WO2021261198A1 - 放射線検出器 - Google Patents

放射線検出器 Download PDF

Info

Publication number
WO2021261198A1
WO2021261198A1 PCT/JP2021/021132 JP2021021132W WO2021261198A1 WO 2021261198 A1 WO2021261198 A1 WO 2021261198A1 JP 2021021132 W JP2021021132 W JP 2021021132W WO 2021261198 A1 WO2021261198 A1 WO 2021261198A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
radiation detector
unit
light emitting
control unit
Prior art date
Application number
PCT/JP2021/021132
Other languages
English (en)
French (fr)
Inventor
泰賀 山谷
美和子 高橋
Original Assignee
国立研究開発法人量子科学技術研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人量子科学技術研究開発機構 filed Critical 国立研究開発法人量子科学技術研究開発機構
Priority to JP2022531646A priority Critical patent/JPWO2021261198A1/ja
Priority to CN202180044362.9A priority patent/CN115956212A/zh
Priority to EP21828239.0A priority patent/EP4174529A1/en
Priority to US18/002,510 priority patent/US20230301612A1/en
Publication of WO2021261198A1 publication Critical patent/WO2021261198A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/425Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using detectors specially adapted to be used in the interior of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4057Arrangements for generating radiation specially adapted for radiation diagnosis by using radiation sources located in the interior of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/2812Surgical forceps with a single pivotal connection
    • A61B17/282Jaws
    • A61B2017/2825Inserts of different material in jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/392Radioactive markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for

Definitions

  • the present invention relates to a radiation detector.
  • Non-Patent Document 1 discloses a portable gamma camera capable of determining the presence or absence of cancer metastasis to the sentinel lymph node during surgery in order to carry out this method.
  • Non-Patent Document 2 a method of intravenously administering F-18-labeled FDG (fluorodeoxyglucose), which has a proven track record in PET (Positron Emission Tomography) tests, and detecting lymph node metastasis from the degree of FDG uptake into lymph nodes.
  • F-18-labeled FDG fluorodeoxyglucose
  • PET PET
  • lymph node metastasis from the degree of FDG uptake into lymph nodes.
  • Non-Patent Document 2 since the image of the detected radioactivity distribution is displayed on a separate display, it is difficult to grasp the positional relationship between the displayed image and the surgical site. Further, the technique disclosed in Non-Patent Document 2 does not relate to a method of immediately transmitting the degree of uptake of FDG into the lymph node to the operator (operator). Conventionally, as an intraoperative radiation detector, a gamma probe, a tweezers type PET, a drop-in type detector, a method of using an intracorporeal insertion detector and an extracorporeal detector in combination, and the like have been developed.
  • the nuclide distribution image and radioactivity value are displayed on the display of the radiation equipment, so the operator had to move the viewpoint from the surgical field each time the measurement was performed. Therefore, there is a problem that it is difficult to correctly recognize the position of the affected area from the measured radioactivity. For example, in arthroscopic surgery and robot-assisted surgery, it is desired that the operator can correctly grasp the position of the affected area in the camera image seen by the operator.
  • One aspect of the present invention is to provide a radiation detector capable of causing an operator to more accurately recognize the position of a body tissue in which a radionuclide has been taken up.
  • the radiation detector includes a probe having a built-in radiation detection element, a probe that can be inserted into the body, a notification unit provided in the probe, and the radiation detection element. It is provided with a control unit that operates the notification unit based on the detection result of radiation by.
  • the radiation detector according to one aspect of the present invention is a radiation detector configured as a grasping forceps for surgery that can be inserted into the body, and two tips of the gripping forceps each have a radiation detection element. It is configured as two built-in probes, and operates the notification unit based on the detection result of the extinct gamma ray by the simultaneous counting of the notification unit provided in the grasping forceps and each radiation detection element built in the two probes. It is provided with a control unit for making the radiation.
  • a radiation detector that allows an operator to more accurately recognize the position of a body tissue in which a radionuclide has been taken up.
  • FIG. 2A shows a morphological example of a light emitting portion continuously provided so as to orbit the outer peripheral surface of the probe
  • FIG. 2B shows a partial protrusion from the outer surface of the probe.
  • FIG. 2C shows a morphological example of the light emitting portions provided at a plurality of locations on the outer surface of the probe. It is a control function block diagram of the radiation detector which concerns on Embodiment 1.
  • FIG. 2A shows a morphological example of a light emitting portion continuously provided so as to orbit the outer peripheral surface of the probe
  • FIG. 2B shows a partial protrusion from the outer surface of the probe.
  • FIG. 2C shows a morphological example of the light emitting portions provided at a plurality of locations on the outer surface of the probe.
  • FIG. 4 (a), 4 (c), and 4 (e) show examples of the first, second, and third flowcharts, respectively
  • FIGS. 4 (b) and 4 (d) show.
  • 4 (f) is a diagram illustrating the timing of the radiation detection result and the light emission corresponding to each of these flowchart examples.
  • FIG. It is a schematic diagram which shows the use example of the radiation detector which concerns on Embodiment 1.
  • FIG. It is an overall block diagram of a radiation detector using a scintillation detection element. It is a control function block diagram of a radiation detector using a scintillation detection element.
  • FIGS. 9 (a), 9 (c), and 9 (e) show examples of the fourth, fifth, and sixth flowcharts, respectively, and FIGS. 9 (b) and 9 (d), respectively.
  • 9 (f) is a diagram illustrating the timing of the radiation detection result and the light emission corresponding to each of these flowchart examples. It is a schematic diagram which shows the use example of the radiation detector which concerns on Embodiment 2.
  • FIG. 12 It is a schematic block diagram of the radiation detector configured as the grasping forceps for operation which concerns on Embodiment 3 of this invention.
  • 12 (a), 12 (b), and 12 (c) are diagrams showing the relationship between the opening angle of the sandwiched portion of the radiation detector according to the third embodiment and the size of the target.
  • It is a flowchart which shows the control of the start and the end of the radiation measurement of the radiation detector which concerns on Embodiment 3.
  • FIG. It is a flowchart of the measurement method performed by the control unit of the radiation detector which concerns on Embodiment 5. It is a flowchart of the measurement method which concerns on the modification of Embodiment 5.
  • FIG. 1 is an overall configuration diagram of a medical radiation detector 1 according to the first embodiment of the present invention.
  • FIG. 2 is an example of a light emitting unit according to the first embodiment.
  • FIG. 2 includes a perspective view of a probe provided with a light emitting portion and a cross-sectional view of the probe cut along its radial direction.
  • FIG. 3 is a functional block diagram of the radiation detector 1 according to the first embodiment.
  • the radiation detector 1 detects the radiation R from the radionuclide accumulated in the affected area, and notifies the operator (operator) of the measured value (count number) of the radiation R when the predetermined condition is satisfied.
  • the radiation detector 1 includes a probe 10 that can be inserted into the body and an operation unit 80.
  • the probe 10 has a built-in radiation detection element 20 and includes a light emitting unit (notifying unit) 30.
  • the light emitting unit 30 When the light emitting unit 30 operates, it means that the light emitting unit 30 emits light.
  • the light emitting unit 30 is an example of a notification unit.
  • the operation unit 80 includes a control unit 50, an input / output interface (I / O) 62, a setting unit 64, and a counting unit 66. Further, the operation unit 80 is provided with an input unit 70.
  • the radiation detection element 20 is arranged at the tip of the probe 10. The operator can bring the tip of the probe 10 close to the affected area and check how much radiation R is detected.
  • the type of the radiation detection element 20 is not particularly limited, but a small detection element such as a semiconductor detection element or a scintillation detection element is preferable.
  • a semiconductor detection element a CdTe (CZT) semiconductor detection element, a Si semiconductor detection element, a Ge semiconductor detection element, or the like can be used.
  • As the scintillation detection element a CsI (Tl) scintillator, a NaI (Tl) scintillator, or the like can be used.
  • the radiation detection element 20 converts the energy of the radiation R into an electric signal and outputs it.
  • a known configuration can be used as a configuration for converting radiation energy into an electric signal.
  • a collimator method, a Compton camera method, a coincidence counting method, or the like can be selected.
  • the collimator system includes a collimator that regulates the incident direction of the radiation R incident on the radiation detection element 20. Then, the incident direction of the radiation R incident on the collimator can be determined from the position of the radiation detection element 20 that has detected the radiation R.
  • a radiation detection element 20 for a Compton camera having a scattering unit and an absorbing unit is used. Then, the incident direction of the gamma ray can be determined from the scattered position in the scattering portion and the absorbed position in the absorbing portion.
  • the two radiation detection elements 20 are arranged at opposite positions. Then, it is counted only when it is counted by the two radiation detection elements 20 at the same time, and it can be determined that there is a radiation source between the two radiation detection elements 20.
  • the coincidence counting method targets positron emitting nuclides.
  • the light emitting unit 30 is arranged at the tip of the probe 10.
  • the light emitting unit 30 is arranged in the vicinity of the radiation detection element 20.
  • the light emitting unit 30 has a role of notifying the operator when the radiation detection element 20 detects the radiation R satisfying a predetermined condition.
  • the operator brings the tip of the probe 10 close to the affected area and checks whether radiation R is detected. Therefore, the light emitting unit 30 is arranged at the tip of the probe 10 so that the operator can recognize the light emitted from the light emitting unit 30 without moving the line of sight during the operation of the probe 10.
  • the light emitting unit 30 is provided on the outer surface of the probe 10. More specifically, as shown in FIG. 2A, the light emitting unit 30 is continuously provided so as to orbit the outer peripheral surface of the probe 10.
  • the shape of the light emitting unit 30 is not limited to this shape. In the example shown in FIG. 2A, the light emitting unit 30 orbits at the same height as the outer peripheral surface of the probe 10.
  • the light emitting unit 30 may be configured to project at least partially from the outer surface of the probe 10.
  • the light emitting units 30 may be provided at a plurality of locations on the outer surface of the probe 10. In either configuration, the operator can reliably recognize the light emission of the light emitting unit 30 even if the orientation of the probe 10 changes.
  • the light emitting unit 30 is composed of, for example, a light guide material that guides light, and guides the light from the built-in light emitting element 32 and emits it to the outside.
  • the light emitting element 32 is, for example, a light emitting diode (LED, Light Emitting Diode).
  • the number of light emitting elements 32 may be one or a plurality.
  • the input unit 70 is provided on the outer surface of the operation unit 80.
  • the input unit 70 is, for example, a touch panel type liquid crystal display capable of inputting a threshold value of the number of times of detection of radiation R that causes the light emitting unit 30 to emit light.
  • the cable 82 is a power cable that supplies electric power to the radiation detector 1. Further, the cable 82 may also serve as an information communication cable between the radiation detector 1 and the outside. The cable 82 may be omitted by incorporating the power supply in the radiation detector 1.
  • FIG. 3 is a functional block diagram relating to the control of the radiation detector 1 according to the first embodiment.
  • the control unit 50 controls the entire radiation detector 1.
  • the control unit 50 includes a processor 52 and a memory 54.
  • the memory 54 is composed of, for example, a volatile RAM (Random Access Memory) and a non-volatile ROM (Read Only Memory), and stores various control programs and data. Further, the memory 54 may store the threshold value of the radiation measurement value for causing the light emitting unit 30 to emit light, the light emission time, and the like as set values.
  • the processor 52 is, for example, a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the processor 52 reads various control programs from the ROM, expands them into the RAM, and executes the programs to function as the setting unit 64 and the counting unit 66.
  • the processor 52 may be a dedicated processor such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the input / output interface (I / O) 62 transmits / receives signals and information to / from the outside.
  • the setting unit 64 acquires the threshold value input by the operator and sets it for the control unit 50.
  • the threshold value is a threshold value corresponding to the detection result of radiation for determining whether or not to make the light emitting unit 30 emit light.
  • the setting unit 64 acquires, for example, information regarding the threshold value input from the input unit 70 by the operator via the I / O 62.
  • the setting unit 64 sets the threshold value input by the operator to the control unit 50 by storing the acquired information regarding the threshold value in the memory 54 or the setting register.
  • the counting unit 66 acquires the electric signal output by the radiation detection element 20, counts the number of times the radiation is detected, and outputs it to the control unit 50.
  • the control unit 50 causes the light emitting unit 30 to emit light based on the radiation detection result by the radiation detection element 20. For example, the control unit 50 causes the light emitting unit 30 to emit light each time the counting unit 66 counts radiation once. Alternatively, the control unit 50 may control the light emitting element 32 to emit light for a predetermined time when the number of times of detection of the radiation acquired from the counting unit 66 is larger than the set threshold value. If the time to emit light is too long, the individual detections of radiation will be indistinguishable. If the light emission time is too short, the light emission may not be recognized. Therefore, it is preferable to set an appropriate light emission time in advance. Further, depending on the measurement conditions, the light emitting time may be configured so that the operator can set it from the input unit 70.
  • step S101 the light emitting element 32 Is emitted once for a predetermined time.
  • the operator looks at the frequency of light emission to determine whether or not it is close to the affected area (radioactive source) where the radionuclides have accumulated. If the frequency of light emission is high, it can be determined that the area is close to the affected area. The operator can change the position of the probe 10 to check the frequency of light emission, and can determine that the affected area is located at a position where the frequency of light emission is high.
  • control unit 50 may control the light emitting unit 30 to emit light when the radiation count rate is equal to or higher than a predetermined value.
  • the count rate is expressed by, for example, cps (count per second), which is the number of detected radiations per second.
  • the counting unit 66 integrates the number of detected radiations for a predetermined time (for example, several seconds to several tens of seconds) and divides the number by a predetermined time. And the count rate is calculated (step S110).
  • the control unit 50 determines whether or not the counting rate calculated by the counting unit 66 is equal to or higher than a predetermined counting rate (threshold value) (step S111).
  • step S111: YES When the counting rate is equal to or higher than a predetermined threshold value (step S111: YES), the control unit 50 causes the light emitting unit 30 to emit light for a predetermined time (step S112).
  • step S111: NO When the counting rate is not equal to or higher than a predetermined threshold value (step S111: NO), the control unit 50 returns to step S111 without causing the light emitting unit 30 to emit light, and the counting rate within a predetermined time slightly shifted is the predetermined counting rate. It is determined whether or not it is the above. If there is light emission, the operator can determine that the affected area is close.
  • control unit 50 may control the light emitting unit 30 so as to change the mode of light emission according to the counting or counting rate of radiation.
  • the counting unit 66 counts the number of detected radiations for a predetermined time (for example, several seconds to several tens of seconds) (step S120).
  • the counting rate is calculated (step S121).
  • the control unit 50 causes the light emitting unit 30 to emit light in a predetermined manner according to the counting rate (step S122).
  • control unit 50 does not emit light from the light emitting element 32 when it is less than the first threshold value, and causes the light emitting element 32 to emit light in blue when it is equal to or more than the first threshold value and less than the second threshold value. If it is equal to or more than the threshold value of, the light emitting element 32 is made to emit red light. If there is red light emission, the operator can determine that the affected area is near or that the amount of radionuclides accumulated in the affected area is large. Further, the control unit 50 may be controlled so as to change the light emission intensity (luminance) of the light emitting unit 30 according to the count rate.
  • control unit 50 may be controlled so as to change the light emission pattern or the light emission time of the light emitting unit 30 according to the counting rate.
  • the above-mentioned threshold value is appropriately set by the operator according to the type of radionuclide, the dose of radionuclide, the accumulated amount of radionuclide (size of the affected area), the elapsed time from administration to measurement, and the like.
  • the radiation detector 1 can be used by being inserted into the patient's body from a trocar in arthroscopic surgery or robot-assisted surgery. While looking at the image of the optical camera 200, the operator brings the radiation detection element 20 of the probe 10 close to the tissue (for example, lymph node) S to check whether or not a drug containing a radionuclide is accumulated, and measures the radiation. I do. Whether or not a predetermined radiation is detected can be confirmed by the light emission, blinking, color tone, etc. of the light emitting unit 30 in the field of view of the optical camera 200, so that the operator knows the radiation measurement result in real time through the optical camera 200. be able to.
  • tissue for example, lymph node
  • the radiation detector 1 measures the radiation from the radionuclide taken into the internal tissue (affected part) by the radiation detection element 20 of the probe 10, and appropriately attaches the radiation to the tip of the probe 10.
  • a certain light emitting unit 30 is made to emit light.
  • the operator can easily recognize the light emission of the light emitting unit 30 at the tip of the probe 10 without changing the line of sight from the probe 10. That is, the operator does not need to see another display screen, for example, displaying the radioactivity value, which is different from the display screen displaying the image near the tip of the probe 10 (around the affected area), and the operator does not need to see the inside of the body. The position of the tissue can be recognized more correctly.
  • the light emitting unit 30 is used to notify the operator of the detection of radiation.
  • the notification means is not limited to the light emitting unit 30.
  • a speaker that emits a detection sound may be used instead of the light emitting unit 30.
  • the placement position may be built-in instead of the outer surface of the probe 10.
  • the probe 10 is arranged at a position close to the tip of the probe 10 from the viewpoint of notifying the operator.
  • the detection sound may be emitted each time radiation is detected.
  • the magnitude of the counting rate may be notified to the operator by changing the mode (frequency, tone, etc.) of the detected sound according to the counting rate.
  • a scintillation detection element may be used as the radiation detection element 20.
  • the radiation detector 1A includes a radiation detection element 20 which is a scintillation detection element and a light receiving unit (amplification unit) 40.
  • the light receiving unit 40 is coupled to the radiation detection element 20 by an optical fiber 22.
  • the optical fiber 22 guides the scintillation light generated by the radiation detection element 20 to the light receiving unit 40.
  • the light receiving unit 40 receives scintillation light arriving from the radiation detection element 20 via the optical fiber 22, amplifies it, and outputs it as an electric signal to the counting unit 66.
  • the light receiving unit 40 is, for example, a silicon photomultiplier.
  • the light receiving unit 40 requires a relatively high voltage of, for example, about 70 volts. Therefore, it is preferable for safety that the light receiving unit 40 is arranged inside the operating unit 80 instead of the probe 10 inserted into the body.
  • the light emitting element 32 is provided inside the light emitting unit 30.
  • the present invention is not limited to this, and the light emitting unit 30 and the light emitting element 32 may be arranged apart from each other (see FIG. 8 described later). In that case, the light emitting unit 30 and the light emitting element 32 can be coupled by an optical fiber. As a result, the probe 10 can be made smaller.
  • the control unit 50 is built in the operation unit 80 of the radiation detector 1.
  • the control unit 50 may be provided in a housing separate from the probe 10 or the operation unit 80 of the radiation detector 1.
  • the control unit 50 in this case has an I / O 62, a setting unit 64, a counting unit 66, a radiation detection element 20, a light emitting element 32, and an input unit 70 via the bus 56. And, in a state of being electrically connected, it is provided in the other housing.
  • FIG. 8 is a schematic configuration diagram of the radiation detector 2 according to the second embodiment, which is configured as a grasping forceps for surgery.
  • the grasping forceps are surgical instruments for grasping the tissue in the body by sandwiching it between two sandwiches having the shape of scissors.
  • the radiation detector 2 has a pair of radiation detection elements built in the two sandwiching portions (probes), and measures the radioactivity of the object by sandwiching the radiation detection elements.
  • the radiation detector 2 has a main body 110, an operation unit 105 arranged on one end side of the main body 110, and a sandwiching portion 140 arranged on the other end side of the main body 110.
  • the main body 110 contains a first light receiving element (amplifying unit) 120, a second light receiving element (amplifying unit) 121, a light emitting element 132, a coincidence circuit 136, and a control unit 50.
  • the first light receiving element 120 and the second light receiving element 121 are, for example, silicon photomultipliers, and require a relatively high voltage of about 70 volts.
  • the radiation detector 2 may include an input unit and a setting unit (not shown).
  • the input unit and the setting unit in the radiation detector 2 have the same functions as the input unit 70 and the setting unit 64 described in the first embodiment, for example.
  • the operation unit 105 is a mechanism portion for opening and closing the sandwiching unit 140, and has, for example, a first operation unit 103 on which a finger other than the thumb is hung and a second operation unit 104 on which the thumb is hung.
  • the first operation unit 103 and the second operation unit 104 can be opened and closed with one hand.
  • the sandwiching portion 140 has a first sandwiching portion 142 and a second sandwiching portion 143.
  • the first pinching portion 142 and the second pinching portion 143 each correspond to the probe 10 in the first embodiment.
  • the first sandwiching portion 142 is provided with a first scintillator (radiation detection element) 144.
  • a second scintillator (radiation detection element) 145 is provided in the second sandwiching portion 143.
  • the first scintillator 144 and the first light receiving element 120 are optically coupled by the first optical fiber 122.
  • the second scintillator 145 and the second light receiving element 121 are optically coupled by the second optical fiber 123.
  • the first sandwiching portion 142 and the second sandwiching portion 143 swing in opposite directions with respect to the opening / closing shaft 160 arranged on the other end side of the main body 110.
  • the opening / closing operation of the first operation unit 103 and the second operation unit 104 is transmitted by a transmission mechanism (not shown) in the main body unit 110, and is converted into an opening / closing operation of the first sandwiching portion 142 and the second sandwiching portion 143.
  • a light emitting unit 130 is provided in the vicinity of the opening / closing shaft 160 of the main body unit 110.
  • the light emitting unit 130 receives the light from the light emitting element 132 and emits light.
  • the light emitting unit 130 and the light emitting element 132 are arranged apart from each other, and the light emitting unit 130 and the light emitting element 132 are optically coupled by an optical fiber 134.
  • the light emitting unit 130 is composed of, for example, a light diffusing member. It is preferable that the light emitting portion 130 is provided on the side as close to the sandwiching portion 140 of the main body portion 110 as possible, as is provided in the vicinity of the opening / closing shaft 160 in the present embodiment. Further, it is more preferable that the light emitting portion 130 is provided on at least one of the first sandwiching portion 142 and the second sandwiching portion 143 of the sandwiching portion 140.
  • F-18-labeled FDG fluorodeoxyglucose
  • F-18-labeled FDG has the property of being easily taken up and accumulated in cancer tissues.
  • F-18 emits two annihilation gamma rays due to the pair annihilation of positrons and electrons generated by positron decay.
  • the two annihilation gamma rays both have the same energy of 511 (KeV) and are simultaneously generated in the direction of 180 degrees, they are simultaneously detected by the first scintillator 144 and the second scintillator 145 facing each other. Radiation that is not detected at the same time is not due to annihilation gamma rays, or even if it is annihilation gamma rays, it can be excluded as background radiation because it is radiation incident from outside the field of view. Therefore, it is not necessary to consider shielding or the like, and the radiation detector 2 can have a simple configuration.
  • the scintillation light generated by the radiation of 511 (KeV) generated by the first scintillator 144 is sent to the first light receiving element 120 by the first optical fiber 122.
  • the first light receiving element 120 converts the scintillation light into an electric signal and outputs it to the coincidence circuit 136.
  • the scintillation light generated by the radiation of 511 (KeV) generated by the second scintillator 145 is sent to the second light receiving element 121 by the second optical fiber 123.
  • the second light receiving element 121 converts the scintillation light into an electric signal and outputs it to the coincidence circuit 136.
  • the coincidence circuit 136 detects annihilation gamma rays when both the electric signal from the first scintillator 144 and the electric signal from the second scintillator 145 are due to radiation of 511 (KeV) and are detected at the same time. Judgment is made and a detection signal is output to the control unit 50. Simultaneous here means that the arrival time difference is smaller than a few nanoseconds or smaller than a few tens of nanoseconds.
  • the control unit 50 causes the light emitting unit 130 to emit light.
  • the control unit 50 causes the light emitting unit 130 to emit light.
  • the coincidence circuit 136 receives the electric signal (detection signal) of the radiation detected by the first scintillator 144 and the second scintillator 145. Reception is performed via the first light receiving element 120 and the second light receiving element 121, respectively (step S160).
  • the coincidence circuit 136 determines whether or not the detection signals from the first scintillator 144 and the second scintillator 145 are simultaneously received (step S161).
  • step S161 If two detection signals are received at the same time in step S161 (step S161: YES), it can be determined that the extinct gamma rays have been detected, so the coincidence circuit 136 outputs a signal indicating that radiation has been detected to the control unit 50. do. If the two detection signals are not received at the same time (step S161: NO), the processing by the control unit 50 returns to the previous stage of step S161. Next, when the control unit 50 receives a signal indicating that radiation has been detected from the coincidence circuit 136, the control unit 50 causes the light emitting element 132 to emit light (step S162). The light emitted by the light emitting element 132 causes the light emitting unit 130 to emit light via the optical fiber 134.
  • a control method for emitting light when the count rate of extinguished gamma rays is equal to or higher than a predetermined threshold value may be used.
  • the counting rate is as described in the first embodiment.
  • the coincidence circuit 136 receives the radiation detection signal detected by the first scintillator 144 and the second scintillator 145 (step S170). ).
  • the coincidence circuit 136 determines whether or not two detection signals have been received at the same time (step S171).
  • step S171 step S171: YES
  • the coincidence circuit 136 outputs a signal to the effect that radiation has been detected to the control unit 50.
  • the control unit 50 determines whether or not the reception frequency (counting rate) of the signal indicating that the radiation from the coincidence circuit 136 is detected is equal to or higher than the threshold value (step S172). If the count rate is equal to or higher than the threshold value in step S172 (step S172: YES), the control unit 50 causes the light emitting element 132 to emit light (step S173). If the two detection signals are not received at the same time (step S171: NO) or the count rate is not equal to or higher than the threshold value (step S172: NO), the processing by the control unit 50 returns to the previous stage of step S171. The light emitted by the light emitting element 132 described above causes the light emitting unit 130 to emit light via the optical fiber 134.
  • the control unit 50 may be controlled so as to change the mode of light emission according to the count rate of the extinguished gamma rays.
  • the coincidence circuit 136 receives the radiation detection signal detected by the first scintillator 144 and the second scintillator 145 (step S180). ).
  • the coincidence circuit 136 determines whether or not two detection signals have been received at the same time (step S181).
  • step S181 step S181: YES
  • the coincidence circuit 136 outputs a signal to the effect that radiation has been detected to the control unit 50.
  • the control unit 50 determines whether or not the reception frequency (counting rate) of the signal indicating that the radiation from the coincidence circuit 136 is detected is equal to or higher than the threshold value (step S182). If the count rate is equal to or higher than the threshold value in step S182 (step S182: YES), the control unit 50 causes the light emitting element 132 to emit light in a predetermined color according to the count rate (step S183). When the two detection signals are not received at the same time (step S181: NO) or when the count rate is not equal to or higher than the threshold value (step S182: NO), the processing by the control unit 50 returns to the previous stage of step S181.
  • control unit 50 does not emit light when it is less than the first threshold value, causes the light emitting element 132 to emit light in blue when it is equal to or more than the first threshold value and less than the second threshold value, and emits light at the second threshold value or more.
  • the light emitting element 132 is made to emit red light.
  • control unit 50 may perform control to change the light emission frequency such as blinking according to the counting rate. The method of setting the threshold value is as described in the first embodiment.
  • the radiation detector 2 can be used in arthroscopic surgery and robot-assisted surgery. While looking at the image of the optical camera 200, the operator sandwiches the tissue (for example, lymph node) S with two scintillators 144 and 145 of the sandwiching portion 140 in order to check whether or not F-18-labeled FDG is accumulated in the tissue (for example, lymph node) S. Measure the radioactivity of the object. Whether or not the annihilation gamma ray is detected can be confirmed by the light emission, blinking, color tone, etc. of the light emitting unit 130 in the field of view of the optical camera 200, so that the operator can know the radiation measurement result in real time through the optical camera 200. Can be done.
  • the operator confirms whether or not the light emitting portion 130 emits light to determine whether or not the F-18-labeled FDG is accumulated in the structure sandwiched between the first sandwiching portion 142 and the second sandwiching portion 143. Can be determined.
  • the radiation detector 2 Since the radiation detector 2 according to the second embodiment detects only the annihilation gamma rays from the tissue sandwiched between the sandwiched portions 140, it is not affected by other radiation. Then, the operator can easily recognize the light emission of the light emitting unit 130 provided in the vicinity of the sandwiched portion 140 or in the sandwiched portion 140 without changing the line of sight from the sandwiched portion 140. That is, the operator can more correctly recognize that the radionuclide is accumulated in the tissue sandwiched between the sandwiched portions 140 without having to look at another display screen, for example.
  • FIG. 11 is a schematic configuration diagram of the radiation detector 3 according to the third embodiment, which is configured as a grasping forceps for surgery.
  • FIG. 12 is a diagram showing the relationship between the opening angle of the sandwiched portion 140 and the size of the target.
  • the configuration of the radiation detector 3 is almost the same as the configuration of the radiation detector 2.
  • the radiation detector 3 has a main body portion 110, an operation portion 105, and a sandwiching portion 140.
  • a light emitting unit 130 is arranged in the vicinity of the opening / closing shaft 160, and a light emitting element 132 is arranged inside the light emitting unit 130 (not shown).
  • the main body 110 contains a first light receiving element 120, a second light receiving element 121, a coincidence circuit 136, a correction unit 137, an encoder 138, and a control unit 50.
  • the radiation detector 3 may include an input unit and a setting unit.
  • the radiation detector 3 includes a correction unit 137 and an encoder 138.
  • the encoder 138 is an angle encoder that outputs the opening angle ⁇ 1 of the operation unit 105, that is, the angle ⁇ 1 formed by the first operation unit 103 and the second operation unit 104.
  • the opening angle of the operating portion 105 is linked to the opening angle ⁇ 2 of the sandwiching portion 140 (the first sandwiching portion 142 and the second sandwiching portion 143). Therefore, the opening angle ⁇ 2 of the sandwiching portion 140 can be obtained by detecting the opening angle ⁇ 1 of the operating portion 105 with the encoder 138.
  • a linear encoder may be used as the encoder 138.
  • the opening angle ⁇ 2 of the sandwiched portion 140 can be calculated from the amount of movement of the shaft output by the linear encoder. Further, instead of the opening angle ⁇ 2 of the sandwiching portion 140, the distance between the first sandwiching portion 142 and the second sandwiching portion 143 may be calculated.
  • the correction unit 137 detects the coincidence counting of annihilation gamma rays by the first scintillator 144 and the second scintillator 145 based on the opening angle of the pinching portion 140 or the distance between the first pinching portion 142 and the second pinching portion 143. Correct the efficiency (detection sensitivity).
  • the arrangement relationship between the two scintillators 144 and 145 changes depending on the opening angle of the sandwiching portion 140.
  • the correction unit 137 corrects the detection efficiency of the coincidence counting based on the arrangement relationship of the two scintillators 144 and 145 so that the detected radioactivity does not change even if the opening angle of the sandwiching unit 140 changes. can.
  • the opening angle of the sandwiching portion 140 is the maximum. As the opening angle of the operating portion 105 is reduced, the opening angle of the sandwiching portion 140 becomes smaller. For example, when the lymph node S is sandwiched between the sandwiched portions 140 and the extinct gamma rays are detected, if the lymph node S is large, the opening angle of the sandwiched portion 140 is large and the lymph node S is small as shown in FIG. 12 (b). In this case, the opening angle of the sandwiched portion 140 becomes smaller as shown in FIG. 12 (c).
  • the lymph node S when the lymph node S is just pinched by the pinching portion 140, the disappearing gamma rays are detected and the opening angle of the pinching portion 140 or the distance between the first pinching portion 142 and the second pinching portion 143 is used.
  • the size of the lymph node S can be measured.
  • the diameter of the lymph node S is determined based on the opening angle of the pinching portion 140 or the distance between the first pinching portion 142 and the second pinching portion 143, and the volume is obtained. (Ml) can be calculated.
  • the same clock value (cps) by the two scintillators 144 and 145 can be corrected by the correction unit 137 and converted into the radioactivity amount (becquerel) of the lymph node S. From these results, the radioactivity density (becquerel / ml) of the lymph node S can be calculated. Since the radioactivity density of lymph node S is proportional to the accumulation density of radionuclides, it can be used to estimate the amount of cancer cells in lymph node S.
  • the opening angle of the sandwiched portion 140 can be calculated. Then, by correcting the detection efficiency of the two scintillators 144 and 145 provided in the sandwiched portion 140 based on the opening angle of the sandwiched portion 140, a more accurate radioactivity amount to be measured can be calculated. Further, the size of the measurement target can be obtained based on the opening angle of the sandwiched portion 140. Then, the radioactivity density of the measurement target can be calculated from the amount and size of the radioactivity of the measurement target.
  • the control unit 50 controls the start and / or end of the operation of the radiation detector based on the change in the opening angle of the pinch portion 140 and the change in the distance between the first pinch portion 142 and the second pinch portion 143. It can be performed. For example, radiation measurement may be started when the opening angle of the sandwiched portion 140 that was initially closed (that is, the opening angle of the operating portion 105) becomes maximum. That is, the control unit 50 may be configured to start the measurement of radiation when the opening angle of the sandwiching unit 140 is increased from the non-maximum state to the maximum.
  • control unit 50 may be configured to end the radiation measurement when a predetermined condition is satisfied.
  • the control unit 50 may be configured to end the measurement when a predetermined time has elapsed from the start of the measurement.
  • the measurement may be terminated when the opening angle of the pinching portion 140 changes again. This is because it is considered that the lymph node measurement work was completed and released.
  • the measurement may be terminated when the opening angle of the sandwiched portion 140 is minimized (closed). This is because it is considered that the measurement work has been completed. Even after the measurement is completed, the measurement can be restarted by maximizing the opening angle of the sandwiched portion 140 again.
  • the radiation detector 3 autonomously starts and autonomously stops the radiation measurement based on a predetermined condition, so that the operator does not need to operate the start / end button operation of the measurement. , The surgery will be smooth.
  • the control unit 50 measures the opening angle of the sandwiching unit 140 using the encoder 138 (step S201).
  • the control unit 50 determines whether or not the opening angle of the sandwiching unit 140 is the maximum angle (step S202).
  • the control unit 50 starts radiation measurement (step S203). If the opening angle of the sandwiched portion 140 is not the maximum angle (step S202: NO), the control flow returns to step S201.
  • step S204 the control unit 50 constantly measures the opening angle of the sandwiching unit 140 after starting the radiation measurement.
  • control unit 50 corrects the detection efficiencies of the two scintillators 144 and 145 based on the measured opening angle of the sandwiching unit 140 (step S205), and calculates the radioactivity value (step S207). Further, the control unit 50 calculates the diameter of the target in parallel with steps S205 and S207 (step S206). Next, the control unit 50 determines whether or not the radiation measurement end condition is satisfied (step S209). If it is determined in step S209 that the end condition is not satisfied (step S209: NO), the control flow returns to step S204.
  • step S209 If it is determined in step S209 that the end condition is satisfied (step S209: YES), the control unit 50 records the maximum measured radioactivity value and the diameter of the target (step S210), and performs radiation measurement. finish. After that, the process may return to step S201 again.
  • the end conditions of step S209 are that a predetermined time has elapsed from the start of measurement, that the opening angle of the sandwiching portion 140 has changed, and then the opening angle of the sandwiching portion 140 has changed again, that the opening angle of the sandwiching portion 140 has changed.
  • the opening angle can be set as appropriate, such as when it is minimized.
  • F-18-labeled FDG is exemplified as a drug containing a radionuclide, but the drug is not limited thereto.
  • lymph nodes are exemplified as tissues in the body for investigating whether or not a drug containing a radionuclide is accumulated, but the tissues are not limited thereto.
  • the radiation detector according to the fourth embodiment may be inserted into the body via a trocar, for example.
  • a trocar is a medical device used for drainage in the thoracic cavity and the like. By using a trocar, a less invasive treatment method can be provided. However, the diameter of the trocar is not so large, for example, about 5 mm to a dozen mm. Therefore, from the viewpoint of radiation detection efficiency, one set of scintillators 144 and 145 preferably has a shape that fits inside a ready-made trocar and has a shape that has as large a cross-sectional area as possible in the direction orthogonal to the insertion direction.
  • the set of scintillators 144 and 145 also have a circular cross section in order to make the cross section as large as possible. With this configuration, the volume of the scintillator that can detect radiation increases, and the radiation detection efficiency can be improved.
  • FIG. 14 is a cross-sectional view of the first scintillator 144 and the second scintillator 145 incorporated in the first sandwiching portion 142 and the second sandwiching portion 143 of the radiation detector according to the fourth embodiment in the directions orthogonal to the long axis. be.
  • the cross-sectional shapes of the first scintillator 144 and the second scintillator 145 are semi-circular, respectively, and the two scintillators 144 and 145 facing each other are arranged so as to have a circular cross-sectional shape.
  • the sandwiched portion 140 of the radiation detector according to the fourth embodiment is also configured such that the first sandwiched portion 142 and the second sandwiched portion 143 are each semicircular, and become circular when both are closed.
  • the size of the scintillators 144 and 145 and the overall size (diameter) of the radiation detector according to the fourth embodiment are set to a size that can be inserted into the body via an existing trocar. That is, the size is set so that the radiation detector having the scintillators 144 and 145 can pass through the trocar.
  • the configuration of the radiation detector according to the fifth embodiment configured as the grasping forceps for surgery is basically the same as the configuration of the radiation detector 3 according to the third embodiment, and the different parts are the matters described below. ..
  • the elements having the same configuration as the elements described in the previous embodiments are designated by the same reference numerals, and the description and illustration thereof will be omitted.
  • the preset count method may be used for measurement. By measuring with the preset count method, the measurement time can be shortened when the radioactivity of the affected area is high.
  • the preset count method is effective when measuring a large number of lymph nodes, and can suppress an increase in operation time due to radiation measurement during surgery.
  • FIG. 15 is a flowchart of a measurement method performed by the control unit 50 of the radiation detector according to the fifth embodiment.
  • the control unit 50 integrates the count values in step S300.
  • the count value is the number of times radiation is detected.
  • step S301 the control unit 50 determines whether or not the integrated value of the count is equal to or greater than a preset value. If it is determined in step S301 that the integrated value is equal to or greater than the set value (step S301: Y), the process proceeds to step S303.
  • step S303 the control unit 50 notifies (notifies) the user that the count value is equal to or higher than the reference value, and ends the measurement.
  • the control unit 50 causes the light emitting unit 130 to emit light by a predetermined method.
  • step S301 determines whether or not the integrated value is not equal to or greater than the set value. If it is determined in step S301 that the integrated value is not equal to or greater than the set value (step S301: N), the process proceeds to step S302.
  • step S302 the control unit 50 determines whether or not the predetermined measurement time has elapsed. If it is determined in step S302 that the predetermined measurement time has not elapsed (step S302: N), the process returns to step S300. On the other hand, if it is determined in step S302 that the predetermined measurement time has elapsed (step S302: Y), the process proceeds to step S304. In step S304, the control unit 50 notifies the user that the value is less than the reference value, and ends the measurement.
  • the reference value is a reference value set in advance by the user based on an index related to the malignancy of the affected area. That is, the control unit 50 notifies the comparison result between the measured value of radiation and the index related to the malignancy of the affected area.
  • the reference value is a count value indicating the possibility that the cancer has metastasized from the affected area.
  • the inventors have a correlation between the amount of lymph node radioactivity and the likelihood of metastasis, that is, if the lymph node radioactivity is greater than or equal to the first value, then there is a high probability of metastasis. I found. Specifically, the inventors have found that if the radioactivity of one lymph node is 10,000 (Bq) or more, it is highly likely that the lymph node has metastasized. The user can convert such a radiation amount into a count integrated value when measured for a predetermined time using a predetermined scintillator 144 and 145 of the radiation detector, and set it as a reference value.
  • the reference value may be a count value that is considered to have a low possibility of cancer metastasis.
  • the inventors have found that if the lymph node radioactivity is below the second value, it is unlikely that it has metastasized. Specifically, the inventors have found that if the radioactivity of one lymph node is 600 (Bq) or less, it is unlikely that it has metastasized.
  • the user may convert such a radioactivity amount into a count integrated value in a predetermined time and set it as a reference value.
  • the amount of radioactivity accumulated when FDG is administered to a cancer patient at 185 (MBq) and the radioactivity is measured 6 hours after the administration. It is predicted that 100 counts will be measured in 30 seconds at the radioactivity level of the lymph node (radioactivity level per one is 600 (Bq)), which is considered to have a low possibility of metastasis. On the other hand, with the amount of radioactivity in the lymph nodes (the amount of radioactivity per one is 10,000 (Bq)), which is considered to have a high possibility of metastasis, it is predicted that 100 counts will be measured in 1.8 seconds.
  • the reference value of the amount of radioactivity is 600 (Bq)
  • the set value of the measured value is 100 counts
  • the predetermined measurement time is set to 30 seconds. If the measured value does not reach the set value even after the measurement time of 30 seconds has elapsed, the amount of radioactivity in the lymph node is 600 (Bq) or less, and it is judged that the possibility of metastasis is low. If the measured value exceeds the set value in 1.8 seconds or less, it can be determined that the lymph node has a high possibility of metastasis.
  • the lymph node with a large amount of radioactivity is notified in a short time and the measurement is completed, so that the measurement time can be shortened when measuring a large number of lymph nodes.
  • the user recognizes the approximate amount of radioactivity from the time from the start of measurement to the notification. be able to.
  • the reference values for the measurement time and the integrated count value can be appropriately set from the amount of radionuclides expected to accumulate in the affected area and the detection efficiency of the scintillators 144 and 145 of the radiation detector.
  • the method of notifying the user by the control unit 50 is changed between the case of notifying that the value is equal to or higher than the reference value and the case of notifying that the value is less than the reference value. For example, if it is less than the reference value, the lighting state of the light emission is continued, and if it is more than the reference value, the light emission is changed from lighting to blinking, so that the user can be notified that the light emission has exceeded the reference value.
  • the blinking time may be constant. If it remains lit even after the measurement is completed, it means that it is less than the reference value. If it changes to a blinking state quickly, it means that the amount of radioactivity is large.
  • the notification method may be voice or a combination of voice and light.
  • FIG. 16 is a flowchart of the measurement method according to the modified example of the fifth embodiment.
  • the flowchart shown in FIG. 16 is a flowchart that calculates the amount of radioactivity accumulated in the lymph node and notifies the user.
  • the control unit 50 first integrates the counts in step S310.
  • step S311 the control unit 50 determines whether or not the integrated value of the count is equal to or greater than a preset value.
  • step S311 If it is determined in step S311 that the integrated value is equal to or greater than the set value (step S311: Y), the process proceeds to step S314.
  • step S314 the control unit 50 stops the timer.
  • step S315 the control unit 50 calculates the amount of lymph node radioactivity from the count value. The amount of radioactivity in the lymph nodes is obtained by converting a count value from the shape of the scintillators 144 and 145, the opening angle of the radiation detector, the size of the affected area, and the like.
  • step S316 the control unit 50 notifies the user of the amount of radioactivity and ends the measurement.
  • step S311 determines whether or not a predetermined measurement time has elapsed. If it is determined in step S312 that the predetermined measurement time has not elapsed (step S312: N), the process returns to step S310. On the other hand, when it is determined in step S312 that the predetermined measurement time has elapsed (step S312: Y), the process proceeds to step S313. In step S313, the control unit 50 notifies the user that the value is less than the reference value, and ends the measurement.
  • the lymph node having a large amount of radioactivity is notified in a short time and the measurement is completed, so that the measurement time can be shortened when measuring a large number of lymph nodes. ..
  • the method of notifying the user may be the same as in the above example. Further, the blinking frequency may be changed. For example, if the lymph node has a large amount of radioactivity, the blinking frequency may be increased, and if the amount of radioactivity is small, the blinking frequency may be decreased.
  • the measurement may be started by the movement of the radiation detector.
  • a sensor capable of detecting the degree of opening of the sandwiched portion 140 of the radiation detector may be attached, and the measurement may be started when the sandwiched portion 140 is opened from the completely closed state.
  • a contact sensor may be provided at the tip of the sandwiched portion 140 or the like, and the measurement may be started when the contact sensor detects contact with a lymph node (measurement target).
  • the voice recognition system for detecting the voice of the user may be provided, and the measurement may be started when a specific voice of the user (for example, a voice of "start") is recognized.
  • the user can determine the timing at which the measurement is started.
  • the display portion for displaying the degree of opening at a position visible to the user during normal operation. This is to eliminate the need for the user to change the direction of the radiation detector when checking the degree of opening.
  • the burden on the user is reduced and the measurement can be started in a shorter time than when the user operates the switch. ..
  • the radiation detector according to the first aspect of the present invention is based on a probe having a built-in radiation detection element, a probe that can be inserted into the body, a notification unit provided in the probe, and a radiation detection result by the radiation detection element.
  • a control unit for operating the notification unit is provided.
  • the operator can more correctly recognize the position of the internal tissue in which the radionuclide has been taken up. Specifically, while the operator (operator) operates the probe, the position of the radioactive source (affected part) where the radionuclides are accumulated can be confirmed by the notification information from the notification unit. Further, since the notification unit is provided on the probe having a built-in radiation detection element, the operator can confirm the position of the affected area without changing the direction of the face or the direction of the line of sight.
  • a step of detecting radiation by a radiation detection element included in a probe inserted in the body for example, a step of detecting radiation by a radiation detection element included in a probe inserted in the body, and a step of operating a notification unit further included in the probe based on the detection result of the radiation. It is also possible to provide a radiation detection method having the above.
  • the radiation detector according to the second aspect of the present invention may further include a setting unit for setting a threshold value corresponding to the detection result for determining whether or not to operate the notification unit for the control unit. good.
  • the detected radioactivity differs depending on the type and dose of the radionuclide used, the amount of the accumulated radionuclide, and the like.
  • the notification unit may be a light emitting unit provided on the outer surface of the probe.
  • the position of the affected area can be visually recognized by using the notification unit as the light emitting unit.
  • control unit has at least one of the emission intensity, the emission pattern, the emission color, and the emission time based on the count or the counting rate of the radiation obtained as the detection result.
  • the light emitting unit may be controlled so as to change one.
  • the position and spread of the radionuclide accumulated that is, the position and spread of the affected part can be easily recognized. can do.
  • the light emitting unit and the light emitting element for causing the light emitting unit to emit light are arranged apart from each other, and the light emitting element and the light emitting unit are optically connected by an optical fiber. It may be bound to.
  • the probe can be miniaturized by arranging the light emitting element at a position away from the probe.
  • the light emitting portion is continuously provided so as to orbit the outer peripheral surface of the probe, is at least partially protruding from the outer surface of the probe, or is described above. It may be provided at a plurality of places on the outer surface of the probe.
  • the light from the light emitting part is emitted over a wide solid angle or is emitted from a plurality of light emitting parts, it is easy for the operator to check whether or not the light is emitted even if the direction or position of the probe is changed. Can be recognized.
  • the radiation detector according to the seventh aspect of the present invention may include a collimator that regulates the incident direction of the radiation incident on the radiation detection element.
  • the collimator can suppress the radiation from the surrounding environment from entering the radiation detection element, the radiation from the affected area can be efficiently detected, and the position of the affected area can be efficiently detected. can.
  • the radiation detection element may be a detection element for a Compton camera.
  • the Compton camera method can efficiently detect the radiation from the affected area without using a collimator or a shield, and can efficiently detect the position of the affected area.
  • the radiation detection element may be a simultaneous counting type radiation detection element.
  • the position of the affected area can be efficiently detected by using a radiation detection element of the coincidence counting method.
  • the two probes may be provided, and the radiation detection element may be built in each of the probes.
  • the characteristics of the simultaneous radiation counting method can be utilized.
  • the radiation detector according to the eleventh aspect of the present invention may be configured as a grasping forceps for surgery, and the two tips of the grasping forceps may each function as the probe provided with the radiation detection element.
  • the radiation detector according to aspect 12 of the present invention is a radiation detector configured as a grasping forceps for surgery that can be inserted into the body, and two tips of the gripping forceps each have a built-in radiation detection element. Control to operate the notification unit based on the detection result of the extinct gamma ray by the simultaneous counting of the notification unit provided in the grasping forceps and the radiation detection element built in each of the two probes. It has a department.
  • a predetermined display screen capable of sandwiching the internal tissue with a grasping forceps, measuring the radiation from the radionuclide taken into the internal tissue, and displaying, for example, an image of the nuclide distribution or a radioactivity value. It is not necessary for the operator to see such things, and the operator can correctly recognize whether or not the radionuclide is accumulated in the internal tissue.
  • the present invention is, for example, a radiation detection method using a radiation detector configured as a grasping forceps for surgery that can be inserted into the body, and is composed of each tip of the grasping forceps inserted into the body.
  • Radiation having a step of detecting annihilation gamma rays by a simultaneous counting method by each radiation detection element provided in each of the two probes, and a step of operating a notification unit included in the grasping forceps based on the detection result of the annihilation gamma rays. It is also possible to provide a detection method.
  • control unit may correct the detection sensitivity of the coincidence counting based on the opening angle of the two probes or the distance between the two probes.
  • the radioactivity of the affected area can be accurately measured.
  • control unit may measure the size of the measurement target based on the opening angle of the two probes or the distance between the two probes.
  • control unit calculates the volume of the measurement target based on the opening angle of the two probes or the distance between the two probes, and per volume. Radioactivity may be calculated.
  • the control unit starts the operation of the radiation detector based on the change in the opening angle of the two probes or the change in the distance between the two probes. And / or the end may be controlled.
  • the notification unit is a light emitting unit, and may be arranged at at least one of the two probes or the main body of the grasping forceps.
  • the radiation detection element incorporated in each of the two probes may have a semicircular cross-sectional shape.
  • the volume of the radiation detection element can be increased and the detection efficiency can be improved.
  • the notification unit may notify the comparison result between the detection result of the extinct gamma ray and the index related to the malignancy of the affected area.
  • the user can easily recognize the malignancy of the affected area depending on the mode of notification of the notification unit.
  • control unit may be provided in a housing different from the main body of the radiation detector.
  • 1,1A,2,3 Radiation detector 10 Probe 20 Radiation detection element 22,134 Optical fiber 30,130 Light emitting part (notifying part) 32,132 Light emitting element 40 Light receiving part (amplifying part) 50 Control unit 52 Processor 54 Memory 56 Bus 62 Input / output interface (I / O) 64 Setting unit 66 Counting unit 70 Input unit 80, 105 Operation unit 82 Cable 103 First operation unit 104 Second operation unit 110 Main unit 120 First light receiving element (amplification unit) 121 Second light receiving element (amplifying part) 122 1st optical fiber 123 2nd optical fiber 136 Coincidence circuit 137 Correction part 138 Encoder 140 Sanding part (probe) 142 1st pinch 143 2nd pinch 144 1st scintillator (radiation detection element) 145 Second scintillator (radiation detection element) 160 Open / close axis 200 Optical camera

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measurement Of Radiation (AREA)

Abstract

放射性核種の取り込まれた体内組織の位置を操作者に、より正しく認識させることができる放射線検出器を提供する。放射線検出器(1)は、放射線検出素子(20)を内蔵した、体内に挿入可能なプローブ(10)と、プローブ(10)に設けられた報知部(30)と、放射線検出素子(20)による放射線の検出結果に基づいて報知部(30)を作動させる制御部(50)と、を備える。

Description

放射線検出器
 本発明は、放射線検出器に関する。
 従来、特定の化合物を取り込みやすいがん細胞、又は特定の大きさの化合物が留まりやすい組織が知られている。そのようながん細胞又は組織の位置を特定するため、放射性核種を含む化合物を患者に投与し、ガンマカメラでその位置を特定することが行われている。例えば、99mTcを含む化合物製剤を患者に投与し、その化合物が集積したリンパ節を特定して郭清(かくせい)する方法が知られている。非特許文献1には、この方法を実施するため、センチネルリンパ節へのがん転移の有無を手術中に判断することができる可搬型ガンマカメラが開示されている。
 また、非特許文献2には、PET(Positron Emission Tomography)検査で実績の高いF-18標識FDG(fluorodeoxyglucose)を静脈投与し、リンパ節へのFDGの取り込み具合から、リンパ節転移を検出する方法が開示されている。これは、切除範囲の最小化と手術の低侵襲化を目的とする方法である。
横山邦彦, 利波紀久, 津川浩一郎, 三輪晃一, "センチネルリンパ節のアイソトープ検出法," 日獨医報, 第46巻, 第2号, pp.212-217, 2001. Douglas A. Murrey, Jr., et al., "Perioperative 18F-fluorodeoxyglucose-guided imaging using the becquerel as a quantitative measure for optimizing surgical resection in patients with advanced malignancy," The American Journal of Surgery, 198, pp. 834-840, 2009.
 しかしながら、非特許文献1に開示されたガンマカメラは、検出された放射能分布の画像が別体のディスプレイ上に表示されるため、表示された画像と手術部位との位置関係を把握しにくい。また、非特許文献2に開示された技術は、リンパ節へのFDGの取り込み具合を術者(操作者)に即座に伝達する方法に関するものではない。従来、術中放射線検出器として、ガンマプローブ、ピンセット型PET、ドロップイン型検出器、体内挿入検出器と体外検出器を組み合わせて使う手法等が開発されている。しかし、いずれも、放射線機器のディスプレイ上に核種分布の画像や放射能値を表示する仕組みのため、操作者が計測のたびに術野から視点を動かす必要があった。そのため、計測された放射能から患部の位置を正しく認識することが難しいという課題があった。例えば、鏡視下手術やロボット支援手術においては、操作者が見るカメラ画像の中で、操作者が患部の位置を正しく把握できることが望まれる。
 本発明の一態様は、放射性核種の取り込まれた体内組織の位置を操作者に、より正しく認識させることができる放射線検出器を提供することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る放射線検出器は、放射線検出素子を内蔵した、体内に挿入可能なプローブと、前記プローブに設けられた報知部と、前記放射線検出素子による放射線の検出結果に基づいて前記報知部を作動させる制御部と、を備える。
 また、本発明の一態様に係る放射線検出器は、体内に挿入可能な手術用の把持鉗子として構成された放射線検出器であって、前記把持鉗子の2つの先端部が、それぞれ放射線検出素子を内蔵した2つのプローブとして構成され、前記把持鉗子に設けられた報知部と、前記2つのプローブにそれぞれ内蔵された各放射線検出素子の同時計数による消滅ガンマ線の検出結果に基づいて前記報知部を作動させる制御部と、を備える。
 本発明の一態様によれば、放射性核種の取り込まれた体内組織の位置を操作者に、より正しく認識させることができる放射線検出器を提供することが可能である。
本発明の実施形態1に係る放射線検出器の全体構成図である。 実施形態1に係る発光部の形態例である。具体的には、図2(a)は、プローブの外周面を周回するように連続的に設けられた発光部の形態例を示し、図2(b)は、プローブの外面から部分的に突出して構成された発光部の形態例を示している。さらに、図2(c)は、プローブの外面の複数個所に設けられた発光部の形態例を示している。 実施形態1に係る放射線検出器の制御機能ブロック図である。 実施形態1に係る放射線検出器の発光制御のフローチャート例を含む図である。具体的には、図4(a)、図4(c)、図4(e)は、第1、第2、第3のフローチャート例をそれぞれ示し、図4(b)、図4(d)、図4(f)は、これらのフローチャート例に各々対応する放射線の検出結果と発光とのタイミングを例示した図である。 実施形態1に係る放射線検出器の使用例を示す概略図である。 シンチレーション検出素子を用いた放射線検出器の全体構成図である。 シンチレーション検出素子を用いた放射線検出器の制御機能ブロック図である。 本発明の実施形態2に係る、手術用の把持鉗子として構成された放射線検出器の概略構成図である。 実施形態2に係る放射線検出器の発光制御のフローチャート例を含む図である。具体的には、図9(a)、図9(c)、図9(e)は、第4、第5、第6のフローチャート例をそれぞれ示し、図9(b)、図9(d)、図9(f)は、これらのフローチャート例に各々対応する放射線の検出結果と発光とのタイミングを例示した図である。 実施形態2に係る放射線検出器の使用例を示す概略図である。 本発明の実施形態3に係る、手術用の把持鉗子として構成された放射線検出器の概略構成図である。 図12(a)、図12(b)、図12(c)は、実施形態3に係る放射線検出器の挟み部の開き角度と対象の大きさとの関係を示す図である。 実施形態3に係る放射線検出器の放射線計測の開始及び終了の制御を示すフローチャートである。 実施形態4に係る放射線検出器のシンチレータの断面図である。 実施形態5に係る放射線検出器の制御部が行う計測方法のフローチャートである。 実施形態5の変形例に係る計測方法のフローチャートである。
 〔実施形態1〕
 本発明の実施形態1について、図面を参照して説明する。図1は、本発明の実施形態1に係る、医療用の放射線検出器1の全体構成図である。図2は、実施形態1に係る発光部の形態例である。この図2は、発光部が設けられたプローブの斜視図及びプローブをその径方向に沿って裁断した断面図を含んでいる。図3は、実施形態1に係る放射線検出器1の機能ブロック図である。放射線検出器1は、患部に集積した放射性核種からの放射線Rを検出し、放射線Rの計測値(カウント数)が所定の条件を満たす場合に、それを操作者(術者)に報知する。
 (放射線検出器1の構成)
 図1に示すように、放射線検出器1は、体内に挿入可能なプローブ10と、操作部80と、を備える。プローブ10は、放射線検出素子20を内蔵し、発光部(報知部)30を備える。発光部30が作動するとは、発光部30が光を発することを意味する。発光部30は、報知部の一例である。操作部80には、制御部50、入出力インターフェース(I/O)62、設定部64、計数部66が配置されている。また、操作部80には、入力部70が設けられている。
 放射線検出素子20は、プローブ10の先端部に配置されている。操作者は、プローブ10の先端部を患部に近づけて、放射線Rがどの程度検出されるかを確認することが可能である。放射線検出素子20の種類は特に限定されないが、半導体検出素子又はシンチレーション検出素子等の小型の検出素子であることが好ましい。半導体検出素子としては、CdTe(CZT)半導体検出素子、Si半導体検出素子、Ge半導体検出素子等を用いることができる。シンチレーション検出素子としては、CsI(Tl)シンチレータ、NaI(Tl)シンチレータ等を用いることができる。放射線検出素子20は、放射線Rのエネルギーを電気信号に変換して出力する。放射線エネルギーを電気信号に変換する構成は公知の構成を用いることができる。
 放射線検出素子20で検出される放射線Rの入射方向を特定する方法は、コリメータ方式、コンプトンカメラ方式、又は同時計数方式等が選択可能である。コリメータ方式では、放射線検出素子20に入射する放射線Rの入射方向を規制するコリメータを備える。そして、放射線Rを検出した放射線検出素子20の位置から、コリメータに入射した放射線Rの入射方向を決定することができる。コンプトンカメラ方式の場合は、散乱部と吸収部とを備えるコンプトンカメラ用の放射線検出素子20を用いる。そして、散乱部における散乱した位置と、吸収部における吸収された位置とから、ガンマ線の入射方向を決定することができる。同時計数方式の場合は、2つの放射線検出素子20が対向する位置に配置される。そして、2つの放射線検出素子20で同時に計数された場合にのみ計数され、2つの放射線検出素子20の間に放射線源があると判断することができる。同時計数方式は、陽電子放出核種を対象とする。
 発光部30は、プローブ10の先端部に配置されている。発光部30は、放射線検出素子20の近傍に配置されている。発光部30は、放射線検出素子20が所定の条件を満たす放射線Rを検出した場合に、それを操作者に報知する役割を有する。操作者は、プローブ10の先端部を患部に近づけて、放射線Rが検出されるかどうかを確認する。そのため、発光部30は、操作者がプローブ10の操作中に視線を移動させることなく発光部30の発光を認識できるように、プローブ10の先端部に配置されている。
 発光部30は、プローブ10の外面に設けられている。より具体的には、発光部30は、図2(a)に示すように、プローブ10の外周面を周回するように連続的に設けられている。しかし、発光部30の形状はこの形状に限定されない。図2(a)に示す例では、発光部30はプローブ10の外周面と同じ高さで周回している。しかし、図2(b)に示すように、発光部30は、プローブ10の外面から少なくとも部分的に突出して構成されていてもよい。また、図2(c)に示すように、発光部30は、プローブ10の外面の複数個所に設けられていてもよい。いずれの構成においても、プローブ10の向きが変わっても、操作者は発光部30の発光を確実に認識することができる。
 発光部30は、例えば光を導光する導光材から構成されており、内蔵された発光素子32からの光を導光して外部へ放出する。発光素子32は、例えば発光ダイオード(LED, Light Emitting Diode)である。発光素子32は1つでもよく、複数でもよい。
 入力部70は、操作部80の外面に設けられている。入力部70は、例えば発光部30を発光させる放射線Rの検出回数の閾値を入力可能な例えばタッチパネル式の液晶ディスプレイである。ケーブル82は、放射線検出器1に電力を供給する電源ケーブルである。また、ケーブル82は、放射線検出器1と外部との情報通信ケーブルを兼ねてもよい。なお、放射線検出器1に電源を内蔵させることにより、ケーブル82を省略してもよい。
 (放射線検出器1の制御)
 図3は、実施形態1に係る放射線検出器1の制御に関する機能ブロック図である。制御部50は、放射線検出器1の全体を制御する。制御部50は、プロセッサ52とメモリ54を含む。メモリ54は、例えば揮発性のRAM(Random Access Memory)と不揮発性のROM(Read Only Memory)から構成され、各種の制御プログラム及びデータを記憶する。また、メモリ54は、発光部30を発光させる放射線計測値の閾値及び発光時間等を設定値として記憶しておいてもよい。プロセッサ52は、例えばCPU(Central Processing Unit)又はMPU(Micro Processing Unit)である。プロセッサ52は、各種制御プログラムをROMから読み出してRAMに展開し、プログラムを実行することにより、設定部64及び計数部66として機能する。又は、プロセッサ52は、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)等の専用プロセッサであってもよい。放射線検出素子20、発光素子32、制御部50、I/O62、設定部64、計数部66、入力部70は、バス56により電気的に結合されている。
 入出力インターフェース(I/O)62は、外部との信号及び情報の送受信を行う。設定部64は、操作者が入力した閾値を取得し、制御部50に対して設定する。閾値とは、発光部30を発光させるか否かを判別するための放射線の検出結果に対応する閾値である。具体的には、設定部64は、例えば操作者が入力部70から入力した閾値に関する情報をI/O62を介して取得する。設定部64は、取得した閾値に関する情報をメモリ54又は設定レジスタに格納することにより、操作者が入力した閾値を制御部50に対して設定する。計数部66は、放射線検出素子20が出力した電気信号を取得し、放射線の検出回数を計数して制御部50へ出力する。
 制御部50は、放射線検出素子20による放射線の検出結果に基づいて、発光部30を発光させる。例えば、制御部50は、計数部66が放射線を1回計数するごとに、発光部30を発光させる。又は、制御部50は、計数部66から取得した放射線の検出回数が設定された閾値よりも大きい場合は、発光素子32を所定の時間だけ発光させる制御を行ってもよい。発光させる時間が長すぎると、放射線の個々の検出が区別できない。発光させる時間が短すぎると、発光が認識できない虞がある。そのため、予め適切な発光時間を設定しておくことが好ましい。また、測定条件により、発光時間を操作者が入力部70から設定できるように構成してもよい。
 発光部30を発光させる制御方法を、図4を参照して説明する。一例として、図4(a)の第1のフローチャート例及び図4(b)に示すように、制御部50は、計数部66が放射線を1回計数するごとに(ステップS100)、発光素子32を1回、所定の時間だけ発光させる(ステップS101)。これは、放射線の計数率によらずに発光させる例である。この場合、操作者は、発光の頻度を見て放射性核種が集積した患部(線源)に近いかどうかを判断する。発光の頻度が多い場合は、患部に近いと判断することができる。操作者は、プローブ10の位置を変えて発光の頻度を確認し、発光頻度が多い位置に患部があると判断することができる。
 また、制御部50は、放射線の計数率が所定の値以上の場合に発光部30を発光させるように制御してもよい。計数率は、例えば1秒当たりの放射線の検出数であるcps(count per second)で表される。図4(c)の第2のフローチャート例及び図4(d)に示すように、計数部66は、放射線の検出数を所定時間(例えば数秒から数十秒)積算して所定時間で除して計数率を計算する(ステップS110)。次に、制御部50は、計数部66が計算した計数率が所定の計数率(閾値)以上であるか否かを判定する(ステップS111)。計数率が所定の閾値以上である場合(ステップS111:YES)、制御部50は、発光部30を所定の時間だけ発光させる(ステップS112)。計数率が所定の閾値以上ではない場合(ステップS111:NO)、制御部50は、発光部30を発光させずにステップS111に戻り、少しずらした所定時間内での計数率が所定の計数率以上であるか否かを判定する。操作者は、発光があれば、患部が近いと判断することができる。
 他の例として、制御部50は、放射線の計数又は計数率に応じて発光の態様を変えるように発光部30を制御してもよい。図4(e)の第3のフローチャート例及び図4(f)に示すように、計数部66は、検出した放射線の数を所定時間(例えば数秒から数十秒)計数し(ステップS120)、計数率を算出する(ステップS121)。次に、制御部50は、計数率に応じて、発光部30を所定の態様で発光させる(ステップS122)。例えば、制御部50は、第1の閾値未満である場合は発光素子32を発光させず、第1の閾値以上、第2の閾値未満である場合は発光素子32を青色に発光させ、第2の閾値以上である場合は発光素子32を赤色に発光させる。操作者は、赤い発光があれば、患部が近い、もしくは患部の放射性核種の集積量が大きいと判断することができる。また、制御部50は、計数率に応じて発光部30の発光強度(輝度)を変えるように制御してもよい。操作者は、発光が強い(明るい)ほど、患部が近い、もしくは患部の放射性核種の集積量が大きいと判断することができる。また、制御部50は、計数率に応じて発光部30の発光パターン、又は発光時間を変えるように制御してもよい。
 上述の閾値は、放射性核種の種類、放射性核種の投与量、放射性核種の集積量(患部の大きさ)、投与から計測までの経過時間等によって操作者が適宜設定することが好ましい。
 (放射線検出器1の使用例)
 図5に示すように、放射線検出器1は、鏡視下手術やロボット支援手術において、トロッカーから患者体内に挿入して使用することができる。操作者は、光学カメラ200の画像を見ながら、組織(例えばリンパ節)Sに放射性核種を含む薬剤が集積しているか否かを調べるため、プローブ10の放射線検出素子20を近づけて、放射線計測を行う。所定の放射線が検出されたかどうかは、光学カメラ200の視野(field of view)において発光部30の発光、点滅、色調などで確認できるため、操作者は光学カメラ200を通してリアルタイムに放射線計測結果を知ることができる。
 以上説明したように、実施形態1に係る放射線検出器1は、体内組織(患部)に取り込まれた放射性核種からの放射線をプローブ10の放射線検出素子20で計測し、適宜プローブ10の先端部にある発光部30を発光させる。操作者は、プローブ10から視線を変更することなく、プローブ10の先端部にある発光部30の発光を容易に認識できる。つまり、操作者は、プローブ10の先端付近(患部周辺)の映像を映し出している表示画面とは別の、例えば放射能値を表示させている他の表示画面などを見る必要はなく、当該体内組織の位置をより正しく認識することができる。
 (変形例)
 上記の実施形態1では、操作者に放射線の検出を報知するために発光部30を用いた。しかし、報知手段は発光部30に限られない。例えば、発光部30の代わりに、検出音を発するスピーカを用いてもよい。スピーカの場合は、配置位置はプローブ10の外面でなく、内蔵されていてもよい。ただし、プローブ10の先端部に近い位置に配置されることが、操作者へ報知するという観点で好ましい。検出音は、放射線を検出するごとに出してもよい。また、計数率に応じて検出音の態様(頻度、音調等)を変えることにより、計数率の大きさを操作者に報知してもよい。
 放射線検出素子20としてシンチレーション検出素子を用いてもよい。放射線検出器1Aは、図6、図7に示すように、シンチレーション検出素子である放射線検出素子20と、受光部(増幅部)40を備えている。受光部40は、放射線検出素子20と光ファイバ22で結合されている。光ファイバ22は、放射線検出素子20で発生したシンチレーション光を受光部40へ導光する。受光部40は、放射線検出素子20から光ファイバ22を経由して届くシンチレーション光を受光してそれを増幅し、電気信号として計数部66に出力する。受光部40は、例えばシリコンフォトマルチプライヤである。受光部40は、例えば70ボルト程度の比較的高電圧を要する。そのため、受光部40は、体内に挿入されるプローブ10ではなく、操作部80の内部に配置されることが安全上好ましい。
 また、上記の実施形態1と変形例では、発光部30の内部に発光素子32を備えている。しかしこれに限らず、発光部30と発光素子32とが離間して配置されていてもよい(後述の図8参照)。その場合、発光部30と発光素子32とを光ファイバで結合することができる。これにより、プローブ10をより小型化することができる。
 上記の実施形態1では、制御部50は、放射線検出器1の操作部80に内蔵されている。しかし、制御部50は、放射線検出器1のプローブ10又は操作部80とは別の筐体内に設けられていてもよい。なお、この場合の制御部50は、図3に例示したように、バス56を介して、I/O62、設定部64、計数部66、放射線検出素子20、発光素子32、及び、入力部70と、電気的に接続された状態で、前記別の筐体内に設けられる。
 〔実施形態2〕
 次に、実施形態2について、図面を参照して説明する。なお、実施形態1と同様の構成又は機能を有する部材については、同じ符号を付してその説明を省略する。図8は、手術用の把持鉗子として構成された、実施形態2に係る放射線検出器2の概略構成図である。把持鉗子とは、体内の組織を鋏の形状を有する2つの挟み部で挟んで把持するための手術用器具である。放射線検出器2は、2つの挟み部(プローブ)に一対の放射線検出素子を内蔵し、放射線検出素子で挟むようにして対象物の放射能を計測する。
 (放射線検出器2の構成)
 図8に示すように、放射線検出器2は、本体部110、本体部110の一端側に配置された操作部105、本体部110の他端側に配置された挟み部140と、を有する。本体部110には、第1受光素子(増幅部)120、第2受光素子(増幅部)121、発光素子132、同時計数回路136、制御部50が内蔵されている。第1受光素子120、第2受光素子121は、例えばシリコンフォトマルチプライヤであり、70ボルト程度の比較的高電圧を要する。そのため、第1受光素子120、第2受光素子121は、挟み部140からできるだけ離れた、操作部105に近い位置に配置されることが安全上好ましい。なお、放射線検出器2は、入力部と設定部とを備えてもよい(図示せず)。放射線検出器2における入力部と設定部は、例えば実施形態1で説明した入力部70と設定部64と同じ機能を有する。
 操作部105は、挟み部140を開閉動作させるための機構部分であって、例えば親指以外の指を掛ける第1操作部103と親指を掛ける第2操作部104とを有する。第1操作部103と第2操作部104とは、片手で開閉することができる。
 挟み部140は、第1挟み部142と第2挟み部143とを有する。第1挟み部142と第2挟み部143は、それぞれが実施形態1におけるプローブ10に相当する。第1挟み部142には、第1シンチレータ(放射線検出素子)144が設けられている。第2挟み部143には、第2シンチレータ(放射線検出素子)145が設けられている。第1シンチレータ144と第1受光素子120とは、第1光ファイバ122によって光学的に結合されている。第2シンチレータ145と第2受光素子121とは、第2光ファイバ123によって光学的に結合されている。
 第1挟み部142と第2挟み部143は、本体部110の他端側に配置された開閉軸160を中心にそれぞれ反対方向に揺動する開閉動作をする。第1操作部103と第2操作部104の開閉動作は、本体部110内の図示しない伝達機構により伝達されて、第1挟み部142と第2挟み部143の開閉動作に変換される。
 本体部110の開閉軸160の近傍には、発光部130が設けられている。発光部130は、発光素子132からの光を受けて発光する。発光部130と発光素子132とは離間して配置され、発光部130と発光素子132との間は光ファイバ134によって光学的に結合されている。発光部130は、例えば光拡散部材から構成されている。発光部130は、本実施形態では開閉軸160の近傍に設けられているように、できるだけ本体部110の挟み部140に近い側に設けられていることが好ましい。さらに、発光部130は、挟み部140の第1挟み部142と第2挟み部143のうちの少なくとも一方に設けられていることがより好ましい。
 (放射線検出器2の動作)
 操作者は、患部の組織を放射線検出器2の第1挟み部142と第2挟み部143とで挟み込み、放射線を測定する。操作者は、事前に患者に対して、F-18標識FDG(fluorodeoxyglucose)を投与する。F-18標識FDGはがん組織に取り込まれて集積し易い性質を持っている。F-18は、陽電子崩壊によって生じた陽電子と電子との対消滅による2つの消滅ガンマ線を放出する。2つの消滅ガンマ線は、いずれも同じ511(KeV)のエネルギーを持ち、それぞれ180度の方向に同時に発生するため、互いに対向する第1シンチレータ144及び第2シンチレータ145で同時に検出される。同時に検出されない放射線は、消滅ガンマ線によるものではない、もしくは、消滅ガンマ線であっても視野外からの放射線入射であるため、バックグラウンド放射線として除外することができる。そのため、遮蔽等を考慮する必要がなく、放射線検出器2をシンプルな構成とすることができる。
 第1シンチレータ144で発生した、511(KeV)の放射線によるシンチレーション光は、第1光ファイバ122によって第1受光素子120に送られる。第1受光素子120は、シンチレーション光を電気信号に変換して、同時計数回路136に出力する。第2シンチレータ145で発生した、511(KeV)の放射線によるシンチレーション光は、第2光ファイバ123によって第2受光素子121に送られる。第2受光素子121は、シンチレーション光を電気信号に変換して同時計数回路136に出力する。同時計数回路136は、第1シンチレータ144からの電気信号と第2シンチレータ145からの電気信号がいずれも511(KeV)の放射線によるものであり、かつ同時に検出された場合、消滅ガンマ線を検出したと判断して制御部50に検出信号を出力する。ここでいう同時とは、到達時間差が、数ナノ秒よりも小さい、あるいは数十ナノ秒よりも小さいことをいう。制御部50は、同時計数回路136からの検出信号が所定の条件を満たした場合、発光部130を発光させる。
 制御部50が発光部130を発光させる制御方法について説明する。まず、消滅ガンマ線を検出する毎に発光させる制御方法がある。図9(a)の第4のフローチャート例及び図9(b)に示すように、同時計数回路136は、第1シンチレータ144と第2シンチレータ145が検出した放射線の電気信号(検出信号)を、それぞれ第1受光素子120と第2受光素子121を経由して受信する(ステップS160)。次に、同時計数回路136は、第1シンチレータ144と第2シンチレータ145からの検出信号が同時に受信されたか否かを判定する(ステップS161)。ステップS161で、2つの検出信号が同時に受信された場合は(ステップS161:YES)、消滅ガンマ線を検出したと判断できるので、同時計数回路136は制御部50に放射線を検出した旨の信号を出力する。なお、2つの検出信号が同時に受信されない場合(ステップS161:NO)、制御部50による処理は、ステップS161の前段に戻る。次に、制御部50は、同時計数回路136から放射線を検出した旨の信号を受信すると、発光素子132を発光させる(ステップS162)。発光素子132が発する光は、光ファイバ134を経由して発光部130を発光させる。
 または、消滅ガンマ線の計数率が所定の閾値以上である場合に発光させる制御方法でもよい。計数率は実施形態1で説明したとおりである。図9(c)の第5のフローチャート例及び図9(d)に示すように、同時計数回路136は、第1シンチレータ144と第2シンチレータ145が検出した放射線の検出信号を受信する(ステップS170)。次に、同時計数回路136は、2つの検出信号が同時に受信されたか否かを判定する(ステップS171)。ステップS171で、2つの検出信号が同時に受信された場合は(ステップS171:YES)、同時計数回路136は制御部50に放射線を検出した旨の信号を出力する。次に、制御部50は、同時計数回路136からの放射線を検出した旨の信号の受信頻度(計数率)が閾値以上であるか否かを判定する(ステップS172)。ステップS172で、計数率が閾値以上である場合は(ステップS172:YES)、制御部50は、発光素子132を発光させる(ステップS173)。なお、2つの検出信号が同時に受信されない場合(ステップS171:NO)や、計数率が閾値以上でない場合(ステップS172:NO)、制御部50による処理は、ステップS171の前段に戻る。上記した発光素子132が発する光は、光ファイバ134を経由して発光部130を発光させる。
 また、制御部50は、消滅ガンマ線の計数率に応じて、発光の態様を変化させるように制御してもよい。図9(e)の第6のフローチャート例及び図9(f)に示すように、同時計数回路136は、第1シンチレータ144と第2シンチレータ145が検出した放射線の検出信号を受信する(ステップS180)。次に、同時計数回路136は、2つの検出信号が同時に受信されたか否かを判定する(ステップS181)。ステップS181で、2つの検出信号が同時に受信された場合は(ステップS181:YES)、同時計数回路136は制御部50に放射線を検出した旨の信号を出力する。次に、制御部50は、同時計数回路136からの放射線を検出した旨の信号の受信頻度(計数率)が閾値以上であるか否かを判定する(ステップS182)。ステップS182で、計数率が閾値以上である場合は(ステップS182:YES)、制御部50は、発光素子132を計数率に応じて所定の色で発光させる(ステップS183)。なお、2つの検出信号が同時に受信されない場合(ステップS181:NO)や、計数率が閾値以上でない場合(ステップS182:NO)、制御部50による処理は、ステップS181の前段に戻る。例えば、制御部50は、第1の閾値未満である場合は発光させず、第1の閾値以上、第2の閾値未満である場合は発光素子132を青色に発光させ、第2の閾値以上である場合は発光素子132を赤色に発光させる。又は、制御部50は、計数率に応じて点滅等の発光頻度を変える制御を行ってもよい。閾値の設定方法は、実施形態1で説明したとおりである。
 (放射線検出器2の使用例)
 図10に示すように、放射線検出器2は、鏡視下手術やロボット支援手術において用いることができる。操作者は、光学カメラ200の画像を見ながら、組織(例えばリンパ節)SにF-18標識FDGが集積しているか否かを調べるため、挟み部140の2つのシンチレータ144、145で挟むようにして対象物の放射能を計測する。消滅ガンマ線が検出されたかどうかは、光学カメラ200の視野(field of view)において発光部130の発光、点滅、色調などで確認できるため、操作者は光学カメラ200を通してリアルタイムに放射線計測結果を知ることができる。
 以上説明したように、操作者は発光部130の発光の有無を確認することにより、第1挟み部142と第2挟み部143とで挟んだ組織にF-18標識FDGが集積しているか否かを判断することができる。
 実施形態2に係る放射線検出器2では、挟み部140で挟んだ組織からの消滅ガンマ線のみを検出するため、それ以外の放射線の影響を受けることがない。そして、操作者は、挟み部140から視線を変更することなく、挟み部140の近傍、又は挟み部140に設けられた発光部130の発光を容易に認識できる。つまり、操作者は、例えば別の表示画面などを見る必要はなく挟み部140で挟んだ組織に放射性核種が集積していることをより正しく認識することができる。
 〔実施形態3〕
 次に、実施形態3について、図面を参照して説明する。なお、実施形態2と同様の構成又は機能を有する部材については、同じ符号を付してその説明を省略する。図11は、手術用の把持鉗子として構成された、実施形態3に係る放射線検出器3の概略構成図である。図12は、挟み部140の開き角度と対象の大きさとの関係を示す図である。
 (放射線検出器3の構成)
 放射線検出器3の構成は、放射線検出器2の構成とほぼ同様である。具体的には、放射線検出器3は、本体部110、操作部105、挟み部140と、を有する。本体部110は、開閉軸160の近傍に発光部130が配置されており、発光部130の内部には、発光素子132が配置されている(図示せず)。また、本体部110には、第1受光素子120、第2受光素子121、同時計数回路136、補正部137、エンコーダ138、制御部50が内蔵されている。なお、図示しないが、放射線検出器3は入力部と設定部とを備えてもよい。
 放射線検出器3は、放射線検出器2と異なり、補正部137とエンコーダ138を備えている。エンコーダ138は、操作部105の開き角度θ1、つまり第1操作部103と第2操作部104のなす角度θ1を出力する角度エンコーダである。操作部105の開き角度は、挟み部140(第1挟み部142と第2挟み部143)の開き角度θ2と連動している。そのため、操作部105の開き角度θ1をエンコーダ138で検出することにより、挟み部140の開き角度θ2を求めることができる。なお、操作部105の開閉運動が、本体部110の内部において、シャフトの直線運動に変換されて挟み部140の開閉運動として伝達される場合は、エンコーダ138としてリニアエンコーダを用いてもよい。この場合は、リニアエンコーダによって出力されたシャフトの移動量から挟み部140の開き角度θ2を算出することができる。また、挟み部140の開き角度θ2に代えて、第1挟み部142と第2挟み部143の間の距離を算出してもよい。
 補正部137は、挟み部140の開き角度、又は第1挟み部142と第2挟み部143との間の距離に基づいて、第1シンチレータ144と第2シンチレータ145による消滅ガンマ線の同時計数の検出効率(検出感度)の補正を行う。2つのシンチレータ144、145の配置関係は、挟み部140の開き角度によって変わる。補正部137は、2つのシンチレータ144、145の配置関係に基づいて同時計数の検出効率の補正を行い、挟み部140の開き角度が変わっても検出される放射能が変わらないようにすることができる。
 図12(a)に示すように、操作部105の開き角度が最大の場合に、挟み部140の開き角度が最大となる。操作部105の開き角度を小さくするにつれて、挟み部140の開き角度が小さくなる。例えばリンパ節Sを挟み部140で挟んで消滅ガンマ線を検出する場合に、リンパ節Sが大きい場合は、図12(b)に示すように挟み部140の開き角度が大きく、リンパ節Sが小さい場合は、図12(c)に示すように挟み部140の開き角度が小さくなる。このように、挟み部140でリンパ節Sをちょうど挟むようにすると、消滅ガンマ線の検出とともに、挟み部140の開き角度、又は第1挟み部142と第2挟み部143との間の距離に基づいて、リンパ節Sの大きさを計測することができる。
 例えば、リンパ節Sが球体であると仮定すると、挟み部140の開き角度、又は第1挟み部142と第2挟み部143との間の距離に基づいて、リンパ節Sの直径を求め、体積(ml)を計算することができる。一方で、2つのシンチレータ144、145による同時計数値(cps)を補正部137で補正して、リンパ節Sの放射能量(ベクレル)に換算することができる。これらの結果から、リンパ節Sの放射能密度(ベクレル/ml)を計算することができる。リンパ節Sの放射能密度は、放射性核種の集積密度に比例するため、リンパ節Sのがん細胞の量の推定に用いることができる。
 以上のように、エンコーダ138を用いることにより、挟み部140の開き角度を計算することができる。そして、挟み部140の開き角度に基づいて、挟み部140に設けられた2つのシンチレータ144、145の検出効率を補正することにより、測定対象のより正確な放射能量を計算することができる。さらに、挟み部140の開き角度に基づいて、測定対象の大きさを求めることができる。そして、測定対象の放射能量と大きさとから、測定対象の放射能密度を計算することができる。
 次に、放射線検出器3の使用方法の一例について説明する。制御部50は、挟み部140の開き角度の変化、第1挟み部142と第2挟み部143との間の距離の変化に基づいて、前記放射線検出器の作動の開始及び/又は終了の制御を行うことができる。例えば、最初に閉じていた挟み部140の開き角度(即ち操作部105の開き角度)が最大になった場合に、放射線計測を開始することとしてもよい。つまり、挟み部140の開き角度が、最大ではない状態から最大になった時点で、制御部50が放射線の測定を開始するように構成してもよい。
 また、所定の条件を満たした場合に、制御部50が放射線の計測を終了するように構成してもよい。例えば、計測開始から所定の時間が経過した時点で制御部50が計測を終了するように構成してもよい。また、リンパ節の大きさに合わせて挟み部140の開き角度が変化した後、再び挟み部140の開き角度が変化したときに計測を終了するようにしてもよい。リンパ節の計測作業が終了してリリースしたと考えられるからである。あるいは、挟み部140の開き角度が、最小になった(閉じられた)場合に計測を終了してもよい。計測作業が終了したと考えられるからである。なお、計測が終了しても、挟み部140の開き角度を再び最大にすることで、計測を再開することができる。
 以上のように、放射線検出器3が放射線の計測を所定の条件に基づいて自律的に開始し、自律的に終了することで、操作者が計測の開始・終了のボタン操作をする必要がなくなり、手術が円滑に行えるようになる。
 次に、放射線検出器3の放射線計測の開始及び終了の制御の一例を、図13を参照して説明する。図13に示すように、まず、制御部50は、エンコーダ138を用いて、挟み部140の開き角度を測定する(ステップS201)。次に、制御部50は、挟み部140の開き角度が最大角度であるか否かを判定する(ステップS202)。挟み部140の開き角度が最大角度である場合(ステップS202:YES)、制御部50は、放射線計測を開始する(ステップS203)。挟み部140の開き角度が最大角度ではない場合(ステップS202:NO)、制御フローはステップS201に戻る。次に、ステップS204において、制御部50は、放射線計測を開始した後、挟み部140の開き角度を常時測定する。そして、制御部50は、測定した挟み部140の開き角度に基づいて、2つのシンチレータ144、145の検出効率を補正し(ステップS205)、放射能値を算出する(ステップS207)。また、制御部50は、ステップS205、S207と並行して、対象の直径を算出する(ステップS206)。次に、制御部50は、放射線計測の終了条件が満たされたか否かを判定する(ステップS209)。ステップS209で、終了条件が満たされていないと判定された場合は(ステップS209:NO)、制御フローはステップS204に戻る。ステップS209で、終了条件が満たされたと判定された場合は(ステップS209:YES)、制御部50は、計測した最大の放射能値と対象の直径を記録して(ステップS210)、放射線計測を終了する。その後、再度ステップS201に戻ってもよい。
 ステップS209の終了条件は、前述のように、計測開始から所定の時間が経過したこと、挟み部140の開き角度が変化した後、再び挟み部140の開き角度が変化したこと、挟み部140の開き角度が、最小になったこと等、適宜設定可能である。なお、前述した実施形態2、3では、放射性核種を含む薬剤として例えばF-18標識FDGを例示したが、前記薬剤はこれに限定されるものではない。さらに、実施形態1~3では、放射性核種を含む薬剤が集積しているか否かを調べるための体内の組織として、リンパ節を例示したが、前記組織はこれに限定されるものではない。
 〔実施形態4〕
 (シンチレータの形状)
 次に、本発明の実施形態4に係る、手術用の把持鉗子として構成された放射線検出器について、図面を参照して説明する。実施形態4に係る放射線検出器の構成は、実施形態3に係る放射線検出器3の構成と基本的に同じであり、異なる部分は以下に説明する事項である。なお、これまでの実施形態で説明した要素と同様の構成を有する要素については、同じ符号を付して説明と図示を省略する。
 実施形態4に係る放射線検出器は、例えば、トロッカーを介して体内に挿入されてもよい。トロッカーは、胸腔内のドレナージ等に用いられる医療器具である。トロッカーを用いることにより、より侵襲度の低い治療方法を提供することができる。しかし、トロッカーの直径は、例えば5mmから十数mm程度とあまり大きくない。従って、1組のシンチレータ144、145は、放射線検出効率の観点から、既製品のトロッカーの内部に収まる形状で、かつ挿入方向に直交する方向の断面積ができるだけ大きい形状であることが好ましい。トロッカーの断面は円形であるため、1組のシンチレータ144,145も、断面積をできるだけ大きくするために、断面が円形であることが好ましい。このように構成することで、放射線を検出できるシンチレータの体積が増え、放射線の検出効率を高めることができる。
 図14は、実施形態4に係る放射線検出器の第1挟み部142と第2挟み部143にそれぞれ内蔵される第1シンチレータ144と第2シンチレータ145の、長軸に直交する方向の断面図である。図14に示すように、第1シンチレータ144と第2シンチレータ145の断面形状はそれぞれ半円形であり、向かい合った2つのシンチレータ144,145の断面が円形になるように配置する。
 実施形態4に係る放射線検出器の挟み部140も同様に、第1挟み部142と第2挟み部143がそれぞれ半円形で、両者を閉じた場合に円形になるような形状に構成する。
 この場合、シンチレータ144,145のサイズ、及び実施形態4に係る放射線検出器の全体のサイズ(直径)は、既存のトロッカーを介して体内に挿入可能なサイズに設定する。つまり、シンチレータ144,145を内蔵した放射線検出器がトロッカー内を通過できる大きさに設定する。以上の構成により、既存のトロッカーを用いて、低侵襲の診断、治療が可能な放射線検出器を提供することができる。
 〔実施形態5〕
 (プリセットカウント方法)
 次に、本発明の実施形態5に係る、放射線検出器の放射線計数方法について、図面を参照して説明する。手術用の把持鉗子として構成された実施形態5に係る放射線検出器の構成は、実施形態3に係る放射線検出器3の構成と基本的に同じであり、異なる部分は以下に説明する事項である。なお、これまでの実施形態で説明した要素と同様の構成を有する要素については、同じ符号を付して説明と図示を省略する。
 ユーザ(術者)が術中に放射線検出器を用いて患部の放射能を計測する際に、計測対象が多い場合がある。例えば、がん化したリンパ節の計測を行う場合、多数のリンパ節を1つずつ挟み部140で挟んで計測する必要がある。このような場合、プリセットカウント方式で計測してもよい。プリセットカウント方式で計測することにより、患部の放射能が高い時に、計測時間を短くすることができる。プリセットカウント方式は、多数のリンパ節を計測する場合に効果的であり、手術中に放射線計測をすることによる手術時間の増加を抑制できる。
 プリセットカウントは、次のようにして行う。図15は、実施形態5に係る放射線検出器の制御部50が行う計測方法のフローチャートである。図15に示すように、計測開始後、ステップS300において、制御部50はカウント値を積算する。カウント値は放射線を検出した回数である。次に、ステップS301において、制御部50は、カウントの積算値が予め設定した設定値以上であるか否かを判定する。ステップS301において、積算値が設定値以上であると判定された場合(ステップS301:Y)は、ステップS303に移行する。ステップS303において、制御部50は、カウント値が基準値以上であることをユーザに通知(報知)して、計測を終了する。ここで、制御部50が、カウント値が基準値以上であることをユーザに通知するとは、制御部50が発光部130を所定の方法で発光させることである。
 一方、ステップS301において、積算値が設定値以上ではないと判定された場合(ステップS301:N)は、ステップS302に移行する。ステップS302において、制御部50は、所定の計測時間が経過したか否かを判定する。ステップS302において、所定の計測時間が経過していないと判定された場合(ステップS302:N)は、ステップS300に戻る。一方、ステップS302において、所定の計測時間が経過したと判定された場合(ステップS302:Y)は、ステップS304に移行する。ステップS304において、制御部50は、ユーザに基準値未満であることを通知して、計測を終了する。
 基準値とは、ユーザが予め設定した、患部の悪性度に関する指標に基づいて設定された基準値である。つまり、制御部50は、放射線の計測値と患部の悪性度に関する指標との比較結果を通知する。
 具体的には、例えば、基準値は、がんが患部から転移している可能性を示すカウント値である。発明者らは、リンパ節の放射能量と転移の可能性とが相関していること、つまり、リンパ節の放射能量が第1の値以上である場合は、転移している可能性が高いことを発見した。具体的には、発明者らは、1個のリンパ節の放射能量が10000(Bq)以上である場合、転移している可能性が高いことを発見した。ユーザは、このような放射能量を、放射線検出器の所定のシンチレータ144,145を用いて所定時間計測した場合のカウント積算値に換算しておき、基準値として設定することができる。
 あるいは、基準値は、がんの転移の可能性が低いと考えられるカウント値としてもよい。発明者らは、リンパ節の放射能量が第2の値以下である場合は、転移している可能性が低いことを発見した。具体的には、発明者らは、1個のリンパ節の放射能量が600(Bq)以下である場合、転移している可能性が低いことを発見した。ユーザは、このような放射能量を、所定時間でのカウント積算値に換算しておき、基準値として設定してもよい。
 例えば、シンチレータ144,145の大きさと形状、及び挟み部140の構造にもよるが、がん患者にFDGを185(MBq)投与し、投与6時間後に放射能計測した場合に蓄積される放射能量は、転移の可能性が低いと考えられるリンパ節の放射能量(1個あたりの放射能量が600(Bq))では、30秒で100カウント計測されると予測される。一方、転移の可能性が高いと考えられるリンパ節の放射能量(1個あたりの放射能量が10000(Bq))では、1.8秒で100カウント計測されると予測される。
 例えば、放射能量の基準値を600(Bq)、計測値の設定値を100カウントとし、所定の計測時間を30秒と設定する。30秒の計測時間が経過しても計測値が設定値に到達しなければ、そのリンパ節の放射能量は600(Bq)以下であり、転移の可能性が低いと判断される。また、1.8秒以下で計測値が設定値以上となれば、そのリンパ節は、転移の可能性が高いと判断することができる。
 このように放射能を計測することで、放射能量が大きいリンパ節は短時間で通知されて計測が終了するため、多数のリンパ節を計測する場合に、計測時間を短くすることができる。また、計測終了後速やかに通知される、あるいは計測終了後通知されるまでの時間が常に一定になるようにすることで、ユーザは、計測開始から通知までの時間からおおよその放射能量を認知することができる。なお、計測時間とカウント積算値の基準値は、患部に蓄積が予想される放射性核種の量と、放射線検出器のシンチレータ144,145の検出効率とから、適宜設定することができる。
 制御部50がユーザに通知する方法は、基準値以上であることを通知する場合と、基準値未満であることを通知する場合とで変えることが好ましい。例えば、基準値未満の場合は発光の点灯状態を継続し、基準値以上では、発光を点灯から点滅に変化させることで、ユーザに基準値以上になったことを通知することができる。点滅時間は、一定にしてもよい。計測が終了しても点灯状態のままであれば、基準値未満であることを意味する。早く点滅状態に変化した場合は、放射能量が大きいことを意味する。あるいは、通知方法は、音声であってもよく、音声と光の組み合わせであってもよい。
 (変形例)
 また、次のような計測方法でもよい。図16は、実施形態5の変形例に係る計測方法のフローチャートである。図16に示すフローチャートは、リンパ節に蓄積した放射能量を計算してユーザに通知するフローチャートである。図16に示すように、計測開始後、まずステップS310において、制御部50は、カウントを積算する。次に、ステップS311において、制御部50は、カウントの積算値が予め設定した設定値以上であるか否かを判定する。
 ステップS311において、積算値が設定値以上であると判定された場合(ステップS311:Y)は、ステップS314に移行する。ステップS314において、制御部50は、タイマーを停止する。次に、ステップS315において、制御部50は、カウント値からリンパ節の放射能量を計算する。リンパ節の放射能量は、シンチレータ144,145の形状、放射線検出器の開き角度、患部の大きさ等からカウント値を換算して求められる。次に、ステップS316において、制御部50は、ユーザに放射能量を通知して、計測を終了する。
 一方、ステップS311において、積算値が設定値以上ではないと判定された場合(ステップS311:N)は、ステップS312に移行する。ステップS312において、制御部50は、所定の計測時間が経過したか否かを判定する。ステップS312において、所定の計測時間が経過していないと判定された場合(ステップS312:N)は、ステップS310に戻る。一方、ステップS312において、所定の計測時間が経過したと判定された場合(ステップS312:Y)は、ステップS313に移行する。ステップS313において、制御部50は、ユーザに基準値未満であることを通知して、計測を終了する。
 このような方法で放射能を計測することで、放射能量が大きいリンパ節は短時間で通知されて計測が終了するため、多数のリンパ節を計測する場合に、計測時間を短くすることができる。
 ユーザに通知する方法は、前述の例と同様でもよい。また、点滅の周波数を変えてもよい。例えば、リンパ節の放射能量が大きい場合は、点滅の周波数を大きくし、放射能量が小さい場合は、点滅の周波数を小さくしてもよい。
 なお、放射能量の計測開始を指示する方法として、多くの方法が可能である。例えば、放射線検出器の動きによって計測を開始させてもよい。例えば、放射線検出器の挟み部140の開き度を検出できるセンサを取り付けて、挟み部140を完全に閉じた状態から開いたときに、計測を開始するように構成してもよい。あるいは、挟み部140の先端部等に接触センサを備え、接触センサがリンパ節(計測対象)との接触を感知したときに、計測を開始するように構成してもよい。また、ユーザの声を検出する音声認識システムを備え、ユーザの特定の音声(例えば、「開始」という音声)を認識した場合に、計測を開始するように構成してもよい。
 また、例えば、挟み部140に挟み部140の開き度を表示することにより、ユーザは計測を開始するタイミングを見極めることができる。挟み部140の開き度を表示する場合は、通常の操作時にユーザから見える位置に開き度を表示する表示部を配置することが好ましい。ユーザが開き度を確認する場合に、放射線検出器の向きを変える必要をなくすためである。
 以上のように、特定の条件下で自律的に計測を開始させることで、ユーザがスイッチ操作をすることに比べて、ユーザの負担が減少するとともに、より短時間で計測を開始することができる。
 〔まとめ〕
 本発明の態様1に係る放射線検出器は、放射線検出素子を内蔵した、体内に挿入可能なプローブと、前記プローブに設けられた報知部と、前記放射線検出素子による放射線の検出結果に基づいて前記報知部を作動させる制御部と、を備える。
 上記の構成によれば、放射性核種の取り込まれた体内組織の位置を操作者に、より正しく認識させることができる。具体的には、操作者(術者)がプローブを操作しながら、放射性核種が集積した放射線源(患部)の位置を報知部からの報知情報で確認することができる。さらに、報知部が放射線検出素子を内蔵したプローブに設けられているため、操作者は顔の向きも視線の方向も変えることなく患部の位置を確認することができる。
 なお、本発明は、例えば、体内に挿入されたプローブが備える放射線検出素子によって、放射線を検出するステップと、前記放射線の検出結果に基づいて、前記プローブがさらに備える報知部を作動させるステップと、を有する放射線検出方法を提供することも可能である。
 本発明の態様2に係る放射線検出器において、前記報知部を作動させるか否かを判別するための前記検出結果に対応する閾値を、前記制御部に対して設定する設定部をさらに備えてもよい。
 上記の構成によれば、使用する放射性核種の種類、投与量、又は集積した放射性核種の量等によって検出される放射能が異なる。そのような状況に応じて報知部を作動させる閾値を変更することによって、様々な臨床的状況に対応することができる。
 本発明の態様3に係る放射線検出器において、前記報知部は、前記プローブの外面に設けられた発光部であってもよい。
 上記の構成によれば、報知部を発光部とすることにより、視覚的に患部の位置を認識することができる。
 本発明の態様4に係る放射線検出器において、前記制御部は、前記検出結果として得られた放射線の計数又は計数率に基づいて、発光強度、発光パターン、発光色、及び発光時間のうちの少なくとも1つを変化させるように前記発光部を制御してもよい。
 上記の構成によれば、操作者は、発光部の発光の態様から視覚的に放射能を認識することができるため、放射性核種が集積した位置及び広がり、つまり患部の位置及び広がりを容易に認識することができる。
 本発明の態様5に係る放射線検出器において、前記発光部と前記発光部を発光させるための発光素子とが離間して配置され、前記発光素子と前記発光部との間が光ファイバで光学的に結合されていてもよい。
 上記の構成によれば、発光素子をプローブから離間した位置に配置することで、プローブを小型化することができる。
 本発明の態様6に係る放射線検出器において、前記発光部は、前記プローブの外周面を周回するように連続的に設けられているか、前記プローブの外面から少なくとも部分的に突出しているか、又は前記プローブの外面の複数個所に設けられていてもよい。
 上記の構成によれば、発光部からの光が広い立体角にわたって射出されるため、又は複数個所の発光部から発光するため、プローブの向きや位置が変わっても操作者が発光の有無を容易に認識できる。
 本発明の態様7に係る放射線検出器において、前記放射線検出素子に入射する放射線の入射方向を規制するコリメータを備えていてもよい。
 上記の構成によれば、コリメータによって周辺環境からの放射線が放射線検出素子に入射することを抑制できるため、患部からの放射線を効率よく検出することができ、患部の位置を効率よく検知することができる。
 本発明の態様8に係る放射線検出器において、前記放射線検出素子がコンプトンカメラ用検出素子であってもよい。
 上記の構成によれば、コンプトンカメラ方式によって、コリメータ又は遮蔽体を用いずに患部からの放射線を効率よく検出することができ、患部の位置を効率よく検知することができる。
 本発明の態様9に係る放射線検出器において、前記放射線検出素子が同時計数方式の放射線検出素子であってもよい。
 上記の構成によれば、対消滅によるガンマ線を放出する放射性核種を用いる場合、同時計数方式の放射線検出素子を用いることにより、患部の位置を効率よく検知することができる。
 本発明の態様10に係る放射線検出器において、前記プローブが2つ設けられており、それぞれの前記プローブに前記放射線検出素子が内蔵されていてもよい。
 上記の構成によれば、プローブを2つ設けてそれぞれに放射線検出素子を備えることにより、放射線の同時計数方式の特徴を活かすことができる。
 本発明の態様11に係る放射線検出器は、手術用の把持鉗子として構成され、前記把持鉗子の2つの先端部がそれぞれ前記放射線検出素子を備える前記プローブとして機能するものであってもよい。
 上記の構成によれば、手術用の把持鉗子として構成することにより、手術中に患部の位置を特定することが容易となる。
 本発明の態様12に係る放射線検出器は、体内に挿入可能な手術用の把持鉗子として構成された放射線検出器であって、前記把持鉗子の2つの先端部が、それぞれ放射線検出素子を内蔵した2つのプローブとして構成され、前記把持鉗子に設けられた報知部と、前記2つのプローブにそれぞれ内蔵された各放射線検出素子の同時計数による消滅ガンマ線の検出結果に基づいて前記報知部を作動させる制御部と、を備える。
 上記の構成によれば、把持鉗子で体内組織を挟みこんで、体内組織に取り込まれた放射性核種からの放射線を計測して、例えば核種分布の画像や放射能値を表示可能な所定の表示画面などを操作者が見る必要はなく、当該体内組織に放射性核種が集積しているか否かを操作者により正しく認識させることができる。
 なお、本発明は、例えば、体内に挿入可能な手術用の把持鉗子として構成された放射線検出器を用いる放射線検出方法であって、体内に挿入された前記把持鉗子の各先端部で構成された2つのプローブがそれぞれ備える各放射線検出素子により、同時計数方式で消滅ガンマ線を検出するステップと、前記消滅ガンマ線の検出結果に基づいて、前記把持鉗子が備える報知部を作動させるステップと、を有する放射線検出方法を提供することも可能である。
 本発明の態様13に係る放射線検出器において、前記制御部は、前記2つのプローブの開き角度、又は前記2つのプローブの間の距離に基づいて、同時計数の検出感度を補正してもよい。
 上記の構成によれば、患部の放射能を正確に測定することができる。
 本発明の態様14に係る放射線検出器において、前記制御部は、前記2つのプローブの開き角度、又は前記2つのプローブの間の距離に基づいて、計測対象の大きさを計測してもよい。
 上記の構成によれば、患部の位置だけでなく、患部の大きさも検出することができる。
 本発明の態様15に係る放射線検出器において、前記制御部は、前記2つのプローブの開き角度、又は前記2つのプローブの間の距離に基づいて、前記計測対象の体積を計算し、体積当たりの放射能を計算してもよい。
 上記の構成によれば、患部の位置だけでなく、放射性核種の集積密度、つまり患部の分散度合いを検出することができる。
 本発明の態様16に係る放射線検出器において、前記制御部は、前記2つのプローブの開き角度の変化、又は前記2つのプローブの間の距離の変化に基づいて、前記放射線検出器の作動の開始及び/又は終了の制御を行ってもよい。
 上記の構成によれば、操作者が放射線検出器の動作の始動、停止を操作する必要がなくなるため、診断又は治療の作業効率を高めることができる。
 本発明の態様17に係る放射線検出器において、前記報知部は、発光部であり、前記2つのプローブの少なくとも一方、又は前記把持鉗子の本体部に配置されていてもよい。
 上記の構成によれば、把持鉗子のプローブを注視しながら、別体の表示画面を見る必要はなく当該体内組織に放射性核種が集積しているか否かを操作者により正しく認識させることができる。
 本発明の態様18に係る放射線検出器において、前記2つのプローブのそれぞれに内蔵された前記放射線検出素子は、それぞれの断面形状が半円形であってもよい。
 上記の構成によれば、放射線検出素子の体積を大きくすることができ、検出効率を向上させることができる。
 本発明の態様19に係る放射線検出器において、前記報知部は、前記消滅ガンマ線の検出結果と、患部の悪性度に関する指標との比較結果を報知してもよい。
 上記の構成によれば、ユーザは報知部の報知の態様によって患部の悪性度を容易に認識することができる。
 本発明の態様20に係る放射線検出器において、前記制御部は、前記放射線検出器の本体とは別の筐体内に設けられていてもよい。
 上記の構成によれば、制御部の処理量が大きく、制御部のサイズを大きくする必要がある場合でも、手で把持して操作する放射線検出器の操作性を損なうおそれをなくすことができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1,1A,2,3 放射線検出器
10 プローブ
20 放射線検出素子
22,134 光ファイバ
30,130 発光部(報知部)
32,132 発光素子
40 受光部(増幅部)
50 制御部
52 プロセッサ
54 メモリ
56 バス
62 入出力インターフェース(I/O)
64 設定部
66 計数部
70 入力部
80,105 操作部
82 ケーブル
103 第1操作部
104 第2操作部
110 本体部
120 第1受光素子(増幅部)
121 第2受光素子(増幅部)
122 第1光ファイバ
123 第2光ファイバ
136 同時計数回路
137 補正部
138 エンコーダ
140 挟み部(プローブ)
142 第1挟み部
143 第2挟み部
144 第1シンチレータ(放射線検出素子)
145 第2シンチレータ(放射線検出素子)
160 開閉軸
200 光学カメラ

 

Claims (20)

  1.  放射線検出素子を内蔵した、体内に挿入可能なプローブと、
     前記プローブに設けられた報知部と、
     前記放射線検出素子による放射線の検出結果に基づいて前記報知部を作動させる制御部と、
    を備える放射線検出器。
  2.  前記報知部を作動させるか否かを判別するための前記検出結果に対応する閾値を、前記制御部に対して設定する設定部をさらに備える、請求項1に記載の放射線検出器。
  3.  前記報知部は、前記プローブの外面に設けられた発光部である、請求項1又は2に記載の放射線検出器。
  4.  前記制御部は、前記検出結果として得られた放射線の計数又は計数率に基づいて、発光強度、発光パターン、発光色、及び発光時間のうちの少なくとも1つを変化させるように前記発光部を制御する、請求項3に記載の放射線検出器。
  5.  前記発光部と前記発光部を発光させるための発光素子とが離間して配置され、前記発光素子と前記発光部との間が光ファイバで光学的に結合されている、請求項3又は4に記載の放射線検出器。
  6.  前記発光部は、前記プローブの外周面を周回するように連続的に設けられているか、前記プローブの外面から少なくとも部分的に突出しているか、又は前記プローブの外面の複数個所に設けられている、請求項3から5のいずれか1項に記載の放射線検出器。
  7.  前記放射線検出素子に入射する放射線の入射方向を規制するコリメータを備える、請求項1から6のいずれか1項に記載の放射線検出器。
  8.  前記放射線検出素子がコンプトンカメラ用検出素子である、請求項1から6のいずれか1項に記載の放射線検出器。
  9.  前記放射線検出素子が同時計数方式の放射線検出素子である、請求項1から6のいずれか1項に記載の放射線検出器。
  10.  前記プローブが2つ設けられており、それぞれの前記プローブに前記放射線検出素子が内蔵されている、請求項9に記載の放射線検出器。
  11.  手術用の把持鉗子として構成され、前記把持鉗子の2つの先端部がそれぞれ前記放射線検出素子を備える前記プローブとして機能する、請求項10に記載の放射線検出器。
  12.  体内に挿入可能な手術用の把持鉗子として構成された放射線検出器であって、
     前記把持鉗子の2つの先端部が、それぞれ放射線検出素子を内蔵した2つのプローブとして構成され、
     前記把持鉗子に設けられた報知部と、
     前記2つのプローブにそれぞれ内蔵された各放射線検出素子の同時計数による消滅ガンマ線の検出結果に基づいて前記報知部を作動させる制御部と、
    を備える放射線検出器。
  13.  前記制御部は、前記2つのプローブの開き角度、又は前記2つのプローブの間の距離に基づいて、同時計数の検出感度を補正する、請求項12に記載の放射線検出器。
  14.  前記制御部は、前記2つのプローブの開き角度、又は前記2つのプローブの間の距離に基づいて、計測対象の大きさを計測する、請求項12又は13に記載の放射線検出器。
  15.  前記制御部は、前記2つのプローブの開き角度、又は前記2つのプローブの間の距離に基づいて、計測対象の体積を計算し、体積当たりの放射能を計算する、請求項12から14のいずれか1項に記載の放射線検出器。
  16.  前記制御部は、前記2つのプローブの開き角度の変化、又は前記2つのプローブの間の距離の変化に基づいて、前記放射線検出器の作動の開始及び/又は終了の制御を行う、請求項12から15のいずれか1項に記載の放射線検出器。
  17.  前記報知部は、発光部であり、前記2つのプローブの少なくとも一方、又は前記把持鉗子の本体部に配置されている、請求項12から16のいずれか1項に記載の放射線検出器。
  18.  前記2つのプローブのそれぞれに内蔵された前記放射線検出素子は、それぞれの断面形状が半円形である、請求項12から17のいずれか1項に記載の放射線検出器。
  19.  前記報知部は、前記消滅ガンマ線の検出結果と、患部の悪性度に関する指標との比較結果を報知する、請求項12から18のいずれか1項に記載の放射線検出器。
  20.  前記制御部は、前記放射線検出器の本体とは別の筐体内に設けられている、請求項1から19のいずれか1項に記載の放射線検出器。
PCT/JP2021/021132 2020-06-25 2021-06-03 放射線検出器 WO2021261198A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022531646A JPWO2021261198A1 (ja) 2020-06-25 2021-06-03
CN202180044362.9A CN115956212A (zh) 2020-06-25 2021-06-03 辐射侦测器
EP21828239.0A EP4174529A1 (en) 2020-06-25 2021-06-03 Radiation detector
US18/002,510 US20230301612A1 (en) 2020-06-25 2021-06-03 Radiation detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020109529 2020-06-25
JP2020-109529 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021261198A1 true WO2021261198A1 (ja) 2021-12-30

Family

ID=79282574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021132 WO2021261198A1 (ja) 2020-06-25 2021-06-03 放射線検出器

Country Status (5)

Country Link
US (1) US20230301612A1 (ja)
EP (1) EP4174529A1 (ja)
JP (1) JPWO2021261198A1 (ja)
CN (1) CN115956212A (ja)
WO (1) WO2021261198A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243364A1 (ja) * 2022-06-16 2023-12-21 国立研究開発法人量子科学技術研究開発機構 放射線計測装置、放射線計測方法、放射線計測プログラム、体内組織移動方法及び非一時的記録媒体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280063A (ja) * 1988-09-14 1990-03-20 Olympus Optical Co Ltd 放射線検出治療装置
JPH02259589A (ja) * 1989-03-31 1990-10-22 Tokyo Electric Power Co Inc:The 半導体放射線検出装置
JPH10325876A (ja) * 1997-05-26 1998-12-08 Aloka Co Ltd 放射性表面汚染検出装置
JP2001228256A (ja) * 2000-02-14 2001-08-24 Ohyo Koken Kogyo Co Ltd サーベイメータにおける視覚表示付き検出器
JP2002257938A (ja) * 2001-02-28 2002-09-11 Anzai Medical Kk 放射線源検出装置および検出方法
JP2003079634A (ja) * 2001-09-10 2003-03-18 Olympus Optical Co Ltd 外科手術用処置具
JP2005043156A (ja) * 2003-07-25 2005-02-17 Apollo Mec:Kk 放射線検出器
US20110208049A1 (en) * 2001-10-25 2011-08-25 Tumer Tumay O Imaging Probe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280063A (ja) * 1988-09-14 1990-03-20 Olympus Optical Co Ltd 放射線検出治療装置
JPH02259589A (ja) * 1989-03-31 1990-10-22 Tokyo Electric Power Co Inc:The 半導体放射線検出装置
JPH10325876A (ja) * 1997-05-26 1998-12-08 Aloka Co Ltd 放射性表面汚染検出装置
JP2001228256A (ja) * 2000-02-14 2001-08-24 Ohyo Koken Kogyo Co Ltd サーベイメータにおける視覚表示付き検出器
JP2002257938A (ja) * 2001-02-28 2002-09-11 Anzai Medical Kk 放射線源検出装置および検出方法
JP2003079634A (ja) * 2001-09-10 2003-03-18 Olympus Optical Co Ltd 外科手術用処置具
US20110208049A1 (en) * 2001-10-25 2011-08-25 Tumer Tumay O Imaging Probe
JP2005043156A (ja) * 2003-07-25 2005-02-17 Apollo Mec:Kk 放射線検出器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DOUGLAS A. MURREY, JR. ET AL.: "Perioperative 18F-fluorodeoxyglucose-guided imaging using the becquerel as a quantitative measure for optimizing surgical resection in patients with advanced malignancy", THE AMERICAN JOURNAL OF SURGERY, vol. 198, 2009, pages 834 - 840
YOKOYAMA KUNIHIKOTOSHINAMI NORIHISATSUGAWA KOUICHIROUMIWA KOUICHI: "Senchinel rimpasetsu no aisotopu kensyutsu hou (Isotope detection method in sentinel lymph node", JAPANESE-DEUTSCHE MEDIZINISCHE BERICHTE, vol. 46, no. 2, 2001, pages 212 - 217

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243364A1 (ja) * 2022-06-16 2023-12-21 国立研究開発法人量子科学技術研究開発機構 放射線計測装置、放射線計測方法、放射線計測プログラム、体内組織移動方法及び非一時的記録媒体

Also Published As

Publication number Publication date
CN115956212A (zh) 2023-04-11
JPWO2021261198A1 (ja) 2021-12-30
US20230301612A1 (en) 2023-09-28
EP4174529A1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
US5325855A (en) Flexible intraoperative radiation imaging camera
US5119818A (en) Radiation detecting biopsy probe
US5170055A (en) Radiation detecting biopsy probe
Zanzonico et al. The intraoperative gamma probe: basic principles and choices available
ES2206924T3 (es) Dispositivo con gamma-camara miniaturizada con resolucion espacial muy elevada.
ES2810773T3 (es) Sonda gamma con control de pieza de mano de parámetros de detección
EP1246567B1 (en) Intravascular imaging detector
US7180069B2 (en) Radiation detector
JP2009521694A (ja) 手術内使用のための位置特定システムを含む独立型ミニガンマカメラ
JP2008512145A (ja) 核医学画像装置
WO2021261198A1 (ja) 放射線検出器
US9445774B2 (en) Energy application apparatus
US8785869B2 (en) System and method for providing emission mammography
Raylman et al. Evaluation of ion‐implanted‐silicon detectors for use in intraoperative positron‐sensitive probes
CN111936051A (zh) 拴系式腹腔镜探针
Tipnis et al. Feasibility of a beta-gamma digital imaging probe for radioguided surgery
Pani et al. Development of a novel gamma probe for detecting radiation direction
KR102045857B1 (ko) 스마트 분자추적 멀티 프로브
JP7491571B2 (ja) 医療用被ばく線量モニター
Mester et al. A handheld intra-operative β+ sensing system
KR20240006306A (ko) 양전자 및 감마선 이중 검출기 및 이를 이용한 악성 종양 진단정보 제공방법
Mester et al. A handheld probe for β+-emitting radiotracer detection in surgery, biopsy and medical diagnostics based on Silicon Photomultipliers
Stolin et al. Fingertip beta imager based on the SiPM technology
Behling et al. Miniature low-cost g-radiation sensor for localization of radioactively marked lymph nodes
JP2005043156A (ja) 放射線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021828239

Country of ref document: EP

Effective date: 20230125