WO2020211105A1 - 一种马达驱动信号设置方法、电子设备及存储介质 - Google Patents

一种马达驱动信号设置方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2020211105A1
WO2020211105A1 PCT/CN2019/084253 CN2019084253W WO2020211105A1 WO 2020211105 A1 WO2020211105 A1 WO 2020211105A1 CN 2019084253 W CN2019084253 W CN 2019084253W WO 2020211105 A1 WO2020211105 A1 WO 2020211105A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive signal
deceleration
acceleration
parameter
motor
Prior art date
Application number
PCT/CN2019/084253
Other languages
English (en)
French (fr)
Inventor
郭璇
向征
李涛
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020211105A1 publication Critical patent/WO2020211105A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor

Definitions

  • the present invention relates to the field of signal processing, in particular to a method for setting a motor drive signal, an electronic device and a storage medium.
  • a linear resonant exciter (LRA, motor) is a device that can produce vibration effects. By designing a specific drive voltage signal, it can produce a specific tactile vibration output effect.
  • the purpose of the present invention is to provide a method for setting a motor drive signal, an electronic device and a storage medium, so as to realize a method for setting a drive signal with high calculation efficiency and high accuracy.
  • a method for setting a motor drive signal the drive signal includes an acceleration drive signal for accelerating the motor, and the method includes:
  • each acceleration drive signal parameter includes the duration of each acceleration period and each acceleration period.
  • the one acceleration drive signal parameter with the largest amount of motor vibration is set as the parameter of the motor acceleration drive signal.
  • the calculation model is a model established according to the corresponding relationship between the vibration of the motor and the driving signal.
  • the calculation model is
  • y(n) represents the amount of motor vibration
  • x(ni) represents the motor drive signal
  • h p represents the P-order kernel function
  • M p represents the total number of sampling points corresponding to the p-order kernel function
  • i represents the sampling point coordinates of the kernel function h .
  • the acceleration driving signal amplitude is a voltage value.
  • the first preset condition is that the sum of the duration of each acceleration period in each of the acceleration drive signal parameters is less than or equal to the total acceleration duration.
  • the amplitudes of the acceleration drive signals in two adjacent acceleration periods in each of the acceleration drive signal parameters are opposite to each other.
  • the drive signal further includes a deceleration drive signal for decelerating the motor
  • the drive signal is formed by sequentially combining the acceleration drive signal and the deceleration drive signal in chronological order, and the After the acceleration drive signal parameter with the largest amount of motor vibration is set as the parameter of the motor acceleration drive signal, the method further includes:
  • the deceleration drive signal parameters corresponding to each deceleration period are sequentially acquired according to the acceleration drive signal, the calculation model, the total deceleration time length and the number of deceleration periods, and the deceleration drive signal parameters include the deceleration period And the deceleration drive signal amplitude corresponding to the deceleration period;
  • obtaining the deceleration drive signal parameter corresponding to a certain deceleration period specifically includes:
  • Each acquired deceleration drive signal parameter is spliced with the front-end drive signal parameter to form multiple sets of signal parameter combinations.
  • the front-end drive signal parameter includes the parameter of the acceleration drive signal or is spliced after the parameter of the acceleration drive signal.
  • Another deceleration drive signal parameter corresponding to one or more deceleration periods; wherein, when a certain deceleration period is the first deceleration period, the front-end drive signal parameter includes the parameters of the acceleration drive signal; when a certain deceleration period is It is not the first deceleration period, and the front-end drive signal parameter includes the parameter of the acceleration drive signal and the parameter of the deceleration drive signal corresponding to another one or more deceleration periods spliced after the parameter of the acceleration drive signal;
  • the deceleration drive signal parameter corresponding to a group of signal parameter combinations with the smallest amount of motor vibration is used as the deceleration drive signal parameter corresponding to a certain deceleration period.
  • the amplitude of the deceleration drive signal is a voltage value.
  • the second preset condition is that the sum of the deceleration periods is less than or equal to the total deceleration time.
  • the amplitudes of the deceleration drive signals in two adjacent deceleration periods are opposite to each other.
  • the method further includes:
  • the motor drive signal is filtered to obtain a smooth drive signal.
  • the method further includes:
  • the filter-processed drive signal is input to an external device, and the external device includes a motor.
  • the present invention also provides an electronic device including a processor and a memory, and a computer-readable program is stored in the memory, the computer-readable program is configured to be executed by the processor, and the computer-readable program is executed by the processor When implementing the above method.
  • the present invention also provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to realize the above-mentioned method.
  • the beneficial effect of the present invention is that multiple acceleration drive signal parameters that meet the preset conditions are obtained according to the set acceleration total duration of the acceleration drive signal, and each acceleration drive signal parameter includes the duration of each acceleration period and the duration of each acceleration period.
  • the motor vibration amount under each acceleration drive signal parameter is calculated through the calculation model, the acceleration drive signal parameter with the largest motor vibration amount is used as the motor acceleration drive signal parameter, and the search is based on the acceleration drive signal parameter.
  • the parameters of the deceleration drive signal can be reduced to the minimum in a short time. There are fewer motor parameters that need to be searched and calculated, and the calculation efficiency is high and the accuracy is high.
  • FIG. 1 is a flowchart of a method for setting a motor drive signal according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of an acceleration driving signal provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of hardware connection for establishing a calculation model provided by an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for setting a motor drive signal according to a second embodiment of the present invention.
  • Figure 5 is a schematic diagram of a decelerating drive signal provided by an embodiment of the present invention.
  • FIG. 6 is a graph of a voltage signal obtained by a method for setting a motor drive signal according to an embodiment of the present invention.
  • FIG. 7 is a graph of the amount of vibration corresponding to the motor drive signal shown in FIG. 6;
  • FIG. 8 is a schematic diagram of an electronic device provided by an embodiment of the present invention.
  • the motor drive signal setting method provided by the first embodiment of the present invention, wherein the drive signal includes an acceleration drive signal used to accelerate the motor, the motor is a linear motor, and the method includes:
  • Step S101 Obtain the total acceleration duration and the number of acceleration periods of the acceleration drive signal.
  • the acceleration drive signal is a square wave. Taking the number of acceleration periods as an example, the total acceleration time set by the user is T, the number of acceleration segments is two, and the acceleration duration of each segment is T1 and T2.
  • Step S102 Acquire multiple acceleration drive signal parameters that meet a first preset condition according to the total acceleration time and the number of acceleration periods, each of the acceleration drive signal parameters includes the duration of each acceleration period and each The acceleration drive signal amplitude corresponding to the acceleration period.
  • the first preset condition is that the sum of each acceleration period is less than or equal to the total acceleration time, that is, T1+T2 ⁇ T.
  • the electrical signal values of two adjacent acceleration periods in each acceleration driving signal parameter are opposite to each other.
  • the amplitude of the acceleration drive signal is the voltage value
  • the voltage of the acceleration section is the full-range voltage
  • the voltages corresponding to the T1 period and the T2 period are V1 and V2, respectively.
  • the voltage can be normalized, and V1 and V2 in the acceleration driving signal parameter are 1 and -1, respectively. That is, V1 and V2 in each acceleration drive signal parameter are fixed values, and the variables in each acceleration drive signal parameter are only T1 and T2. Under the condition of satisfying T1+T2 ⁇ T, combining T1 and T2 to obtain multiple acceleration driving signal parameters.
  • the duration range of each acceleration period can also be set according to the total acceleration duration to obtain multiple acceleration drive signal parameters. As shown in Table 1, taking three acceleration periods as an example, set the total acceleration duration to 0.9Tn, set the duration range of the three acceleration periods T1, T2, and T3, set the search interval to 0.02Tn, and set the search interval to three The various values in the duration range are combined, and each combination is an acceleration driving signal parameter.
  • Step S103 Input each of the acceleration driving signal parameters into the calculation model to obtain the motor vibration amount under each of the acceleration driving signal parameters.
  • the arithmetic model is a pre-established model, which is a model established according to the corresponding relationship between the vibration of the motor and the driving signal.
  • the computer 1 is electrically connected to the capture card 2.
  • the computer sends the preset frequency sweep signal to the tooling 5 through the power amplifier 3 to excite the linear motor 4 to vibrate, and the preset frequency sweep signal Voltage x(n) satisfies
  • A is the amplitude
  • ⁇ 1 and ⁇ 2 respectively represent the starting and ending angular frequencies of the preset signal
  • T is the signal duration
  • N is the total number of sampling points of the voltage. Will satisfy X(n) as the sampling point of the voltage.
  • the accelerometer 6 is electrically connected to the tool 5, the accelerometer 6 collects the acceleration value of the tool 5 corresponding to the sampling point, the signal amplifier 7 amplifies the collected voltage, and the acquisition card 2 sends the collected voltage value and the corresponding acceleration value to the computer 1 , The computer 1 can obtain the calculation model according to the voltage of the sampling point and the corresponding acceleration value.
  • the calculation model may be a kernel function model or a second-order model.
  • the calculation model is a kernel function model, specifically:
  • y(n) represents the vibration of the motor
  • x(ni) represents the motor drive signal
  • h p represents the P-order kernel function
  • M p represents the total number of sampling points corresponding to the p-order kernel function
  • i represents the sampling point coordinates of the kernel function.
  • Each acceleration driving signal parameter is input into the calculation model for calculation separately, and each acceleration driving signal parameter is calculated for a corresponding motor vibration amount.
  • Step S104 Set an acceleration drive signal parameter with the largest amount of motor vibration as a parameter of the motor acceleration drive signal.
  • the acceleration drive signal can be made according to the acceleration parameter.
  • multiple acceleration drive signal parameters are set by setting the total acceleration duration of the acceleration drive signal and the number of acceleration periods.
  • Each acceleration drive signal parameter includes the duration of each acceleration period and the acceleration corresponding to each acceleration period.
  • the drive signal also includes a deceleration drive signal for decelerating the motor, and the drive signal is sequentially combined by the acceleration drive signal and the deceleration drive signal in chronological order
  • the difference between this embodiment and the first embodiment is that after setting an acceleration drive signal parameter with the largest amount of motor vibration as a parameter of the motor acceleration drive signal, the method further includes:
  • Step S201 Obtain the total deceleration duration and the number of deceleration periods of the deceleration drive signal.
  • the deceleration signal is a square wave. Taking the number of deceleration periods as 2 as an example, the total deceleration duration set by the user is obtained as BT, and the deceleration duration of each segment is BT1 and BT2.
  • Step S202 Acquire a deceleration drive signal parameter corresponding to each deceleration period in sequence according to the acceleration drive signal, the calculation model, the total deceleration duration and the number of deceleration periods, and the deceleration drive signal parameters include all The duration of the deceleration period and the amplitude of the deceleration drive signal corresponding to the deceleration period.
  • the duration and voltage range of each deceleration period are set according to the total duration of the deceleration period to obtain multiple deceleration drive signal parameters. As shown in Table 2, taking three deceleration periods as an example, set the duration range, voltage amplitude range and corresponding search interval of each deceleration period to obtain multiple deceleration drive signal parameters for each deceleration period.
  • the first deceleration amplitude BV1 -1V ⁇ 1V 0.02V The first deceleration time BT1 0.1Tn ⁇ 0.4Tn 0.02Tn
  • the second deceleration amplitude BV2 -1V ⁇ 1V 0.02V The second deceleration time BT2 0.1Tn ⁇ 0.4Tn 0.02Tn
  • the third deceleration time BT3 0.1Tn ⁇ 0.3Tn 0.02Tn
  • obtaining the deceleration drive signal parameter corresponding to a certain deceleration period specifically includes:
  • each deceleration drive signal includes the second preset condition for each deceleration period
  • the sum of is less than or equal to the total deceleration time, that is, BT1+BT2 ⁇ BT.
  • the amplitude of the deceleration drive signal is the voltage value, and the amplitude of the deceleration drive signal in two adjacent deceleration periods are opposite to each other.
  • the voltages corresponding to the BT1 and BT2 periods are BV1 and BV2, respectively.
  • Each acquired deceleration drive signal parameter is spliced with the front-end drive signal parameter to form multiple sets of signal parameter combinations.
  • the front-end drive signal parameter includes the parameter of the acceleration drive signal or is spliced after the parameter of the acceleration drive signal.
  • Another deceleration drive signal parameter corresponding to one or more deceleration periods; wherein, when a certain deceleration period is the first deceleration period, the front-end drive signal parameter includes the parameters of the acceleration drive signal; when a certain deceleration period is It is not the first deceleration period, and the front-end drive signal parameters include the parameters of the acceleration drive signal and the parameters of the deceleration drive signal corresponding to another one or more deceleration periods after the parameters of the acceleration drive signal;
  • the signal parameter combinations are sequentially input into the calculation model to obtain the motor vibration amount under each group of the signal parameter combinations; the deceleration drive signal parameter corresponding to the set of signal parameter combinations with the smallest motor vibration amount is taken as a certain decel
  • the deceleration drive signal parameters of the first deceleration period include voltage BV1 and duration BT1.
  • the combination of each group of voltage BV1 and duration BT1 is a deceleration drive signal parameter for the first deceleration period.
  • Each deceleration drive signal parameter of a deceleration period is spliced with the parameter of the acceleration drive signal to form multiple signal parameter combinations consisting of the acceleration drive signal parameter and the deceleration drive signal parameter of the first deceleration period, and each combination is substituted into the calculation
  • the corresponding motor vibration is calculated in the model, and a group of BV1 and BT1 with the smallest motor vibration are used as the parameters of the deceleration drive signal in the first deceleration period.
  • the deceleration drive signal parameters of the second deceleration period include voltage BV2 and duration BT2.
  • the deceleration drive signal parameters of each second deceleration period are spliced with the parameters of the deceleration drive signal and acceleration drive signal parameters of the first deceleration period. Form multiple signal parameter combinations including acceleration drive signal parameters, deceleration drive signal parameters for the first deceleration period, and deceleration drive signal parameters for the second deceleration period. Each combination of signal parameters is substituted into the calculation model to calculate and each group The amount of motor vibration corresponding to BV2 and BT2. The group of BV2 and BT2 with the smallest amount of motor vibration is used as the parameter of the deceleration drive signal in the first deceleration period.
  • Step S203 Set the deceleration drive signal parameter corresponding to each deceleration period as the parameter of each deceleration period of the deceleration drive signal.
  • each deceleration period is combined with front-end drive signal parameters and substituted into the calculation model, and the deceleration drive signal parameter corresponding to a set of signal parameter combinations with the smallest amount of motor vibration is used as the deceleration drive corresponding to a certain deceleration period.
  • Signal parameters thereby sequentially calculating the deceleration drive signal parameters for each deceleration period.
  • the deceleration drive signal generated according to the deceleration drive signal parameters can realize the rapid deceleration of the motor, with few calculation parameters and high accuracy.
  • the method further includes: generating according to the acceleration parameter and the deceleration drive signal parameter corresponding to each deceleration period Motor drive signal; the motor drive signal is a square wave, the motor drive signal is filtered, and then the amplitude of the motor drive signal is normalized to achieve amplitude scaling, thereby obtaining a smooth drive signal.
  • the drive signal that has undergone filtering processing and normalization processing is input to an external device, the external device includes a motor, and the external device receives the drive signal and drives the motor to vibrate. For example, if the actual applied voltage is 9V, the amplitude is multiplied by 9, and then the motor is excited.
  • FIG. 6 it is the voltage signal generated by the acceleration parameter and the deceleration parameter obtained according to the motor drive signal setting method provided by the embodiment of the present invention
  • FIG. 7 is the corresponding vibration curve graph. It can be seen that the embodiment of the present invention is adopted
  • the provided motor drive signal has obvious acceleration and braking effects.
  • the present invention also provides an electronic device, including a processor 11 and a memory 12, a computer-readable program is stored in the memory 12, and the computer-readable program is configured to be executed by the processor 11.
  • the above method is implemented when executed by the processor.
  • the electronic device in this embodiment and the method in the foregoing embodiment are based on two aspects under the same inventive concept.
  • the method implementation process has been described in detail above, so those skilled in the art can clearly understand from the foregoing description For the sake of brevity of the description, the implementation process of the electronic device in this embodiment will not be repeated here.
  • the present invention can be implemented by means of software plus a necessary general hardware platform. Based on this understanding, the technical solution of the present invention can be embodied in the form of a software product in essence or a part that contributes to the existing technology.
  • the present invention also relates to a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disc, etc., on which a computer program is stored, and the computer program is executed by a processor to execute the above method.
  • a plurality of acceleration drive signal parameters satisfying preset conditions are acquired according to the set total acceleration duration of the acceleration drive signal, and each acceleration drive signal parameter includes The duration of each acceleration period and the amplitude of the acceleration drive signal corresponding to each acceleration period, the motor vibration amount under each acceleration drive signal parameter is calculated through the calculation model, and the acceleration drive signal parameter with the largest motor vibration amount is used as the motor acceleration
  • the parameters of the drive signal fewer motor parameters need to be searched and calculated, with high calculation efficiency and high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明提供了一种马达驱动信号设置方法,驱动信号包括用于对马达加速的加速驱动信号和减速驱动信号,方法包括:获取加速驱动信号的加速总时长和加速时段的数量;根据加速总时长和加速时段的数量获取满足预设条件的多个加速驱动信号参数,每个加速驱动信号参数包括各加速时段的时长和每一加速时段所对应的加速驱动信号幅值;将每个加速驱动信号参数输入运算模型中获取每个加速驱动信号参数下的马达振动量;将马达振动量最大的一个加速驱动信号参数作为马达加速驱动信号的参数。本发明还提供一种电子设备及存储介质。本发明的马达驱动信号的设置中,需要搜索计算的马达参数较少,计算效率高,准确度高。

Description

一种马达驱动信号设置方法、电子设备及存储介质 【技术领域】
本发明涉及信号处理领域,尤其涉及一种马达驱动信号设置方法、电子设备及存储介质。
【背景技术】
现代生活中,人们对于触感体验的要求越来越高。对于日常生活中频繁接触的电子设备,如手机、平板电脑、游戏手柄等,人们往往期望触控操作伴随精确细致的触觉反馈,甚至达到与实际场景物体接触相同的触觉感受。线性谐振激励器(LRA,马达)是一种可以产生振动效果的设备,通过设计特定的驱动电压信号,就可以产生特定的触觉振动输出效果。
现有的驱动信号的设计大多是基于马达的物理模型进行设计,涉及多种马达参数及复杂模型的推导,计算复杂,效率较低,且准确度不高。
因此,有必要提供一种计算效率高、准确度高的驱动信号的设置方法。
【发明内容】
本发明的目的在于提供一种马达驱动信号设置方法、电子设备及存储介质,以实现计算效率高且准确度高的驱动信号设置方法。
本发明的技术方案如下:一种马达驱动信号设置方法,所述驱动信号包括用于对所述马达加速的加速驱动信号,所述方法包括:
获取所述加速驱动信号的加速总时长和加速时段的数量;
根据所述加速总时长和所述加速时段的数量获取满足第一预设条件的多个加速驱动信号参数,每个所述加速驱动信号参数包括各所述加速时段的时长和每一所述加速时段所对应的加速驱动信号幅值;
将每个所述加速驱动信号参数输入运算模型中获取每个所述加速驱动信号参数下的马达振动量;
将所述马达振动量最大的一个加速驱动信号参数设置为所述马达加速 驱动信号的参数。
优选的,所述运算模型为根据所述马达振动量与所述驱动信号的对应关系所建立的模型。
优选的,所述运算模型为
Figure PCTCN2019084253-appb-000001
其中,y(n)表示马达振动量,x(n-i)表示马达驱动信号,h p表示P阶核函数,M p表示p阶核函数对应的总采样点数,i表示核函数h的取样点坐标。
优选的,所述加速驱动信号幅值为电压值。
优选的,所述第一预设条件为每个所述加速驱动信号信号参数中各所述加速时段的时长总和小于或者等于所述加速总时长。
优选的,每个所述加速驱动信号参数中相邻两个加速时段的加速驱动信号幅值互为相反数。
优选的,所述驱动信号还包括用于对所述马达减速的减速驱动信号,所述驱动信号由所述加速驱动信号和所述减速驱动信号按照时间顺序依次组合而成,所述将所述马达振动量最大的一个加速驱动信号参数设置为所述马达加速驱动信号的参数之后,所述方法还包括:
获取所述减速驱动信号的减速总时长和减速时段的数量;
根据所述加速驱动信号、所述运算模型、所述减速总时长和所述减速时段数量依次获取每个所述减速时段所对应的减速驱动信号参数,所述减速驱动信号参数包括所述减速时段的时长和所述减速时段所对应的减速驱动信号幅值;
将每个所述减速时段所对应的减速驱动信号参数设置为所述减速驱动信号各个减速时段的参数;
其中,获取某个所述减速时段所对应的减速驱动信号参数具体包括:
根据所述减速总时长和所述减速时段的数量获取满足第二预设条件的某个减速时段的多个减速驱动信号参数;
将获取到的每个减速驱动信号参数拼接于前端驱动信号参数之后形成多组信号参数组合,所述前端驱动信号参数包括所述加速驱动信号的参数或者拼接于所述加速驱动信号的参数之后的另外一个或者多个减速时段所对应的减速驱动信号参数;其中,当某个减速时段是第一个减速时段时,所述前端驱动信号参数包括所述加速驱动信号的参数;当某个减速时段不是第一个减速时段,所述前端驱动信号参数包括所述加速驱动信号的参数和拼接在所述加速驱动信号的参数之后的另外一个或者多个减速时段所对应的减速驱动信号参数;
将每个所述信号参数组合依次输入所述运算模型获得每组所述信号参数组合下的马达振动量;
将所述马达振动量最小的一组信号参数组合所对应的减速驱动信号参数作为某个减速时段所对应的减速驱动信号参数。
优选的,所述减速驱动信号幅值为电压值。
优选的,所述第二预设条件为各所述减速时段的总和小于或者等于所述减速总时长。
优选的,相邻两个减速时段的减速驱动信号幅值互为相反数。
优选的,所述将每个所述减速时段所对应的减速驱动信号参数设置为所述减速驱动信号各个减速时段的参数之后,所述方法还包括:
根据所述加速参数和各减速时段所对应的减速驱动信号参数生成所述马达驱动信号;
将所述马达驱动信号进行滤波处理以得到平滑的驱动信号。
优选的,所述将所述马达驱动信号进行滤波处理以得到平滑的驱动信号之后,所述方法还包括:
将经过滤波处理的所述驱动信号输入外部设备,所述外部设备包括马达。
本发明还提供一种电子设备,包括处理器和存储器,所述存储器中存 储有计算机可读程序,所述计算机可读程序被配置成由处理器执行,所述计算机可读程序被处理器执行时实现上述的方法。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的方法。
本发明的有益效果在于:通过根据设定的加速驱动信号的加速总时长获取满足预设条件的多个加速驱动信号参数,每个加速驱动信号参数包括各加速时段的时长和每一加速时段所对应的加速驱动信号幅值,通过运算模型计算出每个加速驱动信号参数下的马达振动量,将马达振动量最大的一个加速驱动信号参数作为马达加速驱动信号的参数,根据加速驱动信号参数搜索出减速驱动信号的参数,使马达振动量在短时间内降低最小,需要搜索计算的马达参数较少,计算效率高,准确度高。
【附图说明】
图1为本发明第一实施例提供的马达驱动信号设置方法的流程图;
图2为本发明的实施例提供的加速驱动信号的示意图;
图3为本发明实施例提供的建立运算模型的硬件连接示意图;
图4为本发明第二实施例提供的马达驱动信号设置方法的流程图;
图5为本发明实施例提供的减速驱动信号的示意图;
图6为根据本发明实施例提供的马达驱动信号设置方法得到的一个电压信号曲线图;
图7为图6所示马达驱动信号对应的振动量曲线图;
图8为本发明实施例提供的电子设备的示意图。
【具体实施方式】
下面结合附图和实施方式对本发明作进一步说明。
如图1所示,本发明第一实施例提供的马达驱动信号设置方法,其中,驱动信号包括用于对马达加速的加速驱动信号,马达为线性马达,方法包括:
步骤S101:获取所述加速驱动信号的加速总时长和加速时段的数量。
如图2所示,加速驱动信号为方波,以加速时段的数量为2为例,获 取用户设置的加速总时长为T,加速段数为两段,每段的加速时长为T1和T2。
步骤S102:根据所述加速总时长和所述加速时段的数量获取满足第一预设条件的多个加速驱动信号参数,每个所述加速驱动信号参数包括各所述加速时段的时长和每一所述加速时段所对应的加速驱动信号幅值。
其中,第一预设条件为各加速时段的总和小于或者等于加速总时长,即,T1+T2≤T。在一种实施方式中,每个加速驱动信号参数中相邻两个加速时段的电信号值互为相反数。加速驱动信号幅值为电压值,加速段的电压为满程电压,T1时段和T2时段对应的电压分别为V1和V2。本实施例中,可以将电压归一化,加速驱动信号参数中的V1和V2分别为1和-1。即每个加速驱动信号参数中的V1和V2为固定值,每个加速驱动信号参数中的变量只有T1和T2。在满足T1+T2≤T的条件下,组合T1和T2得到多个加速驱动信号参数。
在一种实施方式中,也可以根据加速总时长设定每个加速时段的时长范围,得到多个加速驱动信号参数。如表1所示,以三个加速时段为例,设置加速总时长为0.9Tn,设置三个加速时段T1、T2、T3的时长范围,设置搜索间隔为0.02Tn,按照搜索间隔依次对三个时长范围内的各个数值进行组合,每种组合为一个加速驱动信号参数。
表1
Figure PCTCN2019084253-appb-000002
步骤S103:将每个所述加速驱动信号参数输入运算模型中获取每个所述加速驱动信号参数下的马达振动量。
其中,运算模型是预先建立的模型,为根据马达振动量与驱动信号的 对应关系所建立的模型。在一种实施方式中,如图3所示,计算机1与采集卡2电连接,计算机通过功率放大器3将预设扫频信号发送到工装5以激励线性马达4振动,预设扫频信号的电压x(n)满足
Figure PCTCN2019084253-appb-000003
其中,A为幅度,ω 1和ω 2分别表示预设信号的起始角频率和终止角频率,T为信号时长,N为电压的总采样点数。将满足
Figure PCTCN2019084253-appb-000004
的x(n)作为电压的采样点。加速度计6与工装5电连接,加速度计6采集采样点对应的工装5的加速度值,信号放大器7将采集的电压进行放大,采集卡2将采集的电压值和对应的加速度值发送到计算机1,计算机1根据采样点的电压和对应的加速度值即可得出运算模型。
运算模型可以为核函数模型或者二阶模型,在一种实施方式中,运算模型为核函数模型,具体为:
Figure PCTCN2019084253-appb-000005
其中,y(n)表示马达振动量,x(n-i)表示马达驱动信号,h p表示P阶核函数,M p表示p阶核函数对应的总采样点数,i表示核函数的取样点坐标。
将每个加速驱动信号参数输入运算模型中分别进行计算,每个加速驱动信号参数计算出对应的一个马达振动量。
步骤S104:将所述马达振动量最大的一个加速驱动信号参数设置为所述马达加速驱动信号的参数。
例如,马达振动量最大的一个加速驱动信号参数中的T1、T2、T3分别为0.1Tn、0.2Tn和0.3Tn,则对应的每个加速时段的电压值分别为1、-1和1,从而可以根据加速参数作出加速驱动信号。
上述实施例中,通过设定加速驱动信号的加速总时长和加速时段的数量,设置多个加速驱动信号参数,每个加速驱动信号参数包括各加速时段的时长和每一加速时段所对应的加速驱动信号幅值,根据运算模型和各加速驱动信号参数对应的马达振动量,即可得出满足最大马达振动量的加速时段参数,用较少的参数即可准确的得出加速时段参数,计算效率高,且计算结果准确。
如图4所示,本发明第二实施例提供的马达驱动信号设置方法,驱动信号还包括用于对马达减速的减速驱动信号,驱动信号由加速驱动信号和减速驱动信号按照时间顺序依次组合而成,本实施例与第一实施例的区别在于,将马达振动量最大的一个加速驱动信号参数设置为马达加速驱动信号的参数之后,该方法还包括:
步骤S201:获取所述减速驱动信号的减速总时长和减速时段的数量。
如图5所示,减速信号为方波,以减速时段的数量为2为例,获取用户设置的减速总时长为BT,每段的减速时长为BT1和BT2。
步骤S202:根据所述加速驱动信号、所述运算模型、所述减速总时长和所述减速时段数量依次获取每个所述减速时段所对应的减速驱动信号参数,所述减速驱动信号参数包括所述减速时段的时长和所述减速时段所对应的减速驱动信号幅值。
在一种实施方式中,根据减速时段总时长设定每个减速时段的时长和电压范围,得到多个减速驱动信号参数。如表2所示,以三个减速时段为例,设置每个减速时段的时长范围、电压幅值范围和对应的搜索间隔,得到每个减速时段的多个减速驱动信号参数。
表2
  范围 搜索间隔
第一段减速幅值BV1 -1V~1V 0.02V
第一段减速时长BT1 0.1Tn~0.4Tn 0.02Tn
第二段减速幅值BV2 -1V~1V 0.02V
第二段减速时长BT2 0.1Tn~0.4Tn 0.02Tn
第三段减速幅值BV3 -1V~1V 0.02V
第三段减速时长BT3 0.1Tn~0.3Tn 0.02Tn
其中,获取某个所述减速时段所对应的减速驱动信号参数具体包括:
根据所述减速总时长和所述减速时段的数量获取满足第二预设条件的某个减速时段的多个减速驱动信号参数;其中,每个减速驱动信号包括第二预设条件为各减速时段的总和小于或者等于减速总时长,即,BT1+BT2≤BT。减速驱动信号幅值为电压值,相邻两个减速时段的减速驱动信号幅值互为相反数,BT1时段和BT2时段对应的电压分别为BV1和BV2。
将获取到的每个减速驱动信号参数拼接于前端驱动信号参数之后形成多组信号参数组合,所述前端驱动信号参数包括所述加速驱动信号的参数或者拼接于所述加速驱动信号的参数之后的另外一个或者多个减速时段所对应的减速驱动信号参数;其中,当某个减速时段是第一个减速时段时,所述前端驱动信号参数包括所述加速驱动信号的参数;当某个减速时段不是第一个减速时段,所述前端驱动信号参数包括所述加速驱动信号的参数和拼接在所述加速驱动信号的参数之后的另外一个或者多个减速时段所对应的减速驱动信号参数;将每个所述信号参数组合依次输入所述运算模型获得每组所述信号参数组合下的马达振动量;将所述马达振动量最小的一组信号参数组合所对应的减速驱动信号参数作为某个减速时段所对应的减速驱动信号参数。
以两个减速时段为例,第一个减速时段的减速驱动信号参数包括电压BV1和时长BT1,每组电压BV1和时长BT1的组合为第一个减速时段的一个减速驱动信号参数,先将第一个的减速时段的每个减速驱动信号参数与加速驱动信号的参数拼接,形成包括加速驱动信号参数和第一个减速时段的减速驱动信号参数组成的多个信号参数组合,每个组合代入运算模型中计算出对应的马达振动量,将马达振动量最小的一组BV1、BT1作为第一个减速时段的减速驱动信号的参数。第二个减速时段的减速驱动信号参数包括电压BV2和时长BT2,将每个第二个减速时段的减速驱动信号参数与第一个减速时段的减速驱动信号的参数、加速驱动信号的参数拼接,形成包括加速驱动信号参数、第一个减速时段的减速驱动信号的参数、第二 个减速时段的减速驱动信号参数的多个信号参数组合,每个信号参数组合代入运算模型中计算出与每组BV2、BT2对应的马达振动量。将马达振动量最小的一组BV2、BT2作为第一个减速时段的减速驱动信号的参数。
步骤S203:将每个所述减速时段所对应的减速驱动信号参数设置为所述减速驱动信号各个减速时段的参数。
上述实施例中,将每个减速时段与前端驱动信号参数组合,代入运算模型中,将马达振动量最小的一组信号参数组合所对应的减速驱动信号参数作为某个减速时段所对应的减速驱动信号参数,从而依次计算出每个减速时段的减速驱动信号参数,根据减速驱动信号参数生成的减速驱动信号即可实现马达的快速减速,计算参数少,准确度高。
在另一实施例中,将每个减速时段所对应的减速驱动信号参数设置为减速驱动信号各个减速时段的参数之后,方法还包括:根据加速参数和各减速时段所对应的减速驱动信号参数生成马达驱动信号;马达驱动信号为方波,将马达驱动信号进行滤波处理,再将马达驱动信号的幅值进行归一化操作以实现幅值缩放,从而得到平滑的驱动信号。将经过滤波处理和归一化处理的驱动信号输入外部设备,外部设备包括马达,外部设备接收驱动信号并驱动马达振动。例如,实际应用的电压为9V,则将幅值乘以9,再激励马达。
如图6所示,为根据本发明实施例提供的马达驱动信号设置方法得到的加速参数和减速参数生成的电压信号,图7为对应的振动量曲线图,可以看出,采用本发明实施例提供的马达驱动信号具有明显的加速和刹车效果。
如图8所示,本发明还提供一种电子设备,包括处理器11和存储器12,存储器12中存储有计算机可读程序,计算机可读程序被配置成由处理器11执行,计算机可读程序被处理器执行时实现上述的方法。
本实施例中的电子设备与前述实施例中的方法是基于同一发明构思下的两个方面,在前面已经对方法实施过程作了详细的描述,所以本领域技术人员可根据前述描述清楚地了解本实施例中的电子设备的实施过程,为 了说明书的简洁,在此就不再赘述。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来。本发明还涉及一种计算机可读存储介质,如ROM/RAM、磁碟、光盘等,其上存储有计算机程序,计算机程序被处理器执行上述的方法。
本发明实施例提供的马达驱动信号设置方法、电子设备及存储介质,通过根据设定的加速驱动信号的加速总时长获取满足预设条件的多个加速驱动信号参数,每个加速驱动信号参数包括各加速时段的时长和每一加速时段所对应的加速驱动信号幅值,通过运算模型计算出每个加速驱动信号参数下的马达振动量,将马达振动量最大的一个加速驱动信号参数作为马达加速驱动信号的参数,需要搜索计算的马达参数较少,计算效率高,准确度高。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (14)

  1. 一种马达驱动信号设置方法,其特征在于,所述驱动信号包括用于对所述马达加速的加速驱动信号,所述方法包括:
    获取所述加速驱动信号的加速总时长和加速时段的数量;
    根据所述加速总时长和所述加速时段的数量获取满足第一预设条件的多个加速驱动信号参数,每个所述加速驱动信号参数包括各所述加速时段的时长和每一所述加速时段所对应的加速驱动信号幅值;
    将每个所述加速驱动信号参数输入运算模型中获取每个所述加速驱动信号参数下的马达振动量;
    将所述马达振动量最大的一个加速驱动信号参数设置为所述马达加速驱动信号的参数。
  2. 根据权利要求1所述的马达驱动信号设置方法,其特征在于,所述运算模型为根据所述马达振动量与所述驱动信号的对应关系所建立的模型。
  3. 根据权利要求2所述的马达驱动信号设置方法,其特征在于,所述运算模型为
    Figure PCTCN2019084253-appb-100001
    其中,y(n)表示马达振动量,x(n-i)表示马达驱动信号,h p表示P阶核函数,M p表示p阶核函数对应的总采样点数,i表示核函数h的取样点坐标。
  4. 根据权利要求1所述的马达驱动信号设置方法,其特征在于,所述加速驱动信号幅值为电压值。
  5. 根据权利要求1所述的马达驱动信号设置方法,其特征在于,所述第一预设条件为每个所述加速驱动信号信号参数中各所述加速时段的时长 总和小于或者等于所述加速总时长。
  6. 根据权利要求1所述的马达驱动信号设置方法,其特征在于,每个所述加速驱动信号参数中相邻两个加速驱动信号幅值互为相反数。
  7. 根据权利要求1所述的马达驱动信号设置方法,其特征在于,所述驱动信号还包括用于对所述马达减速的减速驱动信号,所述驱动信号由所述加速驱动信号和所述减速驱动信号按照时间顺序依次组合而成,所述将所述马达振动量最大的一个加速驱动信号参数设置为所述马达加速驱动信号的参数之后,所述方法还包括:
    获取所述减速驱动信号的减速总时长和减速时段的数量;
    根据所述加速驱动信号、所述运算模型、所述减速总时长和所述减速时段数量依次获取每个所述减速时段所对应的减速驱动信号参数,所述减速驱动信号参数包括所述减速时段的时长和所述减速时段所对应的减速驱动信号幅值;
    将每个所述减速时段所对应的减速驱动信号参数设置为所述减速驱动信号各个减速时段的参数;
    其中,获取某个所述减速时段所对应的减速驱动信号参数具体包括:
    根据所述减速总时长和所述减速时段的数量获取满足第二预设条件的某个减速时段的多个减速驱动信号参数;
    将获取到的每个减速驱动信号参数拼接于前端驱动信号参数之后形成多组信号参数组合,所述前端驱动信号参数包括所述加速驱动信号的参数或者拼接于所述加速驱动信号的参数之后的另外一个或者多个减速时段所对应的减速驱动信号参数;其中,当某个减速时段是第一个减速时段时,所述前端驱动信号参数包括所述加速驱动信号的参数;当某个减速时段不是第一个减速时段,所述前端驱动信号参数包括所述加速驱动信号的参数和拼接在所述加速驱动信号的参数之后的另外一个或者多个减速时段所对应的减速驱动信号参数;
    将每个所述信号参数组合依次输入所述运算模型获得每组所述信号参数组合下的马达振动量;
    将所述马达振动量最小的一组信号参数组合所对应的减速驱动信号参数作为某个减速时段所对应的减速驱动信号参数。
  8. 根据权利要求7所述的马达驱动信号设置方法,其特征在于,所述减速驱动信号幅值为电压值。
  9. 根据权利要求7所述的马达驱动信号设置方法,其特征在于,所述第二预设条件为各所述减速时段的总和小于或者等于所述减速总时长。
  10. 根据权利要求7所述的马达驱动信号设置方法,其特征在于,相邻两个减速时段的减速驱动信号幅值互为相反数。
  11. 根据权利要求7所述的马达驱动信号设置方法,其特征在于,所述将每个所述减速时段所对应的减速驱动信号参数设置为所述减速驱动信号各个减速时段的参数之后,所述方法还包括:
    根据所述加速参数和各减速时段所对应的减速驱动信号参数生成所述马达驱动信号;
    将所述马达驱动信号进行滤波处理以得到平滑的驱动信号。
  12. 根据权利要求11所述的马达驱动信号设置方法,其特征在于,所述将所述马达驱动信号进行滤波处理以得到平滑的驱动信号之后,所述方法还包括:
    将经过滤波处理的所述驱动信号输入外部设备,所述外部设备包括马达。
  13. 一种电子设备,其特征在于,包括处理器和存储器,所述存储器中存储有计算机可读程序,所述计算机可读程序被配置成由处理器执行,所述计算机可读程序被处理器执行时实现如权利要求1-12任意一项所述的方法。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-12任意一项所述的方法。
PCT/CN2019/084253 2019-04-18 2019-04-25 一种马达驱动信号设置方法、电子设备及存储介质 WO2020211105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910313703.2A CN110086403B (zh) 2019-04-18 2019-04-18 一种马达驱动信号设置方法、电子设备及存储介质
CN201910313703.2 2019-04-18

Publications (1)

Publication Number Publication Date
WO2020211105A1 true WO2020211105A1 (zh) 2020-10-22

Family

ID=67415539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084253 WO2020211105A1 (zh) 2019-04-18 2019-04-25 一种马达驱动信号设置方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN110086403B (zh)
WO (1) WO2020211105A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110489845A (zh) * 2019-08-09 2019-11-22 瑞声科技(新加坡)有限公司 马达振动模型构建方法、触感实现方法及其装置
WO2021109092A1 (zh) * 2019-12-05 2021-06-10 瑞声声学科技(深圳)有限公司 触感信号的实现方法、装置、终端及存储介质
CN111351998B (zh) * 2019-12-25 2022-04-29 瑞声科技(新加坡)有限公司 一种马达极性确定方法、装置、存储介质及设备
WO2021128051A1 (zh) * 2019-12-25 2021-07-01 瑞声声学科技(深圳)有限公司 一种马达极性确定方法、装置、存储介质及设备
WO2021134326A1 (zh) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 触控显示装置马达的驱动信号获取方法及终端设备
CN111553097B (zh) * 2019-12-30 2024-01-05 瑞声科技(新加坡)有限公司 触控显示装置马达的驱动信号获取方法及终端设备
CN111722109B (zh) * 2020-06-28 2023-05-02 瑞声科技(新加坡)有限公司 马达系统失真的测量方法及设备、计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170133966A1 (en) * 2015-11-09 2017-05-11 Qualcomm Incorporated Resonant frequency search for resonant actuators
CN206575346U (zh) * 2017-03-23 2017-10-20 周开文 马达调速电路
CN107831899A (zh) * 2017-11-20 2018-03-23 珠海市魅族科技有限公司 马达的振动控制方法、装置、移动终端和可读存储介质
CN107966661A (zh) * 2017-12-26 2018-04-27 广东乐心医疗电子股份有限公司 一种振动马达检测方法与装置以及包含该装置的电子产品
CN109194199A (zh) * 2018-08-29 2019-01-11 深圳市特康生物工程有限公司 并行马达驱动器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105897120B (zh) * 2016-05-19 2018-09-21 瑞声科技(新加坡)有限公司 可精确控制电机的信号生成方法
JP2018143961A (ja) * 2017-03-06 2018-09-20 ローム株式会社 振動モータの駆動回路、そのキャリブレーション方法、振動装置および電子機器
CN109308114B (zh) * 2017-07-26 2021-01-05 华为技术有限公司 驱动线性马达的装置及方法
CN108334193B (zh) * 2018-01-04 2021-04-20 瑞声科技(新加坡)有限公司 一种马达刹车信号的生成方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170133966A1 (en) * 2015-11-09 2017-05-11 Qualcomm Incorporated Resonant frequency search for resonant actuators
CN206575346U (zh) * 2017-03-23 2017-10-20 周开文 马达调速电路
CN107831899A (zh) * 2017-11-20 2018-03-23 珠海市魅族科技有限公司 马达的振动控制方法、装置、移动终端和可读存储介质
CN107966661A (zh) * 2017-12-26 2018-04-27 广东乐心医疗电子股份有限公司 一种振动马达检测方法与装置以及包含该装置的电子产品
CN109194199A (zh) * 2018-08-29 2019-01-11 深圳市特康生物工程有限公司 并行马达驱动器

Also Published As

Publication number Publication date
CN110086403B (zh) 2021-04-27
CN110086403A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2020211105A1 (zh) 一种马达驱动信号设置方法、电子设备及存储介质
WO2020140551A1 (zh) 马达系统辨识方法
Andrianov et al. Asymptotic methods in the theory of plates with mixed boundary conditions
CN110265064B (zh) 音频爆音检测方法、装置和存储介质
CN110247631B (zh) 一种马达非线性失真补偿方法及装置
CN110162171B (zh) 一种马达驱动信号设置方法、电子设备及存储介质
CN111106783B (zh) 一种信号制作方法、信号制作装置、振动马达及触屏设备
US20200056933A1 (en) Method for detecting bandwidth of linear vibration motor
CN104599681B (zh) 音频处理的方法和装置
US8400877B2 (en) Method and apparatus for measuring position of the object using microphone
US20200057109A1 (en) Method for measuring bandwidth of linear motor
CN114078473A (zh) 刀具检测方法、电子装置及存储介质
CN111478630A (zh) 一种马达稳态单频失真补偿方法及装置
EP3633669B1 (en) Method and apparatus for correcting time delay between accompaniment and dry sound, and storage medium
CN109074814B (zh) 一种噪声检测方法及终端设备
CN104767890A (zh) 基于手持设备的闹钟控制方法及装置
TW202109508A (zh) 聲音分離方法、電子設備和電腦可讀儲存媒體
WO2022000649A1 (zh) 马达均衡电信号的修正方法及设备、计算机可读存储介质
CN109870172B (zh) 计步检测方法、装置、设备及存储介质
WO2022006788A1 (zh) 马达振动位移估测方法、装置及介质
US20210042519A1 (en) Method for evaluating vibrating sensation similarity, apparatus and storage medium
CN112444675B (zh) 一种输电网节点的谐波超标预警方法、装置、设备及介质
CN110579800B (zh) 一种基于高精度同步挤压变换的地震数据数字处理方法
CN111539089A (zh) 马达非线性模型判断方法和系统
Hote et al. A simple approach for stability margin of discrete systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924787

Country of ref document: EP

Kind code of ref document: A1