WO2022141402A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022141402A1
WO2022141402A1 PCT/CN2020/142154 CN2020142154W WO2022141402A1 WO 2022141402 A1 WO2022141402 A1 WO 2022141402A1 CN 2020142154 W CN2020142154 W CN 2020142154W WO 2022141402 A1 WO2022141402 A1 WO 2022141402A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
uplink
downlink
time period
srs
Prior art date
Application number
PCT/CN2020/142154
Other languages
English (en)
French (fr)
Inventor
罗青全
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/142154 priority Critical patent/WO2022141402A1/zh
Priority to CN202080104915.0A priority patent/CN116250197A/zh
Publication of WO2022141402A1 publication Critical patent/WO2022141402A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and apparatus.
  • CA carrier aggregation
  • LTE long-term evolution
  • NR new radio
  • CA carrier aggregation
  • the terminal device can only receive the uplink sounding reference signal (SRS) in the configured downlink CC.
  • SRS uplink sounding reference signal
  • the SRS is used to provide channel estimation reference for downlink data reception of the current CC.
  • the terminal device When the terminal device sends the SRS through the downlink CC, it needs to interrupt the data transmission in the uplink CC. After the SRS transmission is completed, the terminal device switches back to the uplink CC to resume the uplink data transmission.
  • the process in which the terminal device transmits SRS in multiple CCs in turn is called carrier rotation.
  • the current standard defines the switching time of the carrier rotation, which is generally greater than 100 ⁇ s.
  • the terminal equipment needs to adjust the center frequency of the signal output by the phase locked loop (PLL).
  • PLL phase locked loop
  • the uplink transmission performance is reduced.
  • the purpose of the present application is to provide a communication method and device to solve the problem of how to reduce the impact on the uplink transmission performance during carrier rotation.
  • the communication device may be a wireless communication device, or may be a part of a device in the wireless communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the wireless communication device may be a computer device that supports wireless communication functionality.
  • the wireless communication device may be a terminal such as a smart phone, or may be a wireless access network device such as a base station.
  • a system-on-chip may also be referred to as a system on chip (system on chip, SoC), or simply referred to as a SoC chip.
  • the communication chip may include a baseband processing chip and a radio frequency processing chip. Baseband processing chips are also sometimes referred to as modems or baseband chips.
  • the radio frequency processing chip is also sometimes referred to as a radio frequency transceiver (transceiver) or radio frequency chip.
  • some or all of the communication chips may be integrated inside the SoC chip.
  • the baseband processing chip is integrated in the SoC chip, and the radio frequency processing chip is not integrated with the SoC chip.
  • a communication method including: acquiring first configuration information from a network device, where the first configuration information is used to indicate that a sounding reference signal SRS is sent in a first time period and at least one downlink carrier; when When the uplink signal is configured to be sent on at least one uplink carrier in the first time period, a transmission channel is configured based on the carrier aggregation CA mode, and the at least one downlink signal is transmitted through the transmission channel in the first time period
  • the SRS is sent in the carrier, and the uplink signal is sent in the at least one uplink carrier, wherein the center frequency and bandwidth of the transmission channel configured based on the CA mode are based on the relationship between the at least one downlink carrier and the at least one uplink carrier.
  • the carrier is determined jointly.
  • the center frequency and bandwidth of the transmission channel of the terminal equipment are jointly determined according to at least one downlink carrier that needs to send SRS and at least one uplink carrier that needs to send uplink signals, so the terminal equipment can transmit SRS on one downlink carrier at the same time. , and send the uplink signal in another uplink carrier, which can avoid transmission interruption caused to the uplink signal being transmitted in the uplink carrier when the SRS is sent, and improve the uplink efficiency.
  • the center frequency of the transmission channel configured based on the CA mode is equal to the average value of the center frequency of the at least one downlink carrier and the center frequency of the at least one uplink carrier.
  • the bandwidth of the transmission channel configured based on the CA mode is the sum of the bandwidth of the at least one downlink carrier and the bandwidth of the at least one uplink carrier.
  • the method further includes: configuring a transmission channel based on one uplink carrier, and sending an uplink signal in the one uplink carrier through the transmission channel within a second time period; wherein the The second time period is not configured to transmit SRS, and the center frequency and bandwidth of the transmission channel are determined according to the one uplink carrier.
  • the method before acquiring the first configuration information, the method further includes:
  • the second configuration information is used to indicate a configuration of a downlink continuous CA, where the downlink continuous CA includes a configuration of the at least one downlink carrier.
  • the obtaining the first configuration information from the network device includes:
  • the RRC message is an RRC connection establishment message or an RRC connection reconfiguration message.
  • the at least one downlink carrier and the at least one uplink carrier are time division duplex TDD carriers.
  • the frequency range of the at least one downlink carrier and the frequency range of the at least one uplink carrier are continuous in the frequency domain.
  • the method further includes: sending feedback information to the network device, where the feedback information is used to indicate that the transmission channel is configured based on the CA mode within the first time period.
  • the network device can be enabled to schedule the terminal device to perform uplink transmission within the first time period, thereby improving resource utilization.
  • the present application further provides a communication device, the communication device having any of the methods provided in the above-mentioned first aspect.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor, and the processor is configured to support the communication apparatus to perform the corresponding functions of the terminal device in the above-described method.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes a communication interface, where the communication interface is used to support communication between the communication apparatus and devices such as network equipment.
  • the communication device includes corresponding functional modules, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication apparatus includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • the description of the method provided in the first aspect which is not repeated here.
  • a radio frequency subsystem including:
  • the memory is used to store program instructions
  • the processor is configured to execute program instructions stored in the memory, so that the radio frequency subsystem implements the method in any of the above possible designs.
  • a radio frequency subsystem including:
  • the interface circuit is used to access a memory, and the memory stores program instructions
  • the processor is configured to access the memory through the interface circuit, and execute program instructions stored in the memory, so that the radio frequency subsystem implements the method in any of the above possible designs.
  • a baseband subsystem including:
  • the memory is used to store program instructions
  • the processor is configured to execute program instructions stored in the memory, so that the baseband subsystem implements the method in any of the above possible designs.
  • a baseband subsystem including:
  • the interface circuit is used to access a memory, and the memory stores program instructions
  • the processor is configured to access the memory through the interface circuit, and execute program instructions stored in the memory, so that the baseband subsystem implements the method in any of the above possible designs.
  • a wireless communication device may include: a storage unit for storing program instructions; a processing unit for executing the program instructions in the storage unit, so as to implement the various technical solutions described above. method in any possible design.
  • the storage unit may be a memory, such as a volatile memory, for caching the program instructions, and the program instructions may be loaded into the storage unit from other non-volatile memories when the data scheduling method is running.
  • the storage unit may also be a non-volatile memory, which is also integrated inside the chip.
  • the processing unit may be a processor, such as one or more processing cores of a chip.
  • a computer-readable storage medium wherein computer-readable instructions are stored in the computer storage medium, and when a computer reads and executes the computer-readable instructions, the communication device is made to execute any of the above possible method in design.
  • a computer program product which, when a computer reads and executes the computer program product, causes a communication apparatus to execute the method in any of the above possible designs.
  • a chip is provided, the chip is connected to a memory, and is used for reading and executing a software program stored in the memory, so as to implement the method in any of the above possible designs.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a carrier configuration of a wireless communication system according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an uplink carrier and a downlink carrier provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of an SRS switching operation provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a carrier wave provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Fig. 9 is a kind of SRS rotation schematic diagram provided by the embodiment of this application.
  • FIG. 10 is a schematic diagram of an uplink CA provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • devices can be divided into devices that provide wireless network services and devices that use wireless network services.
  • the devices that provide wireless network services refer to those devices that make up a wireless communication network, which can be referred to as network equipment or network elements for short.
  • Network equipment is usually owned by operators or infrastructure providers, who are responsible for operation or maintenance.
  • Network devices can be further classified into radio access network (RAN) devices and core network (core network, CN) devices.
  • RAN radio access network
  • core network core network
  • a typical RAN device includes a base station (BS).
  • the base station may also sometimes be referred to as a wireless access point (access point, AP), or a transmission reception point (transmission reception point, TRP).
  • the base station may be a general node B (generation Node B, gNB) in a 5G new radio (new radio, NR) system, or an evolutional Node B (evolutional Node B, eNB) in a 4G long term evolution (long term evolution, LTE) system. ).
  • Base stations can be classified into macro base stations or micro base stations according to their physical form or transmit power. Micro base stations are also sometimes referred to as small base stations or small cells.
  • a device using a wireless network service may be referred to as a terminal device for short.
  • the terminal device can establish a connection with the network device, and provide users with specific wireless communication services based on the services of the network device.
  • user equipment user equipment
  • subscriber unit subscriber unit
  • terminal devices tend to move with users, and are sometimes referred to as mobile stations (MSs), as opposed to base stations, which are usually placed in fixed locations.
  • MSs mobile stations
  • some network devices such as relay nodes (relay nodes, RNs) or wireless routers, can sometimes be regarded as terminal devices because they have UE identity or belong to users.
  • the terminal device may be a mobile phone, a tablet computer, a laptop computer, a wearable device (such as a smart watch, a smart bracelet, a smart helmet, and smart glasses), and Other devices with wireless access capabilities, such as smart cars, various Internet of things (IOT) devices, including various smart home devices (such as smart meters and smart appliances) and smart city devices (such as security or surveillance equipment) , intelligent road traffic facilities) and so on.
  • IOT Internet of things
  • smart home devices such as smart meters and smart appliances
  • smart city devices such as security or surveillance equipment
  • the present application will take the base station and the terminal device as examples to describe the technical solutions of the embodiments of the present application in detail.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • a wireless communication system includes a terminal device and a base station.
  • the transmission link from the terminal equipment to the base station is marked as uplink (uplink, UL)
  • the transmission link from the base station to the terminal equipment is marked as downlink (downlink, DL).
  • uplink uplink
  • downlink downlink
  • data transmission in the uplink may be abbreviated as uplink data transmission or uplink transmission
  • data transmission in the downlink may be abbreviated as downlink data transmission or downlink transmission.
  • the base station can provide communication coverage for a specific geographical area through an integrated or external antenna device.
  • One or more terminal devices located within the communication coverage of the base station can access the base station.
  • a base station can manage one or more cells.
  • the wireless communication system may comply with the wireless communication standards of the third generation partnership project (3GPP), or may comply with other wireless communication standards, such as the Institute of Electrical and Electronics Engineers (IEEE) ) of the 802 series (such as 802.11, 802.15, or 802.20) wireless communication standards.
  • 3GPP Third Generation Partnership Project
  • IEEE Institute of Electrical and Electronics Engineers
  • the wireless communication system may also include other numbers of terminal devices and base stations.
  • the wireless communication system may further include other network devices, such as core network devices.
  • the terminal equipment and the base station should know the predefined configuration of the wireless communication system, including the radio access technology (RAT) supported by the system and the wireless resource configuration specified by the system, such as the basic configuration of the radio frequency band and carrier.
  • a carrier is a frequency range that conforms to system regulations. This frequency range can be determined by the center frequency of the carrier (referred to as the carrier frequency) and the bandwidth of the carrier.
  • the pre-defined configurations of these systems can be used as part of the standard protocols of the wireless communication system, or determined by the interaction between the terminal equipment and the base station.
  • the content of the relevant standard protocol may be pre-stored in the memory of the terminal device and the base station, or embodied as a hardware circuit or software code of the terminal device and the base station.
  • the terminal equipment and the base station support one or more of the same RATs, such as 5G NR, 4G LTE, or RATs of future evolution systems.
  • the terminal device and the base station use the same air interface parameters, coding scheme, modulation scheme, etc., and communicate with each other based on the radio resources specified by the system.
  • FIG. 2 is a schematic diagram of a carrier configuration of a wireless communication system according to an embodiment of the present application.
  • the base station configures two carrier sets for the terminal equipment, which are respectively denoted as the first carrier set and the second carrier set.
  • the first carrier set may be used for uplink carrier aggregation; the second carrier set may be used for downlink carrier aggregation.
  • the carriers included in the carrier set may be referred to as component carriers (CC).
  • one component carrier may correspond to one serving cell (serving cell) of the terminal device.
  • a component carrier is sometimes translated as a component carrier, which may be referred to as a carrier for short, and a serving cell may be referred to as a cell for short.
  • carrier the terms “carrier”, “component carrier”, “aggregated carrier”, “aggregated component carrier”, “serving cell”, “cell”, “one of PCell or SCell”, “One of PCC or SCC” and “aggregated carrier” can be used interchangeably.
  • the uplink carrier used by the terminal equipment for uplink transmission and the downlink carrier used in downlink transmission are the same carrier.
  • the first carrier set The included carrier and the carrier included in the second carrier set may exist the same carrier.
  • the first carrier set includes 1 CC, denoted as CC 1.
  • the second carrier set includes 4 component carriers, denoted as CC 1 to CC 4. It should be understood that, in FIG. 2 , the number of CCs included in the first carrier set and the second carrier set is only for illustrative purposes, and in this embodiment of the present application, the first carrier set and the second carrier set may also include other numbers of CCs.
  • the CCs included in the second carrier set are continuous in the frequency domain and are located in the same frequency band (band).
  • the second carrier set includes 4 component carriers CC1 to CC4 all located in the same frequency band and continuous in the frequency domain.
  • the CCs included in the second carrier set are time division duplex (time division duplex, TDD) carriers.
  • TDD time division duplex
  • the CCs included in the second carrier set there is at least one of a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH) that are not configured for uplink services in at least one CC.
  • a carrier without PUSCH can be called a PUSCH-less carrier.
  • the terminal device can send SRS in it to perform channel estimation for the downlink data reception on the downlink CC.
  • the terminal device sends the SRS through the downlink CC, it needs to interrupt the data transmission in the uplink CC. After the SRS transmission is completed, the terminal device switches back to the uplink CC to resume the uplink data transmission.
  • carrier rotation The process in which the terminal equipment transmits SRS in multiple downlink CCs in turn is called carrier rotation.
  • the SRS switching operation is sometimes also referred to as SRS carrier switching, SRS switching, or carrier switching.
  • the second carrier set configured by the base station for the terminal device includes 4 CCs, but the terminal device may not be able to transmit SRS on these 4 CCs at the same time, so an SRS switching operation needs to be performed.
  • the terminal device may first send data or SRS on CC1, then switch to CC2 and send SRS on CC2.
  • the data transmission of CC1 may be interrupted. The longer the interruption time of data transmission, the greater the impact on system performance. Therefore, it is necessary to reduce the interruption time of data transmission caused by the SRS switching operation.
  • FIG. 4 is a schematic flowchart of an SRS switching operation.
  • the base station configures three downlink CCs and one uplink CC for the terminal device as an example for description.
  • one time slot may include 14 orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, which are denoted as symbol 0 to symbol 13, respectively.
  • the base station configures three downlink CCs for the terminal equipment, namely CC 1, CC 2 and CC 3, and the configured uplink CC is recorded as CC 0.
  • the terminal device sends SRS through CC 1; then, after the data transmission of symbol 2 ends, the terminal device switches to CC 2, and sends SRS through CC 2 in symbol 3; after that, the terminal device switches to CC 2, and send SRS through CC 2 in symbol 3; after that, the terminal device switches to CC 3, and sends SRS through CC 3 in symbol 6.
  • SRSs in different carriers may also be sent in different time slots.
  • time slot 1 the terminal device sends SRS through CC 1; then, the terminal device switches to CC 2, and sends SRS through CC 2 in time slot 2.
  • the terminal device uses the same radio frequency transmission channel to transmit uplink data and SRS.
  • the radio frequency transmission channel needs to be adapted to the frequency of CC 1.
  • the RF transmission channel also needs to be adapted to the frequencies of CC 2 and CC 3 respectively. Since the frequencies of CC1, CC 2 and CC 3 are different, it takes a certain amount of time for the frequency adapted by the radio frequency transmission channel of the terminal equipment to readjust from one frequency to another, which can be recorded as the radio frequency readjustment time, or the radio frequency readjustment time.
  • the RF retuning time wherein the RF retuning time may also be referred to as the RF retuning delay (RF retuning delay), or the RF retuning gap (RF retuning gap).
  • RF retuning delay RF retuning delay
  • RF retuning gap RF retuning gap
  • the interruption time of data transmission includes the radio frequency retuning time. Therefore, reducing the radio frequency retuning time can reduce the interruption time of data transmission, which is beneficial to improve the system performance.
  • the radio frequency retuning time is related to the hardware and software configuration of the terminal device, especially the software and hardware configuration of the radio frequency processing of the terminal device.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus may be a terminal device or a base station in this embodiment of the present application.
  • the communication device may include an application subsystem, a memory, a massive storage, a baseband subsystem, a radio frequency integrated circuit (RFIC), a radio frequency front end, RFFE) devices, and antennas (antenna, ANT), these devices can be coupled through various interconnecting buses or other electrical connections.
  • RFIC radio frequency integrated circuit
  • RFFE radio frequency front end
  • antennas antennas
  • ANT_1 represents the first antenna, and so on, ANT_N represents the Nth antenna, and N is a positive integer greater than 1.
  • Tx represents the transmit path
  • Rx represents the receive path
  • different numbers represent different paths.
  • FBRx represents the feedback receiving path
  • PRx represents the primary receiving path
  • DRx represents the diversity receiving path.
  • HB means high frequency
  • LB means low frequency, both refer to the relative high and low frequency.
  • BB stands for baseband. It should be understood that the labels and components in FIG. 5 are for illustrative purposes only, and are only used as a possible implementation manner, and the embodiments of the present application also include other implementation manners.
  • the application subsystem can be used as the main control system or main computing system of the communication device to run the main operating system and application programs, manage the hardware and software resources of the entire communication device, and provide users with a user interface.
  • the application subsystem may include one or more processing cores.
  • the application subsystem may also include driver software related to other subsystems (eg, baseband subsystem).
  • the baseband subsystem may also include one or more processing cores, as well as hardware accelerators (HACs) and caches.
  • HACs hardware accelerators
  • the RFFE device, RFIC 1 can collectively form an RF subsystem.
  • the RF subsystem can be further divided into the RF receive path (RF receive path) and the RF transmit path (RF transmit path).
  • the RF receive channel can receive the RF signal through the antenna, process the RF signal (eg, amplify, filter and down-convert) to obtain the baseband signal, and transmit it to the baseband subsystem.
  • the RF transmit channel can receive the baseband signal from the baseband subsystem, perform RF processing (such as up-conversion, amplification and filtering) on the baseband signal to obtain the RF signal, and finally radiate the RF signal into space through the antenna.
  • the radio frequency subsystem may include an antenna switch, an antenna tuner, a low noise amplifier (LNA), a power amplifier (PA), a mixer (mixer), a local oscillator (LOO) ), filters and other electronic devices, which can be integrated into one or more chips as required. Antennas can also sometimes be considered part of the RF subsystem.
  • LNA low noise amplifier
  • PA power amplifier
  • mixer mixer
  • LEO local oscillator
  • the baseband subsystem can extract useful information or data bits from the baseband signal, or convert the information or data bits into the baseband signal to be transmitted. These information or data bits may be data representing user data or control information such as voice, text, video, etc.
  • the baseband subsystem can implement signal processing operations such as modulation and demodulation, encoding and decoding. Different radio access technologies, such as 5G NR and 4G LTE, tend to have different baseband signal processing operations. Therefore, in order to support the convergence of multiple mobile communication modes, the baseband subsystem may simultaneously include multiple processing cores, or multiple HACs.
  • the radio frequency signal is an analog signal
  • the signal processed by the baseband subsystem is mainly a digital signal
  • an analog-to-digital conversion device is also required in the communication device.
  • the analog-to-digital conversion device includes an analog-to-digital converter (ADC) that converts an analog signal to a digital signal, and a digital-to-analog converter (DAC) that converts a digital signal to an analog signal.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • the analog-to-digital conversion device may be disposed in the baseband subsystem, or may be disposed in the radio frequency subsystem.
  • the processing core may represent a processor, and the processor may be a general-purpose processor or a processor designed for a specific field.
  • the processor may be a central processing unit (center processing unit, CPU), or may be a digital signal processor (digital signal processor, DSP).
  • Memory can be divided into volatile memory (volatile memory) and non-volatile memory (non-volatile memory, NVM).
  • the baseband subsystem and the radio frequency subsystem together form a communication subsystem, which provides a wireless communication function for a communication device.
  • the baseband subsystem is responsible for managing the hardware and software resources of the communication subsystem, and can configure the working parameters of the radio frequency subsystem.
  • One or more processing cores of the baseband subsystem may be integrated into one or more chips, which may be referred to as baseband processing chips or baseband chips.
  • RFICs may be referred to as radio frequency processing chips or radio frequency chips.
  • the functional division of the radio frequency subsystem and the baseband subsystem in the communication subsystem can also be adjusted.
  • the functions of part of the radio frequency subsystem are integrated into the baseband subsystem, or the functions of part of the baseband subsystem are integrated into the radio frequency subsystem.
  • the communication device may employ a combination of different numbers and types of processing cores.
  • the radio frequency subsystem may include an independent antenna, an independent radio frequency front end (RF front end, RFFE) device, and an independent radio frequency chip.
  • a radio frequency chip is also sometimes referred to as a receiver, transmitter, or transceiver.
  • Antennas, RF front-end devices, and RF processing chips can all be manufactured and sold separately.
  • the RF subsystem can also use different devices or different integration methods based on power consumption and performance requirements. For example, some devices belonging to the radio frequency front-end are integrated into the radio frequency chip, and even the antenna and the radio frequency front-end device are integrated into the radio frequency chip, and the radio frequency chip can also be called a radio frequency antenna module or an antenna module.
  • the baseband subsystem may be used as an independent chip, and the chip may be called a modem chip.
  • the hardware components of the baseband subsystem can be manufactured and sold in units of modem chips. Modem chips are also sometimes called baseband chips or baseband processors.
  • the baseband subsystem can also be further integrated in the SoC chip, and manufactured and sold in the unit of SoC chip.
  • the software components of the baseband subsystem can be built into the hardware components of the chip before the chip leaves the factory, or can be imported into the hardware components of the chip from other non-volatile memory after the chip leaves the factory, or can also be downloaded online through the network. and update these software components.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 6 shows some common components used in radio frequency signal processing in a communication device. It should be understood that, although only one radio frequency receiving channel and one radio frequency transmitting channel are shown in FIG. 6 , the communication device in this embodiment of the present application is not limited to this, and the communication device may include one or more radio frequency receiving channels and one or more radio frequency emission channel.
  • the radio frequency receiving channel may include modules such as radio frequency receivers
  • the radio frequency transmitting channel may include modules such as radio frequency transmitters.
  • FIG. 6 also includes a local oscillator circuit for providing a local oscillator signal for the radio frequency transmitter or the radio frequency receiver.
  • the radio frequency transmitter and the radio frequency receiver respectively provide local oscillator signals by different local oscillator circuits.
  • the local oscillator circuit generally includes a phase locked loop (PLL).
  • the RF receiver in the RF receiving channel can process the received signal according to the local oscillator signal provided by the local oscillator circuit in the following ways: the RF signal received from the antenna is selected by the antenna switch and passed through After filtering by filter 1, it is sent to the RF receiving channel. Since the RF signal received from the antenna is usually very weak, an LNA is usually used to amplify it. The amplified signal first goes through mixer 1 and uses the local oscillator signal for down-conversion processing, and then goes through filter 2 and an analog to digital converter (ADC), and finally, after being processed by the digital frequency converter, is input to the frequency converter.
  • Baseband subsystem which completes baseband signal processing by the baseband subsystem.
  • the radio frequency receiver in the radio frequency transmit channel transmits the signal according to the local oscillator signal provided by the local oscillator circuit in the following ways: to analog converter, DAC) into an analog signal, the analog signal is up-converted into a radio frequency signal through the mixer 2 using the local oscillator signal, the radio frequency signal is processed by the filter 4, the PA and the filter 3, and finally passes through the antenna.
  • the selection of the switch radiates outward from the selected antenna.
  • the terminal equipment needs to mix the zero intermediate frequency (Zero Intermediate Frequency, ZIF) baseband signal with the local oscillator signal to generate a radio frequency transmission signal; correspondingly, after receiving the downlink signal, the terminal equipment It is necessary to mix the RF received signal with the local oscillator signal to obtain a baseband signal with zero intermediate frequency.
  • ZIF Zero Intermediate Frequency
  • the center frequency point of the local oscillator signal is the center frequency point of the carrier carrying the radio frequency transmission signal.
  • each downlink carrier is 100MHz, and its center frequencies are 3.5GHz, 3.6GHz and 3.7GHz respectively.
  • the center frequency point f TXRF of the local oscillator signal is 3.5GHz; when the reference signal is sent in CC2, the center frequency point f TXRF of the local oscillator signal is 3.6GHz; When the reference signal is sent in CC3, the center frequency point f TXRF of the local oscillator signal is 3.7GHz.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. It can be seen that, with the evolution of the network architecture and the emergence of new service scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 8 a schematic flowchart of a communication method provided by an embodiment of the present application is shown.
  • the interaction between the network device and the terminal device is used as an example for illustration.
  • the operations performed by the network device can also be performed by a chip or module inside the network device, and the operation performed by the terminal device can also be performed by the internal chip or module of the terminal device. implement.
  • the method includes:
  • the terminal device acquires first configuration information from the network device, where the first configuration information is used to indicate that the SRS is sent in the first time period and in at least one downlink carrier.
  • the SRS may also be replaced with other types of uplink reference signals, such as demodulation reference signals (demodulation reference signals, DMRS), which are not limited in this embodiment of the present application.
  • demodulation reference signals demodulation reference signals, DMRS
  • the network device may send the first configuration information in multiple ways.
  • the network device may send the first configuration information through a radio resource control (radio resource control, RRC) message.
  • the first configuration information may be the configuration parameter srs-configindex in the RRC message
  • the configuration parameter srs-configindex may indicate information such as the carrier and period for sending the SRS
  • the first configuration information may also indicate the transmission timing of the SRS
  • the transmission timing may indicate Information such as the symbol position and the number of symbols of the symbols occupied by the SRS in the carrier are output.
  • the RRC message may be an RRC connection establishment message or an RRC connection reconfiguration message or the like.
  • the first configuration information may directly indicate the first time period, or may indirectly indicate the first time period.
  • the terminal device may determine the first time period according to the period in the first configuration information.
  • the network device may send downlink control information (downlink control information, DCI) including the first configuration information to the terminal device, and the DCI may be used to trigger the terminal device to send the SRS.
  • DCI downlink control information
  • the first configuration information in the DCI may indicate the first time period and at least one downlink carrier.
  • the specific duration of the first time period is not limited in this application, for example, the first time period may include multiple uplink time slots or include multiple OFDM symbols, etc.
  • At least one downlink carrier is configured by the network device.
  • the terminal device may obtain second configuration information from the network device, and the second configuration information is used to indicate the configuration of the downlink continuous CA.
  • the CA includes the configuration of the at least one downlink carrier.
  • the terminal device may receive downlink data or downlink control signaling in the at least one downlink carrier in the downlink continuous CA manner.
  • the at least one downlink carrier is a PUSCH-less carrier.
  • the terminal equipment can usually only receive downlink data or downlink control signaling, and send uplink reference signals such as SRS in the PUSCH-less carrier.
  • the terminal device transmits the SRS in at least one downlink carrier in turn, that is, the terminal device only transmits the SRS in one downlink carrier at a time, and switches to another downlink after the transmission is completed in one downlink carrier.
  • the SRS is sent in the carrier.
  • FIG. 9 a schematic diagram of an SRS rotation provided by an embodiment of the present application is shown.
  • the terminal device taking the first time period as a time slot as an example, the terminal device needs to send SRS on 3 carriers (carrier 1 to carrier 3).
  • a time slot includes 14 symbols (symbols 0 to 13 respectively) as an example for description.
  • the terminal equipment needs to transmit SRS in each downlink carrier in sequence from carrier 1 to carrier 3 .
  • the SRS in each downlink carrier occupies one symbol, and the occupied symbols are symbol 0, symbol 3, and symbol 6 respectively.
  • the SRS in each downlink carrier may also occupy multiple symbols.
  • the SRS in each downlink carrier occupies two symbols, and the occupied symbols are symbols 0 and 1, symbols 4 and 5, and symbols 8 and 9 respectively.
  • the at least one downlink carrier is located in the same frequency band and is a continuous carrier in the frequency domain.
  • the at least one downlink carrier may be aligned in timing, that is, the same timing advance group (TAG), and at this time, the carrier rotation of the SRS and the normal PUSCH transmission timing are aligned; the at least one downlink carrier may also be a timing If they are not aligned, they are different TAGs. At this time, the carrier's rotation of the SRS and the normal PUSCH transmission timing are not aligned.
  • TAG timing advance group
  • the network device may also configure at least one uplink carrier for the terminal device, and the terminal device may send an uplink signal to the network device through the at least one uplink carrier.
  • the present application can be applied to a TDD mode, and in the TDD mode, at least one downlink carrier and at least one uplink carrier are located in the same frequency band.
  • At least one downlink carrier and at least one uplink carrier may both be located in frequency range 1 or frequency range 2 of the technical specification of 3GPP NR.
  • the frequency range of the at least one downlink carrier and the frequency range of the at least one uplink carrier are continuous in the frequency domain.
  • the two downlink carriers configured by the network equipment have their center frequencies 3.5GHz and 3.6GHz respectively, and their bandwidths are both 100MHz; and one uplink carrier configured by the network equipment has a center frequency of 3.7GHz and a bandwidth of 100MHz. Both are 100MHz.
  • These three carriers are continuous in the frequency domain and are carriers of adjacent frequency points.
  • the terminal device When configured to transmit an uplink signal in at least one uplink carrier in the first time period, the terminal device configures a transmission channel based on the CA mode, and transmits an uplink signal on at least one downlink carrier through the transmission channel in the first time period
  • the SRS is sent in the at least one uplink carrier, and the uplink signal is sent in the at least one uplink carrier.
  • the terminal device may enable the CA mode.
  • the center frequency and bandwidth of the transmit channel configured based on the CA mode are jointly determined according to the at least one downlink carrier and the at least one uplink carrier.
  • the center frequency of the transmit channel configured based on the CA mode may be determined according to the frequency range of the at least one downlink carrier and the at least one uplink carrier.
  • the center frequency of the transmit channel may be equal to at least one The average value of the center frequency of the downlink carrier and the center frequency of the at least one uplink carrier.
  • At least one downlink carrier includes 2 downlink carriers whose center frequencies are 3.5GHz and 3.6GHz respectively; at least one uplink carrier includes 1 uplink carrier whose center frequency is 3.7GHz, then based on the CA mode
  • the configured center frequency of the transmit channel may be equal to 3.6 GHz.
  • the bandwidth of the transmit channel configured based on the CA mode may be determined in various ways.
  • the bandwidth of the transmit channel may be the bandwidth of the at least one downlink carrier and the bandwidth of the at least one uplink carrier. The sum of the bandwidths of the carriers.
  • the bandwidth of the transmit channel configured based on the CA mode can be Equal to 300MHz.
  • the bandwidth of the transmit channel may be configured as the maximum bandwidth supported by the terminal device. For example, if the maximum bandwidth supported by the terminal device is equal to 500MHz, the bandwidth of the transmit channel can be configured to be 500MHz.
  • the center frequency point of the transmission channel is also configured as the center frequency point corresponding to the maximum bandwidth supported by the terminal device.
  • the center frequency and bandwidth of the transmission channel of the terminal equipment are jointly determined according to at least one downlink carrier that needs to send SRS and at least one uplink carrier that needs to send uplink signals, so the terminal equipment can transmit SRS on one downlink carrier at the same time. , and send the uplink signal in another uplink carrier, which can avoid transmission interruption caused to the uplink signal being transmitted in the uplink carrier when the SRS is sent, and improve the uplink efficiency.
  • the CA mode can be turned off.
  • the terminal device in the second time period, the terminal device is not configured to send the SRS, but is configured to send the uplink signal in one uplink carrier.
  • the transmission channel may be configured based on the one uplink carrier, and at this time, the center frequency and bandwidth of the transmission channel of the terminal device are determined according to the one uplink carrier.
  • the center frequency of the one uplink carrier is 3.5GHz and the bandwidth is 100MHz; then the operating bandwidth of the transmit channel in the uplink can be changed to 100MHz and the center frequency to 3.5GHz.
  • the terminal device sends an uplink signal in the one uplink carrier through the transmission channel in the second time period.
  • the specific content of the uplink signal is not limited in this application, and will not be repeated here.
  • the terminal device may also send feedback information to the network device, where the feedback information is used to indicate that the transmission channel of the terminal device is configured based on the CA mode within the first time period.
  • the network device can thus determine that in the first time period, when the terminal device sends the SRS in the downlink carrier, the uplink signal in the uplink carrier will not be interrupted, so that the terminal device can be scheduled to perform uplink transmission in the first time period, thereby Improve bandwidth utilization.
  • the network device configures two downlink carriers and one uplink carrier for the terminal device.
  • the uplink carrier is CC1
  • the two downlink carriers are CC2 and CC3 respectively.
  • These two downlink carriers are PUSCH-less carriers.
  • the center frequencies of CC1 to CC3 are 3.5GHz, 3.6GHz and 3.7GHz respectively; the bandwidth of each carrier is 100MHz.
  • the network device instructs the terminal device to send the SRS in CC2 and CC3 respectively within the first time period through the first configuration information. Assuming that in the first time period, the terminal device also needs to send an uplink signal in CC1, then the terminal device can enable the CA mode in the first time period, and the terminal device configures the transmission channel based on the CA mode.
  • the uplink working bandwidth of the transmit channel of the terminal device is configured as the sum of the bandwidths of CC1, CC2 and CC3, that is, 300MHz; the center frequency of the transmit channel of the terminal device is configured as 3.6GHz.
  • the first time period includes a plurality of uplink time slots, and U represents an uplink time slot.
  • the terminal device can simultaneously send an uplink signal on an uplink carrier, and send the SRS through an offline carrier. Specifically, according to the time sequence, the terminal device sends an uplink signal through CC2 in the first uplink time slot. SRS; in the second uplink time slot, the SRS is sent through CC3; in the third uplink time slot, the SRS is sent through CC2; in the fourth uplink time slot, the SRS is sent through CC3.
  • the terminal equipment sends the SRS, it can also send the uplink signal through CC1 in each uplink time slot.
  • the terminal device When the terminal device does not need to send SRS through the downlink carrier, the terminal device can turn off the CA mode, and at this time, the working bandwidth of the terminal device in the uplink is changed to 100MHz.
  • the uplink signal in the uplink carrier can continue to be sent, reducing data transmission interruption and data loss caused by carrier rotation.
  • the network device or the terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 1100 for implementing the functions of the network device or the terminal device in the above method.
  • the apparatus may be a software module or a system-on-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1100 may include: a processing unit 1101 and a communication unit 1102 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively configured to perform the sending and receiving steps of the network device or the terminal device in the above method embodiments.
  • a communication unit may also be referred to as a transceiver, transceiver, transceiver, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the communication unit 1102 may be regarded as a receiving unit, and the device for implementing the sending function in the communication unit 1102 may be regarded as a transmitting unit, that is, the communication unit 1102 includes a receiving unit and a transmitting unit.
  • a communication unit may also sometimes be referred to as a transceiver, transceiver, or transceiver circuit, or the like.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • a communication unit configured to acquire first configuration information from a network device, where the first configuration information is used to indicate that a sounding reference signal SRS is sent in a first time period and at least one downlink carrier;
  • a processing unit configured to configure a transmission channel based on a carrier aggregation CA mode when the uplink signal is configured to be sent in at least one uplink carrier within the first time period;
  • the communication unit configured to send an SRS in the at least one downlink carrier through the transmission channel within the first time period, and send an uplink signal in the at least one uplink carrier, wherein based on the CA
  • the center frequency and bandwidth of the transmission channel configured in the mode are jointly determined according to the at least one downlink carrier and the at least one uplink carrier.
  • the center frequency of the transmit channel configured based on the CA mode is equal to the average value of the center frequency of the at least one downlink carrier and the center frequency of the at least one uplink carrier.
  • the bandwidth of the transmission channel configured based on the CA mode is the sum of the bandwidth of the at least one downlink carrier and the bandwidth of the at least one uplink carrier.
  • the communication unit is further used for:
  • a transmit channel is configured based on one uplink carrier, and an uplink signal is sent on the one uplink carrier through the transmit channel in a second time period; wherein, the second time period is not configured to transmit SRS, and the The center frequency and bandwidth are determined according to the one uplink carrier.
  • the communication unit before acquiring the first configuration information, is further configured to:
  • the second configuration information is used to indicate a configuration of a downlink continuous CA, where the downlink continuous CA includes a configuration of the at least one downlink carrier.
  • the communication unit is specifically used for:
  • the RRC message is an RRC connection establishment message or an RRC connection reconfiguration message.
  • the at least one downlink carrier and the at least one uplink carrier are time division duplex TDD carriers.
  • the frequency range of the at least one downlink carrier and the frequency range of the at least one uplink carrier are continuous in the frequency domain.
  • the communication unit is further used for:
  • FIG. 12 shows an apparatus 1200 provided in this embodiment of the present application.
  • the apparatus shown in FIG. 12 may be a hardware circuit implementation of the apparatus shown in FIG. 11 .
  • the communication apparatus can be applied to the flow chart shown above to perform the functions of the terminal device or the network device in the above method embodiments.
  • FIG. 12 only shows the main components of the communication device.
  • the communication device 1200 includes a processor 1210 and an interface circuit 1220 .
  • the processor 1210 and the interface circuit 1220 are coupled to each other.
  • the interface circuit 1220 can be a transceiver or an input-output interface.
  • the communication apparatus 1200 may further include a memory 1230 for storing instructions executed by the processor 1210 or input data required by the processor 1210 to execute the instructions or data generated after the processor 1210 executes the instructions.
  • the processor 1210 is used to implement the functions of the above-mentioned processing unit 1101
  • the interface circuit 1220 is used to implement the functions of the above-mentioned communication unit 1102 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the processor may be a random access memory (Random Access Memory, RAM), a flash memory, a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable memory
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Programmable ROM
  • EEPROM Electrically erasable programmable read-only memory
  • registers hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,其中方法包括:获取来自网络设备的第一配置信息,所述第一配置信息用于指示在第一时间段和至少一个下行载波中发送探测参考信号SRS;当在所述第一时间段内被配置在至少一个上行载波中发送上行信号时,基于载波聚合CA模式配置发射通道,并在所述第一时间段内通过所述发射通道在所述至少一个下行载波中发送SRS,以及在所述至少一个上行载波中发送上行信号,其中,基于所述CA模式配置的所述发射通道的中心频点和带宽根据所述至少一个下行载波与所述至少一个上行载波共同确定。

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
在长期演进(advanced long term evolution,LTE)系统以及新空口(new radio,NR)系统等通信系统中,引入了载波聚合(carrier aggregation,CA)技术,从而可以给终端设备配置多个载波,提高数据的吞吐量。当网络设备为终端设备配置多个下行成员载波(component carrier,CC)时,终端设备在配置的下行CC中,除了可以发送上行探测参考信号(sounding reference signal,SRS)之外,通常只能接收下行数据或者下行控制信令。其中SRS用于为当前CC的下行数据接收提供信道估计参考。
当终端设备通过下行CC发送SRS时,需要中断在上行CC中的数据传输,当SRS发送完成后,终端设备再切换回该上行CC,以便恢复上行数据传输。终端设备在多个CC中轮发SRS的过程,称为载波轮发。目前的标准中定义了载波轮发的切换时间,一般大于100μs,在载波轮发的切换时间内,终端设备需要对锁相环(phase locked loop,PLL)输出的信号的中心频率进行调整,以适配切换后的CC的中心频率。
综上可知,由于在进行载波轮发期间,终端设备的上行数据传输需要被中断,降低了上行传输性能。
发明内容
本申请的目的在于提供一种通信方法及装置,用以解决在进行载波轮发时,如何降低对上行传输性能的影响的问题。
应理解,本申请提供的方案中,通信装置可以是无线通信设备,也可以是无线通信设备中的部分器件,如系统芯片或通信芯片等集成电路产品。无线通信设备可以是支持无线通信功能的计算机设备。
具体地,无线通信设备可以是诸如智能手机这样的终端,也可以是诸如基站这样的无线接入网设备。系统芯片也可称为片上系统(system on chip,SoC),或简称为SoC芯片。通信芯片可包括基带处理芯片和射频处理芯片。基带处理芯片有时也被称为调制解调器(modem)或基带芯片。射频处理芯片有时也被称为射频收发机(transceiver)或射频芯片。在物理实现中,通信芯片中的部分芯片或者全部芯片可集成在SoC芯片内部。例如,基带处理芯片集成在SoC芯片中,射频处理芯片不与SoC芯片集成。
第一方面,提供了一种通信方法,包括:获取来自网络设备的第一配置信息,所述第一配置信息用于指示在第一时间段和至少一个下行载波中发送探测参考信号SRS;当在所述第一时间段内被配置在至少一个上行载波中发送上行信号时,基于载波聚合CA模式配置发射通道,并在所述第一时间段内通过所述发射通道在所述至少一个下行载波中发送SRS,以及在所述至少一个上行载波中发送上行信号,其中,基于所述CA模式配置的所述发射通道的中心频点和带宽根据所述至少一个下行载波与所述至少一个上行载波共同确定。
在CA模式中,终端设备的发射通道的中心频点和带宽根据需要发送SRS的至少一个下行载波与需要发送上行信号的至少一个上行载波共同确定,因此终端设备可以同时在一个下行载波中发送SRS,并在另一个上行载波中发送上行信号,可以避免在发送SRS时,对上行载波中正在传输的上行信号造成的传输中断,提高上行效率。
一种可选的实现方式中,基于所述CA模式配置的所述发射通道的中心频点等于所述至少一个下行载波的中心频点与所述至少一个上行载波的中心频点的平均值。
一种可选的实现方式中,基于所述CA模式配置的所述发射通道的带宽为所述至少一个下行载波的带宽与所述至少一个上行载波的带宽的总和。
一种可选的实现方式中,所述方法还包括:基于一个上行载波配置发射通道,并在第二时间段内通过所述发射通道在所述一个上行载波中发送上行信号;其中,所述第二时间段未被配置发送SRS,所述发射通道的中心频点和带宽根据所述一个上行载波确定。
一种可选的实现方式中,在获取所述第一配置信息之前,所述方法还包括:
获取来自所述网络设备的第二配置信息,所述第二配置信息用于指示下行连续CA的配置,其中,所述下行连续CA包括所述至少一个下行载波的配置。
一种可选的实现方式中,所述获取来自网络设备的第一配置信息,包括:
获取来自所述网络设备的无线资源控制RRC消息,所述RRC消息包括所述第一配置信息;所述RRC消息为RRC连接建立消息或RRC连接重配置消息。
一种可选的实现方式中,所述至少一个下行载波与所述至少一个上行载波为时分双工TDD载波。
一种可选的实现方式中,所述至少一个下行载波的频率范围与所述至少一个上行载波的频率范围在频域上连续。
一种可选的实现方式中,所述方法还包括:向所述网络设备发送反馈信息,所述反馈信息用于指示在所述第一时间段内基于CA模式配置所述发射通道。
通过上述方法,可以使得网络设备在第一时间段内调度终端设备进行上行传输,提高资源利用率。
第二方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第三方面,还提供了一种射频子系统,包括:
处理器和存储器;
其中,所述存储器用于存储程序指令;
所述处理器用于执行所述存储器中存储的程序指令,以使所述射频子系统实现上述任一种可能的设计中的方法。
第四方面,还提供了一种射频子系统,包括:
处理器和接口电路;
其中,所述接口电路用于访问存储器,所述存储器中存储有程序指令;
所述处理器用于通过所述接口电路访问所述存储器,并执行所述存储器中存储的程序指令,以使所述射频子系统实现上述任一种可能的设计中的方法。
第五方面,还提供了一种基带子系统,包括:
处理器和存储器;
其中,所述存储器用于存储程序指令;
所述处理器用于执行所述存储器中存储的程序指令,以使所述基带子系统实现上述任一种可能的设计中的方法。
第六方面,还提供了一种基带子系统,包括:
处理器和接口电路;
其中,所述接口电路用于访问存储器,所述存储器中存储有程序指令;
所述处理器用于通过所述接口电路访问所述存储器,并执行所述存储器中存储的程序指令,以使所述基带子系统实现上述任一种可能的设计中的方法。
第七方面,提供了一种无线通信装置,该装置可包括:存储单元,用于存储程序指令;处理单元,用于执行所述存储单元中的程序指令,以实现前述多种技术方案中的任一种可能的设计中的方法。
其中,该存储单元可以是存储器,例如易失性存储器,用于缓存这些程序指令,这些程序指令可以是所述数据调度方法运行时,从其他非易失性存储器中加载到该存储单元中。当然,所述存储单元也可以是非易失性存储器,也集成在所述芯片内部。该处理单元可以是处理器,例如芯片的一个或多个处理核心。
第八方面,提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得通信装置执行上述任一种可能的设计中的方法。
第九方面,提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得通信装置执行上述任一种可能的设计中的方法。
第十方面,提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种可能的设计中的方法。
附图说明
图1为本申请实施例提供的一种无线通信系统的结构示意图;
图2为本申请实施例提供的一种无线通信系统的载波配置示意图;
图3为本申请实施例提供的一种上行载波和下行载波示意图;
图4为本申请实施例提供的一种SRS切换操作的流程示意图;
图5为本申请实施例提供的一种无线通信装置的结构示意图;
图6为本申请实施例提供的一种无线通信装置的结构示意图;
图7为本申请实施例提供的一种载波示意图;
图8为本申请实施例提供的一种通信方法流程示意图;
图9为本申请实施例提供的一种SRS轮发示意图;
图10为本申请实施例提供的一种上行CA示意图;
图11为本申请实施例提供的一种通信装置结构示意图;
图12为本申请实施例提供的一种通信装置结构意图。
具体实施方式
下面结合附图并举实施例,对本申请提供的技术方案作进一步说明。应理解,本申请实施例中提供的系统结构和业务场景主要是为了解释本申请的技术方案的一些可能的实施方式,不应被解读为对本申请的技术方案的唯一性限定。本领域普通技术人员可以知晓,随着系统的演进,以及更新的业务场景的出现,本申请提供的技术方案对于相同或类似的技术问题仍然可以适用。
无线通信系统中,设备可分为提供无线网络服务的设备和使用无线网络服务的设备。提供无线网络服务的设备是指那些组成无线通信网络的设备,可简称为网络设备(network equipment),或网络单元(network element)。网络设备通常归属于运营商或基础设施提供商,并由这些厂商负责运营或维护。网络设备还可进一步分为无线接入网(radio access network,RAN)设备以及核心网(core network,CN)设备。典型的RAN设备包括基站(base station,BS)。
应理解,基站有时也可以被称为无线接入点(access point,AP),或发送接收点(transmission reception point,TRP)。具体地,基站可以是5G新无线(new radio,NR)系统中的通用节点B(generation Node B,gNB),4G长期演进(long term evolution,LTE)系统的演进节点B(evolutional Node B,eNB)。根据基站的物理形态或发射功率的不同,基站可被分为宏基站(macro base station)或微基站(micro base station)。微基站有时也被称为小基站或小小区(small cell)。
使用无线网络服务的设备,可简称为终端设备(terminal)。终端设备能够与网络设备建立连接,并基于网络设备的服务为用户提供具体的无线通信业务。应理解,由于终端设备与用户的关系更加紧密,有时也被称为用户设备(user equipment,UE),或订户单元(subscriber unit,SU)。此外,相对于通常在固定地点放置的基站,终端设备往往随着用户一起移动,有时也被称为移动台(mobile station,MS)。此外,有些网络设备,例如中继节点(relay node,RN)或者无线路由器等,由于具备UE身份,或者归属于用户,有时也可被认为是终端设备。
具体地,终端设备可以是移动电话(mobile phone),平板电脑(tablet computer),膝上型电脑(laptop computer),可穿戴设备(比如智能手表,智能手环,智能头盔,智能眼镜),以及其他具备无线接入能力的设备,如智能汽车,各种物联网(internet of thing,IOT)设备,包括各种智能家居设备(比如智能电表和智能家电)以及智能城市设备(比如安防或监控设备,智能道路交通设施)等。
为了便于表述,本申请中将以基站和终端设备为例,详细说明本申请实施例的技术方 案。
图1为本申请实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统包括终端设备和基站。按照传输方向的不同,从终端设备到基站的传输链路记为上行链路(uplink,UL),从基站到终端设备的传输链路记为下行链路(downlink,DL)。相类似地,上行链路中的数据传输可简记为上行数据传输或上行传输,下行链路中的数据传输可简记为下行数据传输或下行传输。
该无线通信系统中,基站可通过集成或外接的天线设备,为特定地理区域提供通信覆盖。位于基站的通信覆盖范围内的一个或多个终端设备,均可以接入基站。一个基站可以管理一个或多个小区(cell)。
应理解,该无线通信系统可以遵从第三代合作伙伴计划(third generation partnership project,3GPP)的无线通信标准,也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。图1中虽然仅示出了一个基站和一个终端设备,该无线通信系统也可包括其他数目的终端设备和基站。此外,该无线通信系统还可包括其他的网络设备,比如核心网设备。
终端设备和基站应知晓该无线通信系统预定义的配置,包括系统支持的无线电接入技术(radio access technology,RAT)以及系统规定的无线资源配置等,比如无线电的频段和载波的基本配置。载波是符合系统规定的一段频率范围。这段频率范围可由载波的中心频率(记为载频)和载波的带宽共同确定。这些系统预定义的配置可作为无线通信系统的标准协议的一部分,或者通过终端设备和基站间的交互确定。相关标准协议的内容,可能会预先存储在终端设备和基站的存储器中,或者体现为终端设备和基站的硬件电路或软件代码。
该无线通信系统中,终端设备和基站支持一种或多种相同的RAT,例如5G NR,4G LTE,或未来演进系统的RAT。具体地,终端设备和基站采用相同的空口参数、编码方案和调制方案等,并基于系统规定的无线资源相互通信。
图2为本申请实施例提供的一种无线通信系统的载波配置示意图。该无线通信系统中,基站为终端设备配置了两个载波集合,分别记为第一载波集合和第二载波集合。其中,第一载波集合可以用于上行载波聚合;第二载波集合可以用于下行载波聚合。载波集合中包括的载波可以称为成员载波(component carrier,CC)。
应理解,本申请中,一个成员载波可对应终端设备的一个服务小区(serving cell)。在中文语境下,成员载波有时也被翻译为分量载波,可简称为载波,服务小区可简称为小区。如非特别说明,在本申请中,术语“载波”、“分量载波”、“聚合载波”、“聚合分量载波”、“服务小区”、“小区”、“PCell或SCell中的一种”、“PCC或SCC中的一种”、“聚合载波”可以互换使用。
本申请实施例应用于时分双工(time division duplex,TDD)中时,终端设备进行上行传输时使用的上行载波与进行下行传输时使用的下行载波为同一个载波,此时第一载波集合中包括的载波与第二载波集合中包括的载波可以存在相同的载波。
如图2所示,第一载波集合包括1个CC,记为CC 1。第二载波集合包括4个成员载波,记为CC 1至CC 4。应理解,图2中,第一载波集合和第二载波集合所包括的CC数目仅为示意目的,本申请实施例中,第一载波集合和第二载波集合中也可以包括其他数目 的CC。
本申请实施例中,第二载波集合中包括的CC在频域中是连续的,并且位于相同的频带(band)。举例来说,结合图2,如图3所示,第二载波集合包括4个成员载波CC 1至CC 4均位于同一个频带内,且在频域中是连续的。
进一步的,第二载波集合所包括的CC为时分双工(time division duplex,TDD)载波。第二载波集合所包括的CC中,存在至少一个CC中不配置上行业务需要的物理上行控制信道(physical uplink control channel,PUCCH)和物理上行共享信道(physical uplink shared channel,PUSCH)中的至少一项,不配置PUSCH的载波可以称为PUSCH-less载波。
需要说明的是,没有配置PUCCH或PUSCH的下行CC,终端设备可以在其中发送SRS,用于为在该下行CC的下行数据接收做信道估计。当终端设备通过下行CC发送SRS时,需要中断在上行CC中的数据传输,当SRS发送完成后,终端设备再切换回该上行CC,以便恢复上行数据传输。终端设备在多个下行CC中轮发SRS的过程,称为载波轮发。
其中,SRS切换操作有时也称为SRS载波切换,SRS切换,或者载波切换。例如,图2中,基站为终端设备配置的第二载波集合包括4个CC,但是,终端设备可能无法同时在这4个CC上发送SRS,因此需要执行SRS切换操作。例如,终端设备可先在CC1上发送数据或SRS,然后切换到CC2,并在CC2上发送SRS。其中,从CC1切换到CC2的过程中,CC1的数据传输可能会中断。数据传输的中断时间越长,对系统性能的影响也就越大,因此有必要降低SRS切换操作引起的数据传输的中断时间。
图4为一种SRS切换操作的流程示意图。图4中以基站为终端设备配置三个下行CC和一个上行CC为例进行说明。如图4所示,一个时隙可包括14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,分别记为符号0至符号13。基站为终端设备配置了三个下行CC,分别为CC 1、CC 2以及CC 3,配置的上行CC记为CC 0。首先,在符号1中,终端设备通过CC 1发送SRS;然后,终端设备在符号2的数据发送结束之后,切换到CC 2,并在符号3中通过CC 2发送SRS;之后,终端设备切换到CC 2,并在符号3中通过CC 2发送SRS;再之后,终端设备切换到CC 3,并在符号6中通过CC 3发送SRS。
以上只是示例,不同载波中的SRS还可以在不同时隙发送。例如,在时隙1中,终端设备通过CC 1发送SRS;然后,终端设备切换到CC 2,并在时隙2中通过CC 2发送SRS。
在图4的示例中,假设终端设备使用同一个射频发射通道发送上行数据以及SRS。当终端设备通过CC 1发送SRS时,该射频发射通道需要适配CC 1的频率。当终端设备分别切换到CC 2和CC 3时,该射频发射通道也需要分别适配CC 2和CC 3的频率。由于CC1、CC 2和CC 3的频率不同,终端设备的射频发射通道所适配的频率从一个频率重新调整到另一个频率需要一定的时间,该时间可记为射频重调整时间,或射频重调谐时间(RF retuning time),其中,射频重调谐时间也可以称为射频重调谐时延(RF retuning delay),或者射频重调谐间隔(RF retuning gap)。为了描述方便,以下均统称为射频重调谐时间。
如图4所示,在SRS传输过程中,如果上行载波CC 0中存在数据传输,那么CC 0的数据传输会出现中断。如前所述,数据传输的中断时间包括射频重调谐时间。因此,减少射频重调谐时间,可以减少数据传输的中断时间,有利于提升系统性能。射频重调谐时间和终端设备的软硬件配置有关,特别是终端设备的射频处理的软硬件配置。
图5为本申请实施例提供的一种通信装置的结构示意图。该通信装置可以是本申请实施例中的终端设备或者基站。如图5所示,该通信装置可包括应用子系统,内存(memory),大容量存储器(massive storge),基带子系统,射频集成电路(radio frequency intergreted circuit,RFIC),射频前端(radio frequency front end,RFFE)器件,以及天线(antenna,ANT),这些器件可以通过各种互联总线或其他电连接方式耦合。
图5中,ANT_1表示第一天线,依次类推,ANT_N表示第N天线,N为大于1的正整数。Tx表示发送路径,Rx表示接收路径,不同的数字表示不同的路径。FBRx表示反馈接收路径,PRx表示主接收路径,DRx表示分集接收路径。HB表示高频,LB表示低频,两者是指频率的相对高低。BB表示基带。应理解,图5中的标记和组件仅为示意目的,仅作为一种可能的实现方式,本申请实施例还包括其他的实现方式。
其中,应用子系统可作为通信装置的主控制系统或主计算系统,用于运行主操作系统和应用程序,管理整个通信装置的软硬件资源,并可为用户提供用户操作界面。应用子系统可包括一个或多个处理核心。此外,应用子系统中也可包括与其他子系统(例如基带子系统)相关的驱动软件。基带子系统也可包括以及一个或多个处理核心,以及硬件加速器(hardware accelerator,HAC)和缓存等。
图5中,RFFE器件,RFIC 1(以及可选的RFIC 2)可以共同组成射频子系统。射频子系统可以进一步分为射频接收通道(RF receive path)和射频发射通道(RF transmit path)。射频接收通道可通过天线接收射频信号,对该射频信号进行处理(如放大、滤波和下变频)以得到基带信号,并传递给基带子系统。射频发射通道可接收来自基带子系统的基带信号,对基带信号进行射频处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。具体地,射频子系统可包括天线开关,天线调谐器,低噪声放大器(low noise amplifier,LNA),功率放大器(power amplifier,PA),混频器(mixer),本地振荡器(local oscillator,LO)、滤波器(filter)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。天线有时也可以认为是射频子系统的一部分。
基带子系统可以从基带信号中提取有用的信息或数据比特,或者将信息或数据比特转换为待发送的基带信号。这些信息或数据比特可以是表示语音、文本、视频等用户数据或控制信息的数据。例如,基带子系统可以实现诸如调制和解调,编码和解码等信号处理操作。对于不同的无线接入技术,例如5G NR和4G LTE,往往具有不完全相同的基带信号处理操作。因此,为了支持多种移动通信模式的融合,基带子系统可同时包括多个处理核心,或者多个HAC。
此外,由于射频信号是模拟信号,基带子系统处理的信号主要是数字信号,通信装置中还需要有模数转换器件。模数转换器件包括将模拟信号转换为数字信号的模数转换器(analog to digital converter,ADC),以及将数字信号转换为模拟信号的数模转换器(digital to analog converter,DAC)。本申请实施例中,模数转换器件可以设置在基带子系统中,也可以设置在射频子系统中。
应理解,本申请实施例中,处理核心可表示处理器,该处理器可以是通用处理器,也可以是为特定领域设计的处理器。例如,该处理器可以是中央处理单元(center processing unit,CPU),也可以是数字信号处理器(digital signal processor,DSP)。存储器可分为易失性存储器(volatile memory)和非易失性存储器(non-volatile memory,NVM)。
本申请实施例中,基带子系统和射频子系统共同组成通信子系统,为通信装置提供无 线通信功能。通常,基带子系统负责管理通信子系统的软硬件资源,并且可以配置射频子系统的工作参数。基带子系统的一个或多个处理核心可以集成为一个或多个芯片,该芯片可称为基带处理芯片或基带芯片。类似地,RFIC可以被称为射频处理芯片或射频芯片。此外,随着技术的演进,通信子系统中射频子系统和基带子系统的功能划分也可以有所调整。例如,将部分射频子系统的功能集成到基带子系统中,或者将部分基带子系统的功能集成到射频子系统中。在实际应用中,基于应用场景的需要,通信装置可采用不同数目和不同类型的处理核心的组合。
本申请实施例中,射频子系统可包括独立的天线,独立的射频前端(RF front end,RFFE)器件,以及独立的射频芯片。射频芯片有时也被称为接收机(receiver)、发射机(transmitter)或收发机(transceiver)。天线、射频前端器件和射频处理芯片都可以单独制造和销售。当然,射频子系统也可以基于功耗和性能的需求,采用不同的器件或者不同的集成方式。例如,将属于射频前端的部分器件集成在射频芯片中,甚至将天线和射频前端器件都集成射频芯片中,该射频芯片也可以称为射频天线模组或天线模组。
本申请实施例中,基带子系统可以作为独立的芯片,该芯片可被称调制解调器(modem)芯片。基带子系统的硬件组件可以按照modem芯片为单位来制造和销售。modem芯片有时也被称为基带芯片或基带处理器。此外,基带子系统也可以进一步集成在SoC芯片中,以SoC芯片为单位来制造和销售。基带子系统的软件组件可以在芯片出厂前内置在芯片的硬件组件中,也可以在芯片出厂后从其他非易失性存储器中导入到芯片的硬件组件中,或者还可以通过网络以在线方式下载和更新这些软件组件。
图6为本申请实施例提供的一种通信装置的结构示意图。图6示出了通信装置中用于射频信号处理的一些常见器件。应理解,图6中虽然只示出了一条射频接收通道和一条射频发射通道,本申请实施例中的通信装置不限于此,通信装置可以包括一条或多条射频接收通道以及一条或多条射频发射通道。其中,射频接收通道可以包括射频接收机等模块,射频发射通道可以包括射频发射机等模块,本申请实施例在此不再一一列举射频接收通道和射频发射通道中所包括的其它内容。
图6中还包括本振电路,用于为射频发射机或者射频接收机提供的本振信号。其中,射频发射机与射频接收机分别由不同的本振电路提供本振信号。本振电路一般包括锁相环(phase locked loop,PLL)。
对于射频接收通道而言,射频接收通道中的射频接收机可以根据本振电路提供的本振信号,通过以下方式处理接收到的信号:从天线处接收的射频信号经过天线开关的选择,并经过滤波器1滤波之后,送入射频接收通道。由于从天线接收的射频信号通常很微弱,通常采用LNA放大。放大后的信号先经过混频器1采用本振信号进行下变频处理,再经过滤波器2和模拟-数字转换器(analog to digital converter,ADC),最终经过数字变频器的处理后,输入至基带子系统,由基带子系统完成基带信号处理。
对于射频发射通道而言,射频发射通道中的射频接收机根据本振电路提供的本振信号,通过以下方式发送信号:基带信号经过数字变频器的处理后,可经过数字-模拟转换器(digital to analog converter,DAC)变为模拟信号,该模拟信号经过混频器2采用本振信号进行上变频处理为射频信号,该射频信号经过滤波器4、PA以及滤波器3的处理,最终经过天线开关的选择,从选择的天线向外辐射。
目前,终端设备在进行上行传输之前,终端设备需要将零中频(Zero Intermediate  Frequency,ZIF)的基带信号与本振信号混频,产生射频发射信号;相应的,在接收到下行信号之后,终端设备需要将射频接收信号与本振信号混频,获得零中频的基带信号。现有技术中,对于射频发射信号,本振信号的中心频点为承载该射频发射信号的载波的中心频点。
举例来说,假设需要分别在3个下行载波,分别为CC1,CC2以及CC3,每个下行载波的带宽为100MHz,其中心频点分别为3.5GHz,3.6GHz和3.7GHz。如图7所示,当在CC1中发送参考信号时,本振信号的中心频点f TXRF为3.5GHz;当在CC2中发送参考信号时,本振信号的中心频点f TXRF为3.6GHz;当在CC3中发送参考信号时,本振信号的中心频点f TXRF为3.7GHz。
通过上面的过程可知,终端设备每次在一个下行载波中发送参考信号,都需要重新锁定锁相环,使得锁相环输出的本振信号与下行载波的中心频点匹配。因此当终端设备通过下行载波发送参考信号时,需要暂时挂起上行载波中的上行传输,切换到下行载波发送参考信号,待参考信号发送完成后,再切换回配置上行载波,以便恢复上行传输。这样会导致正常小区的上行传输要被中断,对上行速率影响比较大。如果终端设备在多个下行载波轮发参考信号时,对上行传输的性能影响更严重。
需要说明的是,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
结合前面的描述,如图8所示,为本申请实施例提供的一种通信方法流程示意图。图8中,以网络设备与终端设备之间交互为例进行说明,网络设备执行的操作也可以由网络设备内部的芯片或模块执行,终端设备执行的操作也可以由终端设备内部的芯片或模块执行。参见图8,该方法包括:
S801:终端设备获取来自网络设备的第一配置信息,第一配置信息用于指示在第一时间段和至少一个下行载波中发送SRS。
需要说明的是,SRS也可以替换为其它类型的上行参考信号,例如解调参考信号(demodulation reference signal,DMRS),本申请实施例对此并不限定。
本申请实施例中,网络设备可以通过多种方式发送第一配置信息,一种实现方式中,网络设备可以通过无线资源控制(radio resource control,RRC)消息发送第一配置信息。第一配置信息可以为该RRC消息中的配置参数srs-configindex,该配置参数srs-configindex可以指示发送SRS的载波和周期等信息,第一配置信息还可以指示SRS的发送时机,发送时机可以指示出SRS在载波中占用的符号的符号位置以及符号数等信息。其中RRC消息可以为RRC连接建立消息或RRC连接重配置消息等。
需要说明的是,第一配置信息可以直接指示第一时间段,也可以间接指示第一时间段。例如,第一配置信息指示发送SRS的周期时,终端设备可以根据第一配置信息中的周期确定第一时间段。
另一种实现方式中,网络设备可以向终端设备发送包括第一配置信息的下行控制信息(downlink control information,DCI),DCI可以用来触发终端设备发送SRS。DCI中的第一配置信息可以指示第一时间段和至少一个下行载波。
需要说明的是,第一时间段的具体时长,本申请并不限定,例如第一时间段可以包括 多个上行时隙或者包括多个OFDM符号等。
本申请实施例中,至少一个下行载波为网络设备配置的,举例来说,终端设备可以获取来自网络设备的第二配置信息,第二配置信息用于指示下行连续CA的配置,其中,下行连续CA包括所述至少一个下行载波的配置。终端设备可以通过下行连续CA方式,在所述至少一个下行载波中接收下行数据或下行控制信令。
需要说明的是,所述至少一个下行载波为PUSCH-less载波。终端设备通常只能在PUSCH-less载波中接收下行数据或者下行控制信令,以及发送SRS等上行参考信号。
另外,在第一时间段内,终端设备在至少一个下行载波中轮发SRS,即终端设备每次只在一个下行载波中发送SRS,在一个下行载波中发送完成后,再切换到另外一个下行载波中发送SRS。
举例来说,如图9所示,为本申请实施例提供的一种SRS轮发示意图。图9中以第一时间段为一个时隙为例,终端设备需要在3个载波(载波1至载波3)上发送SRS。图9中以一个时隙包括14个符号(分别为符号0至符号13)为例进行描述,终端设备需要按照载波1至载波3的顺序,依次在每个下行载波中发送SRS。每个下行载波中的SRS占用一个符号,分别占用的符号为符号0,符号3,以及符号6。当然,可选地,每个下行载波中的SRS也可以占用多个符号。例如,作为一种示例,每个下行载波中的SRS占用两个符号,分别占用的符号为符号0和1,符号4和5,以及符号8和9。
本申请实施例中,所述至少一个下行载波位于相同的频带,且是在频域上连续的载波。
所述至少一个下行载波可以是定时对齐的,即为同一定时提前组(timing advance group,TAG),此时载波轮发SRS和正常的PUSCH发送定时对齐;所述至少一个下行载波也可以是定时不对齐的,即为不同TAG,此时载波轮发SRS和正常的PUSCH发送定时不对齐。
网络设备还可以为终端设备配置至少一个上行载波,终端设备可以通过至少一个上行载波向网络设备发送上行信号。本申请可以应用于TDD模式,在TDD模式中,至少一个下行载波与至少一个上行载波位于同一个频段。
本申请实施例中,至少一个下行载波和至少一个上行载波可以均位于3GPP NR的技术规范的频率范围1或者频率范围2。
进一步可选地,所述至少一个下行载波的频率范围与所述至少一个上行载波的频率范围在频域上连续。
举例来说,网络设备配置的2个下行载波,其中心频点分别为3.5GHz和3.6GHz,其带宽均为100MHz;网络设备配置的1个上行载波,其中心频点为3.7GHz,其带宽均为100MHz。这3个载波在频域上连续,且为相邻频点的载波。
S802:当在所述第一时间段内被配置在至少一个上行载波中发送上行信号时,终端设备基于CA模式配置发射通道,并在所述第一时间段内通过发射通道在至少一个下行载波中发送SRS,以及在所述至少一个上行载波中发送上行信号。
本申请实施例中,在第一时间段内,终端设备如果还需要在至少一个上行载波中发送上行信号,那么终端设备可以开启CA模式。当开启CA模式时,基于CA模式配置的发射通道的中心频点和带宽根据所述至少一个下行载波与所述至少一个上行载波共同确定。
具体的,基于所述CA模式配置的所述发射通道的中心频点可以根据所述至少一个下行载波与所述至少一个上行载波的频率范围确定,例如,发射通道的中心频点可以等于至少一个下行载波的中心频点与所述至少一个上行载波的中心频点的平均值。
举例来说,至少一个下行载波包括2个下行载波,其中心频点分别为3.5GHz和3.6GHz;至少一个上行载波包括1个上行载波,其中心频点为3.7GHz,那么基于所述CA模式配置的所述发射通道的中心频点可以等于3.6GHz。
本申请实施例中,基于所述CA模式配置的发射通道的带宽可以通过多种方式确定,一种实现方式中,发射通道的带宽可以为所述至少一个下行载波的带宽与所述至少一个上行载波的带宽的总和。
举例来说,至少一个下行载波包括2个下行载波,带宽均为100MHz;至少一个上行载波包括1个上行载波,其带宽均为100MHz,那么基于所述CA模式配置的所述发射通道的带宽可以等于300MHz。
另一种实现方式中,发射通道的带宽可以配置为终端设备支持的最大带宽。举例来说,终端设备支持的最大带宽等于500MHz,则可以将发射通道的带宽配置为500MHz。
需要说明的是,在该实现方式下,发射通道的中心频点也配置为与终端设备支持的最大带宽对应的中心频点。
在CA模式中,终端设备的发射通道的中心频点和带宽根据需要发送SRS的至少一个下行载波与需要发送上行信号的至少一个上行载波共同确定,因此终端设备可以同时在一个下行载波中发送SRS,并在另一个上行载波中发送上行信号,可以避免在发送SRS时,对上行载波中正在传输的上行信号造成的传输中断,提高上行效率。
当终端设备不需要在下行载波中发送SRS时,可以关闭CA模式。例如,在第二时间段,终端设备未被配置发送SRS,而是被配置在一个上行载波中发送上行信号。此时在第二时间段内,可以基于所述一个上行载波配置发射通道,此时终端设备的发射通道的中心频点和带宽根据所述一个上行载波确定。举例来说,所述一个上行载波的中心频点为3.5GHz,带宽为100MHz;那么可以配置发射通道在上行的工作带宽变更为100MHz,中心频点变更为3.5GHz。
终端设备在第二时间段内通过发射通道在所述一个上行载波中发送上行信号,上行信号的具体内容,本申请并不限定,在此不再赘述。
进一步的,本申请实施例中,终端设备还可以向网络设备发送反馈信息,所述反馈信息用于指示在第一时间段内基于CA模式配置终端设备的发射通道。网络设备从而可以确定在第一时间段内,终端设备在下行载波中发送SRS时,不会对上行载波中的上行信号造成中断,从而可以在第一时间段内调度终端设备进行上行传输,从而提高带宽利用率。
结合上面的描述,下面通过一个具体的实施例来描述前面的过程。
如图10所示,假设在TDD模式中,网络设备为终端设备配置了2个下行载波和1个上行载波。上行载波为CC1,2个下行载波分别为CC2以及CC3,这2个下行载波均为PUSCH-less载波,CC1至CC3的中心频点分别为3.5GHz,3.6GHz和3.7GHz;每个载波的带宽为100MHz。
网络设备通过第一配置信息指示终端设备在第一时间段内分别在CC2和CC3中发送SRS。假设在第一时间段内,终端设备还需要在CC1中发送上行信号,那么终端设备可以 在第一时间段内开启CA模式,终端设备基于CA模式配置发射通道。
具体的,终端设备的发射通道在上行的工作带宽配置为CC1、CC2以及CC3的带宽的总和,即配置为300MHz;终端设备的发射通道的中心频点配置为3.6GHz。
如图10所示,第一时间段包括多个上行时隙,U表示上行时隙。终端设备在第一时间段内,可以同时在一个上行载波中发送上行信号,并通过一个下线载波发送SRS,具体的,按照时间顺序,终端设备在第一个上行时隙中,通过CC2发送SRS;在第二个上行时隙中,通过CC3发送SRS;在第三个上行时隙中,通过CC2发送SRS;在第四个上行时隙中,通过CC3发送SRS。终端设备发送SRS的同时,还可以在每个上行时隙中通过CC1发送上行信号。
当终端设备不需要通过下行载波发送SRS时,终端设备可以关闭CA模式,此时终端设备在上行的工作带宽变更为100MHz。
通过上面的过程,在CA模式下,终端设备在下行载波中发送参考信号时,上行载波中的上行信号可以继续发送,减少因为载波轮发导致的数据传输中断以及数据丢失。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图11所示,本申请实施例还提供一种装置1100用于实现上述方法中网络设备或终端设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置1100可以包括:处理单元1101和通信单元1102。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或终端设备发送和接收的步骤。
以下,结合图11至图12详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元1102中用于实现接收功能的器件视为接收单元,将通信单元1102中用于实现发送功能的器件视为发送单元,即通信单元1102包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
通信装置1100执行上面实施例中终端设备的功能时:
通信单元,用于获取来自网络设备的第一配置信息,所述第一配置信息用于指示在第一时间段和至少一个下行载波中发送探测参考信号SRS;
处理单元,用于当在所述第一时间段内被配置在至少一个上行载波中发送上行信号时,基于载波聚合CA模式配置发射通道;
所述通信单元,用于在所述第一时间段内通过所述发射通道在所述至少一个下行载波中发送SRS,以及在所述至少一个上行载波中发送上行信号,其中,基于所述CA模式配置的所述发射通道的中心频点和带宽根据所述至少一个下行载波与所述至少一个上行载波共同确定。
一种可能的实现方式中,基于所述CA模式配置的所述发射通道的中心频点等于所述至少一个下行载波的中心频点与所述至少一个上行载波的中心频点的平均值。
一种可能的实现方式中,基于所述CA模式配置的所述发射通道的带宽为所述至少一个下行载波的带宽与所述至少一个上行载波的带宽的总和。
一种可能的实现方式中,所述通信单元还用于:
基于一个上行载波配置发射通道,并在第二时间段内通过所述发射通道在所述一个上行载波中发送上行信号;其中,所述第二时间段未被配置发送SRS,所述发射通道的中心频点和带宽根据所述一个上行载波确定。
一种可能的实现方式中,在获取所述第一配置信息之前,所述通信单元还用于:
获取来自所述网络设备的第二配置信息,所述第二配置信息用于指示下行连续CA的配置,其中,所述下行连续CA包括所述至少一个下行载波的配置。
一种可能的实现方式中,所述通信单元具体用于:
获取来自所述网络设备的无线资源控制RRC消息,所述RRC消息包括所述第一配置信息;所述RRC消息为RRC连接建立消息或RRC连接重配置消息。
一种可能的实现方式中,所述至少一个下行载波与所述至少一个上行载波为时分双工TDD载波。
一种可能的实现方式中,所述至少一个下行载波的频率范围与所述至少一个上行载波的频率范围在频域上连续。
一种可能的实现方式中,所述通信单元还用于:
向所述网络设备发送反馈信息,所述反馈信息用于指示在所述第一时间段内基于CA模式配置所述发射通道。
如图12所示为本申请实施例提供的装置1200,图12所示的装置可以为图11所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图12仅示出了该通信装置的主要部件。
如图12所示,通信装置1200包括处理器1210和接口电路1220。处理器1210和接口电路1220之间相互耦合。可以理解的是,接口电路1220可以为收发器或输入输出接口。可选的,通信装置1200还可以包括存储器1230,用于存储处理器1210执行的指令或存储处理器1210运行指令所需要的输入数据或存储处理器1210运行指令后产生的数据。
当通信装置1200用于实现图8所示的方法时,处理器1210用于实现上述处理单元1101的功能,接口电路1220用于实现上述通信单元1102的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模 块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    获取来自网络设备的第一配置信息,所述第一配置信息用于指示在第一时间段和至少一个下行载波中发送探测参考信号SRS;
    当在所述第一时间段内被配置在至少一个上行载波中发送上行信号时,基于载波聚合CA模式配置发射通道,并在所述第一时间段内通过所述发射通道在所述至少一个下行载波中发送SRS,以及在所述至少一个上行载波中发送上行信号,其中,基于所述CA模式配置的所述发射通道的中心频点和带宽根据所述至少一个下行载波与所述至少一个上行载波共同确定。
  2. 根据权利要求1所述的方法,其特征在于,基于所述CA模式配置的所述发射通道的中心频点等于所述至少一个下行载波的中心频点与所述至少一个上行载波的中心频点的平均值。
  3. 根据权利要求1或2所述的方法,其特征在于,基于所述CA模式配置的所述发射通道的带宽为所述至少一个下行载波的带宽与所述至少一个上行载波的带宽的总和。
  4. 根据权利要求1至3中任一所述的方法,其特征在于,所述方法还包括:
    基于一个上行载波配置发射通道,并在第二时间段内通过所述发射通道在所述一个上行载波中发送上行信号;其中,所述第二时间段未被配置发送SRS,所述发射通道的中心频点和带宽根据所述一个上行载波确定。
  5. 根据权利要求1至4中任一所述的方法,其特征在于,在获取所述第一配置信息之前,所述方法还包括:
    获取来自所述网络设备的第二配置信息,所述第二配置信息用于指示下行连续CA的配置,其中,所述下行连续CA包括所述至少一个下行载波的配置。
  6. 根据权利要求1至5中任一所述的方法,其特征在于,所述获取来自网络设备的第一配置信息,包括:
    获取来自所述网络设备的无线资源控制RRC消息,所述RRC消息包括所述第一配置信息;所述RRC消息为RRC连接建立消息或RRC连接重配置消息。
  7. 根据权利要求1至6中任一所述的方法,其特征在于,所述至少一个下行载波与所述至少一个上行载波为时分双工TDD载波。
  8. 根据权利要求1至7中任一所述的方法,其特征在于,所述至少一个下行载波的频率范围与所述至少一个上行载波的频率范围在频域上连续。
  9. 根据权利要求1至8中任一所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送反馈信息,所述反馈信息用于指示在所述第一时间段内基于CA模式配置所述发射通道。
  10. 一种通信装置,其特征在于,包括:
    通信单元,用于获取来自网络设备的第一配置信息,所述第一配置信息用于指示在第一时间段和至少一个下行载波中发送探测参考信号SRS;
    处理单元,用于当在所述第一时间段内被配置在至少一个上行载波中发送上行信号时,基于载波聚合CA模式配置发射通道;
    所述通信单元,用于在所述第一时间段内通过所述发射通道在所述至少一个下行载波 中发送SRS,以及在所述至少一个上行载波中发送上行信号,其中,基于所述CA模式配置的所述发射通道的中心频点和带宽根据所述至少一个下行载波与所述至少一个上行载波共同确定。
  11. 根据权利要求10所述的装置,其特征在于,基于所述CA模式配置的所述发射通道的中心频点等于所述至少一个下行载波的中心频点与所述至少一个上行载波的中心频点的平均值。
  12. 根据权利要求10或11所述的装置,其特征在于,基于所述CA模式配置的所述发射通道的带宽为所述至少一个下行载波的带宽与所述至少一个上行载波的带宽的总和。
  13. 根据权利要求10至12中任一所述的装置,其特征在于,所述通信单元还用于:
    基于一个上行载波配置发射通道,并在第二时间段内通过所述发射通道在所述一个上行载波中发送上行信号;其中,所述第二时间段未被配置发送SRS,所述发射通道的中心频点和带宽根据所述一个上行载波确定。
  14. 根据权利要求10至13中任一所述的装置,其特征在于,在获取所述第一配置信息之前,所述通信单元还用于:
    获取来自所述网络设备的第二配置信息,所述第二配置信息用于指示下行连续CA的配置,其中,所述下行连续CA包括所述至少一个下行载波的配置。
  15. 根据权利要求10至14中任一所述的装置,其特征在于,所述通信单元具体用于:
    获取来自所述网络设备的无线资源控制RRC消息,所述RRC消息包括所述第一配置信息;所述RRC消息为RRC连接建立消息或RRC连接重配置消息。
  16. 根据权利要求10至15中任一所述的装置,其特征在于,所述至少一个下行载波与所述至少一个上行载波为时分双工TDD载波。
  17. 根据权利要求10至16中任一所述的装置,其特征在于,所述至少一个下行载波的频率范围与所述至少一个上行载波的频率范围在频域上连续。
  18. 根据权利要求10至17中任一所述的装置,其特征在于,所述通信单元还用于:
    向所述网络设备发送反馈信息,所述反馈信息用于指示在所述第一时间段内基于CA模式配置所述发射通道。
  19. 一种通信装置,其特征在于,包括:存储器与处理器,所述存储器用于存储计算机程序或指令,所述处理器,用于执行所述存储器中存储的所述计算机程序或指令;当所述处理器执行所述计算机程序或指令时,如权利要求1至9中任意一项所述的方法被执行。
  20. 一种计算机可读存储介质,其特征在于,存储有计算机可读指令,当通信装置读取并执行所述计算机可读指令时,使得所述通信装置执行如权利要求1至9中任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,存储有计算机可读指令,当通信装置读取并执行所述计算机可读指令,使得所述通信装置执行如权利要求1至9中任一项所述的方法。
  22. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,如权利要求1至9中任意一项所述的方法被执行。
PCT/CN2020/142154 2020-12-31 2020-12-31 一种通信方法及装置 WO2022141402A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/142154 WO2022141402A1 (zh) 2020-12-31 2020-12-31 一种通信方法及装置
CN202080104915.0A CN116250197A (zh) 2020-12-31 2020-12-31 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142154 WO2022141402A1 (zh) 2020-12-31 2020-12-31 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022141402A1 true WO2022141402A1 (zh) 2022-07-07

Family

ID=82258821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142154 WO2022141402A1 (zh) 2020-12-31 2020-12-31 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116250197A (zh)
WO (1) WO2022141402A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886457A (zh) * 2016-04-01 2018-11-23 华为技术有限公司 用于srs切换、发送和增强的系统与方法
CN109698739A (zh) * 2017-10-23 2019-04-30 华为技术有限公司 一种信号配置方法及相关设备
US20200322187A1 (en) * 2016-06-22 2020-10-08 Intel IP Corporation Uplink sounding reference signal (srs) transmission in carrier aggregation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886457A (zh) * 2016-04-01 2018-11-23 华为技术有限公司 用于srs切换、发送和增强的系统与方法
US20200322187A1 (en) * 2016-06-22 2020-10-08 Intel IP Corporation Uplink sounding reference signal (srs) transmission in carrier aggregation system
CN109698739A (zh) * 2017-10-23 2019-04-30 华为技术有限公司 一种信号配置方法及相关设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Configuration of SRS Carrier Switching", 3GPP TSG-RAN WG2 #110E; R2-2005072, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. - 20200612, 21 May 2020 (2020-05-21), Electronic meeting; 20200601 - 20200612, XP051887512 *
HUAWEI, HISILICON: "Summary for WI: SRS (sounding reference signal) switching between LTE component carriers", 3GPP TSG RAN MEETING #74; RP-162137 , 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 4 December 2016 (2016-12-04), Vienna, Austria; 20161205 - 20161208, XP051183566 *
QUALCOMM INCORPORATED: "Discussion on SRS enhancement", 3GPP TSG-RAN WG1 MEETING #103-E; R1-2009255, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 24 October 2020 (2020-10-24), e-Meeting; 20201026 - 20201113, XP051946918 *

Also Published As

Publication number Publication date
CN116250197A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
US11825476B2 (en) Communication of direct current (DC) tone location
US11329793B2 (en) Efficient bandwidth adaptation for a wideband carrier
US10506502B2 (en) Air interface resource utilization techniques for wireless communication networks
US20220052816A1 (en) Sounding Reference Signal Sending Method and Related Apparatus
EP3568942A1 (en) Downlink channel rate matching of synchronization signal block transmissions in a new radio wireless communication system
US11109312B2 (en) Dynamic group wake-up reconfiguration
JP7420812B2 (ja) 不連続受信中の起動シグナリングを容易にするための方法および装置
US20220116193A1 (en) Wireless communication method and apparatus, and radio frequency subsystem
WO2023030514A1 (zh) 无线通信方法和通信装置
CN114651488A (zh) 在无线通信系统中用于空间关系调度的方法和装置
CN115398821A (zh) 波束增益信令
WO2020154056A1 (en) Intra-packet rate adaptation for high capacity
JP7429242B2 (ja) 測定管理方法及び装置、通信デバイス
CN114303400A (zh) 无线通信系统中的不连续接收通知
CN114175522A (zh) 用于报告用户设备(ue)面板相关信息的技术
WO2022141402A1 (zh) 一种通信方法及装置
WO2022188638A1 (zh) 一种数据传输方法及装置
WO2020243888A1 (zh) 一种无线通信装置及载波切换方法
WO2023174141A1 (zh) 通信方法和装置
WO2023066329A1 (zh) 一种通信方法及装置
WO2022034366A1 (en) Adaptive algorithms for bandwidth part configuration to enable fast wireless device reconfiguration
KR20240049369A (ko) 다중 캐리어 전송 기술

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967741

Country of ref document: EP

Kind code of ref document: A1