WO2022000369A1 - Procédé de préparation et utilisation d'un matériau photosensible - Google Patents

Procédé de préparation et utilisation d'un matériau photosensible Download PDF

Info

Publication number
WO2022000369A1
WO2022000369A1 PCT/CN2020/099736 CN2020099736W WO2022000369A1 WO 2022000369 A1 WO2022000369 A1 WO 2022000369A1 CN 2020099736 W CN2020099736 W CN 2020099736W WO 2022000369 A1 WO2022000369 A1 WO 2022000369A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
metal
preparing
salt
ligand
Prior art date
Application number
PCT/CN2020/099736
Other languages
English (en)
Chinese (zh)
Inventor
孟鸿
艾琳
刘振国
后藤修
何谷峰
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Priority to PCT/CN2020/099736 priority Critical patent/WO2022000369A1/fr
Publication of WO2022000369A1 publication Critical patent/WO2022000369A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/20Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices

Definitions

  • the invention relates to the field of photosensitive materials, in particular to a preparation method and application of a photosensitive material.
  • the LCD large-screen high-definition display has recently been fiercely competitive among major companies.
  • the current strategy is to adopt the "principle of increasing the volume without increasing the price" to develop additional functions for it to increase its user experience.
  • the main strategy is to attach small-sized ambient light sensing, color temperature sensing, tactile response or voice control to the large-screen display.
  • the ambient light sensing uses a triode TFT photosensitive sensor to make the entire screen have photosensitive ability, and then can use
  • the laser pointer can operate it at a long distance, improve the human-computer interaction ability of the display, and make it more intelligent and convenient.
  • the main core photosensitive layers of TFT photosensitive devices are mostly inorganic a-Si, etc. and inorganic oxide IZGO, etc. Most of them have strong photosensitive ability in the ultraviolet region, low responsivity in the visible light region, and the energy band is determined, the controllability is poor, and the adjustment Only doping methods can be used, the method is single, the selectivity of doping elements is small, and it is almost impossible to adjust the industrial chain; the new generation of photosensitive substances to take over are organic substances, which have a wide variety of organic substances and controllable structures. The ability of light absorption in the light region can be adjusted, but organic compounds have a long synthesis cycle, high toxicity and low yield, which limit their large-scale application and production.
  • the present invention provides a preparation method and application of a photosensitization material.
  • the application provides a preparation method of a photosensitizing material, comprising the following steps:
  • the metal salt is at least one of copper salt, gold salt, silver salt, iron salt, and zinc salt
  • the solvent is dibenzyl ether solvent, At least one of paraffin, dibenzyl ether, oleic acid, and dodecylamine.
  • the ligand is hexyl mercaptan, octyl mercaptan, dodecyl mercaptan, hexadecyl mercaptan, or alkyl acrylate at least one of them.
  • the ligand is alkyl thiol acrylate, and the molecular formula is:
  • R is a straight-chain alkane or branched-chain alkane with a carbon chain length ranging from 1 to 4 carbons.
  • the ligand is at least one of the following aromatic ligands:
  • the polymer monomer is a polyhydric alcohol acrylate.
  • the present application also provides a photosensitive TFT device, comprising a photosensitive layer made of a photosensitive material, and the photosensitive layer is made of the aforementioned photosensitive material.
  • a photosensitive TFT device comprising a photosensitive layer made of a photosensitive material, and the photosensitive layer is made of the aforementioned photosensitive material.
  • This new type of metal dot-sensitized photosensitive TFT device structure utilizes the strong photosensitive properties of metal dots combined with the high carrier mobility of the TFT inorganic/organic photosensitive layer to greatly improve the ambient light sensing capability of the display and meet the needs of large-size TVs. The needs of laser pointer touch interaction.
  • the present application also provides a flexible wearable device, including the aforementioned photosensitive TFT device.
  • the photosensitive TFT device is a flexible and bendable film material.
  • the present invention mainly uses metal dots to match inorganic and organic photosensitive materials. Because the metal dots are stable, easy to synthesize, and can be mass-produced, the structure is controllable, the photosensitive area covers a wide range, and the toxicity is low. Substrate matching, in the case of dominant in all aspects, use a thin metal cluster layer to cover the photosensitive layer, which can play the role of sensitization, combined with the high carrier mobility of the photosensitive layer and the sensitization layer. The high absorbance greatly improves the light response capability of the device and meets the current demand for large-scale displays.
  • Fig. 1 is a schematic diagram of the preparation process of thiol-modified metal dots
  • Figure 2 shows the absorption spectra of different kinds of metal dots
  • FIG. 3 is a schematic structural diagram of a photosensitive TFT device
  • FIG. 4 is a schematic diagram of a metal dot flexible film material
  • FIG. 5 is a graph showing the comparison results of the photoresponsivity.
  • the photosensitive layer of small-sized optical sensing devices is generally inorganic, of a single type, with a fixed optical sensing band gap and poor controllability, and it is generally difficult to meet the optical sensing order of magnitude of large-sized displays in the visible light region.
  • the invention uses ultra-small-sized metal dots as the photosensitive layer on the photosensitive layer.
  • the metal dots have stable structure, simple synthesis, mass production, controllable structure, wide photosensitive area coverage, and low toxicity.
  • the nanoscale scale can be matched with flexible substrates.
  • a thin metal cluster layer is used to cover the photosensitive layer, which can play a sensitizing effect, combined with the high carrier migration of the photosensitive layer.
  • the high absorption rate of the sensitization layer and the high light absorption rate of the sensitization layer greatly improve the photoresponse capability of the device and meet the current demand for large-scale display of the photoresponse order of magnitude.
  • the invention includes one-pot preparation of metal dots of different sizes (usually ⁇ 20 nm), construction of a photosensitive TFT device structure, photosensitive performance testing, and integration of TFT in a large-sized display screen.
  • the photosensitive performance is enhanced by the plasmon resonance absorption characteristics of metal dots, making it have high sensitivity, high responsivity and practical application value in the visible light region. Its detailed preparation method is as follows:
  • the metal salt is dissolved in the solvent, the ligand is added, and the metal dot material is prepared by a water bath one-pot method.
  • the metal salts used are at least one of copper salts, gold salts, silver salts, iron salts, and zinc salts, and the metal salts can be used alone or mixed and added.
  • the solvent used is at least one of dibenzyl ether solvent, paraffin, dibenzyl ether, oleic acid, and dodecylamine, and one solvent can be used alone or mixed and added.
  • the metal salt is dissolved in the solvent to form a reaction bottom liquid of 0.01M-1M, preferably in the concentration range of 0.05-0.5M.
  • auxiliary means such as ultrasound can be used to promote the dissolution of the metal salt.
  • the dodecyl mercaptan ligand is then added dropwise to the reaction bottom liquid, and the molar ratio of the ligand to the metal salt is 7:1 to 20:1, and the water bath is stirred at 30°C to 100°C for 5 to 30 minutes in one pot to obtain
  • the preparation paths are shown in Figure 1.
  • the metal salt may be at least one of copper chloride, chloroauric acid, silver nitrate, copper nitrate, copper acetate, copper acetylacetonate, copper sulfate, ferric chloride, ferric nitrate, zinc chloride, zinc nitrate, and silver acetate.
  • the dodecyl mercaptan ligand can also be replaced with saturated hexyl mercaptan, octyl mercaptan and hexadecyl mercaptan; it can also be unsaturated acrylic acid alkyl mercaptan, wherein R is the carbon chain length 1 ⁇ Straight or branched alkanes with 4 carbons.
  • the ligand structures are shown below, from top to bottom, they are hexanethiol, octanethiol, dodecylthiol, hexadecylthiol, and alkyl acrylate:
  • the ligand structure is not limited to aliphatic alkyl thiols, but can also be aromatic ligands.
  • aromatic thiol ligand structures are shown below:
  • the nanoparticle plasmonic absorption peak is at 500-530 nm.
  • the specific absorption spectrum coverage is shown in Figure 2.
  • the absorption peak position of the same metal nanoparticle is further controllable with the change of size.
  • the general rule is that with the increase of size, the absorption peak position gradually redshifts, so the absorption of metal dots is extremely controllable.
  • the photosensitive material is obtained by mixing the metal dot material with the polymer monomer, and after spreading it out, and then curing with ultraviolet light.
  • the polymer monomers are multifunctional monomers, mainly polyhydric alcohol acrylates.
  • the spreading method is preferably spin coating spreading, which is convenient for UV curing.
  • the metal electrode Cu is sputtered on the glass substrate, and then a layer of SiO2 is plated as an insulating protective layer, and the amorphous Si and n+Si layers are used as the channel photosensitive layer and the ohmic contact layer.
  • a layer of photosensitive layer is spin-coated on the track, that is, metal dots and polymer composite materials, and finally a polyester package is made for the overall photosensitive TFT device.
  • the TFT device can be all existing TFT device structures, such as the photosensitive device shown in Figure 3. TFT film structure.
  • the photosensitive layer is a composite of metal dot materials and polymer materials, and the polymer monomers are multifunctional monomers, mainly polyhydric alcohol acrylates. Mix the metal dots with the monomer, spin-coat the mixture on the photosensitive layer, and then perform UV curing. Because the metal dots are ultra-small and compounded with polymers, they can be made into flexible and bendable membranes.
  • the flexible base is PET compatible and can be used as a flexible wearable material. As shown in Figure 4.
  • TFT is integrated into a system and applied to the field of flexible wear, such as directly covering the finger joints. Since the structure of the TFT photosensitive device integrates the high carrier mobility of the photosensitive layer and the high absorbance of the photosensitization layer, compared with the traditional structure, the photoresponse and photosensitivity of the device have absolute advantages. The performance comparison is shown in Figure 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)

Abstract

Procédé de préparation d'un matériau photosensible, consistant à dissoudre un sel métallique dans un solvant, à ajouter un ligand, et à préparer un matériau à points métalliques à l'aide d'un procédé monotope ; puis à mélanger ce dernier avec un monomère de polymère, à étaler, puis à effectuer un durcissement par lumière ultraviolette, de façon à obtenir le matériau photosensible. Les points métalliques sont stables, faciles à synthétiser, et peuvent être produits en série, et la structure peut être régulée, la couverture d'une région photosensible est large, la toxicité est faible, et leur taille nanométrique peut correspondre à un substrat souple, dans le cas où ils sont dominants dans tous les aspects, l'effet de sensibilisation peut être obtenu à l'aide d'une fine couche de groupement métallique pour recouvrir le dessus de la couche photosensible, et en combinaison avec la grande mobilité des porteurs de la couche photosensible et le taux d'absorption de lumière élevé de la couche sensible, la capacité de réponse à la lumière d'un dispositif est grandement améliorée, et la demande d'affichage de grande taille actuelle est satisfaite.
PCT/CN2020/099736 2020-07-01 2020-07-01 Procédé de préparation et utilisation d'un matériau photosensible WO2022000369A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099736 WO2022000369A1 (fr) 2020-07-01 2020-07-01 Procédé de préparation et utilisation d'un matériau photosensible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099736 WO2022000369A1 (fr) 2020-07-01 2020-07-01 Procédé de préparation et utilisation d'un matériau photosensible

Publications (1)

Publication Number Publication Date
WO2022000369A1 true WO2022000369A1 (fr) 2022-01-06

Family

ID=79317792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099736 WO2022000369A1 (fr) 2020-07-01 2020-07-01 Procédé de préparation et utilisation d'un matériau photosensible

Country Status (1)

Country Link
WO (1) WO2022000369A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286968A1 (en) * 2008-04-25 2009-11-19 Auburn University 2-Quinoxalinol Salen Compounds and Uses Thereof
CN106905497A (zh) * 2017-03-22 2017-06-30 京东方科技集团股份有限公司 量子点复合物、中间体及其制备方法和应用
CN106957645A (zh) * 2017-03-17 2017-07-18 青岛海信电器股份有限公司 一种量子点材料、量子点光刻胶及其制备方法
WO2018063382A1 (fr) * 2016-09-30 2018-04-05 Intel Corporation Nanoparticules de groupe principal coiffées d'un ligand et faisant office de réserves pour lithographie par ultraviolets extrêmes à absorption élevée
CN109652060A (zh) * 2019-01-17 2019-04-19 南京邮电大学 一种有机聚合物钙钛矿量子点的合成制备方法及其应用
CN110305349A (zh) * 2018-03-20 2019-10-08 致晶科技(北京)有限公司 一种复合材料及其制备方法及应用
CN110579828A (zh) * 2019-08-08 2019-12-17 深圳市华星光电技术有限公司 金属点彩色滤光片及其制作方法、液晶显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286968A1 (en) * 2008-04-25 2009-11-19 Auburn University 2-Quinoxalinol Salen Compounds and Uses Thereof
WO2018063382A1 (fr) * 2016-09-30 2018-04-05 Intel Corporation Nanoparticules de groupe principal coiffées d'un ligand et faisant office de réserves pour lithographie par ultraviolets extrêmes à absorption élevée
CN106957645A (zh) * 2017-03-17 2017-07-18 青岛海信电器股份有限公司 一种量子点材料、量子点光刻胶及其制备方法
CN106905497A (zh) * 2017-03-22 2017-06-30 京东方科技集团股份有限公司 量子点复合物、中间体及其制备方法和应用
CN110305349A (zh) * 2018-03-20 2019-10-08 致晶科技(北京)有限公司 一种复合材料及其制备方法及应用
CN109652060A (zh) * 2019-01-17 2019-04-19 南京邮电大学 一种有机聚合物钙钛矿量子点的合成制备方法及其应用
CN110579828A (zh) * 2019-08-08 2019-12-17 深圳市华星光电技术有限公司 金属点彩色滤光片及其制作方法、液晶显示装置

Similar Documents

Publication Publication Date Title
CN102083838B (zh) 基于二噻吩并[2,3-d:2′,3′-d′]苯并[1,2-b:4,5-b′]二噻吩的高性能可溶液加工半导体
WO2017173709A1 (fr) Matériau à cristaux liquides, panneau d'affichage à cristaux liquides et procédé de fabrication de panneau d'affichage à cristaux liquides
CN105602227B (zh) 量子棒组合物、量子棒膜和包含该量子棒膜的显示装置
CN104157697B (zh) 氧化物薄膜晶体管、阵列基板及其制造方法和显示装置
JP2013163672A (ja) 反応性メソゲン化合物、これを含む液晶組成物、表示パネルの製造方法、及び表示パネル
CN104919011A (zh) 透明导电性膜涂布组合物、透明导电性膜及透明导电性膜的制造方法
TW200831459A (en) Polymerizable compound and polymerizable composition
Nishio et al. Electrochromic thin films prepared by sol–gel process
JP6948315B2 (ja) 導電性シロキサン粒子膜およびそれを有するデバイス
WO2022000369A1 (fr) Procédé de préparation et utilisation d'un matériau photosensible
CN107275490A (zh) 一种以环戊双噻吩衍生物为电子受体的有机太阳电池
CN106910838A (zh) 一种基于压电膜的钙钛矿发光器件及其制备方法
US9617374B2 (en) High-molecular liquid crystal material for frame of liquid crystal display, frame and manufacturing method
WO2013123804A1 (fr) Elément d'espacement du type à conduction dopé à l'aide d'une matière d'étanchéité, procédé de préparation associé et utilisation de cet élément
CN103391921A (zh) 液晶性化合物、液晶组合物、液晶元件以及液晶显示装置
CN103693675B (zh) 一种纸基氧化锌纳米线的制备方法
US11697737B2 (en) Color material dispersion liquid, composition, film, optical filter and display device
WO2019165653A1 (fr) Matériau à cristaux liquides et panneau d'affichage à cristaux liquides
JP2019500635A (ja) 誘電性シロキサン粒子フィルムおよびそれを有するデバイス
CN111909295B (zh) 一种光敏化材料的制备方法及应用
CN109293643A (zh) 一种柔性隔离基团修饰的有机二阶非线性光学发色团及其制备方法和应用
CN107731939B (zh) 一种基于光衍射的柔性透明碳电极制备方法
TW201249968A (en) Polymerizable monomer compound, liquid crystal composition, and liquid crystal display device
CN105399074B (zh) 一种石墨烯纳米带及其合成方法与应用
CN102097214B (zh) 一种氧化锌基太阳能电池电极的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942853

Country of ref document: EP

Kind code of ref document: A1