WO2022000649A1 - 马达均衡电信号的修正方法及设备、计算机可读存储介质 - Google Patents

马达均衡电信号的修正方法及设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2022000649A1
WO2022000649A1 PCT/CN2020/104640 CN2020104640W WO2022000649A1 WO 2022000649 A1 WO2022000649 A1 WO 2022000649A1 CN 2020104640 W CN2020104640 W CN 2020104640W WO 2022000649 A1 WO2022000649 A1 WO 2022000649A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
electrical signal
voltage
signal
signals
Prior art date
Application number
PCT/CN2020/104640
Other languages
English (en)
French (fr)
Inventor
桑成艳
曹仲晴
郑亚军
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022000649A1 publication Critical patent/WO2022000649A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present invention relates to the technical field of motor drive, and in particular, to a method and device for correcting electric signals of motor equalization, and a computer-readable storage medium.
  • Linear motors are widely used as a haptic feedback device. In practical applications, it is not only necessary to design the vibration at its natural frequency F0, but also to expand the bandwidth, and try to achieve different haptic effects at each frequency. In order to make the different haptic effects of the motor at each frequency have a certain balance, it is necessary to evaluate the working ability of the motor at various frequencies other than F0.
  • the existing method is to model the X-direction of the linear motor. According to the target displacement, the rated voltage The maximum displacement when the lower F0 point is working, the excitation voltage of each frequency point is obtained, and the voltage is limited to 9V.
  • the motor will generate strong anisotropic vibration at a specific frequency, the motor will not reach the maximum displacement of the X-axis at this frequency, and the shelling phenomenon will occur.
  • the measured data also shows that the motor shelling is Z-direction shelling. Obviously, due to the existence of Z-direction shelling, the original theoretical calculation cannot guarantee that a balanced electrical signal suitable for a specific type of motor can be obtained when no shelling occurs.
  • the present invention mainly provides a method and device for correcting electric signals of motor equalization, and a computer-readable storage medium, which can solve the existence of the phenomenon of shelling of the motor in the prior art, and the original calculation theory cannot guarantee that the phenomenon of shelling does not occur when the phenomenon of shelling does not occur.
  • the problem of getting an equalized electrical signal for a specific model of motor is mainly provided.
  • a technical solution adopted in the present application is: a method for revising an equalized electrical signal of a motor.
  • the method for revising includes the following steps: Step S10 : obtaining a theoretical equalized electrical signal of the motor, and the motor has Linear parameter model; Step S20: set a preset frequency band, the preset frequency band includes a plurality of single-frequency signals; obtain the limit voltage distribution of the motor under the excitation of a plurality of the single-frequency signals within the preset frequency band range step S30 : obtaining a voltage correction curve of the motor according to the limit voltage distribution value; step S40 : correcting the theoretical equalization electrical signal of the motor according to the voltage correction curve to obtain a corrected equalization electrical signal.
  • the step S10 specifically includes the following steps: step S100: preset the target displacement value of the motor; step S101: generate a step signal group with a preset voltage amplitude, the step signal group includes a plurality of steps
  • step S102 Input each step signal into a linear parameter model of the motor to obtain the motor under the preset voltage amplitude
  • Step S103 Calculate the maximum displacement value of the motor under the excitation of each step signal according to the displacement signal
  • Step S104 Obtain each maximum displacement value and the target displacement value according to each of the maximum displacement values.
  • the step S20 specifically includes the following steps: step S200: setting a threshold voltage and using a plurality of the single-frequency signals as excitation signals to excite the motor; step S201: gradually adjusting the motor from 0V to the threshold voltage The amplitude of the excitation signal is used to determine whether the motor has a shelling phenomenon at each frequency point within the threshold voltage range; Step S202: if it is determined to be no, the threshold voltage is used as the motor at this frequency point. step S203: if it is determined that the motor has a shelling phenomenon at this frequency point within the threshold voltage range, the voltage when the motor has shelling phenomenon at this frequency point is used as the frequency The limit voltage value of the point.
  • the step S30 specifically includes the following steps: dividing the limit voltage distribution value by the linear parameter model of the motor to obtain the voltage correction curve.
  • the step S40 specifically includes the following steps: Step S400 : scaling the theoretical balanced electrical signal of the motor according to the voltage correction curve to obtain the corrected balanced electrical signal.
  • the step S40 further includes the following steps: Step S401: Drive the motor with the corrected balanced electrical signal of the motor, so that the motor can reach the target displacement within a preset frequency range.
  • the preset frequency range is 50Hz-1000Hz.
  • a correction device for motor equalization electrical signal includes a processor and a memory, the memory stores computer instructions, and the processor is coupled to The memory and the processor execute the computer instructions during operation to implement the above correction method.
  • Another technical solution adopted in this application is to provide a computer-readable storage medium on which a computer program is stored, wherein the computer program is executed by a processor to realize the above-mentioned correction. method.
  • the present application provides a method and device for correcting electric signals of motor equalization, and a computer-readable storage medium.
  • the limit voltage distribution value, the voltage correction curve of the motor is obtained according to the limit voltage distribution value, and the theoretical balance electric signal of the motor is corrected according to the voltage correction curve, which can ensure that the motor can obtain the balance suitable for a specific type of motor when no shelling phenomenon occurs. electric signal.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for revising motor equalization electrical signals according to the present invention
  • FIG. 2 is a schematic flowchart of an embodiment of step S10 in FIG. 1 of the present invention.
  • FIG. 3 is a schematic flowchart of an embodiment of step S20 in FIG. 1 of the present invention.
  • FIG. 4 is a schematic flowchart of an embodiment of step S40 in FIG. 1 of the present invention.
  • FIG. 6 is a schematic diagram of the curve distribution of the voltage value of the motor at each frequency point after the modification of the present invention.
  • Fig. 7 is the schematic diagram of the steady-state acceleration curve after displacement equalization of the present invention.
  • Fig. 8 is the hardware schematic diagram of the motor limit voltage test platform of the present invention.
  • FIG. 9 is a schematic block diagram of an embodiment of a device for correcting motor equalization electrical signals according to the present invention.
  • FIG. 10 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for correcting electric motor equalization signals of the present invention. As shown in FIG. 1 , the method for correcting electric motor equalization signals provided by the present invention includes the following steps:
  • Step S10 Obtain the theoretical equilibrium electrical signal of the motor, and the motor has a linear parameter model.
  • the linear parameter model is an inherent characteristic of the motor itself, which can be expressed by formula (1):
  • s is the laplace transform domain variable
  • x d (s) is the displacement
  • v cm (s) is the voltage
  • Bl is the magnetic coefficient
  • Re is the resistance
  • mt is the mass of the motor vibrator
  • ct is the mechanical damping
  • Kt is the spring stiffness coefficient
  • Step S20 setting a preset frequency band, the preset frequency band includes a plurality of single-frequency signals; obtaining the limit voltage distribution value of the motor under the excitation of multiple single-frequency signals within the preset frequency band;
  • Step S30 obtaining a voltage correction curve of the motor according to the limit voltage distribution value
  • Step S40 correcting the theoretical balanced electrical signal of the motor according to the voltage correction curve to obtain a corrected balanced electrical signal.
  • step S10 of the present invention further includes the following sub-steps:
  • Step S100 preset the target displacement value of the motor; the target displacement value is the maximum displacement value that the motor is expected to reach.
  • Step S101 Generate a step signal group with a preset voltage amplitude, the step signal group includes a plurality of step signals, and the plurality of step signals respectively have different frequency points; Multiple single-frequency signals correspond to frequency points one-to-one and each step signal has the same voltage amplitude.
  • Step S102 Input each step signal into the linear parameter model of the motor respectively to obtain the displacement signal of the motor under the preset voltage amplitude.
  • Step S103 Calculate the maximum displacement value of the motor under the excitation of each step signal according to the displacement signal.
  • Step S104 According to each maximum displacement value and the target displacement value, obtain the displacement ratio of each of the step signals; specifically, divide the target displacement value by the maximum displacement value obtained by each frequency point to obtain each frequency point The displacement ratio of the obtained maximum displacement value to the target displacement value.
  • Step S105 Obtain the theoretical equalization electrical signal according to the displacement ratio and the step signal. Specifically, the displacement ratio is multiplied by a plurality of the initially generated step signals, so as to obtain a theoretical equalized electrical signal.
  • step S20 of the present invention further includes the following sub-steps:
  • step S200 a threshold voltage is set and a plurality of single-frequency signals are used as excitation signals to excite the motor, and the threshold voltage is the maximum voltage amplitude of the motor excitation signal.
  • the present invention further includes adding a buffer window to the beginning and end of the signal, that is, generating a single-frequency signal window with a preset frequency range.
  • the preset frequency range may be 50 Hz-1000 Hz
  • the single-frequency signal within the preset frequency range is a step frequency sweep signal.
  • all frequency point signals in the range of the preset frequency band 50Hz-1000Hz are used as excitation signals.
  • Step S201 gradually adjust the amplitude of the excitation signal from 0V to the threshold voltage, and determine whether the motor has a shelling phenomenon at each frequency point within the threshold voltage range.
  • the threshold voltage range in this embodiment of the present invention is less than or equal to 9V, and may also be set to other values in other implementation manners, which is not specifically limited here.
  • Step S202 taking the threshold voltage as the limit voltage value of the motor at the frequency point.
  • the motor's shelling limit voltage at the frequency point to the threshold voltage, that is, 9V.
  • Step S203 taking the voltage of the motor when the shelling phenomenon occurs at the frequency point as the limit voltage value of the frequency point.
  • the motor has a shelling phenomenon within the threshold voltage range
  • the voltage at which the shelling phenomenon occurs at the frequency point is used as the limit voltage value of the frequency point.
  • step S30 a voltage correction curve of the motor is obtained according to the limit voltage distribution value.
  • the limit voltage distribution value of the motor at each frequency point and the theoretical equilibrium voltage of the motor at each frequency point obtained in steps S10 and S20 are calculated to obtain a voltage correction curve of the motor.
  • the limit voltage distribution value is divided by the linear parameter model of the motor to obtain the voltage correction curve.
  • the same type of motor has the same linear parameter model, and a certain number of motors of the same type are measured respectively to obtain the limit voltage distribution value of each motor at each frequency point, and the limit voltage distribution of each motor at each frequency point.
  • the value is divided by the linear parametric model of the motor to determine the voltage correction curve (displacement protect control, DPC) for this type of motor.
  • the voltage correction curve can be used as a general line for motors of the same type, that is, for any motor of this type, the voltage correction curve can be multiplied on the basis of its theoretical equilibrium signal.
  • the correction method of the present invention can be applied to any type of motor, which is not specifically limited here.
  • Step S40 correcting the theoretical balanced electrical signal of the motor according to the voltage correction curve to obtain a corrected balanced electrical signal.
  • FIG. 4 is a schematic flowchart of an embodiment of step S40 of the present invention. As shown in FIG. 4, step S40 further includes the following sub-steps:
  • Step S400 scaling the theoretical balanced electrical signal of the motor according to the voltage correction curve to obtain a corrected balanced electrical signal of the motor. Specifically, the point product of the voltage correction curve and the theoretical equalized electrical signal is performed to obtain the corrected equalized electrical signal of the motor.
  • the correction method of the present invention further includes: Step S401 : driving the motor with the balanced electric signal of the motor after correction, so that the motor reaches the target displacement within the preset frequency band.
  • the modified equalized electrical signal is output to the motor as an excitation signal, so that the motor can reach the target displacement within a preset frequency range of 50 Hz-1000 Hz under the driving of the modified equalized electrical signal.
  • FIG. 5 is a schematic diagram of the voltage value of each frequency point calculated according to the theoretical model of the motor before the modification of the present invention. High frequencies can reach 9V. And in the actual test, it is found that the shelling phenomenon is easy to occur at the high frequency 460HZ.
  • Figure 6 is a schematic diagram of the curve distribution of the voltage value of the motor at each frequency point after the correction of the present invention.
  • Figure 5 uses the correction method and algorithm of the present invention to correct the voltage at 460 Hz.
  • the electrical signal amplitude setting of the frequency distribution in Fig. 6 can realize no shelling in the whole frequency band, and the steady-state relative acceleration curve after the displacement equalization is shown in Fig. 7.
  • Fig. 7 is the steady-state acceleration curve after the displacement equalization of the present invention.
  • the steady-state relative acceleration after displacement equilibrium is the ratio of the measured acceleration of the motor to the acceleration of gravity (9.8m/s 2 ). It can be seen that when the motor is driven by the corrected balanced electrical signal, the motor can achieve the maximum vibration capability at different frequencies.
  • FIG. 8 is a hardware schematic diagram of the motor limit voltage test platform of the present invention.
  • the motor (LRA) and the tool are adhesively attached, and the tool is placed on the sponge to avoid environmental influences on the measurement results.
  • the accelerometer ACC measures the acceleration of the tooling in the vibration direction of the motor LRA.
  • the digital signal generated on the computer PC is sent to the acquisition card for digital-to-analog conversion into an analog signal, and is amplified by the amplifier AMP2 to excite the motor LRA.
  • the vibration of the motor LRA will drive the tool to vibrate in the opposite direction, which is collected and amplified by the accelerometer ACC.
  • the acquisition card NI-DAQ synchronously acquires and measures the acceleration in the vibration direction and the voltage signal of the excitation motor for data analysis.
  • FIG. 9 is a schematic block diagram of an embodiment of a correction device for motor equalization electrical signals of the present invention.
  • the correction device in this embodiment includes a processor 310 and a memory 320.
  • the processor 310 is coupled to the memory 320, and the memory 320 stores a computer instruction, the processor 310 executes the computer instruction during operation to implement the correction method in any of the above embodiments.
  • the processor 310 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 310 may be an integrated circuit chip with signal processing capability.
  • Processor 310 may also be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor without limitation.
  • FIG. 10 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • the computer-readable storage medium in this embodiment stores a computer program 410, and the computer program 410 can be executed by a processor to realize the above-mentioned Correction method in any of the embodiments.
  • the readable storage medium may be a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • the medium of program code, or terminal equipment such as computers, servers, mobile phones, and tablets.
  • the embodiment of the present application provides a method and device for correcting an electric motor equalizing electrical signal, and a computer-readable storage medium.
  • the voltage distribution value obtains the voltage correction curve of the motor, and the theoretical balanced electrical signal of the motor is corrected according to the voltage correction curve, which can ensure that the motor can obtain a balanced electrical signal suitable for a specific type of motor without shelling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

本申请提供一种马达均衡电信号的修正方法及设备、计算机可读存储介质,该修正方法包括:获得所述马达的理论均衡电信号,所述马达具有线性参数模型;设置预设频段,所述预设频段包括多个单频信号;获取所述马达在所述预设频段范围内的多个所述单频信号激励下的极限电压分布值;根据所述极限电压分布值得到所述马达的电压修正曲线;根据所述电压修正曲线对所述马达的理论均衡电信号进行修正以得到修正后的均衡电信号通过上述实施方式,本申请能够保证在不发生打壳现象时,得到适用于特定型号马达的均衡电信号。

Description

马达均衡电信号的修正方法及设备、计算机可读存储介质 技术领域
本发明涉及电机驱动技术领域,特别是涉及一种马达均衡电信号的修正方法及设备、计算机可读存储介质。
背景技术
线性马达作为一种触觉反馈器件得到广泛应用。在实际应用中,不仅需要在其固有频率F0点进行振动的设计,还需要扩大带宽,尽量在各个频率下都能实现不同的触觉效果。为了使得马达在各个频率下不同的触觉效果有一定的均衡性,需要评估马达在非F0点各个频率的工作能力,现有的方法是通过线性马达的X向建模,根据目标位移,额定电压下F0点工作时的最大位移,求得每个频率点的激励电压,其电压限制为9V。
由于马达在特定频率处会产生较强异向振动,导致马达在该频率处未达到X轴最大位移即产生打壳现象。实测数据也表明,马达打壳为Z向打壳。显然,由于Z向打壳的存在,原有理论计算不能保证在不产生打壳时,得到一种适用于特定型号马达的均衡电信号。
发明内容
本发明主要是提供一种马达均衡电信号的修正方法及设备、计算机可读存储介质,能够解决现有技术中因马达打壳现象的存在,原有计算理论无法保证在不产生打壳现象时得到特定型号马达均衡电信号的问题。
为解决上述技术问题,本申请采用的一个技术方案是:一种马达均衡电信号的修正方法,所述修正方法包括以下步骤:步骤S10:获得所述马达的理论均衡电信号,所述马达具有线性参数模型;步骤S20:设 置预设频段,所述预设频段包括多个单频信号;获取所述马达在所述预设频段范围内的多个所述单频信号激励下的极限电压分布值;步骤S30:根据所述极限电压分布值得到所述马达的电压修正曲线;步骤S40:根据所述电压修正曲线对所述马达的理论均衡电信号进行修正以得到修正后的均衡电信号。
优选地,所述步骤S10具体包括以下步骤:步骤S100:预设所述马达的目标位移值;步骤S101:生成预设电压幅值的阶跃信号组,所述阶跃信号组包括多个阶跃信号,多个所述阶跃信号分别具有不同的频点;步骤S102:将每一所述阶跃信号分别输入所述马达的线性参数模型得到所述预设电压幅值下的所述马达的位移信号;步骤S103:根据所述位移信号计算得到每一所述阶跃信号激励下的所述马达的最大位移值;步骤S104:根据每一所述最大位移值和目标位移值,得到每一所述阶跃信号的位移比例;步骤S105:根据所述位移比例和所述阶跃信号得到所述理论均衡电信号。
优选地,所述步骤S20具体包括以下步骤:步骤S200:设置阈值电压并将多个所述单频信号分别作为激励信号激励所述马达;步骤S201:由0V到所述阈值电压逐渐调节所述激励信号的幅度,判断在所述阈值电压范围内所述马达在各频点处是否发生打壳现象;步骤S202:若判断为否,则将所述阈值电压作为所述马达在该频点处的极限电压值;步骤S203:若判断在所述阈值电压范围内所述马达在该频点处发生打壳现象,则将所述马达在该频点处发生打壳现象时的电压作为该频点的极限电压值。
优选地,所述步骤S30具体包括以下步骤:将所述极限电压分布值除以所述马达的线性参数模型,以得到所述电压修正曲线。
优选地,所述步骤S40具体包括以下步骤:步骤S400:根据所述电压修正曲线对所述马达的理论均衡电信号做比例缩放,以得到所述修正后的均衡电信号。
优选地,所述步骤S40还包括以下步骤:步骤S401:用修正后的所述马达的均衡电信号驱动所述马达,以使得所述马达在预设频段范围内 达到目标位移。
优选地,所述预设频段范围为50Hz-1000Hz。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种马达均衡电信号的修正设备,所述修正设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现上述的修正方法。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行以实现如上述的修正方法。
本申请的有益效果是:区别于现有技术的情况,本申请提供一种马达均衡电信号的修正方法及设备、计算机可读存储介质,通过获取马达在预设频段范围内的各个频点的极限电压分布值,根据极限电压分布值得到马达的电压修正曲线,根据电压修正曲线对马达的理论均衡电信号进行修正,能够保证马达在不发生打壳现象时,得到适用于特定型号马达的均衡电信号。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明马达均衡电信号的修正方法一实施方式的流程示意图;
图2是本发明图1中步骤S10一实施方式的流程示意图;
图3是本发明图1中步骤S20一实施方式的流程示意图;
图4是本发明图1中步骤S40一实施方式的流程示意图;
图5是本发明修正前根据马达理论模型计算出的各个频点电压值的曲线示意图;
图6是本发明修正后马达在各个频点电压值的曲线分布示意图;
图7是本发明位移均衡后的稳态加速度曲线的示意图;
图8是本发明马达极限电压测试平台的硬件示意图;
图9是本发明马达均衡电信号的修正设备实施例的示意框图;
图10是本发明提供的计算机可读存储介质实施例的示意框图,。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请一并参阅图1,图1是本发明马达均衡电信号的修正方法一实施方式的流程示意图,如图1,本发明提供的马达均衡电信号的修正方法包括如下步骤:
步骤S10:获得马达的理论均衡电信号,该马达具有线性参数模型。
其中线性参数模型是马达本身固有的特性,其可以通过公式(1)来表示:
Figure PCTCN2020104640-appb-000001
其中s为laplace变换域变量,x d(s)为位移,v cm(s)为电压,Bl为磁力系数,Re为电阻,mt为马达振子质量,ct为机械阻尼,Kt为弹簧劲度系数。
步骤S20:设置预设频段,该预设频段包括多个单频信号;获取马达在该预设频段范围内的多个单频信号激励下的极限电压分布值;
步骤S30:根据极限电压分布值得到所述马达的电压修正曲线;
步骤S40:根据电压修正曲线对马达的理论均衡电信号进行修正以得到修正后的均衡电信号。
请结合参阅图2,图2为本发明步骤S10一实施方式的流程示意图。如图2,本发明的步骤S10进一步包括如下子步骤:
步骤S100:预设马达的目标位移值;该目标位移值为马达预计能够达到的最大位移值。
步骤S101:生成预设电压幅值的阶跃信号组,该阶跃信号组包括多个阶跃信号,多个阶跃信号分别具有不同的频点;具体的,每一阶跃信号可以具有与多个单频信号一一对应的频点并且每一阶跃信号具有相同的电压幅值。
步骤S102:将每一阶跃信号分别输入马达的线性参数模型得到预设电压幅值下的马达的位移信号。
步骤S103:根据位移信号计算得到每一阶跃信号激励下的马达的最大位移值。
步骤S104:根据每一最大位移值和目标位移值,得到每一所述阶跃信号的位移比例;具体的,将目标位移值除以每一个频点所获得的最大位移值得到每一个频点所获得的最大位移值占目标位移值的位移比例。
步骤S105:根据位移比例和阶跃信号得到所述理论均衡电信号。具体的,将位移比例乘到最初生成的多个所述阶跃信号上,从而得到理论均衡电信号。
请结合参阅图3,图3为本发明步骤S20一实施方式的流程示意图。如图3,本发明的步骤S20进一步包括如下子步骤:
步骤S200,设置阈值电压并将多个单频信号分别作为激励信号用于激励马达,该阈值电压即为马达激励信号的最大电压幅值。
可选地,为了避免马达产生过冲打壳,在本发明在实施步骤S200之前还包括在信号的开始和结束段加上缓冲窗,即生成预设频段范围的单频信号窗。可选地,本发明实施例中该预设频段范围可以为50Hz-1000Hz,且该预设频段范围内的单频信号为阶跃扫频信号。可选地,在本发明具体实施方式中,将上述预设频段50Hz-1000Hz范围内的所有频点信号作为激励信号。
步骤S201,由0V到阈值电压逐渐调节激励信号的幅度并判断在阈值电压范围内马达在各频点处是否发生打壳现象。
在预设的阈值电压范围内分别由0V到阈值电压调节各个频点信号的幅值,判断马达在该阈值电压范围内是否发生打壳现象,若在该阈值电压范围内未发生打壳现象,则进入步骤S202,反之若发生打壳现象则 进入步骤S203。可选地,本发明实施例中的阈值电压范围为小于或等于9V,在其他实施方式中还可以设置为其他值,此处不做具体限定。
步骤S202,将阈值电压作为马达在频点处的极限电压值。
可选地,若马达在该阈值电压范围内未发生打壳现象,则设置马达在该频点处的打壳极限电压设置为阈值电压,即9V。
步骤S203,将马达在频点处发生打壳现象时的电压作为频点的极限电压值。
可选地,若马达在该阈值电压范围内发生打壳现象,则将其在频点处发生打壳现象时的电压作为频点的极限电压值。如此,通过多个单频信号分别重复步骤S201-步骤S203可以得到同一类型的马达在各个方向的打壳频点分布和打壳极限电压分布值。
步骤S30,根据极限电压分布值得到马达的电压修正曲线。
可选地,将步骤S10和S20中获取的马达在各个频点的极限电压分布值和马达在各频点的理论均衡电压进行计算,得到马达的电压修正曲线。具体的,将极限电压分布值除以马达的线性参数模型,以得到所述电压修正曲线。举例来说,同一类型的马达具有相同的线性参数模型,分别测量一定数量的同一类型的马达,得到每一个马达在各个频点的极限电压分布值,每一个马达在各个频点的极限电压分布值除以该马达的线性参数模型,从而确定该类型马达的电压修正曲线(displacement protect control,DPC)。即该电压修正曲线可以作为同一类型马达的通用线,即对于任意一颗该类型的马达,都可在其理论均衡信号的基础上,乘以该电压修正曲线。当然,本发明修正方法可以适用于任何类型的马达,此处不做具体限定。
步骤S40,根据电压修正曲线对马达的理论均衡电信号进行修正以得到修正后的均衡电信号。
请进一步结合图4,图4为本发明步骤S40一实施方式的流程示意图,如图4步骤S40进一步包括如下子步骤:
步骤S400,根据电压修正曲线对马达的理论均衡电信号做比例缩放,以得到马达的修正后的均衡电信号。具体的,将电压修正曲线与理论均 衡电信号进行点乘,从而得到马达的修正后的均衡电信号。
此外,本发明的修正方法进一步包括:步骤S401:用修正后的马达的均衡电信号驱动马达,以使得马达在预设频段范围内达到目标位移。可选地,将修正后的均衡电信号作为激励信号输出给马达,以使得马达在修正后的均衡电信号的驱动下能够在预设的频段50Hz-1000Hz范围内都能到达目标位移。
请进一步结合图5,图5为本发明修正前根据马达理论模型计算出的各个频点电压值的曲线示意图,如图5可以看出除了固有频率F0(170HZ)点附近,电压值在低频和高频都能够达到9V。且实际测试中,发现在高频460HZ处容易发生打壳现象。
请进一步结合图6,图6为本发明修正后马达在各个频点电压值的曲线分布示意图,如图5采用本发明的修正方法和算法对460HZ处的电压进行了修正,修正后马达根据如图6频率分布的电信号幅值设置,可以实现全频段不打壳,且其位移均衡后的稳态相对加速度曲线如图7所示,图7为本发明位移均衡后的稳态加速度曲线的示意图。位移均衡后的稳态相对加速度为马达实测加速度与重力加速度(9.8m/s 2)的比值。可以看出在用修正后的均衡电信号驱动马达的情况下,马达在不同频率下能达到最大的振动能力。
请进一步结合图8,图8为本发明马达极限电压测试平台的硬件示意图,如图7该测量的硬件系统包括马达、工装、海绵体、电脑、采集卡、放大器以及加速度计,其中,加速度计可以为三轴加速度计。其中,具体实现原理为:
马达(LRA)和工装粘性贴合,且工装放置在海绵体上以避免环境对测量结果的影响。加速度计ACC测量工装在马达LRA振动方向上的加速度。电脑PC上生成的数字信号送入到采集卡进行数模转换成模拟信号,并通过放大器AMP2进行放大以激励马达LRA,马达LRA的振动会带动工装反向振动,并通过加速度计ACC采集并放大,采集卡NI-DAQ同步采集测量振动方向上的加速度和激励马达的电压信号用于数据分析。
上述实施方式中,通过获取马达在预设频段范围内的各个频点的极限电压分布值,根据极限电压分布值得到马达的电压修正曲线,根据电压修正曲线对马达的理论均衡电信号进行修正,能够保证马达在不发生打壳现象时,得到适用于特定型号马达的均衡电信号。
参阅图9,图9是本发明马达均衡电信号的修正设备实施例的示意框图,本实施例中的修正设备包括处理器310及存储器320,处理器310与存储器320耦合,存储器320存储有计算机指令,处理器310在工作时执行计算机指令以实现上述任一实施例中的修正方法。
其中,处理器310还可以称为CPU(Central Processing Unit,中央处理单元)。处理器310可能是一种集成电路芯片,具有信号的处理能力。处理器310还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,但不仅限于此。
参阅图10,图10是本发明提供的计算机可读存储介质实施例的示意框图,本实施例中的计算机可读存储介质存储有计算机程序410,该计算机程序410能够被处理器执行以实现上述任一实施例中的修正方法。
可选的,该可读存储介质可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
区别于现有技术,本申请实施例提供一种马达均衡电信号的修正方法及设备、计算机可读存储介质,通过获取马达在预设频段范围内的各个频点的极限电压分布值,根据极限电压分布值得到马达的电压修正曲线,根据电压修正曲线对马达的理论均衡电信号进行修正,能够保证马达在不发生打壳现象时,得到适用于特定型号马达的均衡电信号。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保 护范围内。

Claims (9)

  1. 一种马达均衡电信号的修正方法,其特征在于,所述修正方法包括以下步骤:
    步骤S10:获得所述马达的理论均衡电信号,所述马达具有线性参数模型;
    步骤S20:设置预设频段,所述预设频段包括多个单频信号;获取所述马达在所述预设频段范围内的多个所述单频信号激励下的极限电压分布值;
    步骤S30:根据所述极限电压分布值得到所述马达的电压修正曲线;
    步骤S40:根据所述电压修正曲线对所述马达的理论均衡电信号进行修正以得到修正后的均衡电信号。
  2. 根据权利要求1所述的修正方法,其特征在于,所述步骤S10具体包括以下步骤:
    步骤S100:预设所述马达的目标位移值;
    步骤S101:生成预设电压幅值的阶跃信号组,所述阶跃信号组包括多个阶跃信号,多个所述阶跃信号分别具有不同的频点;
    步骤S102:将每一所述阶跃信号分别输入所述马达的线性参数模型得到所述预设电压幅值下的所述马达的位移信号;
    步骤S103:根据所述位移信号计算得到每一所述阶跃信号激励下的所述马达的最大位移值;
    步骤S104:根据每一所述最大位移值和目标位移值,得到每一所述阶跃信号的位移比例;
    步骤S105:根据所述位移比例和所述阶跃信号得到所述理论均衡电信号。
  3. 根据权利要求1所述的修正方法,其特征在于,所述步骤S20具体包括以下步骤:
    步骤S200:设置阈值电压并将多个所述单频信号分别作为激励信号激励所述马达;
    步骤S201:由0V到所述阈值电压逐渐调节所述激励信号的幅度,判断在所述阈值电压范围内所述马达在各频点处是否发生打壳现象;
    步骤S202:若判断为否,则将所述阈值电压作为所述马达在该频点处的极限电压值;
    步骤S203:若判断在所述阈值电压范围内所述马达在该频点处发生打壳现象,则将所述马达在该频点处发生打壳现象时的电压作为该频点的极限电压值。
  4. 根据权利要求3所述的修正方法,其特征在于,所述步骤S30具体包括以下步骤:
    将所述极限电压分布值除以所述马达的线性参数模型,以得到所述电压修正曲线。
  5. 根据权利要求4所述的修正方法,其特征在于,所述步骤S40具体包括以下步骤:
    步骤S400:根据所述电压修正曲线对所述马达的理论均衡电信号做比例缩放,以得到所述修正后的均衡电信号。
  6. 根据权利要求5所述的修正方法,其特征在于,所述步骤S40还包括以下步骤:
    步骤S401:用修正后的所述马达的均衡电信号驱动所述马达,以使得所述马达在预设频段范围内达到目标位移。
  7. 根据权利要求1所述的修正方法,其特征在于,所述预设频段范围为50Hz-1000Hz。
  8. 一种马达均衡电信号的修正设备,其特征在于,所述马达均衡电信号的修正设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现如权利要求1~7中任一项所述的修正方法。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行以实现如权利要求1~7中任一项所述的修正方法。
PCT/CN2020/104640 2020-06-30 2020-07-24 马达均衡电信号的修正方法及设备、计算机可读存储介质 WO2022000649A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010622807.4 2020-06-30
CN202010622807 2020-06-30
CN202010642928.5A CN111797483A (zh) 2020-06-30 2020-07-06 马达均衡电信号的修正方法及设备、计算机可读存储介质
CN202010642928.5 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022000649A1 true WO2022000649A1 (zh) 2022-01-06

Family

ID=72811370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104640 WO2022000649A1 (zh) 2020-06-30 2020-07-24 马达均衡电信号的修正方法及设备、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111797483A (zh)
WO (1) WO2022000649A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115632593A (zh) * 2022-11-07 2023-01-20 歌尔股份有限公司 线性马达的保护方法、终端设备及计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491323B (zh) * 2020-11-27 2022-04-26 瑞声新能源发展(常州)有限公司科教城分公司 线性马达超行程控制方法、装置、计算机设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496097B2 (en) * 2008-06-09 2013-07-30 Konica Minolta Business Technologies, Inc. Mount damper and image forming apparatus using the mount damper
CN106208890A (zh) * 2016-07-21 2016-12-07 瑞声科技(新加坡)有限公司 线性电机振动一致性的补偿装置及其补偿方法
CN106301137A (zh) * 2016-08-31 2017-01-04 歌尔股份有限公司 主动控制线性马达振动的方法、装置、系统及电子设备
CN106411217A (zh) * 2016-08-31 2017-02-15 歌尔股份有限公司 主动控制线性马达的方法、装置、系统及电子设备
CN110995079A (zh) * 2019-12-16 2020-04-10 瑞声科技(新加坡)有限公司 电机振动信号的生成方法、装置、终端及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983358B2 (ja) * 2007-04-11 2012-07-25 パナソニック株式会社 モータ駆動装置
WO2014177144A2 (de) * 2013-04-30 2014-11-06 Schaeffler Technologies Gmbh & Co. Kg Verfahren zum betrieb eines elektromotors
JP2017034886A (ja) * 2015-08-03 2017-02-09 セイコーインスツル株式会社 モータ制御装置、モータ制御方法、及びプリンタ装置
JP2017147870A (ja) * 2016-02-18 2017-08-24 株式会社明電舎 モータ振動評価試験方法およびモータ振動評価試験装置
JP6493260B2 (ja) * 2016-03-14 2019-04-03 オムロン株式会社 モータ制御装置、モータ制御方法、制御システム、情報処理プログラム、および記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496097B2 (en) * 2008-06-09 2013-07-30 Konica Minolta Business Technologies, Inc. Mount damper and image forming apparatus using the mount damper
CN106208890A (zh) * 2016-07-21 2016-12-07 瑞声科技(新加坡)有限公司 线性电机振动一致性的补偿装置及其补偿方法
CN106301137A (zh) * 2016-08-31 2017-01-04 歌尔股份有限公司 主动控制线性马达振动的方法、装置、系统及电子设备
CN106411217A (zh) * 2016-08-31 2017-02-15 歌尔股份有限公司 主动控制线性马达的方法、装置、系统及电子设备
CN110995079A (zh) * 2019-12-16 2020-04-10 瑞声科技(新加坡)有限公司 电机振动信号的生成方法、装置、终端及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115632593A (zh) * 2022-11-07 2023-01-20 歌尔股份有限公司 线性马达的保护方法、终端设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN111797483A (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
US20210025940A1 (en) Method And Apparatus For Testing Nonlinear Parameter of Motor
WO2022000649A1 (zh) 马达均衡电信号的修正方法及设备、计算机可读存储介质
CN111679735A (zh) 激励信号的生成方法、装置、终端及存储介质
CN110146810B (zh) 一种线性马达测试参数的确定方法及装置
Shi et al. Free vibration analysis of moderately thick rectangular plates with variable thickness and arbitrary boundary conditions
CN111552371B (zh) 激励电压生成方法、装置、设备及介质、测试方法及系统
CN111478630B (zh) 一种马达稳态单频失真补偿方法及装置
CN109085321B (zh) 岩石细观力学参数的标定方法及终端设备
CN112491323B (zh) 线性马达超行程控制方法、装置、计算机设备及存储介质
EP3561468B1 (en) Stress measurement method, stress measurement device, and stress measurement system
WO2020211105A1 (zh) 一种马达驱动信号设置方法、电子设备及存储介质
TWI490465B (zh) 具有振動測試功能之電子裝置及用以建立振動測試演算法之方法
WO2022110413A1 (zh) 确定马达非线性参数的方法、装置、设备和存储介质
CN110995079A (zh) 电机振动信号的生成方法、装置、终端及存储介质
WO2020258202A1 (zh) 马达参数追踪方法及系统
CN113486516A (zh) 确定马达非线性参数的方法、装置、设备和存储介质
CN108845594B (zh) 基于传递函数的振动谐波迭代控制方法
CN116124279A (zh) 一种确定谐振频率的方法、装置、设备及存储介质
KR100639473B1 (ko) 압전체의 온도 변화에 따른 주파수 특성을 비선형적으로구하는 방법
CN114200315B (zh) 剩余充电时间的预测方法、装置、电子设备和存储介质
JP2009259043A (ja) ゴム材料のシミュレーション方法
CN112858984A (zh) 电机驱动电流标定方法、装置、设备及存储介质
JP2014134460A (ja) 電池の応答特性の測定方法
CN117610395B (zh) 结晶岩压缩硬化记忆效应表征方法、装置、设备及介质
WO2021128077A1 (zh) 激励电压生成方法、装置、设备及介质、测试方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943654

Country of ref document: EP

Kind code of ref document: A1