WO2022000341A1 - 一种信号处理方法及装置 - Google Patents

一种信号处理方法及装置 Download PDF

Info

Publication number
WO2022000341A1
WO2022000341A1 PCT/CN2020/099581 CN2020099581W WO2022000341A1 WO 2022000341 A1 WO2022000341 A1 WO 2022000341A1 CN 2020099581 W CN2020099581 W CN 2020099581W WO 2022000341 A1 WO2022000341 A1 WO 2022000341A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
power supply
bandwidth
signal
transmission channel
Prior art date
Application number
PCT/CN2020/099581
Other languages
English (en)
French (fr)
Inventor
郭衍
黄宝平
李峰
李鹏
史坡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/099581 priority Critical patent/WO2022000341A1/zh
Priority to EP20942935.6A priority patent/EP4156510A4/en
Priority to CN202080016049.XA priority patent/CN114128138A/zh
Publication of WO2022000341A1 publication Critical patent/WO2022000341A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3233Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7209Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched from a first band to a second band

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a signal processing method and device.
  • the RF power amplifier (Power Amplifier, PA) is a very important device in modern communication equipment. Its main function is to amplify the input low-power signal to the rated power level specified by the communication system standard through the DC function. The bits are then fed into back-end devices such as duplexers, antennas, etc. for wireless transmission. Due to the characteristics of the PA hardware itself, the PA usually exhibits very strong nonlinear characteristics during operation. This nonlinear characteristic will cause deterioration of the transmission quality of the signal and cause problems such as nonlinear distortion of the signal. To this end, the nonlinear gain of the PA can be reduced by a digital pre-distortion (Digital Pre-Distortion, DPD) technology and an envelope tracking (Envelope Tracking, ET) technology.
  • DPD Digital Pre-Distortion
  • ET envelope tracking
  • the nonlinear behavior of the PA is fitted by the nonlinear behavior model, and then the predistortion coefficient corresponding to the nonlinearity of the PA is obtained, and the predistortion coefficient is stored in the predistortion coefficient look-up table (Look-Up-Table, LUT).
  • the predistortion coefficient LUT can be loaded into the DPD core, so that the DPD core has the opposite nonlinearity to the PA.
  • the PA is powered by the ET power module, and the ET power module can change according to the envelope change of the RF signal input by the PA.
  • the envelope of the radio frequency signal is larger, a higher supply voltage is provided, and when the envelope is smaller, a lower supply voltage is provided. Therefore, the power consumption of the PA can be greatly reduced, and the energy conversion efficiency of the PA can be significantly improved.
  • the predistortion coefficient LUT is used for adaptation. For example, as shown in Figure 1, there are 2 predistortion coefficient LUTs, namely predistortion coefficient LUT1 and predistortion coefficient LUT2.
  • predistortion coefficient LUT1 there are 2 predistortion coefficient LUTs, namely predistortion coefficient LUT1 and predistortion coefficient LUT2.
  • the corresponding pre-distortion coefficient LUT1 performs digital pre-distortion processing on the input RF signal; when the PA works at bandwidth 2, the DPD core is controlled to load the pre-distortion coefficient LUT2 corresponding to bandwidth 2 to perform digital pre-distortion processing on the input RF signal, thereby effectively reducing PA nonlinear distortion.
  • the ET power module should also adapt to different envelope tracking LUTs according to factors such as frequency, power, temperature, and bandwidth. Since the predistortion coefficient LUT in the DPD core and the envelope tracking LUT in the ET power module need to be adapted in different situations, adapting the predistortion coefficient LUT and the envelope tracking LUT not only has high control overhead, but also cannot be applied to fast Scenario of RF channel switching.
  • the terminal needs to perform fast switching between two frequency points in one time slot, such as switching between 3.5GHz and 2.1GHz; for another example, in the Super Uplink (SU) scenario, one of the terminal equipment The radio frequency channel is controlled according to real-time signaling, and the operating frequency needs to be constantly switched between 3.5GHz and 2.1GHz.
  • the predistortion coefficient LUT in the DPD core and the envelope tracking LUT in the ET power module need to switch rapidly between different operating frequency points. It increases the overall control load of the system, but if it is not switched, it will lead to a decrease in the PA work efficiency.
  • the purpose of the embodiments of the present application is to provide a signal processing method and apparatus to improve the working performance of the PA.
  • the communication device may be a wireless communication device, or may be a part of a device in the wireless communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the wireless communication device may be a computer device that supports wireless communication functionality.
  • the wireless communication device may be a terminal such as a smart phone, or may be a wireless access network device such as a base station.
  • a system-on-chip may also be referred to as a system on chip (system on chip, SoC), or simply referred to as a SoC chip.
  • the communication chip may include a baseband processing chip and a radio frequency processing chip. Baseband processing chips are also sometimes referred to as modems or baseband chips.
  • the radio frequency processing chip is also sometimes referred to as a radio frequency transceiver (transceiver) or radio frequency chip.
  • some or all of the communication chips may be integrated inside the SoC chip.
  • the baseband processing chip is integrated in the SoC chip, and the radio frequency processing chip is not integrated with the SoC chip.
  • a communication device comprising: a first power supply module and a first radio frequency transmission channel; wherein the first radio frequency transmission channel and the first power supply module are respectively coupled to a first power amplifier PA; when When the first radio frequency transmit channel operates at a first bandwidth, the first radio frequency transmit channel is configured to provide the first PA with a signal after digital pre-distortion processing, and the first power supply module is configured to provide a signal to the first PA.
  • the first PA provides a power supply voltage with a non-envelope waveform; when the first radio frequency transmit channel operates at the second bandwidth, the first radio frequency transmit channel is configured to provide the first PA with no digital predistortion
  • the processed signal, the first power supply module is configured to provide the first PA with a power supply voltage whose waveform is an envelope waveform.
  • the first radio frequency transmission channel when the first radio frequency transmission channel switches between different bandwidths, in order to not only ensure fast switching of the bandwidth, but also reduce the nonlinear distortion of the output signal of the first radio frequency transmission channel, the first radio frequency transmission channel can When operating at different bandwidths, different ways are used to reduce the nonlinear distortion of the first PA. Specifically, digital pre-distortion processing may be performed on the input signal of the first PA when the first bandwidth is operating, and the power supply voltage of the envelope waveform may be provided for the first PA when the second bandwidth is operating. Since there is no need to adjust the LUT required for digital pre-distortion processing or the LUT required for the power supply voltage to generate the envelope waveform during bandwidth switching, the bandwidth can be quickly switched and the energy efficiency of the first PA can be guaranteed. .
  • a communication device comprising: a first power supply module and a first radio frequency transmission channel; wherein the first radio frequency transmission channel and the first power supply module are respectively connected with a first power amplifier PA and a third radio frequency transmission channel.
  • PA coupling when the first radio frequency transmit channel operates at a first bandwidth, the first radio frequency transmit channel is configured to provide the first PA with a signal after digital pre-distortion processing, and the first power module is is configured to provide the first PA with a power supply voltage of a non-envelope waveform; when the first radio frequency transmit channel operates at the second bandwidth, the first radio frequency transmit channel is configured to provide the third PA with a non-envelope waveform.
  • the digital predistortion-processed signal, the first power supply module is configured to provide the third PA with a power supply voltage whose waveform is an envelope waveform.
  • the apparatus further includes a first digital predistortion DPD core; when the first radio frequency transmission channel operates at the first bandwidth, the first DPD core is used to The signal of the first radio frequency transmit channel is subjected to digital pre-distortion processing; when the first radio frequency transmit channel works in the second bandwidth, the first DPD core is configured to road.
  • the linearization of the radio frequency channel in the uplink high dynamic switching scenario can be realized with the lowest control overhead; and the DPD core does not need to store all the predistortion coefficient LUTs, so that the internal storage space of the DPD core can be increased without increasing the condition. In this way, the linearization performance of the system is improved and the transmission efficiency of the system is improved at the same time.
  • the first DPD core uses a predistortion coefficient lookup table LUT corresponding to the first bandwidth to perform digital predistortion processing on the signal input to the first radio frequency transmission channel.
  • the first power module uses an envelope tracking LUT corresponding to the second bandwidth to generate the first PA or all the power supply voltage provided by the third PA.
  • the center frequency of the first bandwidth is different from the center frequency of the second bandwidth.
  • the center frequency of the first bandwidth is 3.5 GHz; the center frequency of the second bandwidth is 2.1 GHz.
  • the device further includes a second DPD core, a second radio frequency transmit channel and a second PA; when the second radio frequency transmit channel works at the first bandwidth, the second DPD core, for performing digital pre-distortion processing on the signal input to the second radio frequency transmission channel; the second radio frequency transmission channel is configured to provide the second PA with the signal after digital pre-distortion processing.
  • the device further includes a second power supply module; the second power supply module is used to provide a power supply voltage for the second PA, and the waveform of the power supply voltage provided by the second power supply module is a packet of network waveform.
  • the second power supply module provides the second PA with the power supply voltage of the envelope waveform, which can further reduce the nonlinear distortion of the output signal of the second radio frequency transmission channel and improve the system efficiency.
  • the first bandwidth is greater than the second bandwidth.
  • the first PA is located in the communication device.
  • the first power module is a power module using envelope tracking ET technology.
  • the second power module is a power module using envelope tracking ET technology.
  • a method is provided, which is applied to a communication device including a first power supply module and a first radio frequency transmission channel; wherein the first radio frequency transmission channel and the first power supply module are respectively connected with a first power amplifier PA coupling; the method includes: when the first radio frequency transmission channel works at a first bandwidth, outputting a digitally predistorted signal to the first PA through the first radio frequency transmission channel; wherein the first radio frequency transmission channel
  • the power supply module is configured to provide the first PA with a power supply voltage of a non-envelope waveform; when the first radio frequency transmit channel operates at the second bandwidth, provide the first PA through the first radio frequency transmit channel A signal without digital pre-distortion processing; wherein the first power supply module is configured to provide the first PA with a power supply voltage whose waveform is an envelope waveform.
  • a method is provided, applied to a communication device including a first power supply module and a first radio frequency transmission channel; wherein the first radio frequency transmission channel and the first power supply module are respectively connected to a first power amplifier PA coupled with a third PA; the method includes: when the first radio frequency transmission channel operates at a first bandwidth, providing a digitally predistorted signal to the first PA through the first radio frequency transmission channel; The first power supply module is configured to provide a power supply voltage with a non-envelope waveform to the first PA; when the first radio frequency transmit channel operates at the second bandwidth, the first radio frequency transmit channel is configured to The third PA provides a signal without digital pre-distortion processing; the first power supply module is configured to provide the third PA with a power supply voltage whose waveform is an envelope waveform.
  • the communication device further includes a first digital predistortion DPD core; when the first radio frequency transmission channel operates at the first bandwidth, the first DPD check is used to input the first DPD core.
  • the signal of the RF transmit channel is processed by digital pre-distortion.
  • the first DPD core uses a predistortion coefficient lookup table LUT corresponding to the first bandwidth to perform digital predistortion processing on the signal input to the first radio frequency transmission channel.
  • the center frequency of the first bandwidth is different from the center frequency of the second bandwidth.
  • the center frequency of the first bandwidth is 3.5 GHz; the center frequency of the second bandwidth is 2.1 GHz.
  • the communication device further includes a second DPD core, a second radio frequency transmit channel and a second PA; when the second radio frequency transmit channel works at the first bandwidth, the second DPD passes through the second radio frequency transmit channel. Perform digital pre-distortion processing on the signal input to the second radio frequency transmission channel; output the digital pre-distortion processed signal to the second PA through the second radio frequency transmission channel.
  • the communication device further includes a second power supply module; a power supply voltage is provided to the second PA through the second power supply module, and the waveform of the power supply voltage provided by the second power supply module is an envelope waveform.
  • the first bandwidth is greater than the second bandwidth.
  • the first PA is located in the communication device.
  • the first power module is a power module using envelope tracking ET technology.
  • the second power module is a power module using envelope tracking ET technology.
  • a communication device comprising: a first power supply module, a first power amplifier PA, and a first radio frequency transmission channel; wherein the first radio frequency transmission channel and the first power supply module are respectively connected to the The first PA is coupled; when the first radio frequency transmission channel works in the first bandwidth, the waveform of the power supply voltage of the first PA is a non-envelope waveform; the first PA is used for the first radio frequency The first signal output by the transmission channel is amplified, and the first signal is a signal after digital pre-distortion processing; when the first radio frequency transmission channel works at the second bandwidth, the first power supply module is used for The first PA provides a power supply voltage, and the waveform of the power supply voltage provided by the first power supply module is an envelope waveform; the first PA is used to amplify the second signal output by the first radio frequency transmission channel , the second signal is a signal without digital pre-distortion processing; the first bandwidth is greater than the second bandwidth.
  • a communication device including: a first power supply module, a first power amplifier PA, a third PA, and a first radio frequency transmission channel; wherein the first radio frequency transmission channel and the first power supply module are respectively coupled to the first PA and the third PA, and the first PA or the third PA is used to amplify the signal output by the first radio frequency transmission channel; when the first radio frequency transmission channel works At the first bandwidth, the third PA is configured to bypass the output end of the first radio frequency transmit channel, and the first PA is configured to be connected to the output end of the first radio frequency transmit channel; the The waveform of the power supply voltage of the first PA is a non-envelope waveform; the first PA is used to amplify the first signal output by the first radio frequency transmission channel, and the first signal is digitally predistorted The processed signal; when the first radio frequency transmission channel operates at the second bandwidth, the third PA is configured to be connected to the output end of the first radio frequency transmission channel, and the first PA is configured to The output end of the first radio frequency transmission channel;
  • the apparatus further includes a first digital predistortion DPD core; when the first radio frequency transmission channel operates at the first bandwidth, the first DPD core is used to performing digital pre-distortion processing to obtain the first signal; when the first radio frequency transmit channel operates at the second bandwidth, the first DPD core is configured to obtain the first signal from the input end of the first PA bypass.
  • the first DPD core uses a predistortion coefficient lookup table LUT corresponding to the first bandwidth to perform digital predistortion processing on the input signal.
  • the first power supply module uses an envelope tracking LUT corresponding to the second bandwidth to generate the power supply voltage provided for the first PA.
  • the center frequency of the first bandwidth is different from the center frequency of the second bandwidth.
  • the center frequency of the first bandwidth is 3.5 GHz; the center frequency of the second bandwidth is 2.1 GHz.
  • the device further includes a second DPD core, a second radio frequency transmit channel and a second PA; when the second radio frequency transmit channel works at the first bandwidth, the second DPD core,
  • the second PA is configured to perform digital pre-distortion processing on the signal input to the second radio frequency transmission channel; the second PA is used for amplifying the signal after the digital pre-distortion processing is performed on the second DPD core.
  • the device further includes a second power supply module; the second power supply module is used to provide a power supply voltage for the second PA, and the waveform of the power supply voltage provided by the second power supply module is envelope waveform.
  • the first power module is a power module using envelope tracking ET technology.
  • the second power module is a power module using envelope tracking ET technology.
  • a method is provided, applied to a communication device including a first power supply module and a first radio frequency transmission channel, wherein the first radio frequency transmission channel and the first power supply module are respectively connected with the first PA coupling, the first PA is used to amplify the signal output by the first radio frequency transmission channel, and the method includes:
  • the first PA When the first radio frequency transmission channel works at the first bandwidth, the first PA is used to amplify the first signal output by the first radio frequency transmission channel;
  • the waveform of the power supply voltage of the first PA is a non-envelope waveform;
  • the first radio frequency transmission channel works at the second bandwidth the A second signal output by a radio frequency transmission channel is amplified; wherein, the second signal is a signal that has not undergone digital pre-distortion processing, the power supply voltage of the first PA is provided by the first power supply module, and the first power supply module
  • the waveform of the power supply voltage provided by a power supply module is an envelope waveform; the first bandwidth is greater than the second bandwidth.
  • a method is provided, applied to a communication device including a first power supply module, a first power amplifier PA, a third PA, and a first radio frequency transmission channel, wherein the first radio frequency transmission channel and the first radio frequency transmission channel A power module is respectively coupled to the first PA and the third PA, and the first PA or the third PA is used to amplify the signal output by the first radio frequency transmission channel; the method includes: when the When the first radio frequency transmit channel works at the first bandwidth, the third PA is configured to bypass the output end of the first radio frequency transmit channel, and the first PA is configured to communicate with the first radio frequency The output end of the transmission channel is connected; the first signal output by the first radio frequency transmission channel is amplified by the first PA; wherein, the first signal is a signal after digital pre-distortion processing, and the first signal is processed by digital pre-distortion.
  • the waveform of the power supply voltage of a PA is a non-envelope waveform; when the first RF transmission channel operates at the second bandwidth, the third PA is configured to be connected from the output end of the first RF transmission channel , the first PA is configured to bypass the output end of the first radio frequency transmission channel; the third PA is used to amplify the second signal output by the first radio frequency transmission channel; wherein the The second signal is a signal without digital pre-distortion processing, the power supply voltage of the third PA is provided by the first power supply module, and the waveform of the power supply voltage provided by the first power supply module is an envelope waveform; A bandwidth is greater than the second bandwidth.
  • the method before the amplifying processing of the first signal by the first PA, the method further includes: checking the signal input to the first radio frequency transmission channel by using the first digital predistortion DPD to perform digital processing. predistortion processing to obtain the first signal.
  • the method before the amplifying processing of the second signal by the first PA, the method further includes: configuring the first digital predistortion DPD core located at the input end of the first PA bypass.
  • the center frequency of the first bandwidth is different from the center frequency of the second bandwidth.
  • the center frequency of the first bandwidth is 3.5 GHz; the center frequency of the second bandwidth is 2.1 GHz.
  • the communication device further includes a second DPD core, a second radio frequency transmission channel, and the second radio frequency transmission channel includes a second PA; the method further includes: the second radio frequency transmission channel works At the first bandwidth, digital pre-distortion processing is performed on the signal input to the second radio frequency transmission channel by the second DPD check; digital pre-distortion processing is performed on the second DPD core by the second PA The resulting signal is amplified.
  • the communication device further includes a second power supply module
  • the method further includes: providing a power supply voltage to the second PA through the second power supply module, and the power supply provided by the second power supply module
  • the waveform of the voltage is an envelope waveform.
  • the first power module is a power module using envelope tracking ET technology.
  • the second power module is a power module using envelope tracking ET technology.
  • the present application further provides a communication device, comprising: a processor and a memory; wherein, the memory is used for storing program instructions; the processor is used for executing the program instructions stored in the memory, so as to realize the third aspect or the fourth aspect any possible method in the aspect.
  • the present application also provides a communication device, comprising: a processor and an interface circuit; wherein the interface circuit is used to access a memory, and program instructions are stored in the memory; the processor is used to access the interface circuit through the interface circuit memory, and execute the program instructions stored in the memory to implement any possible method of the third aspect or the fourth aspect.
  • the present application provides a computer-readable storage medium, where computer-readable instructions are stored in the computer storage medium, and when a computer reads and executes the computer-readable instructions, the communication device is made to perform any of the above possible designs. Methods.
  • the present application provides a computer program product, which, when a computer reads and executes the computer program product, causes a communication device to execute the method in any of the above possible designs.
  • the present application provides a chip, which is connected to a memory and used to read and execute a software program stored in the memory, so as to implement the method in any of the above possible designs.
  • FIG. 1 is a schematic diagram of a predistortion coefficient LUT switching in the prior art
  • FIG. 2 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a radio frequency channel according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another radio frequency channel provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another radio frequency channel provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a voltage waveform provided by an embodiment of the present application.
  • FIG. 9 is another schematic diagram of a voltage waveform provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a signal processing flow according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a signal processing flow according to an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • 5th Generation 5th Generation, 5G
  • New Radio New Radio, NR
  • devices can be divided into devices that provide wireless network services and devices that use wireless network services.
  • the devices that provide wireless network services refer to those devices that make up a wireless communication network, which can be referred to as network equipment or network elements for short.
  • Network equipment is usually owned by operators or infrastructure providers, who are responsible for operation or maintenance.
  • Network devices can be further classified into radio access network (RAN) devices and core network (core network, CN) devices.
  • RAN radio access network
  • core network core network
  • a typical RAN device includes a base station (BS).
  • the base station may also sometimes be referred to as a wireless access point (access point, AP), or a transmission reception point (transmission reception point, TRP).
  • the base station may be a general node B (generation Node B, gNB) in a 5G new radio (new radio, NR) system, or an evolutional Node B (evolutional Node B, eNB) in a 4G long term evolution (long term evolution, LTE) system. ).
  • Base stations can be classified into macro base stations or micro base stations according to their physical form or transmit power. Micro base stations are also sometimes referred to as small base stations or small cells.
  • a device using a wireless network service may be referred to as a terminal for short.
  • the terminal can establish a connection with the network device, and provide the user with specific wireless communication services based on the service of the network device.
  • user equipment user equipment
  • subscriber unit subscriber unit
  • SU subscriber unit
  • terminals tend to move with users and are sometimes referred to as mobile stations (mobile stations, MSs).
  • some network devices such as relay nodes (relay nodes, RNs) or wireless routers, can sometimes be regarded as terminals because they have UE identity or belong to users.
  • the terminal may be a mobile phone, a tablet computer, a laptop computer, a wearable device (such as a smart watch, smart bracelet, smart helmet, smart glasses), and other Devices with wireless access capabilities, such as smart cars, various Internet of things (IOT) devices, including various smart home devices (such as smart meters and smart home appliances) and smart city devices (such as security or monitoring equipment, intelligent road transport facilities), etc.
  • IOT Internet of things
  • smart home devices such as smart meters and smart home appliances
  • smart city devices such as security or monitoring equipment, intelligent road transport facilities
  • the present application will take the base station and the terminal as examples to describe the technical solutions of the embodiments of the present application in detail.
  • FIG. 2 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • a wireless communication system includes a terminal and a base station.
  • the transmission link from the terminal to the base station is denoted as an uplink (uplink, UL)
  • the transmission link from the base station to the terminal is denoted as a downlink (downlink, DL).
  • uplink uplink
  • downlink downlink
  • data transmission in the uplink may be abbreviated as uplink data transmission or uplink transmission
  • data transmission in the downlink may be abbreviated as downlink data transmission or downlink transmission.
  • the base station can provide communication coverage for a specific geographical area through an integrated or external antenna device.
  • One or more terminals located within the communication coverage of the base station can access the base station.
  • a base station can manage one or more cells. Each cell has an identification, which is also called a cell identity (cell ID). From the perspective of radio resources, a cell is a combination of downlink radio resources and paired uplink radio resources (optional).
  • the wireless communication system may comply with the wireless communication standards of the third generation partnership project (3GPP), or may comply with other wireless communication standards, such as the Institute of Electrical and Electronics Engineers (IEEE) ) of the 802 series (such as 802.11, 802.15, or 802.20) wireless communication standards.
  • 3GPP Third Generation Partnership Project
  • IEEE Institute of Electrical and Electronics Engineers
  • the wireless communication system may also include other numbers of terminals and base stations.
  • the wireless communication system may further include other network devices, such as core network devices, which will not be illustrated one by one here.
  • the terminal and the base station should know the predefined configuration of the wireless communication system, including the radio access technology (RAT) supported by the system and the wireless resource configuration specified by the system, such as the basic configuration of the radio frequency band and carrier.
  • a carrier is a frequency range specified by the system. This frequency range can be determined by the center frequency of the carrier (referred to as the carrier frequency) and the bandwidth of the carrier.
  • the pre-defined configurations of these systems can be used as part of the standard protocols of the wireless communication system, or determined by the interaction between the terminal and the base station.
  • the content of the relevant standard protocol may be pre-stored in the memory of the terminal and the base station, or embodied as hardware circuits or software codes of the terminal and the base station.
  • the terminal and the base station support one or more of the same RATs, such as 5G NR, 4G LTE, or RATs of future evolution systems.
  • the terminal and the base station use the same air interface parameters, coding scheme, modulation scheme, etc., and communicate with each other based on radio resources specified by the system.
  • FIG. 3 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may be a terminal or a base station in this embodiment of the present application.
  • the communication device may include a plurality of components, such as: an application subsystem, a memory, a mass storage (massive storage), a baseband subsystem, a radio frequency integrated circuit (RFIC), RF front-end (radio frequency front end, RFFE) devices, and antenna (antenna, ANT). These components may be coupled by various interconnecting buses or other electrical connections.
  • RFIC radio frequency integrated circuit
  • RFFE radio frequency front-end
  • antenna antenna
  • ANT_1 represents the first antenna
  • ANT_N represents the Nth antenna
  • N is a positive integer greater than 1.
  • Tx represents the transmit path
  • Rx represents the receive path
  • different numbers represent different paths.
  • Each path can represent a signal processing channel.
  • FBRx represents the feedback receiving path
  • PRx represents the primary receiving path
  • DRx represents the diversity receiving path.
  • HB means high frequency
  • LB means low frequency, both refer to the relative high and low frequency.
  • BB stands for baseband. It should be understood that the marks and components in FIG. 3 are for illustrative purposes only, and are only used as a possible implementation manner, and the embodiments of the present application also include other implementation manners.
  • a communication device may include more or fewer paths, including more or fewer components.
  • the application subsystem can be used as the main control system or main computing system of the communication device to run the main operating system and application programs, manage the hardware and software resources of the entire communication device, and provide users with a user interface.
  • the application subsystem may also include driver software related to other subsystems (eg, baseband subsystem).
  • the application subsystem may include one or more processors.
  • the multiple processors may be multiple of the same type of processors, or may include a combination of multiple types of processors.
  • the processor may be a general-purpose processor or a processor designed for a specific field.
  • the processor may be a central processing unit (CPU), a digital signal processor (DSP), or a microcontroller (MCU).
  • the processor may also be a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processing, ISP), an audio signal processor (audio signal processor, ASP), and an artificial intelligence (artificial intelligence, AI) Apply a specially designed AI processor.
  • AI processors include, but are not limited to, neural network processing units (NPUs), tensor processing units (TPUs), and processors called AI engines.
  • the radio frequency integrated circuit (including the RFIC 1, and one or more optional RFICs 2) and the radio frequency front-end device can jointly form a radio frequency subsystem.
  • the radio frequency subsystem can also be divided into the radio frequency receive path (RF receive path) and the radio frequency transmit path (RF transmit path).
  • the radio frequency receiving channel can receive the radio frequency signal through the antenna, process the radio frequency signal (such as amplifying, filtering and down-converting) to obtain the baseband signal, and transmit it to the baseband subsystem.
  • the RF transmit channel can receive the baseband signal from the baseband subsystem, process the baseband signal (such as upconverting, amplifying and filtering) to obtain the RF signal, and finally radiate the RF signal into space through the antenna.
  • a radio frequency integrated circuit may be referred to as a radio frequency processing chip or a radio frequency chip.
  • the radio frequency subsystem may include an antenna switch, an antenna tuner, a low noise amplifier (LNA), a power amplifier (PA), a mixer (mixer), a local oscillator (LOO) ), filters and other electronic devices, which can be integrated into one or more chips as required.
  • a radio frequency integrated circuit may be referred to as a radio frequency processing chip or a radio frequency chip.
  • the RF front-end device can also be an independent chip.
  • a radio frequency chip is also sometimes referred to as a receiver, transmitter, or transceiver.
  • the antenna can sometimes be considered part of the RF subsystem and can be integrated into the chip of the RF subsystem. Antennas, RF front-end devices, and RF chips can all be manufactured and sold separately.
  • the RF subsystem can also use different devices or different integration methods based on power consumption and performance requirements.
  • some devices belonging to the radio frequency front-end are integrated into the radio frequency chip, and even the antenna and the radio frequency front-end device are integrated into the radio frequency chip, and the radio frequency chip can also be called a radio frequency antenna module or an antenna module.
  • the baseband subsystem mainly completes the processing of baseband signals.
  • the baseband subsystem can extract useful information or data bits from the baseband signal, or convert the information or data bits into the baseband signal to be transmitted. These information or data bits may be data representing user data or control information such as voice, text, video, etc.
  • the baseband subsystem can implement signal processing operations such as modulation and demodulation, encoding and decoding.
  • the baseband signal processing operations are not identical for different radio access technologies, such as 5G NR and 4G LTE.
  • the radio frequency signal is usually an analog signal
  • the signal processed by the baseband subsystem is mainly a digital signal
  • an analog-to-digital conversion device is also required in the communication device.
  • the analog-to-digital conversion device may be arranged in the baseband subsystem, or may be arranged in the radio frequency subsystem.
  • the analog-to-digital conversion device includes an analog-to-digital converter (ADC) that converts an analog signal to a digital signal, and a digital-to-analog converter (DAC) that converts a digital signal to an analog signal.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • the baseband subsystem may also include one or more processors.
  • the baseband subsystem may also include one or more hardware accelerators (HACs).
  • HACs hardware accelerators
  • Hardware accelerators can be used to specifically complete some sub-functions with high processing overhead, such as data packet assembly and parsing, data packet encryption and decryption, etc. These sub-functions can also be implemented using general-purpose processors, but hardware accelerators may be more appropriate due to performance or cost considerations.
  • the hardware accelerator is mainly implemented by an application specific integrated circuit (application specified intergated circuit, ASIC).
  • ASIC application specified intergated circuit
  • the hardware accelerator may also include one or more relatively simple processors, such as MCU.
  • the baseband subsystem and the radio frequency subsystem together form a communication subsystem, which provides a wireless communication function for a communication device.
  • the baseband subsystem is responsible for managing the software and hardware resources of the communication subsystem, and can configure the working parameters of the radio frequency subsystem.
  • the processor of the baseband subsystem can run a sub-operating system of the communication subsystem, and the sub-operating system is often an embedded operating system or a real-time operating system, such as the VxWorks operating system or the QuRT system of Qualcomm.
  • the baseband subsystem may be integrated into one or more chips, which may be referred to as baseband processing chips or baseband chips.
  • the baseband subsystem can be used as a separate chip, which can be called a modem or a modem chip.
  • Baseband subsystems can be manufactured and sold in units of modem chips. Modem chips are also sometimes called baseband processors or mobile processors.
  • the baseband subsystem can also be further integrated in a larger chip, manufactured and sold in a larger chip unit. This larger chip may be called a system-on-a-chip, system-on-a-chip, or system on a chip (SoC), or simply a SoC chip.
  • SoC system on a chip
  • the software components of the baseband subsystem can be built into the hardware components of the chip before the chip leaves the factory, or can be imported into the hardware components of the chip from other non-volatile memory after the chip leaves the factory, or can also be downloaded online through the network. and update these software components.
  • the communication device also includes memory, such as the memory and mass storage in FIG. 3 .
  • memory can be divided into volatile memory (volatile memory) and non-volatile memory (non-volatile memory, NVM).
  • Volatile memory refers to memory in which data stored inside is lost when the power supply is interrupted.
  • volatile memory is mainly random access memory (random access memory, RAM), including static random access memory (static RAM, SRAM) and dynamic random access memory (dynamic RAM, DRAM).
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • Non-volatile memory refers to memory whose internal data will not be lost even if the power supply is interrupted.
  • Common non-volatile memories include read only memory (ROM), optical disks, magnetic disks, and various memories based on flash memory technology.
  • ROM read only memory
  • mass storage can choose non-volatile memory, such as flash memory.
  • FIG. 4 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • Figure 4 shows some common components used in radio frequency signal processing in a communication device. It should be understood that although FIG. 4 only shows one radio frequency receiving channel and one radio frequency transmitting channel, the communication device in the embodiment of the present application is not limited to this, and the communication device may include one or more radio frequency receiving channels and one or more radio frequency emission channel.
  • the RF transmit channel may include modules such as a digital to analog converter (DAC) and a mixer, and the output signal of the RF transmit channel is also processed by modules such as PA and filters before being transmitted through the antenna.
  • DAC digital to analog converter
  • the radio frequency receiving channel can use modules such as mixers, filters and analog to digital converters (ADC), and the antenna received by the radio frequency receiving channel from the antenna can also be processed by modules such as low noise amplifiers (LNA). deal with.
  • FIG. 4 is just an example, and the modules included in the radio frequency receiving channel and the radio frequency transmitting channel are not listed one by one in this embodiment of the present application.
  • ET power module and the DPD core may be located in the radio frequency transmission channel, or may be located outside the radio frequency transmission channel.
  • FIG. 5 it is a schematic structural diagram of a communication apparatus applicable to an embodiment of the present application.
  • the communication device includes at least two radio frequency transmission channels: a first radio frequency transmission channel 501 and a second radio frequency transmission channel 502 , and modules such as mixers and DACs in the first radio frequency transmission channel 501 ; the second radio frequency transmission channel 502 Including mixer, DAC and other modules.
  • the communication device shown in FIG. 5 may be an RFIC, and the communication device shown in FIG. 5 may also be externally connected to other modules to realize the sending and receiving of radio frequency signals.
  • the output end of the first radio frequency transmission channel 501 is connected to the first PA 5011, and the second radio frequency transmission channel 502 is connected to the second PA 5021.
  • the first PA 5011 may be located in the first radio frequency transmission channel 501, or may be independent of the first radio frequency transmission channel 501; the corresponding second PA 5021 may be located in the second radio frequency transmission channel 502, or may be independent of the second radio frequency transmission channel 502.
  • FIG. 5 also includes other modules, such as the first DPD core 504 corresponding to the first radio frequency transmission channel, the second DPD core 505 corresponding to the second radio frequency transmission channel and other modules, which will not be listed one by one here.
  • the operating bandwidth of the first radio frequency transmission channel 501 is switched between the first bandwidth and the second bandwidth, and the operating bandwidth of the second radio frequency transmission channel 502 is the first bandwidth.
  • the first bandwidth is not equal to the second bandwidth, for example, the first bandwidth may be greater than the second bandwidth.
  • the center frequency of the first bandwidth is different from the center frequency of the second bandwidth, for example, the center frequency of the first bandwidth is 3.5 GHz; the center frequency of the second bandwidth is 2.1 GHz.
  • the above is just an example, and the specific values of the center frequency point of the first bandwidth and the center frequency point of the second bandwidth can be determined according to the actual situation, and examples will not be given one by one here.
  • the first radio frequency transmission channel 501 may be the bandwidth switching performed when a control instruction for performing bandwidth switching is received. Specifically, how to receive the control instruction and the specific format of the control instruction are not limited in the embodiments of the present application. .
  • the first radio frequency transmission channel 501 can continuously operate between a bandwidth with a center frequency of 3.5 GHz and a bandwidth with a center frequency of 2.1 GHz according to a control command. Quickly switch between.
  • SU Super Uplink
  • the first PA 5011 when the first radio frequency transmission channel 501 switches between different bandwidths, the first PA 5011 can be compensated in different ways, so that it is not necessary to A DPD core 504 is loaded with predistortion coefficient LUTs corresponding to different bandwidths, thereby reducing the switching delay and improving the working efficiency of the PA and the linearity of the system.
  • predistortion coefficient LUT For the specific content of the predistortion coefficient LUT, reference may be made to the description in the prior art, and the specific implementation manner of the predistortion coefficient LUT is not limited in the embodiments of the present application.
  • the first DPD core 504 when the first radio frequency transmission channel 501 operates at the first bandwidth, the first DPD core 504 can output the signal after digital predistortion processing to the first radio frequency transmission Channel 501, the first radio frequency transmission channel 501 processes the received signal and outputs the first signal. That is to say, the first signal output by the first radio frequency transmission channel 501 is a signal after digital pre-distortion processing.
  • the first DPD core 504 may pre-store the predistortion coefficient LUT corresponding to the first bandwidth.
  • the predistortion coefficient LUT performs digital predistortion processing on the input signal.
  • the first radio frequency transmit channel 501 When the first radio frequency transmit channel 501 operates at the first bandwidth, the first radio frequency transmit channel 501 is configured to provide the first PA 5011 with a digitally predistorted signal.
  • the first PA 5011 is used to amplify the signal output by the first radio frequency transmission channel 501, that is, to amplify the first signal.
  • the first power supply module 503 is configured to provide a power supply voltage with a non-envelope waveform to the first PA, that is, the waveform of the power supply voltage of the first PA 5011 is a non-envelope waveform.
  • the first power module 503 can output a fixed voltage to supply power to the first PA 5011.
  • the waveform of the power supply voltage of the first PA 5011 is a straight line, and the fixed voltage can be the rated value of the first PA 5011. voltage.
  • the first power supply module 503 may also use an average power tracking (Average Power Tracking, APT) mode to supply power to the first PA 5011, and at this time, the power supply voltage of the first PA 5011 jumps between multiple voltages in different time periods , such as jumping from 3V to 5V, and then jumping from 5V to 4V, etc., depending on the actual situation.
  • APT Average Power Tracking
  • the first radio frequency transmit channel 501 When the first radio frequency transmit channel 501 operates at the second bandwidth, the first radio frequency transmit channel is configured to provide the first PA with a signal without digital pre-distortion processing.
  • the first DPD core 504 is configured to bypass the input end of the first PA 5011, and no longer performs digital pre-distortion processing on the radio frequency signal input to the first radio frequency transmission channel 501.
  • the signal input to the first RF transmission channel 501 is no longer processed by the first DPD core 504, that is, the second signal input to the first PA 5011 is the signal that has not undergone digital predistortion processing.
  • the first power supply module 503 is configured to provide the first PA 503 with a power supply voltage whose waveform is an envelope waveform, and the waveform of the power supply voltage provided by the first power supply module 503 is an envelope waveform;
  • the first PA 5011 is used to amplify the signal output by the first radio frequency transmission channel 501, that is, to amplify the second signal.
  • the reason why the first power supply module 503 can provide the voltage of the envelope waveform is because the first power supply module 503 uses the envelope tracking (Envelope Tracking, ET) technology to generate the power supply voltage.
  • the envelope tracking LUT corresponding to the first bandwidth may be pre-stored in the first power module 503.
  • the first power module 503 may use the same
  • the envelope tracking LUT corresponding to the two bandwidths generates the power supply voltage provided for the first PA 5011.
  • the second DPD core 505 in the second radio frequency transmission channel 502 may be used to perform digital predistortion processing on the input signal.
  • the predistortion coefficient LUT corresponding to the first bandwidth may be pre-stored in the second DPD core 505, so that the predistortion coefficient LUT corresponding to the first bandwidth may be used to perform digital predistortion processing on the input signal.
  • the second PA 5021 in the second radio frequency transmission channel 502 can be used to amplify the signal after the digital predistortion process is performed on the second DPD core 505 .
  • a fixed voltage can be used, for example, the rated power supply voltage of the second PA 5021 is used to supply power to the second PA 5021, the APT technology can also be used to supply power to the second PA 5021, and the ET technology can also be used to supply power to the second PA 5021.
  • the first radio frequency transmission channel when the first radio frequency transmission channel is switched between different bandwidths, in order to not only ensure fast switching of the bandwidth, but also reduce the nonlinear distortion of the first PA in the first radio frequency transmission channel, the first radio frequency transmission channel can be
  • the channels work in different bandwidths
  • the nonlinear distortion of the first PA is reduced in different ways.
  • digital pre-distortion processing may be performed on the input signal of the first PA when the first bandwidth is operating, and the power supply voltage of the envelope waveform may be provided for the first PA when the second bandwidth is operating.
  • the bandwidth can be quickly switched and the energy efficiency of the first PA can be guaranteed.
  • the RF channel linearization in the uplink high dynamic switching scenario can be realized with the lowest control overhead; and the DPD core does not need to store all the predistortion coefficient LUTs, and the ET power module does not need to store all the envelope tracking LUTs. , so that the linearization performance of the system can be improved and the transmission efficiency of the system can be improved at the same time without increasing the internal storage space of the DPD core and the ET power module.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the output end of the first radio frequency transmission channel 501 is connected to one PA.
  • the output end of the first radio frequency transmission channel 501 may also be selectively connected to two PAs.
  • FIG. 6 The structures of FIG. 6 and FIG. 5 are similar, the difference is that the output end of the first radio frequency transmission channel 501 is coupled to the first PA 5011 and the third PA 5012.
  • the voltage input terminal of the third PA 5012 is connected to the output terminal of the first power supply module 503 .
  • the first power supply module 503 may be a collection of multiple power supply modules, or may be an independent power supply module.
  • the first power supply module 503 may be a set of a plurality of power supply modules, it may be a set of power supply modules capable of supplying a power supply voltage of an envelope waveform and a set of power supply modules capable of supplying a power supply voltage of a non-envelope waveform.
  • the first radio frequency transmission channel 501 when the first radio frequency transmission channel 501 operates at the first bandwidth, the first radio frequency transmission channel 501 is configured to provide the first PA 5011 with a signal after digital pre-distortion processing, and the first radio frequency transmission channel 501
  • a power supply module 503 is configured to provide a non-envelope waveform power supply voltage to the first PA; the third PA5012 is configured to bypass the output of the first RF transmit channel 501, the first PA5011 is configured to be connected to the output end of the first radio frequency transmission channel 501; the waveform of the power supply voltage of the first PA5011 is a non-envelope waveform; the first PA5011 is used for the first radio frequency transmission channel 501
  • the outputted first signal is amplified, and the first signal is a signal after digital predistortion processing.
  • the first radio frequency transmit channel 501 When the first radio frequency transmit channel 501 operates at the second bandwidth, the first radio frequency transmit channel is configured to provide the third PA with a signal without digital pre-distortion processing; the third PA 5012 is is configured to be connected to the output end of the first radio frequency transmission channel 501, and the first PA 5011 is configured to bypass the output end of the first radio frequency transmission channel; the first power supply module 503 is used for all The third PA5012 provides a power supply voltage, and the waveform of the power supply voltage provided by the first power supply module is an envelope waveform; the third PA5012 is used for amplifying the second signal output by the first radio frequency transmission channel 501. , the second signal is a signal that has not undergone digital pre-distortion processing.
  • the second PA 5021 when the second PA 5021 amplifies the signal, it needs an external power supply to work, and the voltage input end of the second PA 5021 can also be connected to the second power supply module 506, That is, the second power supply module 506 provides the power supply voltage for the second PA 5021.
  • the waveform of the power supply voltage provided by the second power supply module 506 is an envelope waveform.
  • the reason why the second power module 506 can provide the voltage of the envelope waveform is because the second power module 506 can generate the power supply voltage by using the ET technology.
  • the envelope tracking LUT corresponding to the first bandwidth may be pre-stored in the second power supply module 506.
  • the second power supply module 506 may use the same LUT as the first bandwidth.
  • An envelope tracking LUT corresponding to a bandwidth generates a supply voltage for the second PA 5021.
  • the foregoing embodiments describe how to process the output signal of the first radio frequency transmission channel 501 when the first radio frequency transmission channel 501 operates in different bandwidths.
  • the voltage waveform input by the voltage input terminal of the first PA 5011 is a straight line, that is, the input voltage is a fixed voltage, such as 5V;
  • the voltage waveform input from the voltage input terminal of the first PA 5011 or the third PA 5012 is an envelope waveform, that is to say, the input voltage is constantly changing.
  • FIG. 8 Show Show.
  • the voltage waveform input by the voltage input terminal of the second PA 5021 is also described.
  • the voltage input by the voltage input terminal of the second PA 5021 is taken as an example for description as a fixed voltage.
  • the second power module 506 provides the power supply voltage for the second PA 5021
  • the voltage input by the voltage input terminal of the second PA 5021 can be referred to as shown in FIG. 9 .
  • the voltage waveform input by the voltage input terminal of the first PA 5011 is continuously switched between the fixed voltage and the envelope waveform as the bandwidth of the first radio frequency transmission channel 501 is switched.
  • the voltage waveform input by the voltage input terminal of the second PA 5021 is a straight line in FIG. 8 and an envelope waveform in FIG. 9 .
  • FIG. 10 is a schematic flowchart of a signal processing method provided by an embodiment of the present application.
  • the method may be implemented by a communication device including a first power supply module, a first PA, a third PA, and a first radio frequency transmission channel in the foregoing technical solution, and the communication device may be a terminal or a base station.
  • the method may include:
  • Step 1001 when the first radio frequency transmission channel works at the first bandwidth, amplify the first signal output by the first radio frequency transmission channel through the first PA;
  • the third PA is configured to bypass the output end of the first radio frequency transmission channel, and the first PA is configured to be connected to the output end of the first radio frequency transmission channel;
  • the first signal For the signal after digital predistortion processing the waveform of the power supply voltage of the first PA is a non-envelope waveform.
  • Step 1002 when the first radio frequency transmission channel operates at the second bandwidth, amplify the second signal output by the first radio frequency transmission channel through a third PA.
  • the third PA is configured to be connected from the output end of the first radio frequency transmission channel, and the first PA is configured to bypass the output end of the first radio frequency transmission channel;
  • the second signal is a signal that has not undergone digital pre-distortion processing, the power supply voltage of the third PA is provided by the first power supply module, and the waveform of the power supply voltage provided by the first power supply module is an envelope waveform; the first bandwidth is greater than the second bandwidth.
  • the method before the amplifying the first signal by the first PA, the method further includes: checking the signal input to the first radio frequency transmission channel by the first digital predistortion DPD A digital predistortion process is performed to obtain the first signal.
  • the method before the amplifying processing of the second signal by the first PA, the method further includes: configuring the DPD core located at the first digital predistortion to The input is bypassed.
  • the center frequency of the first bandwidth is different from the center frequency of the second bandwidth.
  • the center frequency of the first bandwidth is 3.5 GHz; the center frequency of the second bandwidth is 2.1 GHz.
  • the communication device further includes a second DPD core, a second radio frequency transmission channel, and the second radio frequency transmission channel includes a second PA; the method further includes: the second radio frequency transmission When the channel works at the first bandwidth, digital pre-distortion processing is performed on the signal input to the second radio frequency transmission channel through the second DPD check; digital pre-distortion processing is performed on the second DPD core through the second PA. The distorted signal is amplified.
  • the communication device further includes a second power supply module
  • the method further includes: providing a power supply voltage to the second PA through the second power supply module, and the second power supply module provides a power supply voltage to the second PA.
  • the waveform of the power supply voltage is an envelope waveform.
  • the first power module is a power module using envelope tracking ET technology.
  • the second power module is a power module using envelope tracking ET technology.
  • FIG. 11 is a schematic flowchart of a signal processing method provided by an embodiment of the present application.
  • the method may be implemented by a communication device including a first power supply module and a first radio frequency transmission channel in the foregoing technical solution, and the communication device may be a terminal or a base station.
  • the method may include:
  • Step 1101 When the first radio frequency transmission channel operates at the first bandwidth, amplify the first signal output by the first radio frequency transmission channel through the first PA.
  • the first signal is a signal after digital predistortion processing, and the waveform of the power supply voltage of the first PA is a non-envelope waveform.
  • Step 1102 When the first radio frequency transmission channel operates at the second bandwidth, amplify the second signal output by the first radio frequency transmission channel through the first PA.
  • the second signal is a signal without digital pre-distortion processing
  • the power supply voltage of the first PA is provided by the first power supply module
  • the waveform of the power supply voltage provided by the first power supply module is an envelope waveform ; the first bandwidth is greater than the second bandwidth.
  • the method before the amplifying the first signal by the first PA, the method further includes: checking the signal input to the first radio frequency transmission channel by the first digital predistortion DPD A digital predistortion process is performed to obtain the first signal.
  • the method before the amplifying processing of the second signal by the first PA, the method further includes: configuring the DPD core located at the first digital predistortion to The input is bypassed.
  • the center frequency of the first bandwidth is different from the center frequency of the second bandwidth.
  • the center frequency of the first bandwidth is 3.5 GHz; the center frequency of the second bandwidth is 2.1 GHz.
  • the communication device further includes a second DPD core, a second radio frequency transmission channel, and the second radio frequency transmission channel includes a second PA; the method further includes: the second radio frequency transmission When the channel works at the first bandwidth, digital pre-distortion processing is performed on the signal input to the second radio frequency transmission channel through the second DPD check; digital pre-distortion processing is performed on the second DPD core through the second PA. The distorted signal is amplified.
  • the communication device further includes a second power supply module
  • the method further includes: providing a power supply voltage to the second PA through the second power supply module, and the second power supply module provides a power supply voltage to the second PA.
  • the waveform of the power supply voltage is an envelope waveform.
  • the first power module is a power module using envelope tracking ET technology.
  • the second power module is a power module using envelope tracking ET technology.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Abstract

一种信号处理方法及装置,包括:第一射频发射通道工作在第一带宽时,第一射频发射通道被配置为向第一PA提供数字预失真处理后的信号,第一电源模块被配置为向第一PA提供非包络波形的电源电压;第一PA,用于对第一射频发射通道输出的第一信号进行放大处理;第一射频发射通道工作在第二带宽时,第一电源模块被配置为向第一PA提供波形为包络波形的电源电压;第一射频发射通道被配置为向所述第一PA提供未经数字预失真处理的信号。上述方案中,由于在带宽切换时,不需要调整数字预失真处理所需的LUT,也不需要调整生成包络波形的电源电压所需的LUT,因此能够实现带宽的快速切换,也能降低第一射频发射通道的输出信号的非线性失真。

Description

一种信号处理方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种信号处理方法及装置。
背景技术
射频功率放大器(Power Amplifier,PA),是现代通信设备中非常重要的一个器件,其主要功能,是负责将输入的小功率信号通过直流功能的方式,放大到通信系统标准所规定的额定功率档位,然后馈入后端器件,如双工器,天线等进行无线发射。由于PA硬件本身的特点,PA在工作时通常呈现出非常强烈的非线性特性,这种非线性特性会造成恶化信号的传输质量,并造成信号的非线性失真等问题。为此,可以通过数字预失真(Digital Pre-Distortion,DPD)技术以及包络跟踪(Envelope Tracking,ET)技术降低PA的非线性增益。在DPD技术中,通过非线性行为模型对PA的非线性特性进行拟合,然后获得PA非线性特性对应的预失真系数,预失真系数存储在预失真系数查找表(Look-Up-Table,LUT)中,预失真系数LUT可以加载到DPD核(core),使得DPD核具有与PA相反的非线性特性。当信号会经过DPD核及PA这两个非线性特性相反的模块,彼此的非线性特性相互抵消,从而最终获得线性的输出。
在ET技术中,通过ET电源模块对PA进行供电,ET电源模块可以根据PA输入的射频信号的包络变化而变化的。在射频信号的包络较大的时候,提供较高的供电电压,在包络较小的时候,给出较低的供电电压。因此可以大幅度降低PA的功耗,显著提升PA的能量转换效率。
由于PA在不同工作条件下,如频点、功率、温度、带宽等所表征的非线性特性具有非常大的区别,而不同的PA或者同一PA连接不同的射频通道时,DPD核需要配置不同的预失真系数LUT来进行适配。举例来说,如图1所示,存在2个预失真系数LUT,分别为预失真系数LUT1和预失真系数LUT2,通过控制信号,可以在PA工作在带宽1时,控制DPD核加载与带宽1对应的预失真系数LUT1对输入的射频信号进行数字预失真处理;PA工作在带宽2时,控制DPD核加载带宽2对应的预失真系数LUT2对输入的射频信号进行数字预失真处理,从而有效降低PA的非线性失真。
相应的,ET电源模块也要根据频点、功率、温度、带宽等因素适配不同的包络跟踪LUT。由于DPD核中的预失真系数LUT以及ET电源模块中的包络跟踪LUT需要在不同情况下进行适配,适配预失真系数LUT以及包络跟踪LUT,不仅控制开销大,而且无法应用在快速射频通道切换的场景。例如,终端需要在一个时隙内,进行两个频点间的快速切换,如在3.5GHz和2.1GHz之间进行切换;再例如在超级上行(Super Uplink,SU)场景中,终端设备的一个射频通道根据实时的信令控制,工作频点需要不断在3.5GHz与2.1GHz之间进行快速切换。如前所述,此在这种场景下,DPD核中的预失真系数LUT以及ET电源模块中的包络跟踪LUT需要不停的在不同工作频点间快速切换,这种切换,会大幅度的增加系统整体的控制负载,但是如果不进行切换,就会导致PA工作效能下降。
为此,在快速射频通道切换的场景中,如何在保证能够实现在不同工作频点间快速切换的同时,保证PA的工作性能,是一个亟需解决的问题。
发明内容
本申请实施方式的目的在于提供一种信号处理方法及装置,用以改善PA的工作性能。
应理解,本申请实施例提供的方案中,通信装置可以是无线通信设备,也可以是无线通信设备中的部分器件,如系统芯片或通信芯片等集成电路产品。无线通信设备可以是支持无线通信功能的计算机设备。
具体地,无线通信设备可以是诸如智能手机这样的终端,也可以是诸如基站这样的无线接入网设备。系统芯片也可称为片上系统(system on chip,SoC),或简称为SoC芯片。通信芯片可包括基带处理芯片和射频处理芯片。基带处理芯片有时也被称为调制解调器(modem)或基带芯片。射频处理芯片有时也被称为射频收发机(transceiver)或射频芯片。在物理实现中,通信芯片中的部分芯片或者全部芯片可集成在SoC芯片内部。例如,基带处理芯片集成在SoC芯片中,射频处理芯片不与SoC芯片集成。
第一方面,提供了一种通信装置,包括:第一电源模块和第一射频发射通道;其中,所述第一射频发射通道和所述第一电源模块分别与第一功率放大器PA耦合;当所述第一射频发射通道工作在第一带宽时,所述第一射频发射通道被配置为向所述第一PA提供数字预失真处理后的信号,所述第一电源模块被配置为向所述第一PA提供非包络波形的电源电压;当所述第一射频发射通道工作在第二带宽时,所述第一射频发射通道被配置为向所述第一PA提供未经数字预失真处理的信号,所述第一电源模块被配置为向所述第一PA提供波形为包络波形的电源电压。
通过上述方案,第一射频发射通道在不同带宽之间进行切换时,为了即能够保证带宽的快速切换,又能够降低第一射频发射通道的输出信号的非线性失真,可以在第一射频发射通道工作在不同带宽时,使用不同方式降低第一PA的非线性失真。具体的,可以在工作第一带宽时,对第一PA的输入信号进行数字预失真处理,在工作第二带宽时,为第一PA提供包络波形的电源电压。由于在带宽切换时,不需要调整数字预失真处理所需的LUT,也不需要调整生成包络波形的电源电压所需的LUT,因此能够实现带宽的快速切换,也能保证第一PA的能效。
第二方面,提供了一种通信装置,包括:第一电源模块和第一射频发射通道;其中,所述第一射频发射通道和所述第一电源模块分别与第一功率放大器PA和第三PA耦合;当所述第一射频发射通道工作在第一带宽时,所述第一射频发射通道被配置为向所述第一PA提供数字预失真处理后的信号,所述第一电源模块被配置为向所述第一PA提供非包络波形的电源电压;当所述第一射频发射通道工作在第二带宽时,所述第一射频发射通道被配置为向所述第三PA提供未经数字预失真处理的信号,所述第一电源模块被配置为向所述第三PA提供波形为包络波形的电源电压。
通过上述方案,第一射频发射通道工作在第一带宽时,对第一射频通道的射频信号进行数字预失真处理,可以降低非线性失真;第一射频发射通道工作在第二带宽时,虽然没有对第一射频通道的射频信号进行数字预失真处理,但是对输出信号进行放大处理的第三PA是采用包络波形的电源电压进行供电,从而可以降低非线性失真。上述方案中,由于在带宽切换时,不需要调整数字预失真处理所需的LUT,也不需要调整生成包络波形的电源电压所需的LUT,因此能够实现带宽的快速切换,也能降低第一射频发射通道的输出信号的非线性失真。
一种可能的设计中,所述装置还包括第一数字预失真DPD核;当所述第一射频发射通道工作在所述第一带宽时,所述第一DPD核,用于对输入所述第一射频发射通道的信号进行数字预失真处理;当所述第一射频发射通道工作在所述第二带宽时,所述第一DPD核,被配置为从所述第一PA的输入端旁路。
上述方案中,能够以最低的控制开销,实现上行高动态切换场景下的射频通道线性化;而且DPD核不需要存储所有的预失真系数LUT,从而可以在不增加DPD核的内部存储空间的条件下,提升系统的线性化性能并同时提升系统的发送效率。
一种可能的设计中,所述第一DPD核采用与所述第一带宽对应的预失真系数查找表LUT对所述输入所述第一射频发射通道的信号进行数字预失真处理。
一种可能的设计中,当所述第一射频发射通道工作在第二带宽时,所述第一电源模块采用与所述第二带宽对应的包络跟踪LUT生成为所述第一PA或所述第三PA提供的电源电压。
一种可能的设计中,所述第一带宽的中心频点与所述第二带宽的中心频点不同。
一种可能的设计中,所述第一带宽的中心频点为3.5GHz;所述第二带宽的中心频点为2.1GHz。
一种可能的设计中,所述装置还包括第二DPD核,第二射频发射通道和第二PA;所述第二射频发射通道工作在所述第一带宽时,所述第二DPD核,用于对输入所述第二射频发射通道的信号进行数字预失真处理;所述第二射频发射通道被配置为向所述第二PA提供数字预失真处理后的信号。
一种可能的设计中,所述装置还包括第二电源模块;所述第二电源模块,用于为所述第二PA提供电源电压,所述第二电源模块提供的电源电压的波形为包络波形。
上述方案中,通过第二电源模块为第二PA提供包络波形的电源电压,可以进一步降低第二射频发射通道输出信号的非线性失真,提高系统效率。
一种可能的设计中,所述第一带宽大于所述第二带宽。
一种可能的设计中,所述第一PA位于所述通信装置中。
一种可能的设计中,所述第一电源模块为采用包络跟踪ET技术的电源模块。
一种可能的设计中,所述第二电源模块为采用包络跟踪ET技术的电源模块。
第三方面,提供了一种方法,应用于包括第一电源模块和第一射频发射通道的通信装置;其中,所述第一射频发射通道和所述第一电源模块分别与第一功率放大器PA耦合;所述方法包括:当所述第一射频发射通道工作在第一带宽时,通过所述第一射频发射通道向所述第一PA输出经过数字预失真处理后的信号;其中,第一电源模块被配置为向所述第一PA提供非包络波形的电源电压;当所述第一射频发射通道工作在第二带宽时,通过所述第一射频发射通道向所述第一PA提供未经数字预失真处理的信号;其中,所述第一电源模块被配置为向所述第一PA提供波形为包络波形的电源电压。
第四方面,提供了一种方法,应用于包括第一电源模块和第一射频发射通道的通信装置;其中,所述第一射频发射通道和所述第一电源模块分别与第一功率放大器PA和第三PA耦合;所述方法包括:当所述第一射频发射通道工作在第一带宽时,通过所述第一射频发射通道为向所述第一PA提供数字预失真处理后的信号;所述第一电源模块被配置为向所述第一PA提供非包络波形的电源电压;当所述第一射频发射通道工作在第二带宽时,所述第一射频发射通道被配置为向所述第三PA提供未经数字预失真处理的信号;所述第 一电源模块被配置为向所述第三PA提供波形为包络波形的电源电压。
一种可能的设计中,所述通信装置还包括第一数字预失真DPD核;当所述第一射频发射通道工作在所述第一带宽时,通过所述第一DPD核对输入所述第一射频发射通道的信号进行数字预失真处理。
一种可能的设计中,所述第一DPD核采用与所述第一带宽对应的预失真系数查找表LUT对所述输入所述第一射频发射通道的信号进行数字预失真处理。
一种可能的设计中,所述第一带宽的中心频点与所述第二带宽的中心频点不同。
一种可能的设计中,所述第一带宽的中心频点为3.5GHz;所述第二带宽的中心频点为2.1GHz。
一种可能的设计中,所述通信装置还包括第二DPD核,第二射频发射通道和第二PA;所述第二射频发射通道工作在所述第一带宽时,通过所述第二DPD核对输入所述第二射频发射通道的信号进行数字预失真处理;通过所述第二射频发射通道向所述第二PA输出数字预失真处理后的信号。
一种可能的设计中,所述通信装置还包括第二电源模块;通过所述第二电源模块为所述第二PA提供电源电压,所述第二电源模块提供的电源电压的波形为包络波形。
一种可能的设计中,所述第一带宽大于所述第二带宽。
一种可能的设计中,所述第一PA位于所述通信装置中。
一种可能的设计中,所述第一电源模块为采用包络跟踪ET技术的电源模块。
一种可能的设计中,所述第二电源模块为采用包络跟踪ET技术的电源模块。
第五方面,提供了一种通信装置,包括:第一电源模块,第一功率放大器PA以及第一射频发射通道;其中,所述第一射频发射通道和所述第一电源模块分别与所述第一PA耦合;当所述第一射频发射通道工作在第一带宽时,所述第一PA的电源电压的波形为非包络波形;所述第一PA,用于对所述第一射频发射通道输出的第一信号进行放大处理,所述第一信号为经过数字预失真处理后的信号;当所述第一射频发射通道工作在第二带宽时,所述第一电源模块用于为所述第一PA提供电源电压,所述第一电源模块提供的电源电压的波形为包络波形;所述第一PA,用于对所述第一射频发射通道输出的第二信号进行放大处理,所述第二信号为未经过数字预失真处理的信号;所述第一带宽大于所述第二带宽。
第六方面,提供了一种通信装置,包括:第一电源模块、第一功率放大器PA、第三PA以及第一射频发射通道;其中,所述第一射频发射通道和所述第一电源模块分别与所述第一PA、第三PA耦合,所述第一PA或所述第三PA用于对所述第一射频发射通道输出的信号进行放大处理;当所述第一射频发射通道工作在第一带宽时,所述第三PA被配置为从所述第一射频发射通道的输出端旁路,所述第一PA被配置为与所述第一射频发射通道的输出端连接;所述第一PA的电源电压的波形为非包络波形;所述第一PA,用于对所述第一射频发射通道输出的第一信号进行放大处理,所述第一信号为经过数字预失真处理后的信号;当所述第一射频发射通道工作在第二带宽时,所述第三PA被配置为与所述第一射频发射通道的输出端连接,所述第一PA被配置为从所述第一射频发射通道的输出端旁路;所述第一电源模块,用于为所述第三PA提供电源电压,所述第一电源模块提供的电源电压的波形为包络波形;所述第三PA,用于对所述第一射频发射通道输出的第二信号进行放大处理,所述第二信号为未经过数字预失真处理的信号;所述第一带宽大于所述第 二带宽。
一种可能的设计中,所述装置还包括第一数字预失真DPD核;当所述第一射频发射通道工作在所述第一带宽时,所述第一DPD核,用于对输入的信号进行数字预失真处理,以获得所述第一信号;当所述第一射频发射通道工作在所述第二带宽时,所述第一DPD核,被配置为从所述第一PA的输入端旁路。
一种可能的设计中,所述第一DPD核采用与所述第一带宽对应的预失真系数查找表LUT对所述输入的信号进行数字预失真处理。
一种可能的设计中,所述第一电源模块采用与所述第二带宽对应的包络跟踪LUT生成为所述第一PA提供的电源电压。
一种可能的设计中,所述第一带宽的中心频点与所述第二带宽的中心频点不同。
一种可能的设计中,所述第一带宽的中心频点为3.5GHz;所述第二带宽的中心频点为2.1GHz。
一种可能的设计中,所述装置还包括第二DPD核,第二射频发射通道和第二PA;所述第二射频发射通道工作在所述第一带宽时,所述第二DPD核,用于对输入所述第二射频发射通道的信号进行数字预失真处理;所述第二PA,用于对所述第二DPD核进行数字预失真处理后的信号进行放大处理。
一种可能的设计中于,所述装置还包括第二电源模块;所述第二电源模块,用于为所述第二PA提供电源电压,所述第二电源模块提供的电源电压的波形为包络波形。
一种可能的设计中,所述第一电源模块为采用包络跟踪ET技术的电源模块。
一种可能的设计中,所述第二电源模块为采用包络跟踪ET技术的电源模块。
第七方面,提供了一种方法,应用于包括第一电源模块以及第一射频发射通道的通信装置,其中,所述第一射频发射通道和所述第一电源模块分别与所述第一PA耦合,所述第一PA用于对所述第一射频发射通道输出的信号进行放大处理,所述方法包括:
当所述第一射频发射通道工作在所述第一带宽时,通过所述第一PA对所述第一射频发射通道输出的第一信号进行放大处理;其中,所述第一信号为经过数字预失真处理后的信号,所述第一PA的电源电压的波形为非包络波形;当所述第一射频发射通道工作在所述第二带宽时,通过所述第一PA对所述第一射频发射通道输出的第二信号进行放大处理;其中,所述第二信号为未经过数字预失真处理的信号,所述第一PA的电源电压由所述第一电源模块提供,所述第一电源模块提供的电源电压的波形为包络波形;所述第一带宽大于所述第二带宽。
第八方面,提供了一种方法,应用于包括第一电源模块、第一功率放大器PA、第三PA以及第一射频发射通道的通信装置,其中,所述第一射频发射通道和所述第一电源模块分别与第一PA、第三PA耦合,所述第一PA或所述第三PA用于对所述第一射频发射通道输出的信号进行放大处理;所述方法包括:当所述第一射频发射通道工作在所述第一带宽时,所述第三PA被配置为从所述第一射频发射通道的输出端旁路,所述第一PA被配置为与所述第一射频发射通道的输出端连接;通过所述第一PA对所述第一射频发射通道输出的第一信号进行放大处理;其中,所述第一信号为经过数字预失真处理后的信号,所述第一PA的电源电压的波形为非包络波形;当所述第一射频发射通道工作在所述第二带宽时,所述第三PA被配置为从所述第一射频发射通道的输出端连接,所述第一PA被配置为 与所述第一射频发射通道的输出端旁路;通过所述第三PA对所述第一射频发射通道输出的第二信号进行放大处理;其中,所述第二信号为未经过数字预失真处理的信号,所述第三PA的电源电压由所述第一电源模块提供,所述第一电源模块提供的电源电压的波形为包络波形;所述第一带宽大于所述第二带宽。
一种可能的设计中,所述通过所述第一PA对第一信号进行放大处理之前,所述方法还包括:通过第一数字预失真DPD核对输入所述第一射频发射通道的信号进行数字预失真处理,以获得所述第一信号。
一种可能的设计中,所述通过所述第一PA对第二信号进行放大处理之前,所述方法还包括:将位于第一数字预失真DPD核配置为从所述第一PA的输入端旁路。
一种可能的设计中,所述第一带宽的中心频点与所述第二带宽的中心频点不同。
一种可能的设计中,所述第一带宽的中心频点为3.5GHz;所述第二带宽的中心频点为2.1GHz。
一种可能的设计中,所述通信装置还包括第二DPD核,第二射频发射通道,所述第二射频发射通道包括第二PA;所述方法还包括:所述第二射频发射通道工作在所述第一带宽时,通过所述第二DPD核对输入所述第二射频发射通道的信号进行数字预失真处理;通过所述第二PA对由所述第二DPD核进行数字预失真处理后的信号进行放大处理。
一种可能的设计中,所述通信装置还包括第二电源模块,所述方法还包括:通过所述第二电源模块为所述第二PA提供电源电压,所述第二电源模块提供的电源电压的波形为包络波形。
一种可能的设计中,所述第一电源模块为采用包络跟踪ET技术的电源模块。
一种可能的设计中,所述第二电源模块为采用包络跟踪ET技术的电源模块。
本申请还提供一种通信装置,包括:处理器和存储器;其中,所述存储器用于存储程序指令;所述处理器用于执行所述存储器中存储的程序指令,以实现第三方面或第四方面中任一种可能的方法。
本申请还提供一种通信装置,包括:处理器和接口电路;其中,所述接口电路用于访问存储器,所述存储器中存储有程序指令;所述处理器用于通过所述接口电路访问所述存储器,并执行所述存储器中存储的程序指令,以实现第三方面或第四方面中任一种可能的方法。
本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得通信装置执行上述任一种可能的设计中的方法。
本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得通信装置执行上述任一种可能的设计中的方法。
本申请提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种可能的设计中的方法。
附图说明
图1为现有技术中的一种预失真系数LUT切换示意图;
图2为本申请实施例提供的一种无线通信系统的结构示意图;
图3为本申请实施例提供的一种通信装置结构示意图;
图4为本申请实施例提供的另一种通信装置结构示意图;
图5为本申请实施例提供的一种射频通道结构示意图;
图6为本申请实施例提供的另一种射频通道结构示意图;
图7为本申请实施例提供的另一种射频通道结构示意图;
图8为本申请实施例提供的一种电压波形示意图;
图9为本申请实施例提供的另一种电压波形示意图;
图10为本申请实施例提供的一种信号处理流程示意图;
图11为本申请实施例提供的一种信号处理流程示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、第五代(5th Generation,5G)系统或新无线(New Radio,NR)等,在此不做限制。
下面结合附图并举实施例,对本申请提供的技术方案作进一步说明。应理解,本申请实施例中提供的系统结构和业务场景主要是为了解释本申请的技术方案的一些可能的实施方式,不应被解读为对本申请的技术方案的唯一性限定。本领域普通技术人员可以知晓,随着系统的演进,以及更新的业务场景的出现,本申请提供的技术方案对于相同或类似的技术问题仍然可以适用。
应理解,本申请实施例提供的技术方案,在以下具体实施例的介绍中,某些重复之处可能不再赘述,但应视为这些具体实施例之间已有相互引用,可以相互结合。
无线通信系统中,设备可分为提供无线网络服务的设备和使用无线网络服务的设备。提供无线网络服务的设备是指那些组成无线通信网络的设备,可简称为网络设备(network equipment),或网络单元(network element)。网络设备通常归属于运营商或基础设施提供商,并由这些厂商负责运营或维护。网络设备还可进一步分为无线接入网(radio access network,RAN)设备以及核心网(core network,CN)设备。典型的RAN设备包括基站(base station,BS)。
应理解,基站有时也可以被称为无线接入点(access point,AP),或发送接收点(transmission reception point,TRP)。具体地,基站可以是5G新无线(new radio,NR)系统中的通用节点B(generation Node B,gNB),4G长期演进(long term evolution,LTE)系统的演进节点B(evolutional Node B,eNB)。根据基站的物理形态或发射功率的不同,基站可被分为宏基站(macro base station)或微基站(micro base station)。微基站有时也被称为小基站或小小区(small cell)。
使用无线网络服务的设备,可简称为终端(terminal)。终端能够与网络设备建立连接,并基于网络设备的服务为用户提供具体的无线通信业务。应理解,由于终端与用户的关系更加紧密,有时也被称为用户设备(user equipment,UE),或订户单元(subscriber unit,SU)。此外,相对于通常在固定地点放置的基站,终端往往随着用户一起移动,有时也被称为移动台(mobile station,MS)。此外,有些网络设备,例如中继节点(relay node,RN) 或者无线路由器等,由于具备UE身份,或者归属于用户,有时也可被认为是终端。
具体地,终端可以是移动电话(mobile phone),平板电脑(tablet computer),膝上型电脑(laptop computer),可穿戴设备(比如智能手表,智能手环,智能头盔,智能眼镜),以及其他具备无线接入能力的设备,如智能汽车,各种物联网(internet of thing,IOT)设备,包括各种智能家居设备(比如智能电表和智能家电)以及智能城市设备(比如安防或监控设备,智能道路交通设施)等。
为了便于表述,本申请中将以基站和终端为例,详细说明本申请实施例的技术方案。
图2为本申请实施例提供的一种无线通信系统的结构示意图。如图2所示,无线通信系统包括终端和基站。按照传输方向的不同,从终端到基站的传输链路记为上行链路(uplink,UL),从基站到终端的传输链路记为下行链路(downlink,DL)。相类似地,上行链路中的数据传输可简记为上行数据传输或上行传输,下行链路中的数据传输可简记为下行数据传输或下行传输。
该无线通信系统中,基站可通过集成或外接的天线设备,为特定地理区域提供通信覆盖。位于基站的通信覆盖范围内的一个或多个终端,均可以接入基站。一个基站可以管理一个或多个小区(cell)。每个小区具有一个身份证明(identification),该身份证明也被称为小区标识(cell identity,cell ID)。从无线资源的角度看,一个小区是下行无线资源,以及与其配对的上行无线资源(非必需)的组合。
应理解,该无线通信系统可以遵从第三代合作伙伴计划(third generation partnership project,3GPP)的无线通信标准,也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。图2中虽然仅示出了一个基站和一个终端,该无线通信系统也可包括其他数目的终端和基站。此外,该无线通信系统还可包括其他的网络设备,比如核心网设备,在此不再逐一举例说明。
终端和基站应知晓该无线通信系统预定义的配置,包括系统支持的无线电接入技术(radio access technology,RAT)以及系统规定的无线资源配置等,比如无线电的频段和载波的基本配置。载波是符合系统规定的一段频率范围。这段频率范围可由载波的中心频率(记为载频)和载波的带宽共同确定。这些系统预定义的配置可作为无线通信系统的标准协议的一部分,或者通过终端和基站间的交互确定。相关标准协议的内容,可能会预先存储在终端和基站的存储器中,或者体现为终端和基站的硬件电路或软件代码。
该无线通信系统中,终端和基站支持一种或多种相同的RAT,例如5G NR,4G LTE,或未来演进系统的RAT。具体地,终端和基站采用相同的空口参数、编码方案和调制方案等,并基于系统规定的无线资源相互通信。
图3为本申请实施例提供的一种通信装置的结构示意图。该通信装置可以是本申请实施例中的终端或者基站。如图3所示,该通信装置可包括多个组件,例如:应用子系统,内存(memory),大容量存储器(massive storge),基带子系统,射频集成电路(radio frequency intergreted circuit,RFIC),射频前端(radio frequency front end,RFFE)器件,以及天线(antenna,ANT)。这些组件可以通过各种互联总线或其他电连接方式耦合。
图3中,ANT_1表示第一天线,ANT_N表示第N天线,N为大于1的正整数。Tx表示发送路径,Rx表示接收路径,不同的数字表示不同的路径。每条路径均可以表示一个信号处理通道。其中,FBRx表示反馈接收路径,PRx表示主接收路径,DRx表示分集接 收路径。HB表示高频,LB表示低频,两者是指频率的相对高低。BB表示基带。应理解,图3中的标记和组件仅为示意目的,仅作为一种可能的实现方式,本申请实施例还包括其他的实现方式。例如,通信装置可以包括更多或更少的路径,包括更多或更少的组件。
其中,应用子系统可作为通信装置的主控制系统或主计算系统,用于运行主操作系统和应用程序,管理整个通信装置的软硬件资源,并可为用户提供用户操作界面。此外,应用子系统中也可包括与其他子系统(例如基带子系统)相关的驱动软件。
应用子系统可包括一个或多个处理器。多个处理器可以多个相同类型的处理器,也可以包括多种类型的处理器组合。本申请中,处理器可以是通用用途的处理器,也可以是为特定领域设计的处理器。例如,处理器可以是中央处理单元(center processing unit,CPU),数字信号处理器(digital signal processor,DSP),或微控制器(micro control unit,MCU)。处理器也可以是图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processing,ISP),音频信号处理器(audio signal processor,ASP),以及为人工智能(artificial intelligence,AI)应用专门设计的AI处理器。AI处理器包括但不限于神经网络处理器(neural network processing unit,NPU),张量处理器(tensor processing unit,TPU)以及被称为AI引擎的处理器。
图3中,射频集成电路(包括RFIC 1,以及一个或多个可选的RFIC 2)和射频前端器件可以共同组成射频子系统。根据信号的接收或发送路径的不同,射频子系统也可以分为射频接收通道(RF receive path)和射频发射通道(RF transmit path)。其中,射频接收通道可通过天线接收射频信号,对该射频信号进行处理(如放大、滤波和下变频)以得到基带信号,并传递给基带子系统。射频发送通道可接收来自基带子系统的基带信号,对基带信号进行处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。射频集成电路可以被称为射频处理芯片或射频芯片。
具体地,射频子系统可包括天线开关,天线调谐器,低噪声放大器(low noise amplifier,LNA),功率放大器(power amplifier,PA),混频器(mixer),本地振荡器(local oscillator,LO)、滤波器(filter)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。射频集成电路可以被称为射频处理芯片或射频芯片。射频前端器件也可以是独立的芯片。射频芯片有时也被称为接收机(receiver)、发射机(transmitter)或收发机(transceiver)。随着技术的演进,天线有时也可以认为是射频子系统的一部分,并可集成到射频子系统的芯片中。天线、射频前端器件和射频芯片都可以单独制造和销售。当然,射频子系统也可以基于功耗和性能的需求,采用不同的器件或者不同的集成方式。例如,将属于射频前端的部分器件集成在射频芯片中,甚至将天线和射频前端器件都集成射频芯片中,该射频芯片也可以称为射频天线模组或天线模组。
与射频子系统主要完成射频信号处理类似,顾名思义,基带子系统主要完成对基带信号的处理。基带子系统可以从基带信号中提取有用的信息或数据比特,或者将信息或数据比特转换为待发送的基带信号。这些信息或数据比特可以是表示语音、文本、视频等用户数据或控制信息的数据。例如,基带子系统可以实现诸如调制和解调,编码和解码等信号处理操作。对于不同的无线接入技术,例如5G NR和4G LTE,基带信号处理操作也不完全相同。
此外,由于射频信号通常是模拟信号,基带子系统处理的信号主要是数字信号,通信装置中还需要有模数转换器件。本申请实施例中,模数转换器件可以设置在基带子系统中, 也可以设置在射频子系统中。模数转换器件包括将模拟信号转换为数字信号的模数转换器(analog to digital converter,ADC),以及将数字信号转换为模拟信号的数模转换器(digital to analog converter,DAC)。
与应用子系统类似,基带子系统也可包括一个或多个处理器。此外,基带子系统还可以包括一种或多种硬件加速器(hardware accelerator,HAC)。硬件加速器可用于专门完成一些处理开销较大的子功能,如数据包(data packet)的组装和解析,数据包的加解密等。这些子功能采用通用功能的处理器也可以实现,但是因为性能或成本的考量,采用硬件加速器可能更加合适。在具体的实现中,硬件加速器主要是用专用集成电路(application specified intergated circuit,ASIC)来实现。当然,硬件加速器中也可以包括一个或多个相对简单的处理器,如MCU。
本申请实施例中,基带子系统和射频子系统共同组成通信子系统,为通信装置提供无线通信功能。通常,基带子系统负责管理通信子系统的软硬件资源,并且可配置射频子系统的工作参数。基带子系统的处理器中可以运行通信子系统的子操作系统,该子操作系统往往是嵌入式操作系统或实时操作系统(real time operating system),例如VxWorks操作系统或高通公司的QuRT系统。
基带子系统可以集成为一个或多个芯片,该芯片可称为基带处理芯片或基带芯片。基带子系统可以作为独立的芯片,该芯片可被称调制解调器(modem)或modem芯片。基带子系统可以按照modem芯片为单位来制造和销售。modem芯片有时也被称为基带处理器或移动处理器。此外,基带子系统也可以进一步集成在更大的芯片中,以更大的芯片为单位来制造和销售。这个更大的芯片可以称为系统芯片,芯片系统或片上系统(system on a chip,SoC),或简称为SoC芯片。基带子系统的软件组件可以在芯片出厂前内置在芯片的硬件组件中,也可以在芯片出厂后从其他非易失性存储器中导入到芯片的硬件组件中,或者还可以通过网络以在线方式下载和更新这些软件组件。
此外,该通信装置中还包括存储器,例如图3中的内存和大容量存储器。此外,在应用子系统和基带子系统中,还可以分别包括一个或多个缓存。具体实现中,存储器可分为易失性存储器(volatile memory)和非易失性存储器(non-volatile memory,NVM)。易失性存储器是指当电源供应中断后,内部存放的数据便会丢失的存储器。目前,易失性存储器主要是随机存取存储器(random access memory,RAM),包括静态随机存取存储器(static RAM,SRAM)和动态随机存取存储器(dynamic RAM,DRAM)。非易失性存储器是指即使电源供应中断,内部存放的数据也不会因此丢失的存储器。常见的非易失性存储器包括只读存储器(read only memory,ROM)、光盘、磁盘以及基于闪存(flash memory)技术的各种存储器等。通常来说,内存和缓存可以选用易失性存储器,大容量存储器可以选用非易失性存储器,例如闪存。
图4为本申请实施例提供的另一种通信装置的结构示意图。图4示出了通信装置中用于射频信号处理的一些常见器件。应理解,图4中虽然只示出了一条射频接收通道和一条射频发射通道,本申请实施例中的通信装置不限于此,通信装置可以包括一条或多条射频接收通道以及一条或多条射频发射通道。其中,射频发射通道可以包括数字-模拟转换器(digital to analog converter,DAC)以及混频器等模块,射频发射通道的输出信号在通过天线发射之前,还通过PA以及滤波器等模块进行处理。射频接收通道可以混频器、滤波器以及模数转换器(analog to digital converter,ADC)等模块,射频接收通道从天线接收 的天线还可以经过低噪声放大器(low noise amplifier,LNA)等模块进行处理。图4只是示例,本申请实施例在此不再一一列举射频接收通道和射频发射通道中所包括的模块。
需要说明的是,ET电源模块以及DPD核可以位于射频发射通道中,也可以位于射频发射通道之外。
实施例一:
结合前面的描述,如图5所示,为适用于本申请实施例的一种通信装置的结构示意图。
参见图5,该通信装置至少包括两个射频发射通道:第一射频发射通道501和第二射频发射通道502,第一射频发射通道501中混频器、DAC等模块;第二射频发射通道502中包括混频器、DAC等模块。
在实际应用中,图5中所示的通信装置可以为RFIC,图5所述的通信装置还可以外接其他模块,以实现射频信号的收发。例如,图5中,第一射频发射通道501的输出端与第一PA 5011连接,第二射频发射通道502与第二PA 5021连接。第一PA 5011可以位于第一射频发射通道501中,也可以独立于第一射频发射通道501;相应的第二PA 5021可以位于第二射频发射通道502中,也可以独立于第二射频发射通道502。
本申请实施例中,第一PA 5011在对信号放大时,需要外部电源供电才能工作,第一PA 5011的电压输入端还可以与第一电源模块503连接,即第一电源模块503为第一PA 5011提供电源电压。图5中还包括其它模块,例如与第一射频发射通道对应的第一DPD核504,与第二射频发射通道对应的第二DPD核505等模块,在此不再一一列举。
本申请实施例中,第一射频发射通道501工作的带宽在第一带宽和第二带宽之间进行切换,第二射频发射通道502工作的带宽为第一带宽。其中,所述第一带宽不等于所述第二带宽,例如所述第一带宽可以大于所述第二带宽。
举例来说,所述第一带宽的中心频点与所述第二带宽的中心频点不同,例如所述第一带宽的中心频点为3.5GHz;所述第二带宽的中心频点为2.1GHz。当然以上只是示例,第一带宽的中心频点与第二带宽的中心频点的具体取值,可以根据实际情况确定,在此不再逐一举例。
需要说明的是,第一射频发射通道501可以是在接收到进行带宽切换的控制指令时,进行的带宽切换,具体如何接收控制指令,控制指令的具体格式,本申请实施例对此并不限定。
举例来说,该通信装置应用在超级上行(Super Uplink,SU)场景中,第一射频发射通道501可以根据控制指令,不断在中心频点为3.5GHz的带宽与中心频点为2.1GHz的带宽之间进行快速切换。
结合前面的描述,本申请实施例中,第一射频发射通道501在不同带宽之间进行切换时,可以通过不同方式对第一PA 5011进行补偿,从而不需要在每次带宽切换时,在第一DPD核504中加载不同带宽对应的预失真系数LUT,从而在降低切换时延的同时,提高PA的工作效能以及系统的线性度。关于预失真系数LUT的具体内容,可以参考现有技术中的描述,本申请实施例对预失真系数LUT的具体实现方式并不限定。
具体的,结合图5,本申请实施例中,当所述第一射频发射通道501工作在第一带宽时,第一DPD核504可以将进行数字预失真处理后的信号输出至第一射频发射通道501,第一射频发射通道501对接收到的信号进行处理,输出第一信号。也就是说,第一射频发射通道501输出的第一信号为经过数字预失真处理后的信号。
需要说明的是,所述第一DPD核504中可以预存第一带宽对应的预失真系数LUT,当所述第一射频发射通道501工作在第一带宽时,采用与所述第一带宽对应的预失真系数LUT对输入的信号进行数字预失真处理。
在第一射频发射通道501工作在第一带宽时,所述第一射频发射通道501被配置为向所述第一PA5011提供数字预失真处理后的信号。
所述第一PA 5011,用于对第一射频发射通道501输出的信号进行放大处理,即对第一信号进行放大处理。
进一步的,所述第一电源模块503被配置为向所述第一PA提供非包络波形的电源电压,即所述第一PA 5011的电源电压的波形为非包络波形。举例来说,在该情况下,第一电源模块503可以输出固定电压为第一PA 5011供电,此时第一PA 5011的电源电压的波形为直线,固定电压例可以为第一PA 5011的额定电源电压。或者,第一电源模块503还可以采用平均功率跟踪(Average Power Tracking,APT)方式为第一PA 5011供电,此时第一PA 5011的电源电压在不同时间段,在多个电压之间跳变,例如从3V跳变至5V,再从5V跳变至4V等,具体根据实际情况确定。
当所述第一射频发射通道501工作在所述第二带宽时,所述第一射频发射通道被配置为向所述第一PA提供未经数字预失真处理的信号。具体的,所述第一DPD核504,被配置为从所述第一PA 5011的输入端旁路,不再对输入第一射频发射通道501的射频信号进行数字预失真处理。此时输入第一射频发射通道501的信号不再经过第一DPD核504的处理,也就是说,输入第一PA 5011的第二信号就是未经过数字预失真处理的信号。
在该情况下,所述第一电源模块503,被配置为向所述第一PA503提供波形为包络波形的电源电压,所述第一电源模块503提供的电源电压的波形为包络波形;所述第一PA5011,用于对第一射频发射通道501输出的信号进行放大处理,即对第二信号进行放大处理。
需要说明的是,第一电源模块503之所以能够提供包络波形的电压,是因为第一电源模块503采用包络跟踪(Envelope Tracking,ET)技术生成供电电压。具体的,第一电源模块503中可以预存第一带宽对应的包络跟踪LUT,当所述第一射频发射通道501工作在所述第二带宽时,第一电源模块503可以采用与所述第二带宽对应的包络跟踪LUT生成为所述第一PA 5011提供的电源电压。
关于包络跟踪LUT的具体内容,可以参考现有技术中的描述,本申请实施例对包络跟踪LUT的具体实现方式并不限定。
进一步的,本申请实施例中,第二射频发射通道502工作在第一带宽时,第二射频发射通道502中的第二DPD核505,可以用于对输入的信号进行数字预失真处理。其中,第二DPD核505中可以预存第一带宽对应的预失真系数LUT,从而可以采用第一带宽对应的预失真系数LUT对输入的信号进行数字预失真处理。
相应的,第二射频发射通道502中的第二PA 5021,可以用于对所述第二DPD核505进行数字预失真处理后的信号进行放大处理。
其中,可以采用固定电压,例如第二PA 5021的额定电源电压为第二PA 5021供电,也可以采用APT技术为第二PA 5021供电,还可以采用ET技术为第二PA 5021供电。
通过上述方案,第一射频发射通道在不同带宽之间进行切换时,为了即能够保证带宽的快速切换,又能够降低第一射频发射通道中第一PA的非线性失真,可以在第一射频发射通道工作在不同带宽时,使用不同方式降低第一PA的非线性失真。具体的,可以在工作第一带宽时,对第一PA的输入信号进行数字预失真处理,在工作第二带宽时,为第一PA提供包络波形的电源电压。由于在带宽切换时,不需要调整数字预失真处理所需的LUT,也不需要调整生成包络波形的电源电压所需的LUT,因此能够实现带宽的快速切换,也能保证第一PA的能效。上述方案中,能够以最低的控制开销,实现上行高动态切换场景下的射频通道线性化;而且DPD核不需要存储所有的预失真系数LUT,ET电源模块也不需要存储所有的包络跟踪LUT,从而可以在不增加DPD核以及ET电源模块的内部存储空间的条件下,提升系统的线性化性能并同时提升系统的发送效率。
实施例二:
图5中,第一射频发射通道501的输出端与一个PA连接,本申请实施例中,第一射频发射通道501的输出端还可以与2个PA选择性连接。具体可以参考图6所示。图6和图5的结构类似,区别在于,第一射频发射通道501的输出端与第一PA 5011、第三PA 5012耦合。第三PA 5012的电压输入端与第一电源模块503的输出端连接。
第一电源模块503可以为多个电源模块的集合,也可以为一个独立的电源模块。第一电源模块503为多个电源模块的集合时,可以为能够提供包络波形的电源电压的电源模块以及能够提供非包络波形的电源电压的电源模块的集合。
具体的,当所述第一射频发射通道501工作在所述第一带宽时,所述第一射频发射通道501被配置为向所述第一PA5011提供数字预失真处理后的信号,所述第一电源模块503被配置为向所述第一PA提供非包络波形的电源电压;所述第三PA5012被配置为从所述第一射频发射通道501的输出端旁路,所述第一PA5011被配置为与所述第一射频发射通道501的输出端连接;所述第一PA5011的电源电压的波形为非包络波形;所述第一PA5011,用于对所述第一射频发射通道501输出的第一信号进行放大处理,所述第一信号为经过数字预失真处理后的信号。
当所述第一射频发射通道501工作在所述第二带宽时,所述第一射频发射通道被配置为向所述第三PA提供未经数字预失真处理的信号;所述第三PA5012被配置为与所述第一射频发射通道501的输出端连接,所述第一PA5011被配置为从所述第一射频发射通道的输出端旁路;所述第一电源模块503,用于为所述第三PA5012提供电源电压,所述第一电源模块提供的电源电压的波形为包络波形;所述第三PA5012,用于对所述第一射频发射通道501输出的第二信号进行放大处理,所述第二信号为未经过数字预失真处理的信号。
通过上述方案,第一射频发射通道工作在第一带宽时,对第一射频通道的射频信号进行数字预失真处理,可以降低非线性失真;第一射频发射通道工作在第二带宽时,虽然没有对第一射频通道的射频信号进行数字预失真处理,但是对输出信号进行放大处理的第三PA是采用包络波形的电源电压进行供电,从而可以降低非线性失真。上述方案中,由于在带宽切换时,不需要调整数字预失真处理所需的LUT,也不需要调整生成包络波形的电源电压所需的LUT,因此能够实现带宽的快速切换,也能降低第一射频发射通道的输出信号的非线性失真。
实施例三:
结合前面的描述,结合图6,如图7所示,第二PA 5021在对信号放大时,需要外部 电源供电才能工作,第二PA 5021的电压输入端还可以与第二电源模块506连接,即第二电源模块506为第二PA 5021提供电源电压。所述第二电源模块506提供的电源电压的波形为包络波形。
需要说明的是,第二电源模块506之所以能够提供包络波形的电压,是因为第二电源模块506可以采用ET技术生成供电电压。
具体的,第二电源模块506中可以预存第一带宽对应的包络跟踪LUT,当所述第二射频发射通道502工作在所述第一带宽时,第二电源模块506可以采用与所述第一带宽对应的包络跟踪LUT生成为所述第二PA 5021提供的电源电压。
前面的实施例中描述了第一射频发射通道501工作在不同的带宽时,如何处理第一射频发射通道501的输出信号。进一步的,结合前面的描述,当第一射频发射通道501工作在第一带宽时,第一PA 5011的电压输入端输入的电压波形为直线,也就是说输入的电压为固定电压,例如5V;当第一射频发射通道501工作在第二带宽时,第一PA 5011或第三PA5012的电压输入端输入的电压波形为包络波形,也就是说输入的电压不断变化,具体可以参考图8所示。
图8中,还描述了第二PA 5021的电压输入端输入的电压波形。图8中以第二PA 5021的电压输入端输入的电压为固定电压为例进行描述。当第二电源模块506为第二PA 5021提供供电电压时,第二PA 5021的电压输入端输入的电压可以参考图9所示。
通过图8和图9可知,第一PA 5011的电压输入端输入的电压波形,随着第一射频发射通道501的带宽切换,在固定电压和包络波形之间不断切换。而第二PA 5021的电压输入端输入的电压波形,在图8中为直线,在图9中为包络波形。
图10为本申请实施例提供的一种信号处理方法流程示意图。该方法可以由前述技术方案中包括第一电源模块、第一PA、第三PA以及第一射频发射通道的通信装置来实施,该通信装置可以为终端,也可以为基站。如图10所述,该方法可以包括:
步骤1001:当第一射频发射通道工作在第一带宽时,通过第一PA对所述第一射频发射通道输出的第一信号进行放大处理;
其中,所述第三PA被配置为从所述第一射频发射通道的输出端旁路,所述第一PA被配置为与所述第一射频发射通道的输出端连接;所述第一信号为经过数字预失真处理后的信号,所述第一PA的电源电压的波形为非包络波形。
步骤1002:当所述第一射频发射通道工作在第二带宽时,通过第三PA对所述第一射频发射通道输出的第二信号进行放大处理。
其中,所述第三PA被配置为从所述第一射频发射通道的输出端连接,所述第一PA被配置为与所述第一射频发射通道的输出端旁路;所述第二信号为未经过数字预失真处理的信号,所述第三PA的电源电压由所述第一电源模块提供,所述第一电源模块提供的电源电压的波形为包络波形;所述第一带宽大于所述第二带宽。
一种可选的实现方式中,所述通过所述第一PA对第一信号进行放大处理之前,所述方法还包括:通过第一数字预失真DPD核对输入所述第一射频发射通道的信号进行数字预失真处理,以获得所述第一信号。
一种可选的实现方式中,所述通过所述第一PA对第二信号进行放大处理之前,所述方法还包括:将位于第一数字预失真DPD核配置为从所述第一PA的输入端旁路。
一种可选的实现方式中,所述第一带宽的中心频点与所述第二带宽的中心频点不同。
一种可选的实现方式中,所述第一带宽的中心频点为3.5GHz;所述第二带宽的中心频点为2.1GHz。
一种可选的实现方式中,所述通信装置还包括第二DPD核,第二射频发射通道,所述第二射频发射通道包括第二PA;所述方法还包括:所述第二射频发射通道工作在所述第一带宽时,通过所述第二DPD核对输入所述第二射频发射通道的信号进行数字预失真处理;通过所述第二PA对由所述第二DPD核进行数字预失真处理后的信号进行放大处理。
一种可选的实现方式中,所述通信装置还包括第二电源模块,所述方法还包括:通过所述第二电源模块为所述第二PA提供电源电压,所述第二电源模块提供的电源电压的波形为包络波形。
一种可能的设计中,所述第一电源模块为采用包络跟踪ET技术的电源模块。
一种可能的设计中,所述第二电源模块为采用包络跟踪ET技术的电源模块。
图11为本申请实施例提供的一种信号处理方法流程示意图。该方法可以由前述技术方案中包括第一电源模块以及第一射频发射通道的通信装置来实施,该通信装置可以为终端,也可以为基站。如图11所述,该方法可以包括:
步骤1101:当第一射频发射通道工作在第一带宽时,通过第一PA对所述第一射频发射通道输出的第一信号进行放大处理。
其中,所述第一信号为经过数字预失真处理后的信号,所述第一PA的电源电压的波形为非包络波形。
步骤1102:当第一射频发射通道工作在第二带宽时,通过第一PA对所述第一射频发射通道输出的第二信号进行放大处理。
其中,所述第二信号为未经过数字预失真处理的信号,所述第一PA的电源电压由所述第一电源模块提供,所述第一电源模块提供的电源电压的波形为包络波形;所述第一带宽大于所述第二带宽。
一种可选的实现方式中,所述通过所述第一PA对第一信号进行放大处理之前,所述方法还包括:通过第一数字预失真DPD核对输入所述第一射频发射通道的信号进行数字预失真处理,以获得所述第一信号。
一种可选的实现方式中,所述通过所述第一PA对第二信号进行放大处理之前,所述方法还包括:将位于第一数字预失真DPD核配置为从所述第一PA的输入端旁路。
一种可选的实现方式中,所述第一带宽的中心频点与所述第二带宽的中心频点不同。
一种可选的实现方式中,所述第一带宽的中心频点为3.5GHz;所述第二带宽的中心频点为2.1GHz。
一种可选的实现方式中,所述通信装置还包括第二DPD核,第二射频发射通道,所述第二射频发射通道包括第二PA;所述方法还包括:所述第二射频发射通道工作在所述第一带宽时,通过所述第二DPD核对输入所述第二射频发射通道的信号进行数字预失真处理;通过所述第二PA对由所述第二DPD核进行数字预失真处理后的信号进行放大处理。
一种可选的实现方式中,所述通信装置还包括第二电源模块,所述方法还包括:通过所述第二电源模块为所述第二PA提供电源电压,所述第二电源模块提供的电源电压的波形为包络波形。
一种可能的设计中,所述第一电源模块为采用包络跟踪ET技术的电源模块。
一种可能的设计中,所述第二电源模块为采用包络跟踪ET技术的电源模块。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种通信装置,其特征在于,包括:
    第一电源模块和第一射频发射通道;其中,所述第一射频发射通道和所述第一电源模块分别与第一功率放大器PA耦合;
    当所述第一射频发射通道工作在第一带宽时,所述第一射频发射通道被配置为向所述第一PA提供数字预失真处理后的信号,所述第一电源模块被配置为向所述第一PA提供非包络波形的电源电压;
    当所述第一射频发射通道工作在第二带宽时,所述第一射频发射通道被配置为向所述第一PA提供未经数字预失真处理的信号,所述第一电源模块被配置为向所述第一PA提供波形为包络波形的电源电压。
  2. 一种通信装置,其特征在于,包括:
    第一电源模块和第一射频发射通道;其中,所述第一射频发射通道和所述第一电源模块分别与第一功率放大器PA和第三PA耦合;
    当所述第一射频发射通道工作在第一带宽时,所述第一射频发射通道被配置为向所述第一PA提供数字预失真处理后的信号,所述第一电源模块被配置为向所述第一PA提供非包络波形的电源电压;
    当所述第一射频发射通道工作在第二带宽时,所述第一射频发射通道被配置为向所述第三PA提供未经数字预失真处理的信号,所述第一电源模块被配置为向所述第三PA提供波形为包络波形的电源电压。
  3. 根据权利要求1或2所述的装置,其特征在于,所述装置还包括第一数字预失真DPD核;
    当所述第一射频发射通道工作在所述第一带宽时,所述第一DPD核,用于对输入所述第一射频发射通道的信号进行数字预失真处理;
    当所述第一射频发射通道工作在所述第二带宽时,所述第一DPD核,被配置为从所述第一PA的输入端旁路。
  4. 根据权利要求3所述的装置,其特征在于,所述第一DPD核采用与所述第一带宽对应的预失真系数查找表LUT对所述输入所述第一射频发射通道的信号进行数字预失真处理。
  5. 根据权利要求1至4任一所述的装置,其特征在于,当所述第一射频发射通道工作在第二带宽时,所述第一电源模块采用与所述第二带宽对应的包络跟踪LUT生成为所述第一PA或所述第三PA提供的电源电压。
  6. 根据权利要求1至5任一所述的装置,其特征在于,所述第一带宽的中心频点与所述第二带宽的中心频点不同。
  7. 根据权利要求1至6任一所述的装置,其特征在于,所述第一带宽的中心频点为3.5GHz;所述第二带宽的中心频点为2.1GHz。
  8. 根据权利要求1至7任一所述的装置,其特征在于,所述装置还包括第二DPD核,第二射频发射通道和第二PA;
    所述第二射频发射通道工作在所述第一带宽时,所述第二DPD核,用于对输入所述第二射频发射通道的信号进行数字预失真处理;
    所述第二射频发射通道被配置为向所述第二PA提供数字预失真处理后的信号。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括第二电源模块;
    所述第二电源模块,用于为所述第二PA提供电源电压,所述第二电源模块提供的电源电压的波形为包络波形。
  10. 根据权利要求1至9任一所述的装置,其特征在于,所述第一带宽大于所述第二带宽。
  11. 一种信号处理方法,其特征在于,应用于包括第一电源模块和第一射频发射通道的通信装置;其中,所述第一射频发射通道和所述第一电源模块分别与第一功率放大器PA耦合;所述方法包括:
    当所述第一射频发射通道工作在第一带宽时,通过所述第一射频发射通道向所述第一PA输出经过数字预失真处理后的信号;其中,第一电源模块被配置为向所述第一PA提供非包络波形的电源电压;
    当所述第一射频发射通道工作在第二带宽时,通过所述第一射频发射通道向所述第一PA提供未经数字预失真处理的信号;其中,所述第一电源模块被配置为向所述第一PA提供波形为包络波形的电源电压。
  12. 一种信号处理方法,其特征在于,应用于包括第一电源模块和第一射频发射通道的通信装置;其中,所述第一射频发射通道和所述第一电源模块分别与第一功率放大器PA和第三PA耦合;所述方法包括:
    当所述第一射频发射通道工作在第一带宽时,通过所述第一射频发射通道为向所述第一PA提供数字预失真处理后的信号;所述第一电源模块被配置为向所述第一PA提供非包络波形的电源电压;
    当所述第一射频发射通道工作在第二带宽时,所述第一射频发射通道被配置为向所述第三PA提供未经数字预失真处理的信号;所述第一电源模块被配置为向所述第三PA提供波形为包络波形的电源电压。
  13. 根据权利要求11或12所述的方法,其特征在于,所述通信装置还包括第一数字预失真DPD核;
    当所述第一射频发射通道工作在所述第一带宽时,通过所述第一DPD核对输入所述第一射频发射通道的信号进行数字预失真处理。
  14. 根据权利要求13所述的方法,其特征在于,所述第一DPD核采用与所述第一带宽对应的预失真系数查找表LUT对所述输入所述第一射频发射通道的信号进行数字预失真处理。
  15. 根据权利要求11至14任一所述的方法,其特征在于,所述第一带宽的中心频点与所述第二带宽的中心频点不同。
  16. 根据权利要求11至15任一所述的方法,其特征在于,所述第一带宽的中心频点为3.5GHz;所述第二带宽的中心频点为2.1GHz。
  17. 根据权利要求11至16任一所述的方法,其特征在于,所述通信装置还包括第二DPD核,第二射频发射通道和第二PA;
    所述第二射频发射通道工作在所述第一带宽时,通过所述第二DPD核对输入所述第二射频发射通道的信号进行数字预失真处理;
    通过所述第二射频发射通道向所述第二PA输出数字预失真处理后的信号;
    通过所述第一电源模块向所述第一PA提供非包络波形的电源电压;通过所述第二PA对所述数字预失真处理后的信号进行放大处理。
  18. 根据权利要求17所述的方法,其特征在于,所述通信装置还包括第二电源模块;
    通过所述第二电源模块为所述第二PA提供电源电压,所述第二电源模块提供的电源电压的波形为包络波形。
  19. 根据权利要求11至18任一所述的方法,其特征在于,所述第一带宽大于所述第二带宽。
  20. 一种通信装置,其特征在于,包括:
    处理器和存储器;
    其中,所述存储器用于存储程序指令;
    所述处理器用于执行所述存储器中存储的程序指令,以实现所述权利要求11至19中任一项所述的方法。
  21. 一种通信装置,其特征在于,包括:
    处理器和接口电路;
    其中,所述接口电路用于访问存储器,所述存储器中存储有程序指令;
    所述处理器用于通过所述接口电路访问所述存储器,并执行所述存储器中存储的程序指令,以实现所述权利要求11至19中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储了程序代码,所述程序代码被计算机执行时,实现所述权利要求11至19中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品包含的程序代码被计算机执行时,实现所述权利要求11至19中任一项所述的方法。
PCT/CN2020/099581 2020-06-30 2020-06-30 一种信号处理方法及装置 WO2022000341A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/099581 WO2022000341A1 (zh) 2020-06-30 2020-06-30 一种信号处理方法及装置
EP20942935.6A EP4156510A4 (en) 2020-06-30 2020-06-30 SIGNAL PROCESSING METHOD AND APPARATUS
CN202080016049.XA CN114128138A (zh) 2020-06-30 2020-06-30 一种信号处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099581 WO2022000341A1 (zh) 2020-06-30 2020-06-30 一种信号处理方法及装置

Publications (1)

Publication Number Publication Date
WO2022000341A1 true WO2022000341A1 (zh) 2022-01-06

Family

ID=79317728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099581 WO2022000341A1 (zh) 2020-06-30 2020-06-30 一种信号处理方法及装置

Country Status (3)

Country Link
EP (1) EP4156510A4 (zh)
CN (1) CN114128138A (zh)
WO (1) WO2022000341A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245395A1 (zh) * 2022-06-20 2023-12-28 北京小米移动软件有限公司 电子设备的上行数据传输方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803318A (zh) * 2007-09-19 2010-08-11 高通股份有限公司 用于无线通信的多模式和多频带发射器
CN105515538A (zh) * 2014-10-13 2016-04-20 英特尔公司 可切换双核功率放大器
CN106464392A (zh) * 2014-05-30 2017-02-22 天工方案公司 具有改善的线性度的rf收发器前端模块
WO2019190469A1 (en) * 2018-03-27 2019-10-03 Intel IP Corporation Transmitters and methods for operating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9571135B2 (en) * 2015-03-20 2017-02-14 Intel IP Corporation Adjusting power amplifier stimuli based on output signals
US10085208B2 (en) * 2016-08-29 2018-09-25 Qualcomm Incorporated Smart power saving scheme for LTE advanced
US10110169B2 (en) * 2016-09-14 2018-10-23 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking systems with automatic mode selection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803318A (zh) * 2007-09-19 2010-08-11 高通股份有限公司 用于无线通信的多模式和多频带发射器
CN106464392A (zh) * 2014-05-30 2017-02-22 天工方案公司 具有改善的线性度的rf收发器前端模块
CN105515538A (zh) * 2014-10-13 2016-04-20 英特尔公司 可切换双核功率放大器
WO2019190469A1 (en) * 2018-03-27 2019-10-03 Intel IP Corporation Transmitters and methods for operating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156510A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245395A1 (zh) * 2022-06-20 2023-12-28 北京小米移动软件有限公司 电子设备的上行数据传输方法及其装置

Also Published As

Publication number Publication date
CN114128138A (zh) 2022-03-01
EP4156510A4 (en) 2023-08-02
EP4156510A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
TWI528712B (zh) 回應於減少供應電壓之放大器增益調整
EP3032739A1 (en) Envelope tracking in connection with simultaneous transmission in one or more frequency bands
US10128798B2 (en) Adjusting envelope tracking power supply
US20110227642A1 (en) Parallel forward path cartesian feedback loop and loop filter with switchable order for cartesian feedback loops
US11218356B2 (en) System and method for hybrid transmitter
US20230072811A1 (en) Wireless Communication Apparatus, System, and Signal Processing Method
US20220116193A1 (en) Wireless communication method and apparatus, and radio frequency subsystem
CN113454939B (zh) 一种探测参考信号的发送方法及相关装置
US10790930B2 (en) Techniques for distortion correction at a receiver device
CN113196669A (zh) 具有改善的效率和输出功率的rfdac(rf(射频)dac(数字到模拟转换器))
WO2022000341A1 (zh) 一种信号处理方法及装置
KR102468956B1 (ko) 무선 통신 방법, 네트워크 디바이스, 단말기 디바이스, 칩 및 컴퓨터 판독 가능한 기억매체
CN112119618B (zh) 用于发射器的信号处理装置和用于这种装置的方法
US20210175858A1 (en) Radio transceiver arrangement and method
WO2022110230A1 (zh) 一种射频电路、信号反馈电路和通信系统
Nanan et al. Small cells call for scalable architecture
WO2023092341A1 (zh) 一种通信装置及信号处理方法
WO2023082171A1 (zh) 一种通信装置、通信方法及相关设备
WO2022141402A1 (zh) 一种通信方法及装置
WO2022160313A1 (zh) 一种通信装置
WO2022217945A1 (zh) 一种数字功率放大器及通信系统
US20230396219A1 (en) Signal amplification circuitry
CN116939855A (zh) 一种通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020942935

Country of ref document: EP

Effective date: 20221223

NENP Non-entry into the national phase

Ref country code: DE