WO2021261557A1 - 慣性力センサ - Google Patents

慣性力センサ Download PDF

Info

Publication number
WO2021261557A1
WO2021261557A1 PCT/JP2021/023941 JP2021023941W WO2021261557A1 WO 2021261557 A1 WO2021261557 A1 WO 2021261557A1 JP 2021023941 W JP2021023941 W JP 2021023941W WO 2021261557 A1 WO2021261557 A1 WO 2021261557A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertial force
force detecting
main
sub
elements
Prior art date
Application number
PCT/JP2021/023941
Other languages
English (en)
French (fr)
Inventor
慎一 岸本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/001,990 priority Critical patent/US20230236015A1/en
Publication of WO2021261557A1 publication Critical patent/WO2021261557A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Definitions

  • This disclosure relates to an inertial force sensor. More specifically, the present disclosure relates to inertial force sensors used in various electronic devices.
  • Patent Document 1 discloses an angular velocity sensor which is a kind of inertial force sensor.
  • the angular velocity sensor of Patent Document 1 has a tuning fork type oscillator whose basic skeleton is made of an elastic material such as silicon, an IC chip, a ceramic package in which the tuning fork type oscillator and the IC chip are housed, and a lid for sealing the package. It includes a package sealed with a lid, a holder integrally molded with a resin together with a chip component and a conductor such as a terminal, and a case for covering the holder.
  • Patent Document 1 aims to improve the reliability of the angular velocity sensor by enabling failure diagnosis of the detection unit of the tuning fork type oscillator.
  • the IC chip is newly provided with a terminal for supplying a check signal for failure diagnosis of the detection unit of the tuning fork type oscillator from the outside. Therefore, in the angular velocity sensor of Patent Document 1, it is necessary to change the structure at the element level, which complicates the overall structure.
  • the challenge is to provide an inertial force sensor that can improve reliability while reducing structural complexity.
  • the inertial force sensor includes a plurality of inertial force detecting elements that output an output signal corresponding to the detected inertial force, and a processing unit that executes processing relating to output signals from the plurality of inertial force detecting elements. And.
  • FIG. 1 is a block diagram of an inertial force sensor according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic plan view of the same inertial force sensor.
  • FIG. 3 is a schematic cross-sectional view of the same inertial force sensor.
  • FIG. 4 is a schematic explanatory view of the inclined portion of the inertial force sensor of the same as above.
  • FIG. 5 is an explanatory diagram of the relationship between the first predetermined axis and the second predetermined axis of the same inertial force sensor.
  • FIG. 6 is a schematic plan view of the inertial force sensor according to the modified example.
  • the inertial force sensor is a sensor that detects the inertial force.
  • Inertial force is represented by acceleration in a translational acceleration system and by angular velocity in a rotating coordinate system.
  • the detection of inertial force means the detection of at least one of acceleration and angular velocity.
  • the inertial force sensor is a sensor that detects at least one of acceleration and angular velocity.
  • FIG. 1 is a block diagram of an inertial force sensor 10 according to this embodiment.
  • the inertial force sensor 10 includes a plurality of inertial force detecting elements 40 and a processing unit 30.
  • the plurality of inertial force detecting elements 40 output an output signal corresponding to the detected inertial force.
  • the processing unit 30 executes processing related to output signals from the plurality of inertial force detection elements 40.
  • the plurality of inertial force detecting elements 40 include a plurality of main inertial force detecting elements (second to fourth inertial force detecting elements 42 to 44) and a secondary inertial force detecting element (first inertial force detecting element 41). ..
  • the plurality of main inertial force detecting elements (second to fourth inertial force detecting elements 42 to 44) have a plurality of first predetermined axes orthogonal to each other (see the first to third axes A21 to A23, FIGS. 2 and 3). Detects the inertial force of.
  • the sub-inertia force detecting element (first inertial force detecting element 41) is the inertial force of the second predetermined axis A11 (see FIGS. 2 and 3) that intersects with any of the plurality of first predetermined axes A21 to A23 without being orthogonal to each other. Is detected.
  • the plurality of inertial force detecting elements 40 include the secondary inertial force detecting element (second to fourth inertial force detecting elements 42 to 44) in addition to the plurality of main inertial force detecting elements (second to fourth inertial force detecting elements 42 to 44).
  • the first inertial force detecting element 41) is included. While a plurality of main inertial force detecting elements (second to fourth inertial force detecting elements 42 to 44) detect inertial forces of a plurality of first predetermined axes (first to third axes A21 to A23) orthogonal to each other.
  • the sub-inertia force detecting element 41 detects the inertial force of the second predetermined axis A11 that intersects with any of the plurality of first predetermined axes (first to third axes A21 to A23) without being orthogonal to each other. Therefore, the inertial force detected by the sub-inertia force detecting element (first inertial force detecting element 41) is detected by each of the plurality of main inertial force detecting elements (second to fourth inertial force detecting elements 42 to 44). It may contain a component of inertial force.
  • the sub-inertia force detection element can be used for failure diagnosis of a plurality of main inertial force detection elements, and when a plurality of main inertial force detection elements fail, the sub-inertia force detection element is used instead of the plurality of inertial force detection elements.
  • Available it is only necessary to add the sub-inertia force detecting element to the plurality of inertial force detecting elements 40. Therefore, according to the inertial force sensor 10 of the present embodiment, reliability can be improved while reducing the complexity of the structure.
  • the inertial force sensor 10 includes a sensor unit 20 and a processing unit 30.
  • the sensor unit 20 includes a plurality of inertial force detecting elements 40 and a plurality of drive circuits 50.
  • the plurality of inertial force detecting elements 40 detect the inertial force and output an output signal corresponding to the detected inertial force.
  • Each of the plurality of inertial force detecting elements 40 is a mechanical electric conversion element (for example, Micro Electro Mechanical Systems: MEMS).
  • MEMS Micro Electro Mechanical Systems
  • Each of the plurality of inertial force detecting elements 40 is an angular velocity detecting element.
  • Each of the plurality of inertial force detecting elements 40 detects the angular velocity as the inertial force. Since the structure of the inertial force detection element 40 may be the structure of a conventionally known angular velocity detection element, detailed description thereof will be omitted.
  • the plurality of inertial force detecting elements 40 include a first inertial force detecting element 41, a second inertial force detecting element 42, a third inertial force detecting element 43, and a fourth inertial force detecting element 44.
  • the first inertial force detecting element 41 is a sub-inertia force detecting element
  • the second to fourth inertial force detecting elements 42 to 44 are main inertial force detecting elements.
  • the second inertial force detecting element 42 detects the inertial force of the first axis A21 (see FIGS. 2 and 3) and outputs an output signal corresponding to the detected inertial force.
  • the second inertial force detection element 42 is an angular velocity detection element.
  • the inertial force of the first axis A21 is the angular velocity around the first axis A21.
  • the third inertial force detecting element 43 detects the inertial force of the second axis A22 (see FIGS. 2 and 3) and outputs an output signal corresponding to the detected inertial force.
  • the second axis A22 is orthogonal to the first axis A21.
  • the third inertial force detection element 43 is an angular velocity detection element.
  • the inertial force of the second axis A22 is the angular velocity around the second axis A22.
  • the fourth inertial force detecting element 44 detects the inertial force of the third axis A23 (see FIGS. 2 and 3) and outputs an output signal corresponding to the detected inertial force.
  • the third axis A23 is orthogonal to the first axis A21 and the second axis A22, respectively.
  • the fourth inertial force detection element 44 is an angular velocity detection element.
  • the inertial force of the third axis A23 is the angular velocity around the third axis A23.
  • the first to third axes A21 to A23 are a plurality of (here, three) first predetermined axes orthogonal to each other.
  • the first inertial force detecting element 41 detects the inertial force of the second predetermined axis A11 (see FIGS. 2 and 3) and outputs an output signal corresponding to the detected inertial force.
  • the first inertial force detection element 41 is an angular velocity detection element.
  • the inertial force of the second predetermined axis A11 is the angular velocity around the second predetermined axis A11.
  • the second predetermined axis A11 intersects with any of the first to third axes A21 to A23, which are the first predetermined axes, without being orthogonal to each other.
  • the second predetermined axis A11 is from the first axis A21 in a plane including the first axis A21 and the third axis A23 (a plane orthogonal to the second axis A22). It is tilted by the angle ⁇ . As shown in FIG.
  • the second predetermined axis A11 is tilted by an angle ⁇ from the first axis A21 in a plane including the first axis A21 and the second axis A22 (a plane orthogonal to the third axis A23).
  • the inertial force of the second predetermined axis A11 may include a component of the inertial force of the first to third axes A21 to A23.
  • the plurality of inertial force detection elements 40 (41 to 44) have the same detection range.
  • the detection range is the detection range of the inertial force (in this embodiment, the angular velocity).
  • the detection range is intended to be a range in which the change in the output signal of the inertial force detecting element 40 with respect to the change in the inertial force can be regarded as having linearity.
  • the detection range of the inertial force detecting element 40 is 0 to 200 [deg / sec].
  • the plurality of inertial force detection elements 40 (41 to 44) have the same sensitivity.
  • Sensitivity is, for example, the amount of change in output with respect to a unit input.
  • the angular velocity it is the amount of change in the output signal when the angular velocity changes by 1 "deg / sec". The higher the sensitivity, the easier it is to detect minute changes in angular velocity.
  • the plurality of inertial force detection elements 40 have the same bias stability.
  • Bias stability is, for example, the magnitude of fluctuation of the output signal when the inertial force is 0 (at rest). The higher the bias stability, the less false positives when the inertial force is zero.
  • the plurality of drive circuits 50 give output signals from the plurality of inertial force detection elements 40 to the processing unit 30.
  • the plurality of drive circuits 50 drive a plurality of inertial force detecting elements 40 to output an output signal corresponding to the inertial force detected from the plurality of inertial force detecting elements 40.
  • Each of the plurality of drive circuits 50 is, for example, an ASIC (Application Specific Integrated Circuit). Since the structure of the drive circuit 50 may be the structure of a drive circuit for a conventionally known angular velocity detection element, detailed description thereof will be omitted.
  • the plurality of drive circuits 50 include two drive circuits 51 and 52.
  • the drive circuit 51 acquires an output signal from the first inertial force detection element 41 and gives it to the processing unit 30.
  • the drive circuit 52 acquires output signals from the second to fourth inertial force detection elements 42 to 44 and gives them to the processing unit 30.
  • the two drive circuits 51 and 52 have a rectangular plate shape as a whole.
  • the drive circuit 51 corresponds to the first drive circuit
  • the drive circuit 52 corresponds to the second drive circuit.
  • the output signal acquired by the drive circuit 51 from the first inertial force detection element 41 corresponds to the first output signal
  • the output signal acquired by the drive circuit 52 from the second to fourth inertial force detection elements 42 to 44 is the first. Corresponds to two output signals.
  • the sensor unit 20 includes two sensor elements 21 and 22.
  • the sensor element 21 includes a first inertial force detecting element 41 among a plurality of inertial force detecting elements 40.
  • the sensor element 22 includes a second inertial force detecting element 42, a third inertial force detecting element 43, and a fourth inertial force detecting element 44 among the plurality of inertial force detecting elements 40.
  • the second inertial force detecting element 42, the third inertial force detecting element 43, and the fourth inertial force detecting element 44 are integrated. Therefore, the plurality of main inertial force detecting elements are integrated elements.
  • the two sensor elements 21 and 22 have a rectangular plate shape as a whole.
  • the sensor unit 20 includes a package 60 as shown in FIGS. 2 and 3.
  • Package 60 accommodates two sensor elements 21 and 22 and two drive circuits 51 and 52.
  • the package 60 includes a base 61 and a cover 62.
  • Two sensor elements 21 and 22 and two drive circuits 51 and 52 are housed in the space between the base 61 and the cover 62. In FIG. 2, the cover 62 is omitted.
  • the base 61 has an arrangement surface on which two sensor elements 21 and 22 and two drive circuits 51 and 52 are arranged.
  • the arrangement surface includes a main arrangement surface 610a and a sub arrangement surface 91 having different orientations.
  • the main arrangement surface 610a and the sub arrangement surface 91 will be described later.
  • the base 61 includes a base portion 610 and a side wall portion 611. Both the base portion 610 and the side wall portion 611 have electrical insulation.
  • the base portion 610 and the side wall portion 611 are continuously and integrally formed.
  • the base portion 610 and the side wall portion 611 are molded products of an electrically insulating resin.
  • the base 610 has a main placement surface 610a that forms part of the placement surface.
  • the base 610 has a rectangular plate shape.
  • the base 610 has a surface that serves as a main placement surface 610a.
  • the surface is one surface in the thickness direction.
  • the side wall portion 611 projects from the outer periphery of one surface of the base portion 610 in the thickness direction.
  • the side wall portion 611 has a rectangular frame shape.
  • the cover 62 is attached to the side wall portion 611 so as to face the main arrangement surface 610a of the base portion 610.
  • the cover 62 has a rectangular plate shape.
  • the cover 62 has electrical insulation.
  • the cover 62 is a molded product of an electrically insulating resin.
  • the base 61 further includes a vibration prevention portion 70, a plurality of connecting members 80, and an inclined portion 90.
  • the vibration prevention unit 70 is arranged on the main arrangement surface 610a of the base 61.
  • the vibration prevention unit 70 is interposed between the two sensor elements 21 and 22 and the two drive circuits 51 and 52 and the main arrangement surface 610a.
  • the vibration prevention unit 70 is provided to reduce the influence of the vibration outside the package 60 on the two sensor elements 21 and 22. As a result, the noise generated in the inertial force sensor 10 is reduced.
  • the vibration prevention portion 70 is formed of a material having elastic and electrical insulating properties.
  • the plurality of connecting members 80 are used at least for electrical connection between the drive circuits 51 and 52 and the processing unit 30.
  • Each of the plurality of connecting members 80 includes an electrode portion 81 and a terminal portion 82.
  • the plurality of connecting members 80 are embedded in the base 61.
  • the electrode portion 81 is exposed to the main arrangement surface 610a of the base portion 610, and the terminal portion 82 projects outward from the side surface of the base portion 610.
  • the electrode portions 81 of the plurality of connecting members 80 are used for electrical connection with the drive circuits 51 and 52.
  • the terminal portions 82 of the plurality of connecting members 80 are used for electrical connection with the processing unit 30.
  • the plurality of connecting members 80 are held on the base 61 by utilizing insert molding.
  • the inclined portion 90 is on the surface of the base 61 which is the main arrangement surface 610a. In this embodiment, the inclined portion 90 is on the vibration preventing portion 70 on the base 61.
  • the inclined portion 90 has an inclined surface serving as a sub-arrangement surface 91.
  • the sub-arrangement surface 91 constitutes a part of the arrangement surface.
  • the two sensor elements 21 and 22 and the two drive circuits 51 and 52 are arranged on the arrangement surface of the base 61. As shown in FIGS. 2 and 3, the two drive circuits 51 and 52 are arranged on the arrangement surface of the base 61 via the vibration prevention unit 70. In the present embodiment, the two drive circuits 51 and 52 are arranged along the length direction of the base 61 (the left-right direction in FIG. 2). The drive circuit 52 is arranged on the main arrangement surface 610a via the vibration prevention unit 70. The sensor element 22 is arranged on the side opposite to the main arrangement surface 610a in the drive circuit 52. The sensor element 22 is electrically connected to the drive circuit 52 by a conductive wire W21.
  • the drive circuit 52 is electrically connected to the corresponding electrode portion 81 by the conductive wire W22.
  • the drive circuit 51 is arranged on the sub-arrangement surface 91.
  • the sensor element 21 is arranged on the side opposite to the sub-arrangement surface 91 in the drive circuit 51.
  • the sensor element 21 is electrically connected to the drive circuit 51 by a conductive wire W11.
  • the drive circuit 51 is electrically connected to the corresponding electrode portion 81 by the conductive wire W12.
  • the sensor element 22 is on the main arrangement surface 610a, and the sensor element 21 is on the sub arrangement surface 91. Since the sensor element 22 has the second to fourth inertial force detecting elements 42 to 44, which are a plurality of main inertial force detecting elements, the plurality of main inertial force detecting elements are located on the main arrangement surface 610a. Since the sensor element 21 has a first inertial force detecting element 41 which is a sub-inertia force detecting element, the sub-inertia force detecting element is located on the sub-arranged surface 91.
  • the first axis A21 of the second inertial force detecting element 42 is orthogonal to the main arrangement surface 610a. Since the second axis A22 and the third axis A23 are orthogonal to the first axis A21, the main arrangement surface 610a is a plane including the second axis A22 and the third axis A23.
  • the second axis A22 of the third inertial force detecting element 43 is along the width direction (vertical direction in FIG. 2) of the base 61. In particular, the second axis A22 of the third inertial force detection element 43 is orthogonal to the direction in which the two sensor elements 21 and 22 (two drive circuits 51 and 52) are lined up (the left-right direction in FIG.
  • the third axis A23 of the fourth inertial force detecting element 44 is along the length direction of the base 61 (the left-right direction in FIG. 2). In particular, the third axis A23 of the fourth inertial force detection element 44 is along the direction in which the two sensor elements 21 and 22 (two drive circuits 51 and 52) are lined up (the left-right direction in FIG. 2).
  • the second predetermined axis A11 of the first inertial force detection element 41 is orthogonal to the sub-arrangement surface 91.
  • the sub-arrangement surface 91 is inclined at an angle ⁇ with respect to the plane (main arrangement surface 610a) including the second axis A22 and the third axis A23 when viewed from the second axis A22. Further, the sub-arrangement surface 91 is inclined at an angle ⁇ with respect to the plane (main arrangement surface 610a) including the second axis A22 and the third axis A23 when viewed from the third axis A23.
  • the second predetermined axis A11 is tilted from the first axis A21 by an angle ⁇ in the plane including the first axis A21 and the third axis A23 (the plane orthogonal to the second axis A22).
  • the second predetermined axis A11 is inclined by an angle ⁇ from the first axis A21 in a plane including the first axis A21 and the second axis A22 (a plane orthogonal to the third axis A23).
  • the processing unit 30 executes processing related to output signals from the plurality of inertial force detection elements 40.
  • the processing unit 30 acquires output signals from the plurality of inertial force detection elements 40 from the drive circuits 51 and 52.
  • the processing unit 30 acquires output signals from a plurality of inertial force detecting elements 40 at predetermined intervals.
  • the predetermined interval may be appropriately set according to the sensitivities of the plurality of inertial force detecting elements 40 and the like.
  • the processing unit 30 obtains the inertial force of the first predetermined axis (first axis A21) based on the output signal from the second inertial force detecting element 42.
  • the processing unit 30 obtains the inertial force of the first predetermined axis (second axis A22) based on the output signal from the third inertial force detecting element 43.
  • the processing unit 30 obtains the inertial force of the first predetermined axis (third axis A23) based on the output signal from the fourth inertial force detecting element 44.
  • the processing unit 30 has inertial forces (first to third axes A21 to A23) of three first predetermined axes (first to third axes A21 to A23) orthogonal to each other based on the output from the sensor element 22. (Angular velocity around), that is, the angular velocity of three axes is obtained.
  • the processing unit 30 obtains the inertial force of the second predetermined axis A11 based on the output signal from the first inertial force detecting element 41. In short, the processing unit 30 obtains the inertial force of the second predetermined axis A11 (angular velocity around the second predetermined axis A11), that is, the angular velocity of one axis, based on the output from the sensor element 21.
  • the processing unit 30 executes a diagnostic process.
  • the diagnostic process is a process of diagnosing a failure of a plurality of main inertial force detecting elements based on output signals from the sub-inertia force detecting element. That is, the processing unit 30 performs failure diagnosis of the second to fourth inertial force detecting elements 42 to 44 based on the output signal of the first inertial force detecting element 41.
  • the inertial force of the second predetermined axis A11 may include a component of the inertial force of the first to third axes A21 to A23.
  • the inertial force of each of the first to third axes A21 to A23 can be obtained from the inertial force of the second predetermined axis A11.
  • the second to fourth inertial force detecting elements 42 to 44 have not failed, the second to second inertial forces obtained from the inertial force of the second predetermined axis A11 obtained from the output signal from the first inertial force detecting element 41.
  • the respective inertial forces of the four inertial force detecting elements 42 to 44 are equal to the inertial forces obtained from the output signals from the second to fourth inertial force detecting elements 42 to 44, respectively.
  • the processing unit 30 is among a plurality of first predetermined axes (first to third axes A21 to A23) obtained from the inertial force based on the output signal from the sub-inertia force detecting element (first inertial force detecting element 41).
  • first inertial force detecting element 41 Specific primary inertial force detection corresponding to a specific first predetermined axis component of the specific first predetermined axis and a specific first predetermined axis among a plurality of principal inertial force detecting elements (second to fourth inertial force detecting elements 42 to 44).
  • the inertial force of the first axis A21 obtained from the output signal (inertia force of the second predetermined axis A11) from the first inertial force detecting element 41 corresponds to the first axis A21. If it does not match the inertial force from the second inertial force detecting element 42, it is determined that the second inertial force detecting element 42 has failed.
  • the processing unit 30 detects the third inertial force in which the inertial force of the second axis A22 obtained from the output signal (inertia force of the second predetermined axis A11) from the first inertial force detecting element 41 corresponds to the second axis A22.
  • the processing unit 30 detects the fourth inertial force in which the inertial force of the third axis A23 obtained from the output signal (inertia force of the second predetermined axis A11) from the first inertial force detecting element 41 corresponds to the third axis A23. If it does not match the inertial force from the element 44, it is determined that the fourth inertial force detecting element 44 has failed. If it is determined as a result of the diagnostic process that a failure of the main inertial force detecting elements (second to fourth inertial force detecting elements 42 to 44) has occurred, the processing unit 30 notifies the occurrence of the failure.
  • the inertial force of a plurality of main inertial force detecting elements obtained from the inertial force based on the output signal from the secondary inertial force detecting element and the inertial force based on the output signal from the main inertial force detecting element are used. Instead of comparing, it is also possible to compare the inertial force based on the output signal from the sub-inertia force detecting element and the combined inertial force obtained by synthesizing multiple inertial forces based on the output signals from multiple main inertial force detecting elements. It is possible.
  • the component of the second predetermined axis A11 can be obtained from the combined inertial force obtained from the inertial forces of the first to third axes A21 to A23.
  • the inertial force of the second predetermined axis A11 obtained from the output signal from the first inertial force detecting element 41 is the second to fourth inertial force. It becomes equal to the component of the second predetermined axis A11 of the combined inertial force obtained from the output signals from the inertial force detecting elements 42 to 44.
  • the component of the second predetermined axis A11 of the combined inertial force from the second to fourth inertial force detecting elements 42 to 44 is the second predetermined axis obtained from the output signal from the first inertial force detecting element 41. If it does not match the inertial force of A11, it is determined that one of the plurality of main inertial force detecting elements (second to fourth inertial force detecting elements 42 to 44) has failed. If it is determined that the failure of the main inertial force detecting element has occurred as a result of the diagnostic processing, the processing unit 30 notifies the occurrence of the failure. However, in this case, it is necessary to wait for the output signals to be output from the plurality of main inertial force detecting elements before synthesizing the inertial force.
  • the processing unit 30 determines as a result of the diagnostic processing that no failure has occurred in any of the plurality of main inertial force detecting elements, the second to fourth inertial force detecting elements 42 to 44 are used. It outputs the inertial force of a plurality of first predetermined axes (first to third axes A21 to A23) obtained based on the output signal. If the processing unit 30 determines that a failure has occurred in any of the plurality of main inertial force detecting elements as a result of the diagnostic processing, the processing unit 30 notifies the occurrence of the failure.
  • FIG. 6 shows an inertial force sensor 10A of a modified example.
  • the inertial force sensor 10A includes a sensor unit 20A and a processing unit 30 (see FIG. 1).
  • the sensor unit 20A includes a plurality of inertial force detection elements and a plurality of drive circuits 50 (51, 52A).
  • the plurality of inertial force detecting elements include two main inertial force detecting elements and a sub-inertia force detecting element. Also in this modification, the plurality of inertial force detecting elements are angular velocity detecting elements.
  • the two main inertial force detecting elements detect the inertial force of a plurality of first predetermined axes (second and third axes A22, A23, see FIG. 6) that are orthogonal to each other.
  • the sub-inertia force detecting element detects the inertial force of the second predetermined axis A11 (see FIG. 6) that intersects with any of the plurality of first predetermined axes A22 and A23 without being orthogonal to each other.
  • the plurality of drive circuits 50 include two drive circuits 51 and 52A.
  • the drive circuit 52A acquires output signals from the two main inertial force detection elements and gives them to the processing unit 30.
  • the drive circuit 52A has a rectangular plate shape as a whole.
  • the sensor element 21 includes a sub-inertia force detection element.
  • the sensor element 22A includes two main inertial force detecting elements. The two main inertial force detection elements are integrated. As shown in FIG. 6, the two sensor elements 21 and 22A have a rectangular plate shape as a whole.
  • the two sensor elements 21 and 22A and the two drive circuits 51 and 52A are arranged on the arrangement surface of the base 61. As shown in FIG. 6, the two drive circuits 51 and 52A are arranged on the arrangement surface of the base 61 via the vibration prevention unit 70. The two drive circuits 51 and 52A are arranged along the length direction (left-right direction in FIG. 6) of the base 61. The drive circuits 51 and 52A are arranged on the arrangement surface of the base 61 via the vibration prevention unit 70.
  • the sensor element 22A is arranged on the side opposite to the arrangement surface in the drive circuit 52A.
  • the sensor element 22A is electrically connected to the drive circuit 52A by the conductive wire W21.
  • the drive circuit 52A is electrically connected to the corresponding electrode portion 81 by the conductive wire W22.
  • the sensor element 21 is arranged on the side opposite to the arrangement surface in the drive circuit 51.
  • the sensor element 21 is electrically connected to the drive circuit 51 by a conductive wire W11.
  • the drive circuit 51 is electrically connected to the corresponding electrode portion 81 by the conductive wire W12.
  • the second and third axes A22 and A23 which are the first predetermined axes of the two main inertial force detecting elements, are included in the arrangement surface.
  • the second axis A22 is along the width direction of the base 61 (vertical direction in FIG. 6). In particular, the second axis A22 is orthogonal to the direction in which the two sensor elements 21 and 22A (two drive circuits 51 and 52A) are lined up (the left-right direction in FIG. 6).
  • the third axis A23 is along the length direction of the base 61 (the left-right direction in FIG. 6). In particular, the third axis A23 is along the direction in which the two sensor elements 21 and 22A (two drive circuits 51 and 52A) are lined up (the left-right direction in FIG. 6).
  • the second predetermined axis A11 of the sub-inertia force detection element is orthogonal to the thickness of the sensor element 21.
  • the sensor element 21 is arranged on the arrangement surface so that the second predetermined axis A11 is included in the arrangement surface but intersects each of the second axis A22 and the third axis A23 without being orthogonal to each other (FIG. FIG. 6).
  • the second predetermined axis A11 is in the arrangement plane and intersects each of the second axis A22 and the third axis A23 at 45 degrees.
  • the processing unit 30 obtains the inertial force of the first predetermined axis (second axis A22 and third axis A23) based on the output signals from the two main inertial force detection elements.
  • the processing unit 30 has inertial forces (second and third axes A22, A23) of two first predetermined axes (second and third axes A22, A23) orthogonal to each other based on the output from the sensor element 22A. (Angular velocity around), that is, the angular velocity of two axes is obtained.
  • the processing unit 30 obtains the inertial force of the second predetermined axis A11 based on the output signal from the sub-inertial force detecting element.
  • the processing unit 30 obtains the inertial force of the second predetermined axis A11 (angular velocity around the second predetermined axis A11), that is, the angular velocity of one axis, based on the output from the sensor element 21.
  • the inertial force of the second predetermined axis A11 may include the components of the inertial force of the second and third axes A22 and A23. Therefore, if the angle of the second predetermined axis A11 with respect to the second and third axes A22 and A23 is known, the combined inertial force obtained from the inertial forces of the second and third axes A22 and A23 can be used to obtain the second predetermined axis A11. Ingredients can be found. Therefore, the processing unit 30 can diagnose the failure of the two main inertial force detecting elements based on the output signal from the sub-inertia force detecting element.
  • the processing unit 30 executes the diagnostic process in the same manner as in the above embodiment, and if it is determined as a result of the diagnostic process that neither of the two main inertial force detecting elements has failed, the two main inertial forces. It outputs the inertial force of a plurality of first predetermined axes (second and third axes A22, A23) obtained based on the output signal from the detection element. If the processing unit 30 determines that a failure has occurred in either of the two main inertial force detecting elements as a result of the diagnostic processing, the processing unit 30 notifies the occurrence of the failure.
  • the first predetermined axis is not limited to the first to third axes A21 to A23.
  • the first predetermined axis is not limited to the first axis A21, the second axis A22, and the third axis A23, and may be an axis of any angle.
  • At least two of the plurality of inertial force detecting elements 40 may have different detection ranges from each other.
  • the first inertial force detecting element 41 may have a detection range different from that of the second to fourth inertial force detecting elements 42 to 44.
  • At least two of the plurality of inertial force detecting elements 40 may have different sensitivities from each other.
  • the first inertial force detecting element 41 may have a sensitivity different from that of the second to fourth inertial force detecting elements 42 to 44.
  • At least two of the plurality of inertial force detecting elements 40 may have different bias stability from each other.
  • the first inertial force detecting element 41 may have a bias stability different from that of the second to fourth inertial force detecting elements 42 to 44.
  • the processing unit 30 may acquire output signals from a plurality of inertial force detecting elements 40 at different intervals from each other.
  • the processing unit 30 may acquire an output signal from the first inertial force detecting element 41 at intervals different from those of the second to fourth inertial force detecting elements 42 to 44.
  • each of the plurality of inertial force detecting elements 40 may be an acceleration detecting element.
  • Each of the plurality of inertial force detecting elements 40 detects acceleration as an inertial force. Since the structure of the inertial force detection element may be the structure of a conventionally known acceleration detection element, detailed description thereof will be omitted.
  • the plurality of inertial force detection elements 40 may include a plurality of angular velocity detection elements and a plurality of acceleration detection elements.
  • the plurality of angular velocity detection elements may include two or more angular velocity detection elements that detect angular velocities around the same axis.
  • the plurality of acceleration detection elements may include two or more acceleration detection elements that detect accelerations on the same axis.
  • the plurality of main inertial force detection elements do not necessarily have to be integrated into one sensor element.
  • Each of the plurality of sensor elements may include a single inertial force detecting element.
  • the drive circuit 50 is not limited to the ASIC, and may be, for example, an FPGA (Field-Programmable Gate Array), or may be configured by one or more processors and a memory.
  • One drive circuit 50 may control a plurality of sensor elements.
  • the number of main inertial force detecting elements is not particularly limited as long as it is 2 or more, and the number of secondary inertial force detecting elements is not particularly limited as long as it is 1 or more.
  • the plurality of inertial force detecting elements 40 may include a plurality of combinations of the plurality of inertial force detecting elements and the sub-inertia force detecting elements.
  • the sub-inertia force detecting element may be used in place of the failed main inertial force detecting element among the plurality of main inertial force detecting elements.
  • the processing unit 30 is specified among the plurality of first predetermined axes based on the output signal from the sub-inertia force detecting element. The inertial force of the first predetermined axis corresponding to the main inertial force detecting element may be output.
  • the processing unit 30 replaces the angular velocity around the first axis A21 obtained from the second inertial force detecting element 42.
  • the angular velocity around the first axis A21 obtained from the first inertial force detection element 41 is output. Therefore, the operation of the inertial force sensor 10 can be continued even when the main inertial force detecting element fails.
  • the processing unit 30 may obtain at least one inertial force of the plurality of first predetermined axes based on the output signal from the sub-inertial force detecting element.
  • the plurality of inertial force detecting elements 40 may include a plurality of sub-inertia force detecting elements.
  • the plurality of sub-inertial force detecting elements may have different second predetermined axes.
  • the plurality of sub-inertia force detecting elements may include a sub-inertia force detecting element for fault determination and a sub-inertia force detecting element as a substitute for the main inertial force detecting element.
  • the first aspect is an inertial force sensor (10; 10A), which is a plurality of inertial force detecting elements (40) that output an output signal corresponding to the detected inertial force, and the plurality of inertial force detecting elements (40). ) Is provided with a processing unit (30) for executing processing related to the output signal from).
  • the plurality of inertial force detecting elements (40) include a plurality of main inertial force detecting elements (42 to 44) and a sub-inertia force detecting element (41).
  • the plurality of main inertial force detecting elements (42 to 44) detect inertial forces of a plurality of first predetermined axes (A21 to A23) orthogonal to each other.
  • the sub-inertia force detecting element (41) detects the inertial force of the second predetermined axis (A11) that intersects with any of the plurality of first predetermined axes (A21 to A23) without being orthogonal to each other. According to this aspect, reliability can be improved while reducing the complexity of the structure.
  • the second aspect is the inertial force sensor (10) based on the first aspect.
  • the inertial force sensor (10) further comprises a base (61) having an arrangement surface (610a, 91).
  • the arrangement surface (610a, 91) includes a main arrangement surface (610a) and a sub arrangement surface (91) having different orientations.
  • the plurality of main inertial force detecting elements (42 to 44) are on the main arrangement surface (610a).
  • the sub-inertia force detection element (41) is located on the sub-arrangement surface (91). According to this aspect, the setting of the second predetermined axis (A11) becomes easy.
  • the third aspect is the inertial force sensor (10) based on the second aspect.
  • the base (61) has a base portion (610) having a surface to be the main arrangement surface (610a) and an inclined surface to be the sub-arrangement surface (91) on the surface.
  • An inclined portion (90) is provided. According to this aspect, the setting of the second predetermined axis (A11) becomes easy.
  • the fourth aspect is the inertial force sensor (10) based on any one of the first to third aspects.
  • the plurality of first predetermined axes (A21 to A23) further include a third axis (A23) orthogonal to the first axis (A21) and the second axis (A22).
  • the inertial force of three axes can be obtained from the main inertial force detecting element.
  • the fifth aspect is an inertial force sensor (10; 10A) based on any one of the first to fourth aspects.
  • the processing unit (30) performs failure diagnosis of the plurality of main inertial force detecting elements (42 to 44) based on the output signal from the sub-inertia force detecting element (41). According to this aspect, the reliability can be improved.
  • the sixth aspect is the inertial force sensor (10; 10A) based on the fifth aspect.
  • the processing unit (30) is a specific of the plurality of first predetermined axes (A21 to A23) obtained from the inertial force based on the output signal from the sub-inertial force detecting element (41).
  • the seventh aspect is the inertial force sensor (10; 10A) based on the fifth aspect.
  • the processing unit (30) has an inertial force based on an output signal from the sub-inertia force detecting element (41) and an output signal from the plurality of main inertial force detecting elements (42 to 44). When the components of the combined inertial force do not match, it is determined that at least one of the plurality of main inertial force detecting elements (42 to 44) is out of order. According to this aspect, the reliability can be improved.
  • the eighth aspect is an inertial force sensor (10; 10A) based on any one of the first to seventh aspects.
  • the processing unit (30) has the sub-inertia force detecting element (41) when a specific main inertial force detecting element among the plurality of main inertial force detecting elements (42 to 44) has a failure. ), The inertial force of the first predetermined axis corresponding to the specific main inertial force detecting element among the plurality of first predetermined axes (A21 to A23) is obtained. According to this aspect, the reliability can be improved.
  • the ninth aspect is an inertial force sensor (10; 10A) based on any one of the first to eighth aspects.
  • each of the plurality of inertial force detecting elements (40) is a mechanical electric conversion element.
  • the inertial force sensor (10; 10A) can be miniaturized.
  • the tenth aspect is an inertial force sensor (10; 10A) based on any one of the first to ninth aspects.
  • the inertial force sensor (10; 10A) further includes a plurality of drive circuits (50) that supply output signals from the plurality of inertial force detecting elements (40) to the processing unit.
  • the plurality of drive circuits (50) include a first drive circuit (51) that acquires a first output signal from the sub-inertial force detection element (41) and supplies the first output signal to the processing unit (30), and the plurality of main inertias. It includes a second drive circuit (52; 52A) that acquires a second output signal from the force detection elements (42 to 44) and supplies the second output signal to the processing unit (30).
  • the processing unit (30) executes the processing related to the first output signal and the second output signal as the processing related to the output signal.
  • the eleventh aspect is an inertial force sensor (10; 10A) based on the tenth aspect.
  • the inertial force sensor (10; 10A) further comprises a base (61) having an arrangement surface (610a, 91).
  • the arrangement surface (610a, 91) includes a main arrangement surface (610a) and a sub arrangement surface (91) having different orientations.
  • the first drive circuit (51) is on the sub-arrangement surface (91).
  • the second drive circuit (52) is on the main arrangement surface (610a).
  • the twelfth aspect is an inertial force sensor (10; 10A) based on the second or third or eleventh aspect.
  • the base (61) includes a vibration preventing portion (70) interposed between the plurality of inertial force detecting elements (40) and the main arrangement surface (610a).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)

Abstract

本発明の課題は、構造の複雑化を低減しながら信頼性の向上が図れる、慣性力センサを提供することである。慣性力センサ(10)は、検出した慣性力に対応する出力信号を出力する複数の慣性力検出素子(40)と、複数の慣性力検出素子(40)からの出力信号に関する処理を実行する処理部(30)と、を備える。複数の慣性力検出素子(40)は、互いに直交する複数の第1所定軸の慣性力を検出する複数の主慣性力検出素子と、複数の第1所定軸のいずれとも直交せずに交差する第2所定軸の慣性力を検出する副慣性力検出素子と、を含む。

Description

慣性力センサ
 本開示は、慣性力センサに関する。より詳細には、本開示は、各種電子機器に用いられる慣性力センサに関する。
 特許文献1は、慣性力センサの一種である角速度センサを開示する。特許文献1の角速度センサは、基本骨格がシリコン等の弾性材料からなる音叉型振動子、ICチップ、音叉型振動子とICチップが収納されるセラミック製のパッケージ、パッケージを封止するための蓋、蓋により封止されたパッケージとチップ部品と端子等の導体とともに樹脂で一体成型されたホルダー、及びホルダーを覆うケースを備える。
 特許文献1では、音叉型振動子の検出部の故障診断を可能とすることで、角速度センサの信頼性の向上を図っている。しかしながら、特許文献1の角速度センサでは、ICチップに、音叉型振動子の検出部の故障診断のためのチェック信号を外部から供給される端子を新たに設けている。そのため、特許文献1の角速度センサでは、素子レベルで構造を変更する必要があり、全体的な構造が複雑化する。
特開2010-107518号公報
 課題は、構造の複雑化を低減しながら信頼性の向上が図れる、慣性力センサを提供することである。
 本開示の一態様に係る慣性力センサは、検出した慣性力に対応する出力信号を出力する複数の慣性力検出素子と、前記複数の慣性力検出素子からの出力信号に関する処理を実行する処理部と、を備える。前記複数の慣性力検出素子は、互いに直交する複数の第1所定軸の慣性力を検出する複数の主慣性力検出素子と、前記複数の第1所定軸のいずれとも直交せずに交差する第2所定軸の慣性力を検出する副慣性力検出素子と、を含む。
図1は、本開示の一実施形態に係る慣性力センサのブロック図である。 図2は、同上の慣性力センサの概略平面図である。 図3は、同上の慣性力センサの概略断面図である。 図4は、同上の慣性力センサの傾斜部の概略説明図である。 図5は、同上の慣性力センサの第1所定軸と第2所定軸との関係の説明図である。 図6は、一変形例に係る慣性力センサの概略平面図である。
 以下、場合によって図面を参照しながら、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。以下の実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。また、各要素の寸法比率は図面に図示された比率に限られるものではない。
 本開示において、慣性力センサは、慣性力を検出するセンサである。慣性力は、並進加速度系においては加速度で表され、回転座標系においては角速度で表される。つまり、慣性力の検出は、加速度と角速度との少なくとも一方の検出を意味する。この点で、慣性力センサは、加速度と角速度との少なくとも一方を検出するセンサである。
 (1)実施形態
 (1-1)概要
 図1は、本実施形態に係る慣性力センサ10のブロック図である。慣性力センサ10は、複数の慣性力検出素子40と、処理部30とを備える。複数の慣性力検出素子40は、検出した慣性力に対応する出力信号を出力する。処理部30は、複数の慣性力検出素子40からの出力信号に関する処理を実行する。複数の慣性力検出素子40は、複数の主慣性力検出素子(第2~第4慣性力検出素子42~44)と、副慣性力検出素子(第1慣性力検出素子41)と、を含む。複数の主慣性力検出素子(第2~第4慣性力検出素子42~44)は、互いに直交する複数の第1所定軸(第1~第3軸A21~A23、図2及び図3参照)の慣性力を検出する。副慣性力検出素子(第1慣性力検出素子41)は、複数の第1所定軸A21~A23のいずれとも直交せずに交差する第2所定軸A11(図2及び図3参照)の慣性力を検出する。
 本実施形態の慣性力センサ10では、複数の慣性力検出素子40は、複数の主慣性力検出素子(第2~第4慣性力検出素子42~44)に加えて、副慣性力検出素子(第1慣性力検出素子41)を含む。複数の主慣性力検出素子(第2~第4慣性力検出素子42~44)が、互いに直交する複数の第1所定軸(第1~第3軸A21~A23)の慣性力を検出する一方で、副慣性力検出素子41は、複数の第1所定軸(第1~第3軸A21~A23)のいずれとも直交せずに交差する第2所定軸A11の慣性力を検出する。そのため、副慣性力検出素子(第1慣性力検出素子41)で検出される慣性力は、複数の主慣性力検出素子(第2~第4慣性力検出素子42~44)それぞれで検出される慣性力の成分を含み得る。したがって、副慣性力検出素子は、複数の主慣性力検出素子の故障診断に利用でき、また、複数の主慣性力検出素子の故障時には副慣性力検出素子を複数の慣性力検出素子の代わりに利用できる。しかも、単に、複数の慣性力検出素子40に、副慣性力検出素子を加えるだけでよい。したがって、本実施形態の慣性力センサ10によれば、構造の複雑化を低減しながら信頼性の向上が図れる。
 (1-2)構成
 以下、本実施形態に係る検出システム1について図面を参照して詳しく説明する。
 慣性力センサ10は、図1に示すように、センサ部20と、処理部30と、を備える。
 センサ部20は、複数の慣性力検出素子40と、複数の駆動回路50とを含む。
 複数の慣性力検出素子40は、慣性力を検出し、検出した慣性力に対応する出力信号を出力する。複数の慣性力検出素子40の各々は、機械電気変換素子(例えば、Micro Electro Mechanical Systems:MEMS)である。複数の慣性力検出素子40の各々は、角速度検出素子である。複数の慣性力検出素子40の各々は、慣性力として角速度を検出する。慣性力検出素子40の構造は、従来周知の角速度検出素子の構造であってよいから、詳細な説明は省略する。
 複数の慣性力検出素子40は、第1慣性力検出素子41と、第2慣性力検出素子42と、第3慣性力検出素子43と、第4慣性力検出素子44と、を含む。第1慣性力検出素子41は、副慣性力検出素子であり、第2~第4慣性力検出素子42~44は、主慣性力検出素子である。
 第2慣性力検出素子42は、第1軸A21(図2及び図3参照)の慣性力を検出し、検出した慣性力に対応する出力信号を出力する。本実施形態では、第2慣性力検出素子42は、角速度検出素子である。第1軸A21の慣性力は、第1軸A21周りの角速度である。
 第3慣性力検出素子43は、第2軸A22(図2及び図3参照)の慣性力を検出し、検出した慣性力に対応する出力信号を出力する。第2軸A22は、第1軸A21と直交する。本実施形態では、第3慣性力検出素子43は、角速度検出素子である。第2軸A22の慣性力は、第2軸A22周りの角速度である。
 第4慣性力検出素子44は、第3軸A23(図2及び図3参照)の慣性力を検出し、検出した慣性力に対応する出力信号を出力する。第3軸A23は、第1軸A21及び第2軸A22とそれぞれ直交する。本実施形態では、第4慣性力検出素子44は、角速度検出素子である。第3軸A23の慣性力は、第3軸A23周りの角速度である。
 第1~第3軸A21~A23は、互いに直交する複数(ここでは3つ)の第1所定軸である。
 第1慣性力検出素子41は、第2所定軸A11(図2及び図3参照)の慣性力を検出し、検出した慣性力に対応する出力信号を出力する。本実施形態では、第1慣性力検出素子41は、角速度検出素子である。第2所定軸A11の慣性力は、第2所定軸A11周りの角速度である。
 第2所定軸A11は、図4及び図5に示すように、第1所定軸である第1~第3軸A21~A23のいずれとも直交せずに交差する。本実施形態では、第2所定軸A11は、図5に示すように、第1軸A21と第3軸A23とを含む平面(第2軸A22に直交する平面)においては、第1軸A21から角度θだけ傾いている。第2所定軸A11は、図5に示すように、第1軸A21と第2軸A22とを含む平面(第3軸A23に直交する平面)においては、第1軸A21から角度φだけ傾いている。よって、第2所定軸A11の慣性力は、第1~第3軸A21~A23の慣性力の成分を含み得る。
 複数の慣性力検出素子40(41~44)は、同じ検出範囲を有する。検出範囲は、慣性力(本実施形態では、角速度)の検出範囲である。特に、本実施形態では、検出範囲は、慣性力の変化に対する慣性力検出素子40の出力信号の変化に線形性があるとみなせる範囲を意図している。一例として、慣性力検出素子40の検出範囲は、0~200[deg/sec]である。
 複数の慣性力検出素子40(41~44)は、同じ感度を有する。感度は、一例としては、単位入力に対する出力の変化量である。角速度に関して言えば、角速度が1「deg/sec」変化した際の、出力信号の変化量である。感度が大きいほど、微小な角速度の変化を検出しやすい。
 複数の慣性力検出素子40(41~44)は、同じバイアス安定性を有する。バイアス安定性は、一例としては、慣性力が0であるとき(静止時)の、出力信号の変動の大きさである。バイアス安定性が高ければ、慣性力が0であるときの誤検出が低減される。
 複数の駆動回路50は、複数の慣性力検出素子40からの出力信号を処理部30に与える。本実施形態では、複数の駆動回路50は、複数の慣性力検出素子40を駆動して、複数の慣性力検出素子40から検出した慣性力に対応する出力信号を出力させる。複数の駆動回路50の各々は、例えば、ASIC(Application Specific Integrated Circuit)である。駆動回路50の構造は、従来周知の角速度検出素子用の駆動回路の構造であってよいから、詳細な説明は省略する。
 複数の駆動回路50は、2つの駆動回路51,52を含む。駆動回路51は、第1慣性力検出素子41から出力信号を取得して処理部30に与える。駆動回路52は、第2~第4慣性力検出素子42~44から出力信号を取得して処理部30に与える。図2及び図3に示すように、2つの駆動回路51,52は、全体として矩形の板状である。駆動回路51は、第1駆動回路に相当し、駆動回路52は、第2駆動回路に相当する。駆動回路51が第1慣性力検出素子41から取得する出力信号は、第1出力信号に相当し、駆動回路52が第2~第4慣性力検出素子42~44から取得する出力信号は、第2出力信号に相当する。
 図1~図3に示すように、センサ部20は、2つのセンサ素子21,22を備える。センサ素子21は、複数の慣性力検出素子40のうちの第1慣性力検出素子41を含む。センサ素子22は、複数の慣性力検出素子40のうちの、第2慣性力検出素子42と、第3慣性力検出素子43と、第4慣性力検出素子44と、を含む。第2慣性力検出素子42と、第3慣性力検出素子43と、第4慣性力検出素子44とは一体化されている。したがって、複数の主慣性力検出素子は、一体化された素子である。図2及び図3に示すように、2つのセンサ素子21,22は、全体として矩形の板状である。
 更に、センサ部20は、図2及び図3に示すように、パッケージ60を備える。
 パッケージ60は、2つのセンサ素子21,22及び2つの駆動回路51,52を収容する。パッケージ60は、ベース61と、カバー62とを備える。ベース61とカバー62との間の空間に、2つのセンサ素子21,22及び2つの駆動回路51,52が収容される。なお、図2では、カバー62は省略している。
 ベース61は、2つのセンサ素子21,22及び2つの駆動回路51,52が配置される配置面を有する。配置面は、向きが異なる主配置面610aと副配置面91とを含む。主配置面610aと副配置面91とについては後述する。
 ベース61は、基部610と、側壁部611と、を含む。基部610及び側壁部611はいずれも電気絶縁性を有する。基部610と、側壁部611とは連続一体に形成される。一例として、基部610及び側壁部611は電気絶縁性樹脂の成形品である。基部610は、配置面の一部を構成する主配置面610aを有する。基部610は、矩形の板状である。基部610は、主配置面610aとなる表面を有する。表面は、厚み方向の一面である。側壁部611は、基部610の厚み方向の一面の外周から突出する。側壁部611は、矩形の枠状である。カバー62は、基部610の主配置面610aと対向するようにして側壁部611に取り付けられる。カバー62は、矩形の板状である。カバー62は電気絶縁性を有する。一例として、カバー62は電気絶縁性樹脂の成形品である。
 ベース61は、振動防止部70と、複数の接続部材80と、傾斜部90とを更に含む。
 振動防止部70は、ベース61の主配置面610aに配置される。特に、振動防止部70は、2つのセンサ素子21,22及び2つの駆動回路51,52と、主配置面610aとの間に介在される。振動防止部70は、パッケージ60の外部の振動の、2つのセンサ素子21,22への影響を低減するために設けられる。これによって、慣性力センサ10に生じるノイズの低減を図っている。例えば、振動防止部70は、弾性及び電気絶縁性を有する材料により形成される。
 複数の接続部材80は、少なくとも駆動回路51,52と処理部30との電気的接続に用いられる。複数の接続部材80の各々は、電極部81と、端子部82と、を備える。複数の接続部材80は、ベース61に埋設されている。各接続部材80では、電極部81が基部610の主配置面610aに露出し、端子部82が基部610の側面から外方に突出する。複数の接続部材80の電極部81は、駆動回路51,52との電気的接続に用いられる。複数の接続部材80の端子部82は、処理部30との電気的接続に用いられる。本実施形態では、複数の接続部材80は、インサート成形を利用して、ベース61に保持される。
 傾斜部90は、主配置面610aとなるベース61の表面にある。本実施形態では、傾斜部90は、ベース61上の振動防止部70上にある。傾斜部90は、副配置面91となる傾斜面を有する。副配置面91は、配置面の一部を構成する。
 2つのセンサ素子21,22及び2つの駆動回路51,52は、ベース61の配置面に配置される。図2及び図3に示すように、2つの駆動回路51,52は、ベース61の配置面に振動防止部70を介して配置される。本実施形態では、2つの駆動回路51,52は、ベース61の長さ方向(図2の左右方向)に沿って並んでいる。駆動回路52は、主配置面610aに振動防止部70を介して配置される。センサ素子22は、駆動回路52における主配置面610aとは反対側に配置される。センサ素子22は駆動回路52に導電ワイヤW21により電気的接続に接続される。駆動回路52は対応する電極部81に導電ワイヤW22により電気的接続に接続される。駆動回路51は、副配置面91に配置される。センサ素子21は、駆動回路51における副配置面91とは反対側に配置される。センサ素子21は駆動回路51に導電ワイヤW11により電気的接続に接続される。駆動回路51は対応する電極部81に導電ワイヤW12により電気的接続に接続される。
 センサ素子22は、主配置面610aにあり、センサ素子21は、副配置面91にある。センサ素子22は、複数の主慣性力検出素子である第2~第4慣性力検出素子42~44を有するから、複数の主慣性力検出素子は、主配置面610aにある。センサ素子21は、副慣性力検出素子である第1慣性力検出素子41を有するから、副慣性力検出素子は、副配置面91にある。
 図2及び図3に示すように、第2慣性力検出素子42の第1軸A21は、主配置面610aに直交する。第2軸A22及び第3軸A23は第1軸A21に直交するから、主配置面610aは、第2軸A22及び第3軸A23を含む平面である。第3慣性力検出素子43の第2軸A22は、ベース61の幅方向(図2の上下方向)に沿う。特に、第3慣性力検出素子43の第2軸A22は、2つのセンサ素子21,22(2つの駆動回路51,52)が並ぶ方向(図2の左右方向)に直交する。第4慣性力検出素子44の第3軸A23は、ベース61の長さ方向(図2の左右方向)に沿う。特に、第4慣性力検出素子44の第3軸A23は、2つのセンサ素子21,22(2つの駆動回路51,52)が並ぶ方向(図2の左右方向)に沿う。
 図4に示すように、第1慣性力検出素子41の第2所定軸A11は、副配置面91に直交する。副配置面91は、第2軸A22と第3軸A23とを含む平面(主配置面610a)に対して、第2軸A22から見て、角度θで傾斜している。また、副配置面91は、第2軸A22と第3軸A23とを含む平面(主配置面610a)に対して、第3軸A23から見て、角度φで傾斜している。したがって、第2所定軸A11は、第1軸A21と第3軸A23とを含む平面(第2軸A22に直交する平面)においては、第1軸A21から角度θだけ傾く。第2所定軸A11は、第1軸A21と第2軸A22とを含む平面(第3軸A23に直交する平面)においては、第1軸A21から角度φだけ傾く。
 処理部30は、複数の慣性力検出素子40からの出力信号に関する処理を実行する。処理部30は、駆動回路51,52から複数の慣性力検出素子40からの出力信号を取得する。処理部30は、複数の慣性力検出素子40から所定の間隔で出力信号を取得する。なお、所定の間隔は、複数の慣性力検出素子40の感度等に応じて適宜設定されればよい。
 処理部30は、第2慣性力検出素子42からの出力信号に基づいて第1所定軸(第1軸A21)の慣性力を求める。処理部30は、第3慣性力検出素子43からの出力信号に基づいて第1所定軸(第2軸A22)の慣性力を求める。処理部30は、第4慣性力検出素子44からの出力信号に基づいて第1所定軸(第3軸A23)の慣性力を求める。要するに、処理部30は、センサ素子22からの出力に基づいて互いに直交する3つの第1所定軸(第1~第3軸A21~A23)の慣性力(第1~第3軸A21~A23の周りの角速度)、つまり、3軸の角速度を求める。
 処理部30は、第1慣性力検出素子41からの出力信号に基づいて第2所定軸A11の慣性力を求める。要するに、処理部30は、センサ素子21からの出力に基づいて第2所定軸A11の慣性力(第2所定軸A11の周りの角速度)、つまり、1軸の角速度を求める。
 処理部30は、診断処理を実行する。診断処理は、副慣性力検出素子からの出力信号に基づいて複数の主慣性力検出素子の故障診断を行う処理である。つまり、処理部30は、第1慣性力検出素子41の出力信号に基づいて、第2~第4慣性力検出素子42~44の故障診断を行う。上述したように、第2所定軸A11の慣性力は、第1~第3軸A21~A23の慣性力の成分を含み得る。よって、角度θ、φが既知であれば、第1~第3軸A21~A23それぞれの慣性力を、第2所定軸A11の慣性力から求めることができる。第2~第4慣性力検出素子42~44の故障が発生していない場合、第1慣性力検出素子41からの出力信号から求めた第2所定軸A11の慣性力から求めた第2~第4慣性力検出素子42~44のそれぞれの慣性力は、第2~第4慣性力検出素子42~44からの出力信号からそれぞれ求めた慣性力と等しくなる。したがって、処理部30は、副慣性力検出素子(第1慣性力検出素子41)からの出力信号に基づく慣性力から求まる複数の第1所定軸(第1~第3軸A21~A23)のうちの特定の第1所定軸の成分と、複数の主慣性力検出素子(第2~第4慣性力検出素子42~44)のうちの特定の第1所定軸に対応する特定の主慣性力検出素子からの出力信号に基づく慣性力が一致しない場合に、特定の主慣性力検出素子が故障していると判断する。具体的には、処理部30は、第1慣性力検出素子41からの出力信号(第2所定軸A11の慣性力)から求めた第1軸A21の慣性力が、第1軸A21に対応する第2慣性力検出素子42からの慣性力と一致していなければ、第2慣性力検出素子42の故障が発生していると判断する。処理部30は、第1慣性力検出素子41からの出力信号(第2所定軸A11の慣性力)から求めた第2軸A22の慣性力が、第2軸A22に対応する第3慣性力検出素子43からの慣性力と一致していなければ、第3慣性力検出素子43の故障が発生していると判断する。処理部30は、第1慣性力検出素子41からの出力信号(第2所定軸A11の慣性力)から求めた第3軸A23の慣性力が、第3軸A23に対応する第4慣性力検出素子44からの慣性力と一致していなければ、第4慣性力検出素子44の故障が発生していると判断する。診断処理の結果、主慣性力検出素子(第2~第4慣性力検出素子42~44)の故障が発生したと判断されれば、処理部30は、故障の発生を通知する。
 なお、故障診断の方法として、副慣性力検出素子からの出力信号に基づく慣性力から求めた複数の主慣性力検出素子の慣性力と、主慣性力検出素子からの出力信号に基づく慣性力とを比較する代わりに、副慣性力検出素子からの出力信号に基づく慣性力と、複数の主慣性力検出素子からの出力信号に基づく複数の慣性力を合成した合成慣性力とを比較することも可能である。一例として、角度θ、φが既知であれば、第1~第3軸A21~A23の慣性力から求まる合成慣性力から、第2所定軸A11の成分を求めることができる。第2~第4慣性力検出素子42~44の故障が発生していない場合、第1慣性力検出素子41からの出力信号から求めた第2所定軸A11の慣性力は、第2~第4慣性力検出素子42~44からの出力信号から求めた合成慣性力の第2所定軸A11の成分と等しくなる。処理部30は、第2~第4慣性力検出素子42~44からの合成慣性力の第2所定軸A11の成分が、第1慣性力検出素子41からの出力信号から求めた第2所定軸A11の慣性力と一致していなければ、複数の主慣性力検出素子(第2~第4慣性力検出素子42~44)のいずれかの故障が発生していると判断する。診断処理の結果、主慣性力検出素子の故障が発生したと判断されれば、処理部30は、故障の発生を通知する。ただし、この場合、複数の主慣性力検出素子から出力信号が出力されるのを待って慣性力を合成する必要がある。
 このように、処理部30は、診断処理の結果、複数の主慣性力検出素子のいずれにも故障が発生していないと判断すれば、第2~第4慣性力検出素子42~44からの出力信号に基づいて求めた複数の第1所定軸(第1~第3軸A21~A23)の慣性力を出力する。処理部30は、診断処理の結果、複数の主慣性力検出素子のいずれかで故障が発生していると判断すれば、故障の発生を通知する。
 (2)変形例
 本開示の実施形態は、上記実施形態に限定されない。上記実施形態は、本開示の課題を達成できれば、設計等に応じて種々の変更が可能である。以下に、上記実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
 図6は、一変形例の慣性力センサ10Aを示す。慣性力センサ10Aは、センサ部20Aと、処理部30(図1参照)と、を備える。
 センサ部20Aは、複数の慣性力検出素子と、複数の駆動回路50(51,52A)とを含む。
 複数の慣性力検出素子は、2つの主慣性力検出素子と、副慣性力検出素子と、を含む。本変形例においても、複数の慣性力検出素子は、角速度検出素子である。
 2つの主慣性力検出素子は、互いに直交する複数の第1所定軸(第2及び第3軸A22,A23、図6参照)の慣性力を検出する。副慣性力検出素子は、複数の第1所定軸A22,A23のいずれとも直交せずに交差する第2所定軸A11(図6参照)の慣性力を検出する。
 複数の駆動回路50は、2つの駆動回路51,52Aを含む。駆動回路52Aは、2つの主慣性力検出素子から出力信号を取得して処理部30に与える。駆動回路52Aは、全体として矩形の板状である。
 センサ素子21は、副慣性力検出素子を含む。センサ素子22Aは、2つの主慣性力検出素子を含む。2つの主慣性力検出素子は一体化されている。図6に示すように、2つのセンサ素子21,22Aは、全体として矩形の板状である。
 2つのセンサ素子21,22A及び2つの駆動回路51,52Aは、ベース61の配置面に配置される。図6に示すように、2つの駆動回路51,52Aは、ベース61の配置面に振動防止部70を介して配置される。2つの駆動回路51,52Aは、ベース61の長さ方向(図6の左右方向)に沿って並んでいる。駆動回路51,52Aは、振動防止部70を介してベース61の配置面に配置される。
 センサ素子22Aは、駆動回路52Aにおける配置面とは反対側に配置される。センサ素子22Aは駆動回路52Aに導電ワイヤW21により電気的接続に接続される。駆動回路52Aは対応する電極部81に導電ワイヤW22により電気的接続に接続される。センサ素子21は、駆動回路51における配置面とは反対側に配置される。センサ素子21は駆動回路51に導電ワイヤW11により電気的接続に接続される。駆動回路51は対応する電極部81に導電ワイヤW12により電気的接続に接続される。
 図6に示すように、2つの主慣性力検出素子の第1所定軸である第2及び第3軸A22,A23は、配置面に含まれる。第2軸A22は、ベース61の幅方向(図6の上下方向)に沿う。特に、第2軸A22は、2つのセンサ素子21,22A(2つの駆動回路51,52A)が並ぶ方向(図6の左右方向)に直交する。第3軸A23は、ベース61の長さ方向(図6の左右方向)に沿う。特に、第3軸A23は、2つのセンサ素子21,22A(2つの駆動回路51,52A)が並ぶ方向(図6の左右方向)に沿う。
 センサ素子21において、副慣性力検出素子の第2所定軸A11は、センサ素子21の厚みに直交する。そして、センサ素子21は、第2所定軸A11が、配置面に含まれるが、第2軸A22及び第3軸A23のそれぞれと直交せずに交差するように、配置面に配置される(図6参照)。一例として、第2所定軸A11は、配置面内にあって、第2軸A22及び第3軸A23のそれぞれと45度で交差する。
 本変形例において、処理部30(図1参照)は、2つの主慣性力検出素子からの出力信号に基づいて第1所定軸(第2軸A22及び第3軸A23)の慣性力を求める。要するに、処理部30は、センサ素子22Aからの出力に基づいて互いに直交する2つの第1所定軸(第2及び第3軸A22,A23)の慣性力(第2及び第3軸A22,A23の周りの角速度)、つまり、2軸の角速度を求める。処理部30は、副慣性力検出素子からの出力信号に基づいて第2所定軸A11の慣性力を求める。要するに、処理部30は、センサ素子21からの出力に基づいて第2所定軸A11の慣性力(第2所定軸A11の周りの角速度)、つまり、1軸の角速度を求める。
 上述したように、第2所定軸A11の慣性力は、第2及び第3軸A22,A23の慣性力の成分を含み得る。よって、第2及び第3軸A22,A23に対する第2所定軸A11の角度が既知であれば、第2及び第3軸A22,A23の慣性力から得られる合成慣性力から第2所定軸A11の成分が求まる。よって、処理部30は、副慣性力検出素子からの出力信号に基づいて2つの主慣性力検出素子の故障診断が可能である。
 処理部30は、上記実施形態と同様に、診断処理を実行し、診断処理の結果、2つの主慣性力検出素子のいずれにも故障が発生していないと判断すれば、2つの主慣性力検出素子からの出力信号に基づいて求めた複数の第1所定軸(第2及び第3軸A22,A23)の慣性力を出力する。処理部30は、診断処理の結果、2つの主慣性力検出素子のいずれかで故障が発生していると判断すれば、故障の発生を通知する。
 以下に、その他の変形例について列挙する。
 一変形例では、第1所定軸は、第1~第3軸A21~A23に限らない。第1所定軸は、第1軸A21、第2軸A22、及び第3軸A23に限らず、任意の角度の軸であってよい。
 一変形例では、複数の慣性力検出素子40のうち少なくとも2つは、互いに異なる検出範囲を有していてもよい。例えば、第1慣性力検出素子41は、第2~第4慣性力検出素子42~44とは異なる検出範囲を有していてもよい。
 一変形例では、複数の慣性力検出素子40のうち少なくとも2つは、互いに異なる感度を有していてもよい。例えば、第1慣性力検出素子41は、第2~第4慣性力検出素子42~44とは異なる感度を有していてもよい。
 一変形例では、複数の慣性力検出素子40のうち少なくとも2つは、互いに異なるバイアス安定性を有していてもよい。例えば、第1慣性力検出素子41は、第2~第4慣性力検出素子42~44とは異なるバイアス安定性を有していてもよい。
 一変形例では、処理部30は、複数の慣性力検出素子40から互いに異なる間隔で出力信号を取得してもよい。例えば、処理部30は、第1慣性力検出素子41から、第2~第4慣性力検出素子42~44と異なる間隔で出力信号を取得してもよい。
 一変形例では、複数の慣性力検出素子40の各々は、加速度検出素子であってよい。複数の慣性力検出素子40の各々は、慣性力として加速度を検出する。慣性力検出素子の構造は、従来周知の加速度検出素子の構造であってよいから、詳細な説明は省略する。
 一変形例では、複数の慣性力検出素子40は、複数の角速度検出素子と、複数の加速度検出素子とを含んでよい。複数の角速度検出素子は、同じ軸の周りの角速度を検出する2以上の角速度検出素子を含んでよい。複数の加速度検出素子は、同じ軸の加速度を検出する2以上の加速度検出素子を含んでよい。
 一変形例では、複数の主慣性力検出素子は、必ずしも一つのセンサ素子に一体化されていなくてよい。複数のセンサ素子は、各々、単一の慣性力検出素子を含んでよい。
 一変形例では、駆動回路50は、ASICに限らず、例えば、FPGA(Field-Programmable Gate Array)であってもよいし、1以上のプロセッサ及びメモリにて構成されていてもよい。一つの駆動回路50が複数のセンサ素子を制御してよい。
 一変形例では、慣性力センサ10において、主慣性力検出素子の数は2以上であれば特に限定されず、副慣性力検出素子の数も1以上であれば特に限定されない。複数の慣性力検出素子40は、複数の慣性力検出素子と副慣性力検出素子との複数の組み合わせを備えてもよい。
 一変形例では、副慣性力検出素子は、複数の主慣性力検出素子のうちの故障した主慣性力検出素子の代わりに利用してよい。処理部30は、複数の主慣性力検出素子のうち特定の主慣性力検出素子に故障がある場合、副慣性力検出素子からの出力信号に基づいて、複数の第1所定軸のうち特定の主慣性力検出素子に対応する第1所定軸の慣性力を出力してよい。例えば、診断処理の結果、第2慣性力検出素子42の故障が発生したと判断されれば、処理部30は、第2慣性力検出素子42から得られた第1軸A21周りの角速度の代わりに、第1慣性力検出素子41から得られた第1軸A21周りの角速度を出力する。そのため、主慣性力検出素子の故障時でも慣性力センサ10の動作の継続が可能である。このように、処理部30は、副慣性力検出素子からの出力信号に基づいて、複数の第1所定軸の少なくとも一つの慣性力を求めてもよい。
 一変形例では、複数の慣性力検出素子40は、複数の副慣性力検出素子を含んでよい。複数の副慣性力検出素子は、異なる第2所定軸を有してよい。複数の副慣性力検出素子は、故障判定用の副慣性力検出素子と、主慣性力検出素子の代替用の副慣性力検出素子とを含み得る。
 (3)態様
 上記実施形態及び変形例から明らかなように、本開示は、下記の態様を含む。以下では、実施形態との対応関係を明示するためだけに、符号を括弧付きで付している。
 第1の態様は、慣性力センサ(10;10A)であって、検出した慣性力に対応する出力信号を出力する複数の慣性力検出素子(40)と、前記複数の慣性力検出素子(40)からの出力信号に関する処理を実行する処理部(30)と、を備える。前記複数の慣性力検出素子(40)は、複数の主慣性力検出素子(42~44)と、副慣性力検出素子(41)と、を含む。前記複数の主慣性力検出素子(42~44)は、互いに直交する複数の第1所定軸(A21~A23)の慣性力を検出する。前記副慣性力検出素子(41)は、前記複数の第1所定軸(A21~A23)のいずれとも直交せずに交差する第2所定軸(A11)の慣性力を検出する。この態様によれば、構造の複雑化を低減しながら信頼性の向上が図れる。
 第2の態様は、第1の態様に基づく慣性力センサ(10)である。第2の態様では、前記慣性力センサ(10)は、配置面(610a,91)を有するベース(61)を更に備える。前記配置面(610a,91)は、向きが異なる主配置面(610a)と副配置面(91)とを含む。前記複数の主慣性力検出素子(42~44)は、前記主配置面(610a)にある。前記副慣性力検出素子(41)は、前記副配置面(91)にある。この態様によれば、第2所定軸(A11)の設定が容易になる。
 第3の態様は、第2の態様に基づく慣性力センサ(10)である。第3の態様では、前記ベース(61)は、前記主配置面(610a)となる表面を有する基部(610)と、前記副配置面(91)となる傾斜面を有して前記表面にある傾斜部(90)と、を備える。この態様によれば、第2所定軸(A11)の設定が容易になる。
 第4の態様は、第1~第3の態様のいずれか一つに基づく慣性力センサ(10)である。第4の態様では、前記複数の第1所定軸(A21~A23)は、更に、前記第1軸(A21)及び前記第2軸(A22)と互いに直交する第3軸(A23)を含む。この態様によれば、主慣性力検出素子から3軸の慣性力を得ることができる。
 第5の態様は、第1~第4の態様のいずれか一つに基づく慣性力センサ(10;10A)である。第5の態様では、前記処理部(30)は、前記副慣性力検出素子(41)からの出力信号に基づいて前記複数の主慣性力検出素子(42~44)の故障診断を行う。この態様によれば、信頼度の向上が図れる。
 第6の態様は、第5の態様に基づく慣性力センサ(10;10A)である。第6の態様では、前記処理部(30)は、前記副慣性力検出素子(41)からの出力信号に基づく慣性力から求まる前記複数の第1所定軸(A21~A23)のうちの特定の第1所定軸の成分と、前記複数の主慣性力検出素子(42~44)のうちの前記特定の第1所定軸に対応する特定の主慣性力検出素子からの出力信号に基づく慣性力が一致しない場合に、前記特定の主慣性力検出素子が故障していると判断する。この態様によれば、信頼度の向上が図れる。
 第7の態様は、第5の態様に基づく慣性力センサ(10;10A)である。第6の態様では、前記処理部(30)は、前記副慣性力検出素子(41)からの出力信号に基づく慣性力と、前記複数の主慣性力検出素子(42~44)からの出力信号を合成した合成慣性力の成分が一致しない場合に、前記複数の主慣性力検出素子(42~44)の少なくとも一つが故障していると判断する。この態様によれば、信頼度の向上が図れる。
 第8の態様は、第1~第7の態様のいずれか一つに基づく慣性力センサ(10;10A)である。第8の態様では、前記処理部(30)は、前記複数の主慣性力検出素子(42~44)のうち特定の主慣性力検出素子に故障がある場合、前記副慣性力検出素子(41)からの出力信号に基づいて、前記複数の第1所定軸(A21~A23)のうち前記特定の主慣性力検出素子に対応する第1所定軸の慣性力を求める。この態様によれば、信頼度の向上が図れる。
 第9の態様は、第1~第8の態様のいずれか一つに基づく慣性力センサ(10;10A)である。第9の態様では、前記複数の慣性力検出素子(40)の各々は、機械電気変換素子である。この態様によれば、慣性力センサ(10;10A)の小型化が図れる。
 第10の態様は、第1~第9の態様のいずれか一つに基づく慣性力センサ(10;10A)である。第10の態様では、前記慣性力センサ(10;10A)は、前記複数の慣性力検出素子(40)からの出力信号を前記処理部に与える複数の駆動回路(50)を更に備える。前記複数の駆動回路(50)は、前記副慣性力検出素子(41)から第1出力信号を取得して前記処理部(30)に与える第1駆動回路(51)と、前記複数の主慣性力検出素子(42~44)から第2出力信号を取得して前記処理部(30)に与える第2駆動回路(52;52A)と、を含む。前記処理部(30)は、前記出力信号に関する前記処理として、前記第1出力信号及び前記第2出力信号に関する処理を実行する。
 第11の態様は、第10の態様に基づく慣性力センサ(10;10A)である。第11の態様では、前記慣性力センサ(10;10A)は、配置面(610a,91)を有するベース(61)を更に備える。前記配置面(610a,91)は、向きが異なる主配置面(610a)と副配置面(91)とを含む。前記第1駆動回路(51)は、前記副配置面(91)にある。前記第2駆動回路(52)は、前記主配置面(610a)にある。
 第12の態様は、第2又は第3又は第11の態様に基づく慣性力センサ(10;10A)である。第13の態様では、前記ベース(61)は、前記複数の慣性力検出素子(40)と前記主配置面(610a)との間に介在される振動防止部(70)を備える。
 10;10A 慣性力センサ
 30 処理部
 40 慣性力検出素子
 41 第1慣性力検出素子(副慣性力検出素子)
 42 第2慣性力検出素子(主慣性力検出素子)
 43 第3慣性力検出素子(主慣性力検出素子)
 44 第4慣性力検出素子(主慣性力検出素子)
 50 駆動回路
 51 駆動回路(第1駆動回路)
 52;52A 駆動回路(第2駆動回路)
 61 ベース
 610a 主配置面
 70 振動防止部
 90 傾斜部
 91 副配置面
 A21 第1軸(第1所定軸)
 A22 第2軸(第1所定軸)
 A23 第3軸(第1所定軸)
 A11 第2所定軸

Claims (12)

  1.  検出した慣性力に対応する出力信号を出力する複数の慣性力検出素子と、
     前記複数の慣性力検出素子からの出力信号に関する処理を実行する処理部と、
     を備え、
     前記複数の慣性力検出素子は、
      互いに直交する複数の第1所定軸の慣性力を検出する複数の主慣性力検出素子と、
      前記複数の第1所定軸のいずれとも直交せずに交差する第2所定軸の慣性力を検出する副慣性力検出素子と、
     を含む、
     慣性力センサ。
  2.  配置面を有するベースを更に備え、
     前記配置面は、向きが異なる主配置面と副配置面とを含み、
     前記複数の主慣性力検出素子は、前記主配置面にあり、
     前記副慣性力検出素子は、前記副配置面にある、
     請求項1の慣性力センサ。
  3.  前記ベースは、
      前記主配置面となる表面を有する基部と、
      前記副配置面となる傾斜面を有して前記表面にある傾斜部と、
     を備える、
     請求項2の慣性力センサ。
  4.  前記複数の第1所定軸は、互いに直交する3つの軸である、
     請求項1~3のいずれか一つの慣性力センサ。
  5.  前記処理部は、前記副慣性力検出素子からの出力信号に基づいて前記複数の主慣性力検出素子の故障診断を行う、
     請求項1~4のいずれか一つの慣性力センサ。
  6.  前記処理部は、前記副慣性力検出素子からの出力信号に基づく慣性力から求まる前記複数の第1所定軸のうちの特定の第1所定軸の成分と、前記複数の主慣性力検出素子のうちの前記特定の第1所定軸に対応する特定の主慣性力検出素子からの出力信号に基づく慣性力が一致しない場合に、前記特定の主慣性力検出素子が故障していると判断する、
     請求項5の慣性力センサ。
  7.  前記処理部は、前記副慣性力検出素子からの出力信号に基づく慣性力と、前記複数の主慣性力検出素子からの出力信号を合成した合成慣性力の成分が一致しない場合に、前記複数の主慣性力検出素子の少なくとも一つが故障していると判断する、
     請求項5の慣性力センサ。
  8.  前記処理部は、前記複数の主慣性力検出素子のうち特定の主慣性力検出素子に故障がある場合、前記副慣性力検出素子からの出力信号に基づいて、前記複数の第1所定軸のうち前記特定の主慣性力検出素子に対応する第1所定軸の慣性力を出力する、
     請求項1~7のいずれか一つの慣性力センサ。
  9.  前記複数の慣性力検出素子の各々は、機械電気変換素子である、
     請求項1~8のいずれか一つの慣性力センサ。
  10.  前記複数の慣性力検出素子からの出力信号を前記処理部に与える複数の駆動回路を更に備え、
     前記複数の駆動回路は、
      前記副慣性力検出素子から第1出力信号を取得して前記処理部に与える第1駆動回路と、
      前記複数の主慣性力検出素子から第2出力信号を取得して前記処理部に与える第2駆動回路と、
     を含み、
     前記処理部は、前記出力信号に関する前記処理として、前記第1出力信号及び前記第2出力信号に関する処理を実行する、
     請求項1~9のいずれか一つの慣性力センサ。
  11.  配置面を有するベースを更に備え、
     前記配置面は、向きが異なる主配置面と副配置面とを含み、
     前記第1駆動回路は、前記副配置面にあり、
     前記第2駆動回路は、前記主配置面にある、
     請求項10の慣性力センサ。
  12.  前記ベースは、前記複数の慣性力検出素子と前記主配置面との間に介在される振動防止部を備える、
     請求項2又は3又は11の慣性力センサ。
PCT/JP2021/023941 2020-06-24 2021-06-24 慣性力センサ WO2021261557A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/001,990 US20230236015A1 (en) 2020-06-24 2021-06-24 Inertial sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-109128 2020-06-24
JP2020109128 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021261557A1 true WO2021261557A1 (ja) 2021-12-30

Family

ID=79281296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023941 WO2021261557A1 (ja) 2020-06-24 2021-06-24 慣性力センサ

Country Status (2)

Country Link
US (1) US20230236015A1 (ja)
WO (1) WO2021261557A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052904A (ja) * 2010-09-01 2012-03-15 Microstone Corp 慣性計測装置
JP2012251925A (ja) * 2011-06-06 2012-12-20 Seiko Epson Corp 物理量センサー、物理量センサーの制御方法、電子機器
US20180195878A1 (en) * 2015-06-23 2018-07-12 Safran Electronics & Defense Inertial measurement system for an aircraft

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3545266A (en) * 1964-02-17 1970-12-08 Thomas L Wilson Noninertial strapping-down gravity gradient navigation system
DE10060091B4 (de) * 2000-12-02 2004-02-05 Eads Deutschland Gmbh Mikromechanischer Inertialsensor
CN102607559B (zh) * 2012-03-16 2015-01-21 湖北航天技术研究院总体设计所 可自标定的惯性定位定向装置
IL249050B (en) * 2016-11-17 2018-03-29 Elbit Systems Ltd Self-calibrating inertial measurement method and system
CN108444474A (zh) * 2018-05-03 2018-08-24 湖北三江航天红峰控制有限公司 一种基于空间复用小型化高精度光纤惯性定位定向装置
GB201816655D0 (en) * 2018-10-12 2018-11-28 Focal Point Positioning Ltd A method of estimating a metric of interest related to the motion of a body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052904A (ja) * 2010-09-01 2012-03-15 Microstone Corp 慣性計測装置
JP2012251925A (ja) * 2011-06-06 2012-12-20 Seiko Epson Corp 物理量センサー、物理量センサーの制御方法、電子機器
US20180195878A1 (en) * 2015-06-23 2018-07-12 Safran Electronics & Defense Inertial measurement system for an aircraft

Also Published As

Publication number Publication date
US20230236015A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
US8225660B2 (en) Dynamic quantity sensor and method of manufacturing the same
CN113340290B (zh) 传感器单元、电子设备以及移动体
US9995762B2 (en) Acceleration sensor
JP2008111795A (ja) 圧力センサ
US10324107B2 (en) Acceleration detection device
WO2021261557A1 (ja) 慣性力センサ
WO2021261556A1 (ja) 慣性力センサ
JP2018072170A (ja) 慣性力センサ装置
JP2005127750A (ja) 半導体センサおよびその製造方法
US20230384344A1 (en) Inertial Measurement Device
US20230243866A1 (en) Multi-axis inertial force sensor
CN110244082B (zh) 物理量传感器、物理量传感器装置以及倾斜仪
KR20150141418A (ko) 금속의 허메틱 실을 갖는 관성센서모듈 및 그를 사용한 다축센서
JP6255865B2 (ja) センサーユニット、電子機器、および移動体
JP6592090B2 (ja) 加速度検出装置
CN115024026A (zh) 电子装置
US20070062281A1 (en) Angular velocity sensor
JP4706634B2 (ja) 半導体センサおよびその製造方法
US20230417794A1 (en) Inertial Sensor Module And Inertial Measurement System
US11680797B2 (en) Physical quantity sensor
JP2002188975A (ja) 圧力センサモジュール
US20100315073A1 (en) Magnetic encoder apparatus and manufacturing method therefor
US20230324179A1 (en) Inertial measurement device
US20240053378A1 (en) Physical Quantity Sensor And Inertial Measurement Unit
US20230138452A1 (en) Physical Quantity Sensor and Inertial Measurement Unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP