WO2022000680A1 - 一种植入式熔融陶瓷材料出流装置 - Google Patents

一种植入式熔融陶瓷材料出流装置 Download PDF

Info

Publication number
WO2022000680A1
WO2022000680A1 PCT/CN2020/106130 CN2020106130W WO2022000680A1 WO 2022000680 A1 WO2022000680 A1 WO 2022000680A1 CN 2020106130 W CN2020106130 W CN 2020106130W WO 2022000680 A1 WO2022000680 A1 WO 2022000680A1
Authority
WO
WIPO (PCT)
Prior art keywords
outflow
gas distributor
pipe
ceramic material
furnace
Prior art date
Application number
PCT/CN2020/106130
Other languages
English (en)
French (fr)
Inventor
赵华星
Original Assignee
金刚新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金刚新材料股份有限公司 filed Critical 金刚新材料股份有限公司
Publication of WO2022000680A1 publication Critical patent/WO2022000680A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/04Crucible or pot furnaces adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/0806Charging or discharging devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/20Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B2014/0887Movement of the melt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • F27D2007/063Special atmospheres, e.g. high pressure atmospheres

Definitions

  • the invention belongs to the technical field of molten ceramic particle preparation, and particularly relates to an implanted molten ceramic material outflow device.
  • Sand casting is the main process method of casting production.
  • the castings produced by sand casting account for more than 70% of the total output of castings.
  • Sand is the aggregate that forms the mold and core in sand casting, and is an important molding material for sand casting. Its physical and chemical properties determine its casting process performance and affect the quality of castings;
  • the raw sand used in sand casting in the foundry industry is mainly quartz sand, and its usage accounts for more than 90% of the foundry sand; however, quartz sand Large thermal expansion, poor thermochemical stability under the action of metal oxides, casting defects such as sticky sand, veining, rough surface, etc., and a large amount of dust containing free SiO 2 is generated during the production process, which is easy to cause harm to the human body Therefore, quartz sand is not an ideal modeling material for foundry; in order to reduce the application of quartz sand in foundry production, artificial ceramic foundry sand came into being.
  • the artificial ceramic foundry sand has a round shape, high refractoriness, low thermal expansion, strong crush resistance and long service life, which can save the amount of binder and improve the surface and dimensional accuracy of castings. It has been popularized and applied in foundry production; The outlet of the molten ceramic sand preparation system is directly built by refractory materials on the furnace body. The shape is irregular and the outflow is very unstable. It is difficult to stably control the preparation process of the molten ceramic sand, so that the produced ceramic The particle size of the sand is dispersed and the quality is very unstable.
  • the purpose of the present invention is to overcome the deficiencies in the prior art, and to provide an implanted molten ceramic material outflow device, which can realize the opening and closing of the outflow port by means of electric heating, and can control the size of the current by controlling the current.
  • the flow rate of the molten ceramic material at the outlet realizes the stable flow control of the molten ceramic material, which not only ensures the particle size concentration of the ceramic sand, but also ensures the quality of the ceramic sand.
  • An implantable molten ceramic material outflow device includes an outflow pipe installed at the bottom of a furnace.
  • the lower end of the outflow pipe extends to the outside of the furnace, and an insulating refractory lining and a protective shell are installed on the outflow pipe extending to the outside of the furnace, the heat insulating refractory lining is on the outside of the outflow pipe,
  • a first cooling jacket is provided at the bottom of the insulating refractory lining, the protective shell is installed on the outside of the insulating refractory lining, and the top of the protective shell is installed on the bottom of the furnace, and the first cooling jacket is sleeved on the outlet pipe,
  • One side of the first cooling jacket is provided with a first cooling water inlet pipe, the other side is provided with a first cooling water outlet pipe, and an induction heater is installed on the outside of the heat insulating refractory lining, and the induction heater is connected to the variable frequency power supply
  • a third cooling water inlet pipe is installed at the lower end of one side of the induction heater
  • a third cooling water outlet pipe is installed at the
  • the first gas distributor is located at the bottom of the outflow pipe, and a first air inlet pipe is installed at one end of the first gas distributor. Under the action of the variable frequency power supply, the outflow pipe can be heated by an induction heater to ensure the outflow.
  • the molten material in the pipe is in a flowing state, which is convenient for the subsequent injection pipe to spray the molten material to form ceramic sand.
  • the first cooling jacket can cool the outflow pipe as required to realize the flow control of the molten material.
  • the first gas distributor can The inert gas is delivered to the outflow pipe to protect the outflow pipe and improve the service life of the outflow pipe.
  • the power of the variable frequency power supply is 0-500kW, and the operating frequency is between 300Hz-100kHz, so as to achieve the purpose of controlling the flow of molten material and ensure the quality of the ceramic sand.
  • the outflow pipe is made of heat-resistant metals or alloys such as tungsten and molybdenum, so as to ensure that the outflow pipe has sufficient heat resistance, thereby ensuring the smooth production of the ceramic sand and the quality of the ceramic sand.
  • the first gas distributor adopts an annular cavity structure, and a plurality of gas outlet holes are opened on the inner side plate of the first gas distributor, and the plurality of gas outlet holes are evenly distributed on the inner side plate of the gas distributor.
  • the gas distributor can transport the inert gas to the outflow pipe, prevent the outflow pipe from being oxidized, ensure the safety of the outflow pipe, and greatly improve the service life of the device.
  • the outflow pipe is provided inside the furnace, and the bottom of the outflow pipe is provided with a top plate, a bottom plate, an outflow pipe, and a negative terminal, and a heat-resistant electrode is provided inside the furnace.
  • a positive terminal is installed on the heat-resistant electrode
  • a nut is fixedly installed on the top plate
  • a thread is provided on the outside of the outflow pipe, which is connected with the The nut is matched
  • the outflow pipe is connected with the negative terminal
  • the top plate is installed on the inner side of the bottom of the furnace
  • the bottom plate is installed on the outside of the bottom of the furnace
  • a second cooling jacket is fixedly installed between the top plate and the bottom plate and a second gas distributor
  • the second gas distributor is installed at the outer edge of the outflow end of the outflow port
  • the second gas distributor is a cavity structure
  • one end of the second gas distributor is fixed on the top plate, and
  • the other end is installed with a second cooling water outlet pipe, the positive terminal and the negative terminal are connected to the power supply, the heat-resistant electrode and the outlet pipe are charged, and a current is generated between the two electrodes, which generates resistance heat inside the molten ceramic material, so that the The molten ceramic material between the heat-resistant electrode and the outflow pipe always maintains a high temperature, the outflow port is kept unobstructed, and the molten ceramic material flows out from the outflow port; when the arc or resistance heating submerged arc furnace is used to melt the ceramic material, The heat-resistant electrode can also be removed, the negative terminal is grounded, and the melting electrode is used as the other pole to generate resistance heat in the molten ceramic material through the flow of current between the two poles to keep the outlet unobstructed.
  • both the second cooling jacket and the second gas distributor adopt a conical structure
  • the second cooling jacket is convenient for cooling the outflow pipe, so as to achieve the purpose of controlling the flow rate of the molten material
  • the second gas distributor is convenient for distributing the inert gas It is transported to the outflow pipe, which ensures the safety of the outflow pipe and improves the service life of the device.
  • the heat-resistant electrode is made of heat-resistant metal or alloy such as tungsten, molybdenum, etc. to ensure that the electrode has sufficient heat resistance, realizes continuous heating of the molten material, ensures the fluidity of the molten material, and thus ensures the ceramic Sand can be produced smoothly, which ensures the quality of ceramic sand.
  • heat-resistant metal or alloy such as tungsten, molybdenum, etc.
  • the device can realize the opening and closing of the outlet by electric heating, and at the same time, it can control the flow of the molten ceramic material at the outlet by controlling the size of the current, so as to realize the stable flow control of the molten ceramic material, which not only guarantees The particle size of the ceramic sand is concentrated, and the quality of the ceramic sand can also be guaranteed.
  • the outflow mechanism of the device can use the induction heater to heat the outflow pipe, so as to ensure that the molten material in the outflow pipe is in a flowing state, and it is convenient for the subsequent blowing pipe to spray the molten material to form Ceramic sand, the first cooling jacket can cool the outflow pipe as needed, which is convenient to control the flow of molten material, and the first gas distributor can deliver inert gas to the outflow pipe to protect the outflow pipe and improve the the service life of the outlet pipe.
  • the power of the variable frequency power supply of this device is 0-500kW, and the working frequency is between 300Hz-100kHz, which is convenient to control the input energy intensity, so as to achieve the purpose of controlling the flow of molten material and ensure the quality of ceramic sand.
  • the outflow pipe of the device is made of heat-resistant metals or alloys such as tungsten and molybdenum to ensure that the outflow pipe has sufficient heat resistance to ensure the stable and normal operation of the device, thereby ensuring the smooth production of ceramic sand. , to ensure the quality of ceramic sand.
  • the first gas distributor of the device adopts an annular cavity structure, and a plurality of gas outlet holes are opened on the inner side plate of the first gas distributor, and the plurality of gas outlet holes are evenly distributed on the inner side plate of the gas distributor.
  • the distributor can transport the inert gas to the outflow pipe, prevent the outflow pipe from being oxidized, ensure the safety of the outflow pipe, and greatly improve the service life of the device.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of an implantable molten ceramic material outflow device of the present invention.
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of an implantable molten ceramic material outflow device of the present invention.
  • Embodiment 3 is a schematic structural diagram of Embodiment 3 of an implanted molten ceramic material outflow device of the present invention.
  • an implanted molten ceramic material outflow device includes an outflow pipe 3, and the outflow pipe 3 is installed at the bottom of the furnace 1; the device can control the flow rate of the molten ceramic material through the outflow port 2,
  • the stable flow control of the molten ceramic material is realized, which not only ensures the particle size concentration of the ceramic sand, but also the quality of the ceramic sand.
  • Embodiment 1 The difference from Embodiment 1 as shown in FIG. 2 is that the lower end of the outflow pipe 3 extends to the outside of the furnace 1 , and an insulating refractory lining 4 and a protective shell are installed on the outflow pipe 3 extending to the outside of the furnace 1 13.
  • the insulating refractory lining 4 is sleeved on the outside of the outlet pipe 3, and a first cooling jacket 11 is provided at the bottom of the insulating refractory lining 4.
  • the protective shell 13 is installed on the outside of the insulating refractory lining 4, and The top of the protective shell 13 is installed at the bottom of the furnace 1, the first cooling jacket 11 is sleeved on the outflow pipe 3, one side of the first cooling jacket 11 is provided with a first cooling water inlet pipe 7, and the other side is provided with a first cooling water inlet pipe 7.
  • an induction heater 15 is installed on the outer side of the thermal insulation refractory lining 4, the induction heater 15 is connected with the variable frequency power supply 14, and a third cooling water is installed at the lower end of one side of the induction heater 15.
  • a third cooling water outlet pipe 5 is installed on the upper end of the induction heater 15, and a first gas distributor 9 is installed at the bottom of the protective shell 13, and the first gas distributor 9 is sleeved on the outflow
  • a first air inlet pipe 8 is installed at one end of the first gas distributor 9.
  • the outflow pipe 3 can be heated by an induction heater, thereby ensuring the outflow pipe 3
  • the molten material inside is in a flowing state, which is convenient for the subsequent injection pipe to spray the molten material to form ceramic sand.
  • the first cooling jacket 11 can cool the outflow pipe 3 as required, so as to facilitate the flow control of the molten material.
  • the gas distributor 9 can deliver the inert gas to the outflow pipe 3 to protect the outflow pipe 3 and improve the service life of the outflow pipe 3 .
  • the first cooling water inlet pipe 7 cooperates with the first cooling water outlet pipe 12 to ensure the circulation of cooling water, and can cool the outlet pipe 3 .
  • variable frequency power supply 14 supplies power to the induction heater 15, and the induction heater 15 will heat the outflow pipe 3 to ensure that the ceramic material in the outflow pipe 3 is in a molten state, the outflow pipe 3 is unblocked, and the molten ceramic material in the furnace 1 passes through.
  • the outflow pipe 3 flows out; reducing the power and frequency of the variable frequency power supply 14 can reduce the temperature of the outflow pipe 3, and the flow cross-sectional area of the outflow pipe 3 becomes smaller due to the adhesion of the ceramic material on the inner surface of the outflow pipe 3, melting
  • the flow rate of the ceramic material becomes smaller, on the contrary, the flow rate of the molten ceramic material can be increased, so as to realize the adjustment of the outflow rate of the molten ceramic material; the power and frequency of the variable frequency power supply 14 remain unchanged, the flow rate of the molten ceramic material discharged is relatively stable.
  • the power of the variable frequency power supply 14 is adjusted to zero. Under the cooling effect of the cooling jacket, the temperature of the outlet pipe 3 is reduced, and the flow cross-sectional area of the outlet pipe 3 is gradually reduced due to the adhesion of the molten ceramic material.
  • the tube 3 is blocked to realize the closure of the outlet 2 of the molten ceramic material; the power and frequency of the variable frequency power supply 14 are adjusted, and the induction heater 15 will heat the outlet tube 3, thereby heating the ceramic solidified in the outlet tube 3.
  • the material is heated, and when the melting temperature of the ceramic material is reached, the ceramic material is melted and discharged from the outflow pipe 3 to realize the opening of the outflow pipe 3 .
  • the power of the frequency conversion power supply 14 is 0-500kW, and the operating frequency is between 300Hz-100kHz, which is convenient for controlling the input energy intensity, thereby achieving the purpose of controlling the flow of molten material and ensuring the quality of the ceramic sand.
  • the outflow pipe 3 is made of heat-resistant metals or alloys such as tungsten, molybdenum, etc., to ensure that the outflow pipe has sufficient heat resistance, to ensure the stable and normal operation of the device, and to ensure the smooth production of ceramic sand. The quality of ceramic sand is guaranteed.
  • the first gas distributor 9 adopts an annular cavity structure, and a plurality of gas outlet holes 10 are opened on the inner side plate of the first gas distributor 9, and the plurality of gas outlet holes 10 are evenly distributed on the inner side plate of the gas distributor.
  • a gas distributor 9 can transport the inert gas to the outlet pipe 3, prevent the outlet pipe 3 from being oxidized, ensure the safety of the outlet pipe 3, and greatly improve the service life of the device.
  • the difference from Embodiment 1 and Embodiment 2 is that the outflow pipe 3 is provided inside the furnace 1 , and the bottom of the outflow pipe 3 is provided with a top plate 25 , a bottom plate 18 , and an outflow pipe 3.
  • the negative terminal 23 is provided with a heat-resistant electrode 16 inside the furnace 1.
  • the heat-resistant electrode 16 is arranged above the outflow pipe 3, and one end of the heat-resistant electrode 16 is installed at the bottom of the furnace 1.
  • a positive terminal 19 is installed on the hot electrode 16, a nut 26 is fixed on the top plate 25, a thread is provided on the outer side of the outflow tube 3, and is matched with the nut 26, and the outflow tube 3 is connected with the negative terminal 23.
  • the top plate 25 is fixed on the inner side of the bottom of the furnace 1
  • the bottom plate 18 is fixed on the outside of the bottom of the furnace 1
  • the second cooling jacket 24 and the second gas distributor 17 are fixedly installed between the top plate 25 and the bottom plate 18, so
  • the second gas distributor 17 is fixed at the outer edge of the outflow end of the outflow port 2, and the second gas distributor 17 is a cavity structure, one end of the second gas distributor 17 is fixed on the top plate 25, and the second gas distributor 17 is There is a gap between the top of the inner plate of the distributor 17 and the top plate 25 , the other end of the second gas distributor 17 is fixed on the bottom plate 18 , and a second air inlet pipe 21 is installed at one end of the second gas distributor 17 .
  • the second cooling jacket 24 is sleeved on the outside of the second gas distributor 17 , one end of the second gas distributor 17 is fixed on the top plate 25 and the other end is fixed on the bottom plate 18 , and a second cooling jacket 24 is installed on one side.
  • the cooling water inlet pipe 20 is provided with a second cooling water outlet pipe 22 at the other end of the second cooling jacket 24 .
  • the second air inlet pipe 21 cooperates with the gap between the inner plate and the top plate 25 of the second gas distributor 17 to ensure the circulation of the inert gas, which can protect the outlet 2 and prevent the outlet 2 from being oxidized.
  • the second cooling water inlet pipe 20 cooperates with the second cooling water outlet pipe 22 to ensure the circulation of cooling water, ensure the cooling efficiency, improve the service life of the device, and realize Flow control of the melt.
  • the positive terminal 19 and the negative terminal 23 are connected to the power supply, the heat-resistant electrode 16 and the outflow tube 3 are charged, a current is generated between the two electrodes, and resistance heat is generated inside the molten ceramic material, so that the heat-resistant electrode 16 and the outflow tube are formed.
  • the molten ceramic material between the pipes 3 always maintains a relatively high temperature, the outflow pipe 3 is kept unobstructed, and the molten ceramic material flows out from the outflow pipe 3 .
  • the heat-resistant electrode 16 can also be removed, the negative terminal is grounded, and the melting electrode is used as the other pole. Resistive heat is generated in the process to keep the outflow pipe 3 unobstructed.
  • the second cooling jacket 24 and the second gas distributor 17 both adopt a conical structure, the second cooling jacket 24 is convenient for cooling the outflow pipe 3, so as to achieve the purpose of controlling the flow rate of the molten material, and the second gas distributor 17 is convenient for cooling.
  • the inert gas is delivered to the outflow pipe 3, which ensures the safety of the outflow pipe 3 and improves the service life of the device.
  • the heat-resistant electrode 16 is made of heat-resistant metal or alloy such as tungsten, molybdenum, etc. to ensure that it has sufficient heat resistance, can continuously heat the molten material, ensure the fluidity of the molten material, and thus ensure that the ceramic sand can be heated.
  • the smooth production ensures the quality of the ceramic sand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

一种植入式熔融陶瓷材料出流装置,包括出流管,该出流管安装在熔炉底部。该装置通过电热的方式实现出流口的开启和关闭,同时能够通过控制电流的大小来控制出流口的熔融陶瓷材料的流量,实现了熔融陶瓷材料稳定的流量控制,不仅保证了陶瓷砂的粒度集中,而且还能够保证陶瓷砂的质量。

Description

一种植入式熔融陶瓷材料出流装置 技术领域
本发明属于熔融陶瓷颗粒制备技术领域,特别涉及一种植入式熔融陶瓷材料出流装置。
背景技术
砂型铸造是铸件生产的主要工艺方法,由砂型铸造工艺生产的铸件占铸件总产量的70%以上;砂子是砂型铸造中形成铸型和芯子的骨料,是重要的砂型铸造用造型材料,它的物理和化学性能决定了其铸造工艺性能,影响着铸件的质量;铸造行业砂型铸造所用的原砂主要是石英砂,其使用量占到铸造用砂量的90%以上;但是,石英砂热膨胀性大,在金属氧化物作用下热化学稳定性差,铸件易产生粘砂、脉纹、表面粗糙等铸造缺陷,并且在生产过程中产生大量的含游离SiO 2的粉尘,易对人体造成伤害,因此,石英砂不是理想的铸造用造型材料;为了减少石英砂在铸造生产中的应用,人造陶瓷铸造砂应运而生。
人造陶瓷铸造砂粒外形圆整,耐火度高,热膨胀性小,耐破碎性强,使用寿命长,可节省粘结剂用量、提高铸件的表面和尺寸精度,在铸造生产中得到了推广应用;目前熔融陶瓷砂制备系统的出流口均由耐火材料在炉体上直接砌筑而成,形状不规则,出流量很不稳定,很难对熔融陶瓷砂的制备过程稳定控制,使得制造出来的陶瓷砂的粒度分散,质量很不稳定。
发明内容
本发明的目的是克服现有技术中的不足,提供一种植入式熔融陶瓷材料出流装置,该装置能够通过电热的方式实现出流口的开启和关闭,同时能够通过 控制电流的大小来控制出流口的熔融陶瓷材料的流量,实现了熔融陶瓷材料稳定的流量控制,不仅保证了陶瓷砂的粒度集中,而且还能够保证陶瓷砂的质量。
为了实现上述目的,本发明采用的技术方案是:
一种植入式熔融陶瓷材料出流装置,包括出流管,所述出流管安装在熔炉底部。
优选的,所述出流管的下端延伸到熔炉外侧,且在延伸到熔炉外侧的出流管上安装有隔热耐火衬和保护壳,所述隔热耐火衬套在出流管的外侧,在隔热耐火衬的底部设有第一冷却套,所述保护壳安装在隔热耐火衬的外侧,且保护壳的顶部安装在熔炉的底部,所述第一冷却套套在出流管上,第一冷却套的一侧设有第一冷却水进水管、另一侧设有第一冷却水出水管,在隔热耐火衬的外侧安装有感应加热器,所述感应加热器与变频电源连接,在感应加热器的一侧下端安装有第三冷却水进水管,在感应加热器一侧的上端安装有第三冷却水出水管,在保护壳的底部安装有第一气体分布器,所述第一气体分布器位于出流管的底部,在第一气体分布器的一端安装有第一进气管,在变频电源的作用下,能够利用感应加热器对出流管进行加热,从而保证出流管内的熔融材料为流动状态,方便后续喷吹管对熔融材料进行喷吹,形成陶瓷砂,第一冷却套能够根据需要对出流管进行冷却,实现熔融材料的流量控制,第一气体分布器能够将惰性气体输送到出流管处,用于保护出流管,提高了出流管的使用寿命。
优选的,所述变频电源的功率为0-500kW,工作频率在300Hz-100kHz之间,从而达到控制熔融材料流量的目的,保证了陶瓷砂的质量。
优选的,所述出流管采用钨、钼等耐热金属或合金制成,以确保出流管有足够的耐热性,从而保证了陶瓷砂能够顺利生产,保证了陶瓷砂的质量。
优选的,所述第一气体分布器采用环形腔体结构,在第一气体分布器的内侧板上开有多个出气孔,多个出气孔均匀分布在气体分布器的内侧板上,第一气体分布器能够将惰性气体输送到出流管处,防止出流管被氧化,保证了出流管的安全,大大提高了该装置的使用寿命。
优选的,所述出流管设在熔炉的内部,在出流管的底部设有顶板、底板、出流管、负极接线端子,在熔炉的内部设有耐热电极,所述耐热电极设在出流管的上方,且耐热电极的一端安装在熔炉的底部,在耐热电极上安装有正极接线端子,在顶板上固定安装有螺母,在出流管的外侧设有螺纹,并与螺母相配合,所述出流管与负极接线端子连接,所述顶板安装在熔炉底部的内一侧,所述底板安装在熔炉底部的外侧,在顶板和底板之间固定安装有第二冷却套和第二气体分布器,所述第二气体分布器安装在出流口出流端的外侧边缘处,且第二气体分布器为腔体结构,第二气体分布器的一端固定在顶板上,且第二气体分布器的内侧板顶部与顶板之间存在间隙,第二气体分布器的另一端固定在底板上,在第二气体分布器的一端安装有第二进气管,所述第二冷却套套在第二气体分布器的外侧,第二气体分布器的一端安装在顶板上、另一端安装在底板上,在第二冷却套的一侧安装有第二冷却水进水管,第二冷却套的另一端安装有第二冷却水出水管,将正极接线端子和负极接线端子接通电源,耐热电极和出流管带电,两电极间产生电流,在熔融陶瓷材料内部产生电阻热量,使介于耐热电极与出流管之间的熔融陶瓷材料始终保持较高的温度,出流口保持畅通,熔融陶瓷材料从出流口流出;当采用电弧或电阻加热的矿热炉熔化陶瓷材料时,也可撤掉耐热电极,将负极接级端子接地,利用熔化电极作为另一极,通过两极间电流的流动,在熔融陶瓷材料中产生电阻热,保持出流口的畅通。
优选的,所述第二冷却套和第二气体分布器均采用锥型结构,第二冷却套方便对出流管冷却,从而达到控制熔融材料流量的目的,第二气体分布器方便将惰性气体输送到出流管处,保证了出流管的安全,提高了该装置的使用寿命。
优选的,所述耐热电极采用钨、钼等耐热金属或合金制成,以确保电极有足够的耐热性,实现对熔融材料持续加热,保证了熔融材料的流动性,从而保证了陶瓷砂能够顺利生产,保证了陶瓷砂的质量。
本发明的有益效果是:
1)本装置能够通过电热的方式实现出流口的开启和关闭,同时能够通过控制电流的大小来控制出流口的熔融陶瓷材料的流量,实现了熔融陶瓷材料稳定的流量控制,不仅保证了陶瓷砂的粒度集中,而且还能够保证陶瓷砂的质量。
2)本装置出流机构在变频电源的作用下,能够利用感应加热器对出流管进行加热,从而保证出流管内的熔融材料为流动状态,方便后续喷吹管对熔融材料进行喷吹,形成陶瓷砂,第一冷却套能够根据需要对出流管进行冷却,便于对熔融材料的流量进行控制,第一气体分布器能够将惰性气体输送到出流管处,用于保护出流管,提高了出流管的使用寿命。
3)本装置变频电源的功率为0-500kW,工作频率在300Hz-100kHz之间,便于对输入能量强度进行控制,从而达到控制熔融材料流量的目的,保证了陶瓷砂的质量。
4)本装置出流管采用钨、钼等耐热金属或合金制成,以确保出流管有足够的耐热性,保证了该装置的稳定和正常运行,从而保证了陶瓷砂能够顺利生产,保证了陶瓷砂的质量。
5)本装置第一气体分布器采用环形腔体结构,在第一气体分布器的内侧 板上开有多个出气孔,多个出气孔均匀分布在气体分布器的内侧板上,第一气体分布器能够将惰性气体输送到出流管处,防止出流管被氧化,保证了出流管的安全,大大提高了该装置的使用寿命。
附图说明
附图1是本发明一种植入式熔融陶瓷材料出流装置实施例1的结构示意图。
附图2是本发明一种植入式熔融陶瓷材料出流装置实施例2的结构示意图。
附图3是本发明一种植入式熔融陶瓷材料出流装置实施例3的结构示意图。
图中:1、熔炉;2、出流口;3、出流管;4、隔热耐火衬;5、第三冷却水出水管;6、第三冷却水进水管;7、第一冷却水进水管;8、第一进气管;9、第一气体分布器;10、排气孔;11、第一冷却套;12、第一冷却水出水管;13、保护壳;14、变频电源;15、感应加热器;16、耐热电极;17、第二气体分布器;18、底板;19、正极接线端子;20、第二冷却水进水管;21、第二进气管;22、第二冷却水出水管;23、负极接线端子;24、第二冷却套;25、顶板;26、螺母。
具体实施方式
下面结合附图1-3,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以及特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1
根据图1所示,一种植入式熔融陶瓷材料出流装置,包括出流管3,所述出流管3安装在熔炉1底部;本装置能够通过出流口2控制熔融陶瓷材料的流量,实现了熔融陶瓷材料稳定的流量控制,不仅保证了陶瓷砂的粒度集中,而且还能够保证陶瓷砂的质量。
实施例2
根据图2所示与实施例1不同之处在于所述出流管3的下端延伸到熔炉1外侧,且在延伸到熔炉1外侧的出流管3上安装有隔热耐火衬4和保护壳13,所述隔热耐火衬4套在出流管3的外侧,在隔热耐火衬4的底部设有第一冷却套11,所述保护壳13安装在隔热耐火衬4的外侧,且保护壳13的顶部安装在熔炉1的底部,所述第一冷却套11套在出流管3上,第一冷却套11的一侧设有第一冷却水进水管7、另一侧设有第一冷却水出水管12,在隔热耐火衬4的外侧安装有感应加热器15,所述感应加热器15与变频电源14连接,在感应加热器15的一侧下端安装有第三冷却水进水管6,在感应加热器15一侧的上端安装有第三冷却水出水管5,在保护壳13的底部安装有第一气体分布器9,所述第一气体分布器9套在出流管3的底部,在第一气体分布器9的一端安装有 第一进气管8,在变频电源14的作用下,能够利用感应加热器对出流管3进行加热,从而来保证出流管3内的熔融材料为流动状态,方便后续喷吹管对熔融材料进行喷吹,形成陶瓷砂,第一冷却套11能够根据需要对出流管3进行冷却,便于对熔融材料的流量进行控制,第一气体分布器9能够将惰性气体输送到出流管3处,用于保护出流管3,提高了出流管3的使用寿命。
其中,第一冷却水进水管7与第一冷却水出水管12相配合,保证了冷却水的循环流通,能够对出流管3起到冷却的效果。
变频电源14向感应加热器15供电,感应加热器15将对出流管3进行加热,保证出流管3中的陶瓷材料处于熔融状态,出流管3畅通,熔炉1中的熔融陶瓷材料经出流管3流出;降低变频电源14的功率和频率,可降低出流管3的温度,出流管3的通流断面积因陶瓷材料在出流管3内表面的粘着而变小,熔融陶瓷材料的流量变小,反之可增加熔融陶瓷材料的流量,从而实现熔融陶瓷材料出流量的调节;变频电源14的功率和频率不变,则熔融陶瓷材料排出的流量相对稳定。
将变频电源14的功率调至零,在冷却套的冷却作用下,出流管3的温度降低,出流管3的通流断面积因熔融陶瓷材料的粘着而逐渐变小,最终将出流管3堵死,实现了熔融陶瓷材料出流口2的关闭;调节变频电源14的功率和频率,感应加热器15将对出流管3进行加热,从而对凝固在出流管3中的陶瓷材料进行加热,待达到陶瓷材料的熔融温度后,陶瓷材料熔融并从出流管3排出,实现了出流管3的开启。
所述变频电源14的功率为0-500kW,工作频率在300Hz-100kHz之间,便于对输入能量强度进行控制,从而达到控制熔融材料流量的目的,保证了陶瓷 砂的质量。
所述出流管3采用钨、钼等耐热金属或合金制成,以确保出流管有足够的耐热性,保证了该装置的稳定和正常运行,从而保证了陶瓷砂能够顺利生产,保证了陶瓷砂的质量。
所述第一气体分布器9采用环形腔体结构,在第一气体分布器9的内侧板上开有多个出气孔10,多个出气孔10均匀分布在气体分布器的内侧板上,第一气体分布器9能够将惰性气体输送到出流管3处,防止出流管3被氧化,保证了出流管3的安全,大大提高了该装置的使用寿命。
实施例3
根据图3所示,与实施例1和实施例2的不同之处在于所述出流管3设在熔炉1的内部,在出流管3的底部设有顶板25、底板18、出流管3、负极接线端子23,在熔炉1的内部设有耐热电极16,所述耐热电极16设在出流管3的上方,且耐热电极16的一端安装在熔炉1的底部,在耐热电极16上安装有正极接线端子19,在顶板25上固定有螺母26,在出流管3的外侧设有螺纹,并与螺母26相配合,所述出流管3与负极接线端子23连接,所述顶板25固定在熔炉1底部的内侧,所述底板18固定在熔炉1底部的外侧,在顶板25和底板18之间固定安装有第二冷却套24和第二气体分布器17,所述第二气体分布器17固定在出流口2出流端的外侧边缘处,且第二气体分布器17为腔体结构,第二气体分布器17的一端固定在顶板25上,且第二气体分布器17的内侧板顶部与顶板25之间存在间隙,第二气体分布器17的另一端固定在底板18上,在第二气体分布器17的一端安装有第二进气管21,所述第二冷却套24套在第二气体分布器17的外侧,第二气体分布器17的一端固定在顶板25上、另一 端固定在底板18上,在第二冷却套24的一侧安装有第二冷却水进水管20,第二冷却套24的另一端安装有第二冷却水出水管22。
其中,第二进气管21与第二气体分布器17内侧板和顶板25之间的缝隙相配合,保证了惰性气体的循环,能够对出流口2起到保护作用,防止出流口2氧化损坏,提高了该装置的使用寿命,第二冷却水进水管20与第二冷却水出水管22相配合,保证了冷却水的循环,保证了冷却效率,提高了该装置的使用寿命,并实现熔体的流量控制。
将正极接线端子19和负极接线端子23接通电源,耐热电极16和出流管3带电,两电极间产生电流,在熔融陶瓷材料内部产生电阻热量,使介于耐热电极16与出流管3之间的熔融陶瓷材料始终保持较高的温度,出流管3保持畅通,熔融陶瓷材料从出流管3流出。
当采用电弧或电阻加热的矿热炉熔化陶瓷材料时,也可撤掉耐热电极16,将负极接级端子接地,利用熔化电极作为另一极,通过两极间电流的流动,在熔融陶瓷材料中产生电阻热,保持出流管3的畅通。
所述第二冷却套24和第二气体分布器17均采用锥型结构,第二冷却套24方便对出流管3冷却,从而达到控制熔融材料流量的目的,第二气体分布器17方便将惰性气体输送到出流管3处,保证了出流管3的安全,提高了该装置的使用寿命。
所述耐热电极16采用钨、钼等耐热金属或合金制成,以确保其有足够的耐热性,能够对熔融材料持续加热,保证了熔融材料的流动性,从而保证了陶瓷砂能够顺利生产,保证了陶瓷砂的质量。
以上内容仅仅是对本发明的结构所作的举例和说明,所属本技术领域的技 术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (8)

  1. 一种植入式熔融陶瓷材料出流装置,其特征在于,包括出流管,所述出流管安装在熔炉底部。
  2. 根据权利要求1所述的一种植入式熔融陶瓷材料出流装置,其特征在于,所述出流管的下端延伸到熔炉外侧,且在延伸到熔炉外侧的出流管上安装有隔热耐火衬和保护壳,所述隔热耐火衬套在出流管的外侧,在隔热耐火衬的底部设有第一冷却套,所述保护壳安装在隔热耐火衬的外侧,且保护壳的顶部安装在熔炉的底部,所述第一冷却套套在出流管上,第一冷却套的一侧设有第一冷却水进水管、另一侧设有第一冷却水出水管,在隔热耐火衬的外侧安装有感应加热器,所述感应加热器与变频电源连接,在感应加热器的一侧下端安装有第三冷却水进水管,在感应加热器一侧的上端安装有第三冷却水出水管,在保护壳的底部安装有第一气体分布器,所述第一气体分布器位于出流管的底部,在第一气体分布器的一端安装有第一进气管。
  3. 根据权利要求2所述的一种植入式熔融陶瓷材料出流装置,其特征在于,所述变频电源的功率为0-500kW,工作频率在300Hz-100kHz之间。
  4. 根据权利要求2所述的一种植入式熔融陶瓷材料出流装置,其特征在于,所述出流管采用钨、钼等耐热金属或合金制成。
  5. 根据权利要求2所述的一种植入式熔融陶瓷材料出流装置,其特征在于,所述第一气体分布器采用环形腔体结构,在第一气体分布器的内侧板上开有多个出气孔,多个出气孔均匀分布在气体分布器的内侧板上。
  6. 根据权利要求1所述的一种植入式熔融陶瓷材料出流装置,其特征在于,所述出流管的底部设有顶板、底板、出流管、负极接线端子,在熔炉的内部设有耐热电极,所述耐热电极设在出流管的上方,且耐热电极的一端安装在 熔炉的底部,在耐热电极上安装有正极接线端子,在顶板上固定安装有螺母,在出流管的外侧设有螺纹,并与螺母相配合,所述出流管与负极接线端子连接,所述顶板安装在熔炉底部的内侧,所述底板安装在熔炉底部的外侧,在顶板和底板之间固定安装有第二冷却套和第二气体分布器,所述第二气体分布器安装在出流口出流端外侧边缘处,且第二气体分布器为腔体结构,第二气体分布器的一端固定在顶板上,且第二气体分布器的内侧板顶部与顶板之间存在间隙,第二气体分布器的另一端固定在底板上,第二气体分布器的一端安装有第二进气管,。所述第二冷却套套在第二气体分布器的外侧,第二气体分布器的一端安装在顶板上、另一端安装在底板上,在第二冷却套的一侧安装有第二冷却水进水管,第二冷却套的另一端安装有第二冷却水出水管。
  7. 根据权利要求6所述的一种植入式熔融陶瓷材料出流装置,其特征在于,所述第二冷却套和第二气体分布器均采用锥形结构。
  8. 根据权利要求6所述的一种植入式熔融陶瓷材料出流装置,其特征在于,所述耐热电极采用钨、钼等耐热金属或合金制成。
PCT/CN2020/106130 2020-06-28 2020-07-31 一种植入式熔融陶瓷材料出流装置 WO2022000680A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010597095.5 2020-06-28
CN202010597095.5A CN111692881B (zh) 2020-06-28 2020-06-28 一种植入式熔融陶瓷材料出流装置

Publications (1)

Publication Number Publication Date
WO2022000680A1 true WO2022000680A1 (zh) 2022-01-06

Family

ID=72483826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106130 WO2022000680A1 (zh) 2020-06-28 2020-07-31 一种植入式熔融陶瓷材料出流装置

Country Status (2)

Country Link
CN (1) CN111692881B (zh)
WO (1) WO2022000680A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460398A (en) * 1980-08-05 1984-07-17 Doryokuro Kakunenryo Kaihatsu Jigyodan Freeze valve having multiple heating-cooling means
EP0176897A1 (en) * 1984-10-01 1986-04-09 Ppg Industries, Inc. Induction heating vessel
WO2003106907A1 (ja) * 2002-06-13 2003-12-24 旭硝子セラミックス株式会社 溶融炉
CN104515398A (zh) * 2013-10-04 2015-04-15 韩国水力原子力株式会社 熔融物的感应加热式排出装置及方法
KR20180137681A (ko) * 2017-06-19 2018-12-28 손인철 질소냉각구조를 갖는 용탕배출장치
CN109163557A (zh) * 2018-10-13 2019-01-08 山西沁新能源集团股份有限公司 一种熔融陶瓷砂生产设备
CN110966864A (zh) * 2019-12-16 2020-04-07 赵华星 一种熔融陶瓷砂的制备系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179930A (ja) * 1992-08-25 1994-06-28 Tatsuta Electric Wire & Cable Co Ltd 黒鉛製るつぼ又は鋳型
US5948351A (en) * 1996-12-27 1999-09-07 Shouzui Yasui Outlet device for a melting crucible
DE10060728A1 (de) * 2000-12-07 2002-06-20 Messer Griesheim Gmbh Vorrichtung und Verfahren zum Einschmelzen von Glas
JP4608261B2 (ja) * 2004-07-29 2011-01-12 黒崎播磨株式会社 溶融金属容器の排出口構造と溶融金属容器排出口のスリーブ交換装置
AT517239B1 (de) * 2015-05-28 2019-07-15 Sheffield Hi Tech Refractories Germany Gmbh Stopfen in einem Zusammenwirken mit einer Bodenausgussdüse in einem metallurgischen Gefäß
CN205980771U (zh) * 2016-08-26 2017-02-22 乐陵创源炭素有限公司 罐式煅烧炉的排料器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460398A (en) * 1980-08-05 1984-07-17 Doryokuro Kakunenryo Kaihatsu Jigyodan Freeze valve having multiple heating-cooling means
EP0176897A1 (en) * 1984-10-01 1986-04-09 Ppg Industries, Inc. Induction heating vessel
WO2003106907A1 (ja) * 2002-06-13 2003-12-24 旭硝子セラミックス株式会社 溶融炉
CN104515398A (zh) * 2013-10-04 2015-04-15 韩国水力原子力株式会社 熔融物的感应加热式排出装置及方法
KR20180137681A (ko) * 2017-06-19 2018-12-28 손인철 질소냉각구조를 갖는 용탕배출장치
CN109163557A (zh) * 2018-10-13 2019-01-08 山西沁新能源集团股份有限公司 一种熔融陶瓷砂生产设备
CN110966864A (zh) * 2019-12-16 2020-04-07 赵华星 一种熔融陶瓷砂的制备系统

Also Published As

Publication number Publication date
CN111692881A (zh) 2020-09-22
CN111692881B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN108941590B (zh) 钛合金熔炼雾化制粉设备及制备工艺
CN212682432U (zh) 一种水雾化合金粉末中间包
CN106334799A (zh) 一种金属粉末的生产方法
WO2022000680A1 (zh) 一种植入式熔融陶瓷材料出流装置
CN107457408A (zh) 连续式冷坩埚感应雾化制备钛粉设备
CN207622505U (zh) 一种用于车轮制动圈生产用的熔炼装置
CN202849241U (zh) 一种石英管、石英棒连熔炉
CN108788040B (zh) 一种氢等离子熔炼连续铸造生产高纯金属靶坯的装置
CN217492625U (zh) 一种电磁加热和水冷双功能浇铸模具
CN116422892A (zh) 中间包坩埚、金属粉末气雾化装置和金属粉末气雾化方法
CN215279882U (zh) 冷床熔炼式气雾化制粉用导流装置
CN104944765A (zh) 一种实现玄武岩连续纤维拉丝的装置
CN109341339A (zh) 一种底铸式感应悬浮冷坩埚及浇注方法
CN212682434U (zh) 一种水雾化金属粉末浇注过程中氮气保护装置
CN215638749U (zh) 电极倾斜式电磁等离子熔融反应器
CN210036246U (zh) 一种熔铸炉炉体结构
CN209214341U (zh) 一种底铸式感应悬浮冷坩埚
CN204301491U (zh) 用于熔炼炉的加料装置
CN206839172U (zh) 真空雾化制粉炉导流嘴加热装置
CN109530669B (zh) 一种调控水冷坩埚浇注TiAl合金熔化过热度的方法
CN111412760A (zh) 在悬浮熔炼技术中用吹氩技术提高熔池均匀性的方法
CN207952638U (zh) 一种射频等离子灯炬卡具
WO2021212250A1 (zh) 三角形等离子熔化炉
CN206169302U (zh) 一种形成稳定的金属液流的装置
CN110918665A (zh) 一种高稀土含量铝合金丝材拉拔模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943660

Country of ref document: EP

Kind code of ref document: A1