于电光效应开关的实现多次绕行的光纤陀螺仪及其方法
CN111089578A (zh) * 2020-01-21 2020-05-01 燕山大学 一种干涉型光纤陀螺仪

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7652770B2 (en) * 2005-12-07 2010-01-26 Japan Science And Technology Agency Optical nonliner evaluation device and optical switching element
CN101825560A (zh) * 2010-04-09 2010-09-08 苏州光环科技有限公司 一种检测保偏光纤的装置
US8599385B2 (en) * 2010-05-14 2013-12-03 General Photonics Corporation Measuring distributed polarization crosstalk in polarization maintaining fiber and optical birefringent material
CN102128621A (zh) * 2010-12-23 2011-07-20 北京大学 用于多维矢量测量的干涉式光纤陀螺仪
CN102650524B (zh) * 2012-04-25 2014-10-15 北京航空航天大学 一种基于宽谱光源双折射调制的差分双干涉式闭环光纤陀螺仪
WO2014110299A1 (en) * 2013-01-10 2014-07-17 Xiaotian Steve Yao Non-interferometric optical gyroscope based on polarization sensing
CN103697880B (zh) * 2013-12-24 2016-03-16 中国兵器工业导航与控制技术研究所 一种低随机游走系数的光纤陀螺
CN103940415A (zh) * 2014-03-26 2014-07-23 同济大学 一种光纤陀螺的保偏光纤传感环路结构
WO2018071729A1 (en) * 2016-10-12 2018-04-19 Xiaotian Steve Yao Non-interferometric optical gyroscope based on polarization sensing and implementations of closed loop control
US20200072609A1 (en) * 2018-09-04 2020-03-05 Honeywell International Inc. Apparatus and method for diminished bias error due to polarization mismatch
CN109883412A (zh) * 2019-03-12 2019-06-14 哈尔滨工程大学 一种双光程光纤陀螺仪
CN110441919A (zh) * 2019-08-07 2019-11-12 湖南航天机电设备与特种材料研究所 用于光纤陀螺噪声评测的Sagnac全保偏光纤干涉仪系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694386A (zh) * 2009-10-22 2010-04-14 浙江大学 高灵敏度的光纤陀螺仪
CN101825465A (zh) * 2010-04-06 2010-09-08 北京大学 一种再入式干涉型光纤陀螺仪
WO2012141746A1 (en) * 2011-01-28 2012-10-18 Massachusetts Institute Of Technology Recycled light interferometric fiber optic gyroscope
CN103852074A (zh) * 2012-11-30 2014-06-11 田振鹏 一种光学陀螺仪
WO2014203040A1 (en) * 2013-06-20 2014-12-24 Tubitak (Turkiye Bilimsel Ve Teknolojik Arastirma Kurumu) Dynamically monitoring the instantaneous zero rotation rate voltage of interferometric fiber optic gyroscope (ifog)
CN110426027A (zh) * 2019-08-09 2019-11-08 浙江大学 一种基于磁光开关的实现多圈绕行的光纤陀螺仪及其方法
CN111024058A (zh) * 2019-12-10 2020-04-17 浙江大学 一种基于电光效应开关的实现多次绕行的光纤陀螺仪及其方法
CN111089578A (zh) * 2020-01-21 2020-05-01 燕山大学 一种干涉型光纤陀螺仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115164865A (zh) * 2022-07-12 2022-10-11 中国船舶重工集团公司第七0七研究所 一种基于光量子高阶干涉效应的光纤陀螺及其工作方法

Also Published As

Publication number Publication date
CN111811495B (zh) 2022-04-08
CN111811495A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
US3272988A (en) Polarization modulation system for transmitting and receiving two independent signals over a single electromagnetic carrier
CN107084713B (zh) 基于光电振荡器的角速度测量方法和装置
WO2022000760A1 (zh) 一种保偏光纤环的光学多次倍增装置及方法
CN109752581B (zh) 偏振检偏式闭环全光纤电流互感器
CN112710294B (zh) 一种低光学噪声的双环并联谐振式陀螺系统及方法
CN101825465A (zh) 一种再入式干涉型光纤陀螺仪
CN114063212A (zh) 一种单片集成的基于薄膜铌酸锂的分束调制芯片
CN103453899A (zh) 光纤陀螺无源相位调制器
JP2009210573A (ja) 光ファイバジャイロスコープにおいて使用するスティッチされた導波路
CN104317072A (zh) 一种与波长和温度无关的法拉第旋转镜
US7116480B1 (en) Method and apparatus for optical switching
CN109556595A (zh) 一种利用偏振分离消除热效应的光纤陀螺
CN114674302B (zh) 死端光功率回收再利用的双偏振光纤陀螺
CN115752423A (zh) 一种偏振干扰抑制光纤陀螺装置
CN114234954A (zh) 双倍增敏光路集成光纤陀螺
WO2022000761A1 (zh) 一种光纤陀螺光路的多次光学倍增装置及方法
RU2762530C1 (ru) Интерферометрический волоконно-оптический гироскоп
CN110231024B (zh) 一种用于光纤萨格纳克干涉仪相位调制的方法和装置
CN111366145A (zh) 一种光纤陀螺保偏光纤敏感线圈的光学倍增装置及方法
CN118502140B (zh) 一种偏振无关的自稳定光强调制装置
CN116045956B (zh) 光纤陀螺及其基于光偏振态感测旋转的方法
JPS6221016A (ja) 光フアイバジヤイロ装置
JPS61122516A (ja) 光フアイバジヤイロ
JPH0460511A (ja) アクティブ光アイソレータ
CN116989761A (zh) 一种协同架构的集成光学陀螺仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942598

Country of ref document: EP

Kind code of ref document: A1