WO2022000185A1 - 微机电扫描镜的控制方法、控制装置以及系统 - Google Patents

微机电扫描镜的控制方法、控制装置以及系统 Download PDF

Info

Publication number
WO2022000185A1
WO2022000185A1 PCT/CN2020/098912 CN2020098912W WO2022000185A1 WO 2022000185 A1 WO2022000185 A1 WO 2022000185A1 CN 2020098912 W CN2020098912 W CN 2020098912W WO 2022000185 A1 WO2022000185 A1 WO 2022000185A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
image
scanning mode
scanned
mems
Prior art date
Application number
PCT/CN2020/098912
Other languages
English (en)
French (fr)
Inventor
徐彧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080004880.3A priority Critical patent/CN112771853B/zh
Priority to PCT/CN2020/098912 priority patent/WO2022000185A1/zh
Publication of WO2022000185A1 publication Critical patent/WO2022000185A1/zh
Priority to US17/717,383 priority patent/US20220244527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • H04N9/3135Driving therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners

Definitions

  • the present application relates to the technical field of micro-projection, and in particular, to a control method of a micro-electromechanical scanning mirror, a control device of the micro-electromechanical scanning mirror, and an imaging system of the micro-electromechanical scanning mirror.
  • LBS Laser beam scanning
  • MEMS micro electro mechanical systems
  • scanning mirror control system its projection principle is that the laser control system controls the emission of three-color laser according to the acquired image.
  • Laser to the mirror of the MEMS Under the control of the driving signal generated by the scanning mirror control system, the mirror swings around two axes in the horizontal direction and the vertical direction, so as to reflect the three-color laser to the synthetic pixels on the screen to realize image display.
  • the control method of the MEMS scanning mirror usually adopts the raster scanning method, that is, the mirror in the MEMS is scanned on the display screen from top to bottom by scanning in the same direction; however, the raster scanning method is used to obtain The projected image will produce periodic moiré patterns that brighten and fade in brightness, which seriously affects the visual experience.
  • the present application provides a control method, control device and system for a microelectromechanical scanning mirror.
  • the target scanning method adopted in the embodiments of the present application that is, scanning the image to be scanned in at least two different directions can improve the projection image of the image to be scanned. image quality.
  • a method for controlling a microelectromechanical scanning mirror including: generating a control signal, the control signal being used to control the microelectromechanical scanning mirror to project laser light corresponding to a pixel in a to-be-scanned image through a target scanning method, and output all the laser beams.
  • the projected image of the image to be scanned wherein the target scanning mode includes a first scanning mode and a second scanning mode, and the initial positions of the first scanning mode and the second scanning mode in the to-be-scanned image are different ; Send the control signal to the MEMS scanning mirror.
  • the above-mentioned target scanning mode may refer to a scanning mode in which the image to be scanned is scanned from at least two different directions; wherein, the initial position of the first scanning mode and the initial position of the second scanning mode may refer to scanning the image to be scanned.
  • the starting position of that is, the position to start scanning.
  • the target scanning mode may be a scanning mode in which some or all pixels in the same row of pixels in the image to be scanned are scanned in at least two different directions; scanning in one direction may result in that some areas cannot be scanned , dark streaks will appear in the corresponding area of the projected image of the image to be scanned; by scanning in at least two different directions, the area that cannot be scanned in one direction can be compensated to a certain extent.
  • the pixels in the to-be-scanned image are scanned by the target scanning method, that is, by scanning the to-be-scanned image from at least two different directions, to a certain extent, the pixels that cannot be scanned by one scanning direction can be scanned. Therefore, scanning the to-be-scanned image through the target scanning method of the embodiment of the present application can effectively reduce moiré in the projected image of the to-be-scanned image and improve the imaging quality of the projected image of the to-be-scanned image.
  • the laser light corresponding to the pixel in the scanned image may be the laser light emitted by the laser to the MEMS scanning mirror according to the pixel in the to-be-scanned image; for example, three-color laser light may be emitted according to each pixel in the to-be-scanned image , wherein the three-color laser includes red laser, green laser or blue laser.
  • the initial position of the first scanning mode and the initial position of the second scanning mode are located in the same row of pixels in the image to be scanned.
  • the initial position of the first scanning mode and the initial position of the second scanning position may be respectively located at opposite positions of pixels in the same row of the image to be scanned; for example, a row of pixels includes N columns, and the first scanning mode The initial position of the pixel can be located in the first column of the same row of pixels; the second scanning mode can be located in the Nth column of the same row of pixels.
  • the area that cannot be scanned by one scanning direction can be compensated to a certain extent by using the first scanning mode and the second scanning mode with different initial positions; therefore, in the embodiment of the present application
  • the target scanning method can effectively reduce the moiré in the projected image of the image to be scanned, and improve the imaging quality of the projected image of the image to be scanned.
  • the image to be scanned includes N columns of pixels, and the initial position of the first scanning mode and the initial position of the second scanning mode are respectively located in the to-be-scanned image.
  • i and j are both positive integers less than or equal to N, and i and j are different.
  • the initial position of the first scanning mode may be located in the first column of pixels in the image to be scanned; the initial position of the second scanning mode may be located in the last column of pixels in the image to be scanned, that is, the pixel of the image to be scanned.
  • control signal controls the MEMS scanning mirror through a phase shift method to implement the target scanning mode.
  • the phase difference of the control signal used to control the MEMS scanning mirror to scan according to the first scanning mode and the second scanning mode in the control signal half cycle is
  • the phase shift can be achieved by dynamically controlling the fast-axis vibration frequency of the MEMS scanning mirror.
  • most of the phases can be controlled by adjusting the frequency; in the second scanning mode, less than half of the phases can be controlled by adjusting the frequency, so that the initial positions of the first scanning mode and the second scanning mode are different.
  • control signal is further used to control the scanning line spacing of the MEMS scanning mirror, so that the MEMS scanning mirror passes through all the scanning lines according to the scanning line spacing.
  • the target scanning mode projects the laser light corresponding to the pixels in the to-be-scanned image.
  • the scanning line spacing and scanning mode of the MEMS scanning mirror can be adjusted, so that the resolution of the MEMS scanning mirror does not need to be multiplied by multiples. Scanning the row pixels in at least two different directions can effectively reduce moiré in the projected image of the image to be scanned, and improve the imaging quality of the projected image of the image to be scanned.
  • control signal for controlling the MEMS scanning mirror to scan through the target scanning mode and the control signal for controlling the scanning line spacing of the MEMS scanning mirror may be sent to the MEMS scanning mirror together, or may also be sent to the MEMS scanning mirror. It can be divided into multiple control signals and sent to the MEMS scanning mirror.
  • a control device for a MEMS scanning mirror including: a processing unit for generating a control signal, where the control signal is used to control the MEMS scanning mirror to scan a laser corresponding to a pixel in a to-be-scanned image by a target scanning method Projection is performed, and a projected image of the image to be scanned is output, wherein the target scanning mode includes a first scanning mode and a second scanning mode, and the first scanning mode and the second scanning mode are in the image to be scanned.
  • the initial positions in the MEMS are different; the sending unit is used for sending the control signal to the MEMS scanning mirror.
  • target scanning manner may refer to a scanning manner in which the to-be-scanned image is scanned from at least two different directions.
  • the target scanning mode may be a scanning mode in which some or all pixels in the same row of pixels in the image to be scanned are scanned in at least two different directions; scanning in one direction may result in that some areas cannot be scanned , dark streaks will appear in the corresponding area of the projected image of the image to be scanned; by scanning in at least two different directions, the area that cannot be scanned in one direction can be compensated to a certain extent.
  • the pixels in the to-be-scanned image are scanned by the target scanning method, that is, by scanning the to-be-scanned image from at least two different directions, to a certain extent, the pixels that cannot be scanned by one scanning direction can be scanned. Therefore, scanning the to-be-scanned image through the target scanning method of the embodiment of the present application can effectively reduce moiré in the projected image of the to-be-scanned image and improve the imaging quality of the projected image of the to-be-scanned image.
  • the laser light corresponding to the pixel in the scanned image may be the laser light emitted by the laser to the MEMS scanning mirror according to the pixel in the to-be-scanned image; for example, three-color laser light may be emitted according to each pixel in the to-be-scanned image , wherein the three-color laser includes red laser, green laser or blue laser.
  • the initial position of the first scanning mode and the initial position of the second scanning mode are located in the same row of pixels in the image to be scanned.
  • the initial position of the first scanning mode and the initial position of the second scanning position may be respectively located at opposite positions of pixels in the same row of the image to be scanned; for example, a row of pixels includes N columns, and the first scanning mode The initial position of the pixel can be located in the first column of the same row of pixels; the second scanning mode can be located in the Nth column of the same row of pixels.
  • the area that cannot be scanned by one scanning direction can be compensated to a certain extent by using the first scanning mode and the second scanning mode with different initial positions; therefore, in the embodiment of the present application
  • the target scanning method can effectively reduce the moiré in the projected image of the image to be scanned, and improve the imaging quality of the projected image of the image to be scanned.
  • the image to be scanned includes N columns of pixels, and the initial position of the first scanning mode and the initial position of the second scanning mode are respectively located in the to-be-scanned image.
  • i and j are both positive integers less than or equal to N, and i and j are different.
  • the initial position of the first scanning mode may be located in the first column of pixels in the image to be scanned; the initial position of the second scanning mode may be located in the last column of pixels in the image to be scanned, that is, the pixel of the image to be scanned.
  • control signal controls the MEMS scanning mirror to implement the target scanning mode through a phase shift method.
  • the phase difference of the control signal used to control the MEMS scanning mirror to scan according to the first scanning mode and the second scanning mode in the control signal half cycle is a difference of the control signal used to control the MEMS scanning mirror to scan according to the first scanning mode and the second scanning mode in the control signal half cycle.
  • the phase shift can be achieved by dynamically controlling the fast-axis vibration frequency of the MEMS scanning mirror.
  • most of the phases can be controlled by adjusting the frequency; in the second scanning mode, less than half of the phases can be controlled by adjusting the frequency, so that the initial positions of the first scanning mode and the second scanning mode are different.
  • control signal is further used to control the scanning line spacing of the MEMS scanning mirror, so that the MEMS scanning mirror passes through all the scanning lines according to the scanning line spacing.
  • the target scanning mode projects the laser light corresponding to the pixels in the to-be-scanned image.
  • the scanning line spacing and scanning mode of the MEMS scanning mirror can be adjusted, so that the resolution of the MEMS scanning mirror does not need to be multiplied by multiples. Scanning the row pixels in at least two different directions can effectively reduce moiré in the projected image of the image to be scanned, and improve the imaging quality of the projected image of the image to be scanned.
  • control signal for controlling the MEMS scanning mirror to scan through the target scanning mode and the control signal for controlling the scanning line spacing of the MEMS scanning mirror may be sent to the MEMS scanning mirror together, or may also be sent to the MEMS scanning mirror. It can be divided into multiple control signals and sent to the MEMS scanning mirror.
  • a control device for a microelectromechanical scanning mirror comprising a memory for storing a program; a processor for executing the program stored in the memory, and when the program stored in the memory is executed, the processor is used for executing : Generate a control signal, the control signal is used to control the MEMS scanning mirror to project the laser light corresponding to the pixel in the image to be scanned through the target scanning mode, and output the projected image of the to-be-scanned image, wherein the target scanning mode includes the first A scanning mode and a second scanning mode, the initial positions of the first scanning mode and the second scanning mode in the to-be-scanned image are different; the control signal is sent to the MEMS scanning mirror.
  • control apparatus includes a processor further configured to execute the first aspect and the control method in any one of the implementation manners of the first aspect.
  • a MEMS scanning mirror imaging system including a MEMS scanning mirror; and the second aspect and the control device in any one of the implementation manners of the second aspect.
  • a computer-readable medium stores program code for device execution, the program code including the method for executing the first aspect and any one of the implementation manners of the first aspect. control method.
  • a computer program product containing instructions, when the computer program product runs on a computer, the computer program product causes the computer to execute the first aspect and the control method in any one of the implementations of the first aspect.
  • a chip in a seventh aspect, includes a processor and a data interface, the processor reads an instruction stored in a memory through the data interface, and executes any one of the first aspect and the first aspect above control method in an implementation.
  • the chip may further include a memory, in which instructions are stored, the processor is configured to execute the instructions stored in the memory, and when the instructions are executed, the The processor is configured to execute the first aspect and the control method in any one of the implementation manners of the first aspect.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the working principle of the MEMS scanning mirror provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a control method of a MEMS scanning mirror provided by the present application.
  • FIG. 4 is a schematic flowchart of a control method of a MEMS scanning mirror provided by the present application.
  • FIG. 5 is a schematic diagram of a target scanning manner provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of duplicating an image to be scanned provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of implementing a target scanning mode through a phase migration method provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a control device for a MEMS scanning mirror provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a control device for a MEMS scanning mirror provided by an embodiment of the present application.
  • LBS Laser beam scanning
  • LBS is mainly composed of a laser control system, three-color lasers (red, green, and blue lasers, namely RGB lasers), micro-electromechanical systems (MEMS), and scanning mirror control systems.
  • the projection principle is that the laser control system controls the RGB three-color laser to emit laser light to the MEMS mirror according to the acquired image; under the control of the driving signal generated by the scanning mirror control system, the mirror surrounds two horizontal and vertical directions.
  • the axis swings to reflect the RGB three-color laser to the synthetic pixels on the screen to realize image display.
  • the MEMS mirror assembly consists of a mirror suspended in a gimbal frame on which a micro Machined energized coils; brake elements are mounted around the MEMS die to provide the shock actuation force on the mirror surface.
  • a force torque can be generated on the gimbal and components in both directions of the rotation axis; the two components of the torque cause the gimbal to deflect around The rotation of the suspension and the vibration of the scanning mirror resonant mode cause biaxial rotation of the MEMS mirror through a simple superposition of horizontal and vertical waves.
  • Pixels are made up of small squares in an image. These small squares have a definite position and assigned color value. The color and position of the small squares determine the appearance of the image; a pixel can be regarded as a whole.
  • Each bitmap contains a certain number of pixels that determine the size of the image on the screen.
  • Moiré is a kind of high-frequency interference fringes that appear on the photosensitive element on digital cameras or scanners. It is a kind of high-frequency irregular fringes that make pictures appear colorful.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • a video processor and controller 110 a laser driver 120 , a MEMS driver 130 , and a projected image 140 may be included in the system architecture 100 .
  • the video processor and the controller 110 are used to acquire the video or image to be processed, and the video or image to be processed may refer to the image displayed in the projection image 140 that needs to be displayed by the LBS.
  • the video or image to be processed may be a video captured by an electronic device through a camera, or the video or image to be processed may also be a video obtained from the electronic device (for example, a video stored in an album of the electronic device, Or, the video that the electronic device gets from the cloud).
  • the laser driver 120 is used to control the operation of the three-color laser, wherein the three-color laser may include a blue laser 121, a red laser 122 and a green laser 123;
  • the three-color laser is controlled to emit different lasers to the MEMS mirror for the video to be processed or different pixel points in the video to be processed.
  • the MEMS driver 130 is used to control the operation of the micro-electromechanical scanning mirror 131; for example, the MEMS driver can control the driving signal generated by the MEMS to make the mirror in the MEMS oscillate around two axes in the horizontal direction and the vertical direction, so that the The three-color laser is reflected to the composite pixels on the display screen to display the image to be processed, that is, the projected image 140 is displayed.
  • FIG. 2 is a schematic diagram of the working principle of the MEMS scanning mirror provided by the embodiment of the present application.
  • the mirror suspended on the gimbal can generate force and torque by applying current, and the force and torque can be along the rotation axis (for example, the fast axis and the slow axis). ) to generate components in two directions; as shown in Figure 2, the components in the two directions can cause the mirror to generate bicyclic rotational vibration, so that the laser emitted by the laser to the mirror can scan the space horizontally and vertically on the display screen. .
  • the raster scanning method is usually used in the control method of the MEMS scanning mirror, that is, the mirror in the MEMS scans from left to right and up to down on the display screen;
  • the light is a Gaussian beam, and there is a gap in the beam of the Gaussian beam, which causes the mirror to image in the display screen, which will produce periodic moiré patterns that brighten and fade in brightness, which seriously affects the visual experience.
  • the present application provides a control method for a microelectromechanical scanning mirror, by scanning the image to be scanned in at least two different directions, that is, scanning the image to be scanned in a target scanning mode, and the target scanning mode includes a first scanning mode.
  • the initial positions of the first scanning mode and the second scanning mode in the image to be scanned are different, so that the area that cannot be scanned by one scanning direction can be compensated to a certain extent; therefore, in this
  • the appearance of moiré in the projected image of the to-be-scanned image can be effectively reduced, and the imaging quality of the projected image of the to-be-scanned image can be improved.
  • the scanning imaging method provided by the present application can be applied to a micro projector, or can also be applied to a head up display (HUD) system in a vehicle.
  • HUD head up display
  • control method of the micro-electromechanical scanning mirror shown in FIG. 3 may be implemented by the MEMS drive in the system architecture shown in FIG. 1 .
  • the control method 200 shown in FIG. 3 includes steps S210 and S220, and the steps S210 and S220 are described in detail below respectively.
  • the control signal can be used to control the MEMS scanning mirror to project the laser light corresponding to the pixel in the image to be scanned through the target scanning mode, and output the projected image of the image to be scanned, wherein the target scanning mode includes the first scanning mode and the second scanning mode , the initial positions of the first scanning mode and the second scanning mode in the to-be-scanned image are different.
  • the target scanning mode may refer to a scanning mode in which the to-be-scanned image is scanned from at least two different directions.
  • some or all of the pixels in the same row of pixels in the image to be scanned can be scanned in at least two different directions through the target scanning method, so that to a certain extent, it is possible to scan the pixels that cannot be scanned in one scanning direction.
  • the scanned area is effectively compensated.
  • the laser light corresponding to the pixel in the image to be scanned may be the laser light emitted by the laser to the MEMS scanning mirror according to the pixel in the image to be scanned; for example, three-color laser light may be emitted according to each pixel in the image to be scanned, wherein, Three-color lasers include red lasers, green lasers, or blue lasers.
  • the MEMS scanning mirror After the MEMS scanning mirror acquires the laser light corresponding to the pixel in the image to be processed, the MEMS scanning mirror can generate biaxial rotation according to the control signal, so that the laser light of the pixel in the received image to be processed is projected onto the screen to synthesize the pixel in the image to be scanned
  • the display of the to-be-scanned image is realized, that is, the projected image of the to-be-scanned image is obtained.
  • the above-mentioned screen may refer to a projection screen of a projector, or may also refer to a display screen in an HDU system in a vehicle, for example, a front windshield of a vehicle.
  • the target scanning method refers to the scanning method in which the image to be scanned is scanned in at least two different directions; if the same row of pixels is scanned in one scanning direction, some areas cannot be scanned. There will be dark streaks in the corresponding area of Scanning the to-be-scanned image in the scanning manner can effectively reduce moiré in the projected image of the to-be-scanned image and improve the imaging quality of the projected image of the to-be-scanned image.
  • the initial position of the first scanning mode and the initial position of the second scanning mode are located in the same row of pixels in the image to be scanned.
  • the initial position of the first scanning mode and the initial position of the second scanning position may be located at opposite positions of the same row of pixels in the image to be scanned; for example, if a row of pixels includes N columns, the initial position of the first scanning mode may be located at The first column of pixels in the same row; the second scanning mode may be located in the Nth column of pixels in the same row.
  • the first scanning mode may refer to the first scanning direction
  • the second scanning mode may refer to the second scanning direction
  • the first scanning cannot be performed in the area corresponding to the upper right corner.
  • Projection means that the laser energy in the area corresponding to the upper right corner is low, and the area corresponding to the upper left corner cannot be projected through the second scan, that is, the laser energy in the area corresponding to the upper left corner is low; two scans in opposite directions can be effective. It can compensate for the projected laser, thereby effectively reducing the moiré in the projected image of the image to be scanned, and improving the imaging quality of the projected image of the image to be scanned.
  • the image to be scanned includes N columns of pixels, and the initial position of the first scanning mode and the initial position of the second scanning mode may be located in the i-th column of pixels and the j-th pixel of the to-be-scanned image, respectively.
  • Column pixel, i and j are both positive integers less than or equal to N, and i and j are different.
  • the initial position of the first scanning mode may be in the first column of pixels in the image to be scanned; the initial position of the second scanning mode may be in the last column of pixels in the to-be-scanned image, that is, the Nth column of pixels in the to-be-scanned image.
  • control signal controls the MEMS scanning mirror through a phase shift method to implement the target scanning manner.
  • the phase offset method refers to the deviation of the instantaneous phase angle of the FM wave or the phase-modulated wave from the carrier phase angle during frequency modulation or phase modulation.
  • Frequency modulation is a modulation method in which the instantaneous frequency of the carrier wave changes according to the changing law of the signal to be transmitted; it is a modulation method that makes the instantaneous frequency of the modulated wave change with the modulating signal.
  • the phase of the control signal for controlling the MEMS scanning mirror to scan according to the first scanning manner and the second scanning manner differs by half a cycle in the control signal.
  • the phase shift can be achieved by dynamically controlling the fast-axis vibration frequency of the MEMS scanning mirror.
  • the first scanning mode can be a left-to-right scanning mode, and most of the phases can be controlled by adjusting the frequency;
  • the second scanning mode can be a right-to-left scanning mode, and at least half the phase can be controlled by adjusting the frequency.
  • the scanning line spacing of the MEMS scanning mirror can also be controlled by a control signal; that is, the MEMS scanning mirror can be made to scan the pixels in the image to be scanned according to the scanning line spacing through the above-mentioned target scanning method through the control signal. The corresponding laser is projected.
  • control signal for controlling the MEMS scanning mirror to scan through the target scanning method and the control signal for controlling the scanning line spacing of the MEMS scanning mirror can be sent to the MEMS scanning mirror together, Alternatively, it can also be divided into multiple control signals and sent to the MEMS scanning mirror.
  • FIG. 4 is a schematic flowchart of a method for controlling a MEMS scanning mirror provided by an embodiment of the present application.
  • the control method 300 shown in FIG. 4 includes steps S310 to S360 , and the steps S310 to S360 are described in detail below respectively.
  • FIG. 1 it may refer to acquiring image input through the video processor and the controller 110 ; it may be acquiring data of one frame of image, or it may be acquiring data of multiple frames of images.
  • the data of each line of each frame of the image in the image may be copied once, and the total number of lines of each frame of the image after the copying process becomes doubled.
  • one frame of original image may include 4 lines of data, and 8 lines of copied image data can be obtained by duplicating each line of data in the original image once.
  • each line of data in each frame of image may also be copied multiple times, which is not limited in this embodiment of the present application.
  • the scanning line spacing is set to be half of the initial line spacing.
  • the first scanning mode may be a left-to-right scanning mode, or the first scanning mode may also be a right-to-left scanning mode.
  • the second scanning mode is different from the first scanning mode; for example, the direction of the two scans may be an interleaved scanning mode, that is, the first scanning mode and the second scanning mode may adopt scanning modes in opposite directions; Wherein, the interlaced scanning manner may be a specific implementation manner of the target scanning manner shown in FIG. 3 .
  • the scanning directions of the first scanning mode and the second scanning mode are opposite or the initial scanning positions are different, the scanning images of the first scanning mode and the second scanning mode may be the same; for example, the two scanning modes may correspond to the same image to be scanned.
  • the second scanning manner may adopt a right-to-left scanning manner.
  • the second scanning manner may adopt a left-to-right scanning manner.
  • the image can be uniformly displayed in the imaging plane through two interlaced scanning methods, that is, the image displayed in the imaging plane can be prevented from appearing in bright and dark areas, that is, the imaging plane can be effectively reduced. Moiré pattern, thereby improving image quality.
  • FIG. 5 is a schematic diagram of a target scanning manner provided by an embodiment of the present application.
  • the original image includes h lines of data, namely image data 1 and image data 2; each line of data in the original image can be copied once to obtain image data including 2h lines;
  • the scanning line spacing C is set so that the scanning line spacing is half of the original scanning line spacing, that is, C/2; scanning is performed according to the copied image data and the current scanning line spacing, and the first scan can be in accordance with the scanning method from left to right; then, you can A second scan is performed, that is, the second scan may be in a right-to-left scan manner.
  • the first scanning mode may be a left-to-right scanning mode
  • the second scanning mode may be a right-to-left scanning mode for illustration;
  • the second scanning mode and the first scanning mode are exemplified. is different, that is, the direction of the two scans may be an interlaced scanning manner, and the present application does not make any limitation on the specific direction of each scanning manner.
  • the above is an example of the first scanning mode and the second scanning mode.
  • the initial positions of the first scanning mode and the second scanning mode are different.
  • the mode can scan the image to be scanned from at least two different directions, and the present application does not make any limitation on the specific directions of the first scanning mode and the second scanning mode.
  • FIG. 7 is a schematic diagram of a target scanning mode implemented by a phase migration method provided by an embodiment of the present application.
  • the above-mentioned target scanning method can be realized by the phase shift method; specifically, the phase shift can be realized by dynamically controlling the fast-axis vibration frequency of the mirror in the MEMS.
  • the frequency can be adjusted to control less than half of the phase. half phase.
  • a complete cycle of scanning can be achieved by two interlaced scanning methods, that is, the scanning of one frame of image can be completed by two interlaced scanning methods. That is, the scanning of the first input image can be completed through F1 and F2; the scanning of the second input image can be completed through F3 and F4.
  • control method of the microelectromechanical scanning mirror provided by the embodiments of the present application is described in detail above with reference to FIGS. 1 to 7 ; below, the device embodiments of the present application will be described in detail with reference to FIGS. 8 to 9 . It should be understood that the control device for the MEMS scanning mirror in the embodiments of the present application can execute various methods in the foregoing embodiments of the present application, that is, for the specific working processes of the following various products, reference may be made to the corresponding processes in the foregoing method embodiments.
  • FIG. 8 is a schematic block diagram of a control device for a MEMS scanning mirror provided by an embodiment of the present application.
  • control device 400 may execute the control method shown in FIG. 3 , or the control method shown in FIG. 4 .
  • the control device 400 includes: a processing unit 410 and a sending unit 420 .
  • the processing unit 410 is used to generate a control signal, and the control signal is used to control the MEMS scanning mirror to project the laser light corresponding to the pixel in the image to be scanned through the target scanning method, and output the projected image of the image to be scanned, wherein the
  • the target scanning mode includes a first scanning mode and a second scanning mode, and the initial positions of the first scanning mode and the second scanning mode in the to-be-scanned image are different;
  • the sending unit 420 is used to send the microcomputer The scanning mirror sends the control signal.
  • the initial position of the first scanning mode and the initial position of the second scanning mode are located in the same row of pixels in the image to be scanned.
  • the image to be scanned includes N columns of pixels, and the initial position of the first scanning mode and the initial position of the second scanning mode are respectively located in the i-th column of pixels of the to-be-scanned image.
  • i and j are both positive integers less than or equal to N, and i and j are different.
  • control signal controls the MEMS scanning mirror to implement the target scanning mode through a phase shift method.
  • the phase of the control signal for controlling the MEMS scanning mirror to scan according to the first scanning mode and the second scanning mode in the control signal differs by half a cycle.
  • control signal is further used to control the scanning line spacing of the MEMS scanning mirror, so that the MEMS scanning mirror scans the target scanning method according to the scanning line spacing.
  • the laser corresponding to the pixel in the image to be scanned is scanned.
  • control device 400 is embodied in the form of functional units; the term “unit” here may be implemented in the form of software and/or hardware, which is not specifically limited.
  • a "unit” may be a software program, a hardware circuit, or a combination of the two that realizes the above-mentioned functions.
  • the hardware circuits may include application specific integrated circuits (ASICs), electronic circuits, processors for executing one or more software or firmware programs (eg, shared processors, proprietary processors, or group processors) etc.) and memory, merge logic and/or other suitable components to support the described functions.
  • ASICs application specific integrated circuits
  • processors for executing one or more software or firmware programs eg, shared processors, proprietary processors, or group processors
  • the units of each example described in the embodiments of the present application can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • FIG. 9 is a schematic diagram of a hardware structure of a control device for a microelectromechanical scanning mirror provided by an embodiment of the present application.
  • the control apparatus 500 shown in FIG. 9 (the control apparatus 500 may specifically be a computer device) includes a memory 510 , a processor 520 , a communication interface 530 and a bus 540 .
  • the memory 510 , the processor 520 , and the communication interface 530 are connected to each other through the bus 540 for communication.
  • the memory 510 may be a read only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM).
  • the memory 510 may store a program, and when the program stored in the memory 510 is executed by the processor 520, the processor 520 is configured to execute each step of the method for controlling the MEMS scanning mirror of the embodiment of the present application; for example, execute FIG. 3 or FIG. 4 the steps shown.
  • the processor 520 can be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), a graphics processor (graphics processing unit, GPU), or one or more
  • the integrated circuit is used to execute the relevant program to realize the control method of the MEMS scanning mirror according to the method embodiment of the present application.
  • the processor 520 may also be an integrated circuit chip with signal processing capability.
  • each step of the method for controlling the MEMS scanning mirror of the present application may be completed by an integrated logic circuit of hardware in the processor 520 or instructions in the form of software.
  • the above-mentioned processor 520 can also be a general-purpose processor, a digital signal processor (digital signal processing, DSP), an application-specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, Discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 510, and the processor 520 reads the information in the memory 510, and combines its hardware to complete the functions required to be performed by the units included in the control device shown in FIG. For example, the control method of the micro-electromechanical scanning mirror shown in FIG. 3 or FIG. 4 .
  • the communication interface 530 uses a transceiver such as but not limited to a transceiver to implement communication between the control device 500 and other devices or a communication network.
  • the bus 540 may include pathways for communicating information between the various components of the control device 500 (eg, the memory 510, the processor 520, the communication interface 530).
  • control apparatus 500 only shows a memory, a processor, and a communication interface, in the specific implementation process, those skilled in the art should understand that the control apparatus 500 may also include other devices necessary for normal operation. Meanwhile, those skilled in the art should understand that the above-mentioned control device 500 may further include hardware devices that implement other additional functions according to specific needs. In addition, those skilled in the art should understand that the above-mentioned control apparatus 500 may also only include the necessary devices for implementing the embodiments of the present application, and does not necessarily include all the devices shown in FIG. 9 .
  • the embodiments of the present application further provide a MEMS scanning mirror imaging system, where the MEMS scanning mirror imaging system includes the MEMS scanning mirror and the control device of the MEMS scanning mirror in the above embodiments of the present application.
  • an embodiment of the present application further provides a chip, where the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip; and the chip may execute the method for controlling the MEMS scanning mirror in the above method embodiments.
  • an embodiment of the present application further provides a computer-readable storage medium, on which an instruction is stored, and when the instruction is executed, the control method of the MEMS scanning mirror in the above method embodiment is executed.
  • an embodiment of the present application further provides a computer program product including an instruction, when the instruction is executed, the control method of the MEMS scanning mirror in the above method embodiment is executed.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c may be single or multiple.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

一种微机电扫描镜的控制方法、控制装置以及系统;控制方法包括:生成控制信号,控制信号用于控制微机电扫描镜通过目标扫描方式对待扫描图像中像素对应的激光进行投影,输出待扫描图像的投射图像,其中,目标扫描方式包括第一扫描方式与第二扫描方式,第一扫描方式与第二扫描方式在待扫描图像中的初始位置不同(S210);向微机电扫描镜发送控制信号(S220)。通过第一扫描方式与第二扫描方式即至少两个不同方向对待扫描图像进行扫描能够有效减少待扫描图像的投射图像中出现摩尔纹,提高成像质量。

Description

微机电扫描镜的控制方法、控制装置以及系统 技术领域
本申请涉及微型投影技术领域,尤其涉及一种微机电扫描镜的控制方法、微机电扫描镜的控制装置以及微机电扫描镜成像系统。
背景技术
激光束扫描投(laser beam scanning,LBS)技术因其具有结构简单、体积小、功耗低、无需对焦等优点,得到广泛的应用和发展。其中,LBS主要由激光控制系统、三色激光器、微机电系统(micro electro mechanical systems,MEMS)以及扫描镜控制系统等实现;其投影原理是由激光控制系统根据获取的图像,控制三色激光器发射激光至MEMS的反射镜上。在扫描镜控制系统产生的驱动信号控制下,该反射镜围绕水平方向和垂直方向两个轴摆动,从而将三色激光反射至屏幕上合成像素实现图像显示。
目前,微机电扫描镜的控制方法通常采用光栅扫描方式,即使得MEMS中的反射镜在显示屏上通过同方向的扫描方式由上至下在显示屏上进行扫描;但是,采用光栅扫描方式得到的投射图像会产生周期性的光线亮度上明亮与渐暗的摩尔纹,严重影响视觉体验。
因此,如何提高扫描成像的质量,从而提升用户的视觉体验成为一个亟需解决的问题。
发明内容
本申请提供一种微机电扫描镜的控制方法、控制装置以及系统,通过本申请实施例通过的目标扫描方式,即对待扫描图像在至少两个不同方向进行扫描能够提高待扫描图像的投射图像的成像质量。
第一方面,提供了一种微机电扫描镜的控制方法,包括:生成控制信号,所述控制信号用于控制微机电扫描镜通过目标扫描方式对待扫描图像中像素对应的激光进行投影,输出所述待扫描图像的投射图像,其中,所述目标扫描方式包括第一扫描方式与第二扫描方式,所述第一扫描方式与所述第二扫描方式在所述待扫描图像中的初始位置不同;向所述微机电扫描镜发送所述控制信号。
应理解,上述目标扫描方式可以是指对待扫描图像从至少两个不同方向进行扫描的扫描方式;其中,第一扫描方式的初始位置与第二扫描方式的初始位置可以是指对待扫描图像进行扫描的起始位置,即开始扫描的位置。
在一个可能的实现方式中,目标扫描方式可以对待扫描图像中的同一行像素中的部分或者全部像素在至少两个不同方向进行扫描的扫描方式;通过一个方向进行扫描则会出现部分区域无法扫描上,则在待扫描图像的投射图像的相应区域会出现暗纹;通过至少两个不同方向上进行扫描,可以在一定程度上可以对一个方向无法扫描到的区域进行补偿。
在本申请的实施例中,通过目标扫描方式对待扫描图像中的像素进行扫描,即通过对对待扫描图像从至少两个不同方向进行扫描,可以在一定程度上对通过一个扫描方向无法 扫描到的区域进行补偿;因此,通过本申请实施例的目标扫描方式对待扫描图像进行扫描可以有效减少待扫描图像的投射图像中出现摩尔纹,提高待扫描图像的投射图像的成像质量。
在一种可能的实现方式中,扫描图像中像素对应的激光可以是激光器根据待扫描图像中像素向微机电扫描镜发射的激光;比如,可以根据待扫描图像中的每个像素发射三色激光,其中,三色激光包括红色激光、绿色激光或者蓝色激光。
结合第一方面,在第一方面的某些实现方式中,所述第一扫描方式的初始位置与所述第二扫描方式的初始位置位于所述待扫描图像中的同一行像素。
在一种可能的实现方式中,第一扫描方式的初始位置与第二扫描位置的初始位置可以分别位于待扫描图像的同一行像素的相反位置;比如,一行像素包括N列,第一扫描方式的初始位置可以位于同一行像素的第一列;第二扫描方式可以位于同一行像素的第N列。
在本申请的实施例中,通过两个初始位置不同的第一扫描方式与第二扫描方式,可以在一定程度上对通过一个扫描方向无法扫描到的区域进行补偿;因此,本申请实施例中的目标扫描方式可以有效减少待扫描图像的投射图像中出现摩尔纹,提高待扫描图像的投射图像的成像质量。
结合第一方面,在第一方面的某些实现方式中,所述待扫描图像包括N列像素,所述第一扫描方式的初始位置与所述第二扫描方式的初始位置分别位于所述待扫描图像的第i列像素与第j列像素,i与j均为小于或者等于N的正整数,且i与j不相同。
在一种可能的实现方式中,第一扫描方式的初始位置可以位于待扫描图像中的第一列像素;第二扫描方式的初始位置可以位于待扫描图像的最后一列像素,即待扫描图像的第N列像素。
结合第一方面,在第一方面的某些实现方式中,所述控制信号通过相位偏移方法控制所述微机电扫描镜实现所述目标扫描方式。
结合第一方面,在第一方面的某些实现方式中,所述控制信号中用于控制所述微机电扫描镜根据第一扫描方式与所述第二扫描方式进行扫描的控制信号的相位相差半个周期。
在一种可能的实现方式中,可以通过动态控制微机电扫描镜的快轴振动频率从而实现相位的偏移。
例如,第一扫描方式可以通过调整频率控制多半个相位;第二扫描方式可以通过调整频率控制少半个相位,从而实现第一扫描方式与第二扫描方式的初始位置不同。
结合第一方面,在第一方面的某些实现方式中,所述控制信号还用于控制所述微机电扫描镜的扫描行间距,使得所述微机电扫描镜根据所述扫描行间距通过所述目标扫描方式对所述待扫描图像中像素对应的激光进行投影。
在本申请的实施例中,可以通过调整微机电扫描镜的扫描行间距与扫描方式,从能够在不需要将微机电扫描镜的分辨率进行倍数增长的情况下,通过对待扫描图像中的同一行像素通过至少两个不同方向进行扫描可以有效减少待扫描图像的投射图像中出现摩尔纹,提高待扫描图像的投射图像的成像质量。
应理解,在本申请的实施例中用于控制微机电扫描镜通过目标扫描方式进行扫描的控制信号与控制微机电扫描镜的扫描行间距的控制信号可以一起向微机电扫描镜发送,或者也可以分成多个控制信号向微机电扫描镜发送。
第二方面,提供了一种微机电扫描镜的控制装置,包括:处理单元,用于生成控制信号,所述控制信号用于控制微机电扫描镜通过目标扫描方式对待扫描图像中像素对应的激光进行投影,输出所述待扫描图像的投射图像,其中,所述目标扫描方式包括第一扫描方式与第二扫描方式,所述第一扫描方式与所述第二扫描方式在所述待扫描图像中的初始位置不同;发送单元,用于向所述微机电扫描镜发送所述控制信号。
应理解,上述目标扫描方式可以是指对待扫描图像从至少两个不同方向进行扫描的扫描方式。
在一个可能的实现方式中,目标扫描方式可以对待扫描图像中的同一行像素中的部分或者全部像素在至少两个不同方向进行扫描的扫描方式;通过一个方向进行扫描则会出现部分区域无法扫描上,则在待扫描图像的投射图像的相应区域会出现暗纹;通过至少两个不同方向上进行扫描,可以在一定程度上可以对一个方向无法扫描到的区域进行补偿。
在本申请的实施例中,通过目标扫描方式对待扫描图像中的像素进行扫描,即通过对对待扫描图像从至少两个不同方向进行扫描,可以在一定程度上对通过一个扫描方向无法扫描到的区域进行补偿;因此,通过本申请实施例的目标扫描方式对待扫描图像进行扫描可以有效减少待扫描图像的投射图像中出现摩尔纹,提高待扫描图像的投射图像的成像质量。
在一种可能的实现方式中,扫描图像中像素对应的激光可以是激光器根据待扫描图像中像素向微机电扫描镜发射的激光;比如,可以根据待扫描图像中的每个像素发射三色激光,其中,三色激光包括红色激光、绿色激光或者蓝色激光。
结合第二方面,在第二方面的某些实现方式中,所述第一扫描方式的初始位置与所述第二扫描方式的初始位置位于所述待扫描图像中的同一行像素。
在一种可能的实现方式中,第一扫描方式的初始位置与第二扫描位置的初始位置可以分别位于待扫描图像的同一行像素的相反位置;比如,一行像素包括N列,第一扫描方式的初始位置可以位于同一行像素的第一列;第二扫描方式可以位于同一行像素的第N列。
在本申请的实施例中,通过两个初始位置不同的第一扫描方式与第二扫描方式,可以在一定程度上对通过一个扫描方向无法扫描到的区域进行补偿;因此,本申请实施例中的目标扫描方式可以有效减少待扫描图像的投射图像中出现摩尔纹,提高待扫描图像的投射图像的成像质量。
结合第二方面,在第二方面的某些实现方式中,所述待扫描图像包括N列像素,所述第一扫描方式的初始位置与所述第二扫描方式的初始位置分别位于所述待扫描图像的第i列像素与第j列像素,i与j均为小于或者等于N的正整数,且i与j不相同。
在一种可能的实现方式中,第一扫描方式的初始位置可以位于待扫描图像中的第一列像素;第二扫描方式的初始位置可以位于待扫描图像的最后一列像素,即待扫描图像的第N列像素。
结合第二方面,在第二方面的某些实现方式中,所述控制信号通过相位偏移方法控制所述微机电扫描镜实现所述目标扫描方式。
结合第二方面,在第二方面的某些实现方式中,所述控制信号中用于控制所述微机电扫描镜根据第一扫描方式与所述第二扫描方式进行扫描的控制信号的相位相差半个周期。
在一种可能的实现方式中,可以通过动态控制微机电扫描镜的快轴振动频率从而实现 相位的偏移。
例如,第一扫描方式可以通过调整频率控制多半个相位;第二扫描方式可以通过调整频率控制少半个相位,从而实现第一扫描方式与第二扫描方式的初始位置不同。
结合第二方面,在第二方面的某些实现方式中,所述控制信号还用于控制所述微机电扫描镜的扫描行间距,使得所述微机电扫描镜根据所述扫描行间距通过所述目标扫描方式对所述待扫描图像中像素对应的激光进行投影。
在本申请的实施例中,可以通过调整微机电扫描镜的扫描行间距与扫描方式,从能够在不需要将微机电扫描镜的分辨率进行倍数增长的情况下,通过对待扫描图像中的同一行像素通过至少两个不同方向进行扫描可以有效减少待扫描图像的投射图像中出现摩尔纹,提高待扫描图像的投射图像的成像质量。
应理解,在本申请的实施例中用于控制微机电扫描镜通过目标扫描方式进行扫描的控制信号与控制微机电扫描镜的扫描行间距的控制信号可以一起向微机电扫描镜发送,或者也可以分成多个控制信号向微机电扫描镜发送。
第三方面,提供一种微机电扫描镜的控制装置,包括存储器,用于存储程序;处理器,用于执行该存储器存储的程序,当该存储器存储的程序被执行时,该处理器用于执行:生成控制信号,所述控制信号用于控制微机电扫描镜通过目标扫描方式对待扫描图像中像素对应的激光进行投影,输出所述待扫描图像的投射图像,其中,所述目标扫描方式包括第一扫描方式与第二扫描方式,所述第一扫描方式与所述第二扫描方式在所述待扫描图像中的初始位置不同;向所述微机电扫描镜发送所述控制信号。
在一种可能的实现方式中,上述控制装置中包括处理器还用于执行第一方面以及第一方面中的任意一种实现方式中的控制方法。
应理解,在上述第一方面中对相关内容的扩展、限定、解释和说明也适用于第三方面中相同的内容。
第四方面,提供一种微机电扫描镜成像系统,包括微机电扫描镜;以及第二方面以及第二方面中的任意一种实现方式中的控制装置。
第五方面,提供了一种计算机可读介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面以及第一方面中的任意一种实现方式中的控制方法。
第六方面,提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面以及第一方面中的任意一种实现方式中的控制方法。
第七方面,提供了一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行上述第一方面以及第一方面中的任意一种实现方式中的控制方法。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行上述第一方面以及第一方面中的任意一种实现方式中的控制方法。
附图说明
图1是本申请实施例提供的系统架构的示意图;
图2是本申请实施例提供的微机电扫描镜工作原理的示意图;
图3是本申请提供的微机电扫描镜的控制方法的示意性流程图;
图4是本申请提供的微机电扫描镜的控制方法的示意性流程图;
图5是本申请实施例提供的目标扫描方式的示意图;
图6是本申请实施例提供的对待扫描图像进行复制处理的示意图;
图7是本申请实施例提供的通过相位迁移方法实现目标扫描方式的示意图;
图8是本申请实施例提供的微机电扫描镜的控制装置的示意性框图;
图9是本申请实施例提供的微机电扫描镜的控制装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述;显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。根据本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了便于理解,下面先对本申请实施例可能涉及的相关术语和概念进行介绍。
1、激光束扫描(laser beam scanning,LBS)成像技术
LBS主要由激光控制系统、三色激光器(红、绿、蓝激光器,即RGB激光器)以及微机电系统(micro electro mechanical systems,MEMS)、扫描镜控制系统等构成。其投影原理是由激光控制系统根据获取的图像,控制RGB三色激光器发射激光至MEMS的反射镜上;在扫描镜控制系统产生的驱动信号控制下,该反射镜围绕水平方向和垂直方向两个轴摆动,从而将RGB三色激光反射至屏幕上合成像素实现图像显示。
2、微机电系统
在微电机系统技术已经在硅基片中构成了完整的微显示器,无须再制造附加的上层结构;MEMS镜组件中包括一个反射镜悬浮在常平架(gimbal frame)内,常平架上有一个微加工的通电线圈;MEMS裸片周围安装有制动元件,用于提供反射镜面的震动驱动力。在MEMS镜组件工作时,只要给MEMS制动元件施加一个电流,就能在常平架上产生一个力扭矩,并沿旋转轴的两个方向产生分量;扭矩的两个分量使得常平架围绕挠曲悬架旋转和扫描镜谐振模式振动,通过水平和垂直波的简单叠加,从而使得MEMS镜面产生双轴转动。
3、像素
像素是指由图像的小方格组成的,这些小方块都有一个明确的位置和被分配的色彩数值,小方格颜色和位置就决定该图像所呈现出来的样子;可以将像素视为整个图像中不可分割的单位或者是元素;即像素可以是指图像中不能够再切割成更小单位抑或是元素,它是以一个单一颜色的小格存在。每一个点阵图像包含了一定量的像素,这些像素决定图像在屏幕上所呈现的大小。
4、摩尔纹
摩尔纹是一种在数码照相机或者扫描仪等设备上,感光元件出现的高频干扰的条纹,是一种会使图片出现彩色的高频率不规则的条纹。
下面将结合附图对本申请技术方案进行详细描述。
图1是本申请实施例提供的系统架构的示意图。在系统架构100中可以包括视频处理器与控制器110、激光器驱动120、MEMS驱动130以及投射图像140。
其中,视频处理器与控制器110用于获取待处理的视频或者图像,待处理的视频或者图像可以是指需要通过LBS显示投射图像140中显示的图像。
在一个示例中,待处理视频或者图像可以是电子设备通过摄像头拍摄到的视频,或者,待处理视频或者图像还可以是从电子设备内部获得的视频(例如,电子设备的相册中存储的视频,或者,电子设备从云端获取的视频)。
示例性地,激光驱动器120用于控制三色激光器的运行,其中,三色激光器可以包括蓝激光器121、红激光器122以及绿激光器123;例如,激光驱动器120可以根据视频处理器与控制器110中获取的待处理视频或者图像,控制三色激光器针对待处理视频或者待处理视频中不同的像素点发射不同的激光至MEMS的反射镜上。
示例性地,MEMS驱动130用于控制微机电扫描镜131的运行;例如,MEMS驱动可以通过控制MEMS产生的驱动信号,使得MEMS中的反射镜围绕水平方向和垂直方向两个轴摆动,从而将三色激光反射至显示屏上合成像素实现待处理图像的显示,即显示投射图像140。
图2本申请实施例提供的微机电扫描镜工作原理的示意图。
在MEMS中的微机电扫描镜(又可以称为反射镜)工作时,通过施加电流可以使得悬浮在常平架上的反射镜产生力扭矩,力扭矩可以沿旋转轴(例如,快轴与慢轴)产生两个方向的分量;如图2所示,通过两个方向的分量可以使得反射镜产生双周转动振动,从而使得激光器发射至反射镜的激光在显示屏上实现空间横向与纵向的扫描。
目前,微机电扫描镜的控制方法中通常采用光栅扫描方式,即使得MEMS中的反射镜在显示屏上通过从左向右由上往下的方式扫描;但是,由于激光器发射至反射镜中的光为高斯光束,高斯光束的波束中存在间距导致反射镜在显示屏中成像会产生周期性的光线亮度上明亮与渐暗的摩尔纹,严重影响视觉体验。
有鉴于此,本申请提供了一种微机电扫描镜的控制方法,通过对待扫描图像在至少两个不同方向上进行扫描即通过目标扫描方式对待扫描图像进行扫描,目标扫描方式包括第一扫描方式与第二扫描方式,第一扫描方式与第二扫描方式在所述待扫描图像中的初始位置不同,从而能够在一定程度上对通过一个扫描方向无法扫描到的区域进行补偿;因此,在本申请的实施例中通过对待扫描图像从两个不同方向进行扫描可以有效减少待扫描图像的投射图像中出现摩尔纹,提高待扫描图像的投射图像的成像质量。
本申请提供的扫描成像方法可以应用于微型投影仪,或者,还可以应用于车辆中的抬头显示(head up display,HUD)系统中。
下面结合图3对本申请提供的微机电扫描镜的控制方法进行详细的说明。
应理解,图3所示的微机电扫描镜的控制方法可以是通过图1所示的系统架构中的MEMS驱动执行的。
图3所示的控制方法200包括步骤S210与步骤S220,下面分别对步骤S210与步骤S220进行详细的描述。
S210、生成控制信号。
其中,控制信号可以用于控制微机电扫描镜通过目标扫描方式对待扫描图像中像素对应的激光进行投影,输出待扫描图像的投射图像,其中,目标扫描方式包括第一扫描方式与第二扫描方式,第一扫描方式与第二扫描方式在所述待扫描图像中的初始位置不同。
应理解,目标扫描方式可以是指对待扫描图像从至少两个不同方向进行扫描的扫描方式。
在本申请的实施例中,通过目标扫描方式可以实现对待扫描图像中的同一行像素中的部分或者全部像素在至少两个不同方向进行扫描,从而能够在一定程度上可以对通过一个扫描方向无法扫描到的区域进行有效补偿。
S220、向微机电扫描镜发送控制信号。
在一个示例中,待扫描图像中像素对应的激光可以是激光器根据待扫描图像中像素向微机电扫描镜发射的激光;比如,可以根据待扫描图像中的每个像素发射三色激光,其中,三色激光包括红色激光、绿色激光或者蓝色激光。
当微机电扫描镜获取待处理图像中像素对应的激光后,微机电扫描镜可以根据控制信号产生双轴转动从而使得接收的待处理图像中像素的激光投影至屏幕上合成待扫描图像中的像素实现待扫描图像的显示,即得到待扫描图像的投射图像。
其中,上述屏幕可以是指投影仪的投影屏幕,或者,也可以是指车辆中HDU系统中的显示屏,比如,车辆的前挡风玻璃。
应理解,目标扫描方式是指对待扫描图像在至少两个不同方向进行扫描的扫描方式;通过同一行像素在一个扫描方向进行扫描则会出现部分区域无法扫描上,则在待扫描图像的投射图像的相应区域会出现暗纹;通过对同一行像素在至少两个不同方向上进行扫描,可以在一定程度上可以对一个方向无法扫描到的区域进行补偿;因此,通过本申请实施例中的目标扫描方式对待扫描图像进行扫描可以有效减少待扫描图像的投射图像中出现摩尔纹,提高待扫描图像的投射图像的成像质量。
可选地,在一种可能的实现方式中,第一扫描方式的初始位置与第二扫描方式的初始位置位于待扫描图像中的同一行像素。
示例性地,第一扫描方式的初始位置与第二扫描位置的初始位置可以分别位于待扫描图像的同一行像素的相反位置;比如,一行像素包括N列,第一扫描方式的初始位置可以位于同一行像素的第一列;第二扫描方式可以位于同一行像素的第N列。
在一个示例中,如图5所示第一扫描方式可以是指第一次扫描方向,第二扫描方式可以是指第二次扫描方向;通过第一次扫描则无法在右上角对应的区域进行投影即右上角对应的区域的激光能量较低,通过第二次扫描则无法对左上角对应的区域进行投影即左上角对应的区域的激光能量较低;采用两次相反方向的扫描方式可以有效的进行投影激光的能够补偿,从而有效减少待扫描图像的投射图像中出现摩尔纹,提高待扫描图像的投射图像的成像质量。
可选地,在一种可能的实现方式中,待扫描图像包括N列像素,第一扫描方式的初始位置与第二扫描方式的初始位置可以分别位于待扫描图像的第i列像素与第j列像素,i与j均为小于或者等于N的正整数,且i与j不相同。
例如,第一扫描方式的初始位置可以位于待扫描图像中的第一列像素;第二扫描方式的初始位置可以位于待扫描图像的最后一列像素,即待扫描图像的第N列像素。
可选地,在一种可能的实现方式中,控制信号通过相位偏移方法控制微机电扫描镜实现所述目标扫描方式。
其中,相位偏移方法是指在调频或调相时,调频波或调相波的瞬时相角对于载波相角的偏离量随调制信号瞬时值而变化,其中最大的偏离量称相位偏移;调频(FM)使载波的瞬时频率按照所需传递信号的变化规律而变化的调制方法;它是一种使受调波瞬时频率随调制信号而变的调制方法。
可选地,在一种可能的实现方式中,控制信号中用于控制微机电扫描镜根据第一扫描方式与所述第二扫描方式进行扫描的控制信号的相位相差半个周期。
示例性地,如图7所示,可以通过动态控制微机电扫描镜的快轴振动频率从而实现相位的偏移。例如,第一扫描方式可以是从左至右的扫描方式则可以通过调整频率控制多半个相位;第二扫描方式可以是从右至左的扫描方式,则可以通过调整频率控制少半个相位。
进一步,在本申请的实施例中,还可以通过控制信号控制微机电扫描镜的扫描行距;即通过控制信号可以使得微机电扫描镜根据所述扫描行间距通过上述目标扫描方式对待扫描图像中像素对应的激光进行投影。
在本申请的实施例中,通过对待扫描图像中同一行像素在至少两个不同方向上进行扫描,可以在一定程度上可以对一个方向无法扫描到的区域进行补偿,因此,对同一行像素通过至少两个不同方向进行扫描可以有效减少待扫描图像的投射图像中出现摩尔纹,提高待扫描图像的投射图像的成像质量。
需要说明的是,在本申请的实施例中用于控制微机电扫描镜通过目标扫描方式进行扫描的控制信号与控制微机电扫描镜的扫描行间距的控制信号可以一起向微机电扫描镜发送,或者也可以分成多个控制信号向微机电扫描镜发送。
图4是本申请的一个实施例提供的微机电扫描镜的控制方法的示意性流程图。图4所示的控制方法300包括步骤S310至步骤S360,下面分别对步骤S310至步骤S360进行详细的描述。
S310、获取输入图像。
例如,如图1所示,可以是指经过视频处理器和控制器110获取图像输入;可以是获取一帧图像的数据,或者,也可以是获取多帧图像的数据。
S320、将图像中的每行数据进行复制处理。
在一个示例中,可以将图像中的每帧图像的每行数据复制一次,则复制处理后的每帧图像的总行数变为2倍。
例如,如图6所示一帧原始图像中可以包括4行数据,将原始图像中的每行数据复制一次可以得到8行复制处理后的图像数据。
在一个示例中,也可以将每帧图像的每行数据复制多次,本申请实施例对此不作任何限定。
S330、设置扫描行间距。
示例性地,由于图像的总体大小固定不变,若将图像中每行数据复制一次,则将扫描行间距设置为初始行间距的一半。
S340、当前帧图像的第一扫描方式,即可以是当前帧的第一次扫描。
例如,对于一帧图像而言,第一扫描方式可以采用是从左向右的扫描方式,或者,第 一扫描方式也可以采用从右向左的扫描方式。
S350、当前帧图像的第二扫描方式,即可以是当前帧的第二次扫描。
应理解,第二次扫描方式与第一次扫描方式是不同的;比如,两次扫描的方向可以是交错式扫描方式,即第一扫描方式与第二扫描方式可以采用相反方向的扫描方式;其中,交错式扫描方式可以是图3所示的目标扫描方式中的一种具体实现方式。
需要说明的是,第一扫描方式与第二次扫描方式虽然扫描方向相反或者初始扫描位置不同,但是第一扫描方式与第二扫描方式的扫描画面可以是相同的;比如,两次扫描可以对应相同的待扫描图像。
在一种可能的实现方式中,若第一扫描方式采用的是从左至右的扫描方式,则第二扫描方式采用的可以是从右向左的扫描方式。
在另一中可能的实现方式中,若第一扫描方式采用的是从右至左的扫描方式,则第二扫描方式采用的可以是从左向右的扫描方式。
应理解,对于同一帧图像通过两次交错式扫描方式可以使得在成像平面中均匀的显示图像,即能够避免成像平面中显示的图像出现明亮与渐暗的区域,即能够有效的减少成像平面的摩尔纹,从而提高成像质量。
S360、当前帧图像扫描结束。
示例性地,图5是本申请实施例提供的目标扫描方式的示意图。
如图5所示,假设原始图像中包括h行数据,即图像数据1与图像数据2;对原始图像中的每行数据可以进行一次复制处理,得到包括2h行的图像数据;进而,将初始扫描行距C设置为扫描行距为原始扫描行距的一半即C/2;根据复制处理后的图像数据与当前扫描行距进行扫描,第一次扫描可以是按照从左至右的扫描方式;接着,可以进行第二次扫描,即第二次扫描可以是按照从右至左的扫描方式。
需要说明的是,上述图5中以第一扫描方式可以为从左至右的扫描方式,第二扫描方式可以为从右至左的扫描方式进行举例说明;第二扫描方式与第一扫描方式是不同的,即两次扫描的方向可以是交错式扫描方式,本申请对每一次扫描方式的具体方向并不作任何限定。
应理解,上述是对第一扫描方式与第二扫描方式的举例说明,在本申请的实施例中,第一扫描方式与第二扫描方式的初始位置不同,通过第一扫描方式与第二扫描方式可以对待扫描图像从至少两个不同方向进行扫描,本申请对第一扫描方式与第二扫描方式的具体方向不作任何限定。
图7是是本申请实施例提供的通过相位迁移方法实现目标扫描方式的示意图。
如图7所示,可以通过相位偏移法实现上述目标扫描方式;具体地,可以通过动态控制MEMS中反射镜的快轴振动频率从而实现相位的偏移。
例如,第一次扫描的扫描方式为从左至右的扫描方式则可以通过调整频率控制多半个相位;第二次扫描的扫描方式为从右至左的扫描方式,则可以通过调整频率控制少半个相位。
需要说明的是,通过两次交错式扫描方式可以实现一个完整周期的扫描,即通过两次交错式扫描方式可以完成一帧图像的扫描。即通过F1与F2可以完成第一输入图像的扫描;通过F3与F4可以完成第二输入图像的扫描。
应理解,上述举例说明是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的上述举例说明,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
上文结合图1至图7,详细描述了本申请实施例提供的微机电扫描镜的控制方法;下面将结合图8至图9,详细描述本申请的装置实施例。应理解,本申请实施例中的微机电扫描镜的控制装置可以执行前述本申请实施例的各种方法,即以下各种产品的具体工作过程,可以参考前述方法实施例中的对应过程。
图8是本申请实施例提供的微机电扫描镜的控制装置的示意性框图。
应理解,控制装置400可以执行图3所示的控制方法,或者,图4所示的控制方法。控制装置400包括:处理单元410和发送单元420。
其中,处理单元410用于生成控制信号,所述控制信号用于控制微机电扫描镜通过目标扫描方式对待扫描图像中像素对应的激光进行投影,输出所述待扫描图像的投射图像,其中,所述目标扫描方式包括第一扫描方式与第二扫描方式,所述第一扫描方式与所述第二扫描方式在所述待扫描图像中的初始位置不同;发送单元420用于向所述微机电扫描镜发送所述控制信号。
可选地,作为一个实施例,所述第一扫描方式的初始位置与所述第二扫描方式的初始位置位于所述待扫描图像中的同一行像素。
可选地,作为一个实施例,所述待扫描图像包括N列像素,所述第一扫描方式的初始位置与所述第二扫描方式的初始位置分别位于所述待扫描图像的第i列像素与第j列像素,i与j均为小于或者等于N的正整数,且i与j不相同。
可选地,作为一个实施例,所述控制信号通过相位偏移方法控制所述微机电扫描镜实现所述目标扫描方式。
可选地,作为一个实施例,所述控制信号中用于控制所述微机电扫描镜根据第一扫描方式与所述第二扫描方式进行扫描的控制信号的相位相差半个周期。
可选地,作为一个实施例,所述控制信号还用于控制所述微机电扫描镜的扫描行间距,使得所述微机电扫描镜根据所述扫描行间距通过所述目标扫描方式对所述待扫描图像中像素对应的激光进行扫描。
需要说明的是,上述控制装置400以功能单元的形式体现;这里的术语“单元”可以通过软件和/或硬件形式实现,对此不作具体限定。
例如,“单元”可以是实现上述功能的软件程序、硬件电路或二者结合。所述硬件电路可能包括应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
因此,在本申请的实施例中描述的各示例的单元,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图9是本申请实施例提供的微机电扫描镜的控制装置的硬件结构示意图。
图9所示的控制装置500(该控制装置500具体可以是一种计算机设备)包括存储器510、处理器520、通信接口530以及总线540。其中,存储器510、处理器520、通信接口530通过总线540实现彼此之间的通信连接。
存储器510可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。存储器510可以存储程序,当存储器510中存储的程序被处理器520执行时,处理器520用于执行本申请实施例的微机电扫描镜的控制方法的各个步骤;例如,执行图3或者图4所示的各个步骤。
处理器520可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序以实现本申请方法实施例的微机电扫描镜的控制方法。
处理器520还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的微机电扫描镜的控制方法的各个步骤可以通过处理器520中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器520还可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器510,处理器520读取存储器510中的信息,结合其硬件完成本申请实施中图8所示的控制装置中包括的单元所需执行的功能,或者,执行本申请方法实施例的图3或图4所示的微机电扫描镜的控制方法。
通信接口530使用例如但不限于收发器一类的收发装置,来实现控制装置500与其他设备或通信网络之间的通信。
总线540可包括在控制装置500各个部件(例如,存储器510、处理器520、通信接口530)之间传送信息的通路。
应注意,尽管上述控制装置500仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,控制装置500还可以包括实现正常运行所必须的其他器件。同时,根据具体需要本领域的技术人员应当理解,上述控制装置500还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,上述控制装置500也可仅仅包括实现本申请实施例所必须的器件,而不必包括图9中所示的全部器件。
示例性地,本申请实施例还提供一种微机电扫描镜成像系统,该微机电扫描镜成像系统包括微机电扫描镜以及上述本申请实施例中的微机电扫描镜的控制装置。
示例性地,本申请实施例还提供一种芯片,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路;该芯片可以执行上述方法实施例中的微机电扫描镜的控制方法。
示例性地,本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的微机电扫描镜的控制方法。
示例性地,本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的微机电扫描镜的控制方法。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种微机电扫描镜的控制方法,其特征在于,包括:
    生成控制信号,所述控制信号用于控制微机电扫描镜通过目标扫描方式对待扫描图像中像素对应的激光进行投影,输出所述待扫描图像的投射图像,其中,所述目标扫描方式包括第一扫描方式与第二扫描方式,所述第一扫描方式与所述第二扫描方式在所述待扫描图像中的初始位置不同;
    向所述微机电扫描镜发送所述控制信号。
  2. 如权利要求1所述的控制方法,其特征在于,所述第一扫描方式的初始位置与所述第二扫描方式的初始位置位于所述待扫描图像中的同一行像素。
  3. 如权利要求1或2所述的控制方法,其特征在于,所述待扫描图像包括N列像素,所述第一扫描方式的初始位置与所述第二扫描方式的初始位置分别位于所述待扫描图像的第i列像素与第j列像素,i与j均为小于或者等于N的正整数,且i与j不相同。
  4. 如权利要求1至3中任一项所述的控制方法,其特征在于,所述控制信号通过相位偏移方法控制所述微机电扫描镜实现所述目标扫描方式。
  5. 如权利要求4所述的控制方法,其特征在于,所述控制信号中用于控制所述微机电扫描镜根据所述第一扫描方式与所述第二扫描方式进行扫描的控制信号的相位相差半个周期。
  6. 如权利要求1至5中任一项所述的控制方法,其特征在于,所述控制信号还用于控制所述微机电扫描镜的扫描行间距,使得所述微机电扫描镜根据所述扫描行间距通过所述目标扫描方式对所述待扫描图像中像素对应的激光进行投影。
  7. 一种微机电扫描镜的控制装置,其特征在于,包括:
    处理单元,用于生成控制信号,所述控制信号用于控制微机电扫描镜通过目标扫描方式对待扫描图像中像素对应的激光进行投影,输出所述待扫描图像的投射图像,其中,所述目标扫描方式包括第一扫描方式与第二扫描方式,所述第一扫描方式与所述第二扫描方式在所述待扫描图像中的初始位置不同;
    发送单元,用于向所述微机电扫描镜发送所述控制信号。
  8. 如权利要求7所述的控制装置,其特征在于,所述第一扫描方式的初始位置与所述第二扫描方式的初始位置位于所述待扫描图像中的同一行像素。
  9. 如权利要求7或8所述的控制装置,其特征在于,所述待扫描图像包括N列像素,所述第一扫描方式的初始位置与所述第二扫描方式的初始位置分别位于所述待扫描图像的第i列像素与第j列像素,i与j均为小于或者等于N的正整数,且i与j不相同。
  10. 如权利要求7至9中任一项所述的控制装置,其特征在于,所述控制信号通过相位偏移方法控制所述微机电扫描镜实现所述目标扫描方式。
  11. 如权利要求10所述的控制装置,其特征在于,所述控制信号中用于控制所述微机电扫描镜根据所述第一扫描方式与所述第二扫描方式进行扫描的控制信号的相位相差半个周期。
  12. 如权利要求7至11中任一项所述的控制装置,其特征在于,所述控制信号还用 于控制所述微机电扫描镜的扫描行间距,使得所述微机电扫描镜根据所述扫描行间距通过所述目标扫描方式对所述待扫描图像中像素对应的激光进行投影。
  13. 一种微机电扫描镜成像系统,其特征在于,包括:
    微机电扫描镜;以及
    如权利要求7至12中任一项所述的微机电扫描镜的控制装置。
  14. 一种微机电扫描镜的控制装置,其特征在于,包括处理器和存储器,所述存储器用于存储程序指令,所述处理器用于调用所述程序指令来执行权利要求1至6中任一项所述的控制方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当所述程序指令由处理器运行时,实现权利要求1至6中任一项所述的控制方法。
  16. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求1至6中任一项所述的控制方法。
PCT/CN2020/098912 2020-06-29 2020-06-29 微机电扫描镜的控制方法、控制装置以及系统 WO2022000185A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080004880.3A CN112771853B (zh) 2020-06-29 2020-06-29 微机电扫描镜的控制方法、控制装置以及系统
PCT/CN2020/098912 WO2022000185A1 (zh) 2020-06-29 2020-06-29 微机电扫描镜的控制方法、控制装置以及系统
US17/717,383 US20220244527A1 (en) 2020-06-29 2022-04-11 Micro-electro-mechanical scanning mirror control method, control apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098912 WO2022000185A1 (zh) 2020-06-29 2020-06-29 微机电扫描镜的控制方法、控制装置以及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/717,383 Continuation US20220244527A1 (en) 2020-06-29 2022-04-11 Micro-electro-mechanical scanning mirror control method, control apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022000185A1 true WO2022000185A1 (zh) 2022-01-06

Family

ID=75699470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098912 WO2022000185A1 (zh) 2020-06-29 2020-06-29 微机电扫描镜的控制方法、控制装置以及系统

Country Status (3)

Country Link
US (1) US20220244527A1 (zh)
CN (1) CN112771853B (zh)
WO (1) WO2022000185A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896792A (zh) * 2005-07-14 2007-01-17 精工爱普生株式会社 光扫描装置、其控制方法及图像显示装置
CN103098116A (zh) * 2010-09-07 2013-05-08 船井电机株式会社 图像显示装置
CN103984197A (zh) * 2013-02-07 2014-08-13 光宝科技股份有限公司 投影装置
CN107637071A (zh) * 2015-06-19 2018-01-26 索尼公司 投影装置、投影方法、投影模块、电子装置以及程序
CN107924657A (zh) * 2015-06-19 2018-04-17 索尼公司 投影装置、投影方法、投影模块、电子装置以及程序
US20200174356A1 (en) * 2018-11-29 2020-06-04 Sharp Kabushiki Kaisha Projection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779534B2 (ja) * 2005-09-27 2011-09-28 ブラザー工業株式会社 光走査型ディスプレイ
JP2012037616A (ja) * 2010-08-04 2012-02-23 Ricoh Co Ltd 画像形成装置および画像形成方法
BR112013030565A2 (pt) * 2011-06-03 2021-05-11 Thomson Licensing digitalização variável e intercalada em projetores a laser
JP5832919B2 (ja) * 2012-02-08 2015-12-16 日立マクセル株式会社 レーザープロジェクター
CN104603672B (zh) * 2012-03-30 2017-05-10 汤姆逊许可公司 具有图形指示器的激光投影仪系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896792A (zh) * 2005-07-14 2007-01-17 精工爱普生株式会社 光扫描装置、其控制方法及图像显示装置
CN103098116A (zh) * 2010-09-07 2013-05-08 船井电机株式会社 图像显示装置
CN103984197A (zh) * 2013-02-07 2014-08-13 光宝科技股份有限公司 投影装置
CN107637071A (zh) * 2015-06-19 2018-01-26 索尼公司 投影装置、投影方法、投影模块、电子装置以及程序
CN107924657A (zh) * 2015-06-19 2018-04-17 索尼公司 投影装置、投影方法、投影模块、电子装置以及程序
US20200174356A1 (en) * 2018-11-29 2020-06-04 Sharp Kabushiki Kaisha Projection device

Also Published As

Publication number Publication date
US20220244527A1 (en) 2022-08-04
CN112771853A (zh) 2021-05-07
CN112771853B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
US10778940B2 (en) MEMS projector using multiple laser sources
US10205923B2 (en) Apparatus and method for processing a projected image, and projection display system
WO2021051814A1 (zh) 投影显示系统及其控制方法、投影显示设备
US10210818B2 (en) Device for projecting an image
JP5674437B2 (ja) 表示装置
JP2003186112A (ja) 画像投影表示装置
JP2008197205A (ja) 画像表示装置
US11061312B2 (en) Projection apparatus and projection method
JP3960325B2 (ja) ディスプレイ装置およびディスプレイ装置における画像情報生成方法
US20130076992A1 (en) Video display apparatus
US20070200866A1 (en) Light source performing scanning operation twice, image apparatus using the light source, and method of driving the light source
JP2007065542A (ja) 画像投写装置
US11044447B2 (en) Projection display system, controlling method thereof, and projection display device
JP2009157111A (ja) 画像表示装置
WO2022000185A1 (zh) 微机电扫描镜的控制方法、控制装置以及系统
CN114760451B (zh) 投影图像校正提示方法、装置、投影设备和存储介质
JP5958079B2 (ja) 投射装置、画像補正方法およびプログラム
JP2014130288A (ja) 画像表示装置
JP6295967B2 (ja) 描画装置及び描画方法
JP2007226172A (ja) 画像投射装置
JP2000171898A (ja) カラープロジェクタ
JP2011112764A (ja) 画像表示装置
WO2024047932A1 (ja) 表示装置および表示方法
JP2796684B2 (ja) レーザ表示装置
US20230410418A1 (en) Image processing apparatus, image processing method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943636

Country of ref document: EP

Kind code of ref document: A1