WO2021260933A1 - 推定装置、推定方法、および記録媒体 - Google Patents

推定装置、推定方法、および記録媒体 Download PDF

Info

Publication number
WO2021260933A1
WO2021260933A1 PCT/JP2020/025308 JP2020025308W WO2021260933A1 WO 2021260933 A1 WO2021260933 A1 WO 2021260933A1 JP 2020025308 W JP2020025308 W JP 2020025308W WO 2021260933 A1 WO2021260933 A1 WO 2021260933A1
Authority
WO
WIPO (PCT)
Prior art keywords
program
advertisement
display information
related information
estimation
Prior art date
Application number
PCT/JP2020/025308
Other languages
English (en)
French (fr)
Inventor
将平 藤原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2022532218A priority Critical patent/JP7487775B2/ja
Priority to PCT/JP2020/025308 priority patent/WO2021260933A1/ja
Publication of WO2021260933A1 publication Critical patent/WO2021260933A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/262Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk

Definitions

  • the present invention relates to an estimation device or the like that estimates the degree of relevance, which is an index of the correlation between a program and an advertisement.
  • CM Commercial Message
  • CM transaction contracts broadcast on television include time contracts, spot contracts, and non-broadcast contracts. Of these contracts, CMs broadcast based on spot contracts have various combinations and are determined by specifying individual conditions.
  • the time zone when the commercial is broadcast based on the spot contract is determined in a work called draft.
  • the broadcasting station (ordering side) that provides the CM broadcasting space (also called advertising space) includes the conditions (also called contract conditions) presented by the advertiser or advertising agency (ordering side) and the program table of the broadcasting station. Make a plan in light of.
  • Patent Document 1 discloses a method of optimizing an advertising space by using information for identifying an effective area composed of an advertising space in which the content rate of a specific target is equal to or higher than a predetermined threshold value.
  • the total sum of the total audience rating (acquired GRP (Gross Rating Point)) ratio expected to be acquired by the ad space in the effective area for all the ad space in a predetermined period becomes a predetermined value.
  • the acquisition GRP ratio of all advertising space for a predetermined period is adjusted.
  • the advertising space is optimized based on information independent of the content of the program, such as audience rating, broadcast date and time, and time rank.
  • the CM related to the content of the program is not always broadcast in the program frame of the program. Therefore, the method of Patent Document 1 cannot always effectively provide a CM related to the content of the program to a viewer who is interested in the content of the program.
  • An example of an object of the present invention is to provide an estimation device or the like that can predict the degree of relevance between a program to be estimated for correlation and an advertisement with high accuracy in order to solve the above-mentioned problems.
  • the estimation device of one aspect of the present invention is a learning unit using an acquisition unit that acquires program-related information about a program and advertisement-related information about an advertisement, and program-related information and advertisement-related information about a program and an advertisement that have been broadcast in the past.
  • the generated estimation model that estimates the degree of relevance, which is an index of the correlation between the program and the advertisement
  • the program-related information and the advertisement-related information about the program and the advertisement for which the correlation is to be estimated are input, and the correlation estimation target is input. It is provided with a relevance estimation unit that estimates the relevance between the program and the advertisement.
  • the computer acquires the program-related information related to the program and the advertisement-related information related to the advertisement, and learns using the program-related information and the advertisement-related information related to the programs and advertisements broadcast in the past.
  • the estimation model that estimates the degree of relevance, which is an index of the correlation between the program and the advertisement
  • the program-related information and the advertisement-related information about the program and the advertisement for which the correlation is to be estimated are input to estimate the correlation. Estimate the relevance of the target program and the advertisement.
  • the program of one aspect of the present invention is generated by a process of acquiring program-related information related to a program and advertisement-related information related to an advertisement, and learning using program-related information and advertisement-related information related to programs and advertisements broadcast in the past.
  • program-related information and advertisement-related information related to the program to be estimated for correlation and the advertisement are input to the estimation model for estimating the degree of relevance, which is an index of the correlation between the program and the advertisement, and the program to be estimated for the correlation. And let the computer perform the process of estimating the relevance of the advertisement.
  • an estimation device or the like that can predict the degree of relevance between a program to be estimated for correlation and an advertisement with high accuracy.
  • the relevance estimation system of the present embodiment calculates the relevance, which is an index of the correlation between a program broadcast on television (hereinafter referred to as television broadcasting) and a commercial message (CM).
  • the degree of relevance is the number and time at which the feature amount extracted from the information related to the program (also called the program-related information) and the feature amount extracted from the information related to the CM (advertisement) (advertisement-related information) match. It is an evaluation index that quantifies the degree of such things.
  • the degree of relevance is referred to in the drafting of a commercial message (CM) inserted in the program frame of a program to be broadcast on television.
  • CM and advertisement may be expressed with the same meaning.
  • FIG. 1 is a block diagram showing an example of the configuration of the relevance estimation system 1 of the present embodiment.
  • the relevance estimation system 1 includes a learning device 11 and an estimation device 12.
  • the relevance estimation system 1 may be configured as a single device (relevance estimation device).
  • the learning device 11 inputs a data set of program-related information related to past programs and advertisement-related information related to past advertisements as correct answer data.
  • program-related information and advertisement-related information are edited into a data set in a terminal device (not shown) operated by a worker who drafts a commercial.
  • program-related information and advertisement-related information may be edited into a data set on a dedicated server. There is no particular limitation on the method of converting the data set of program-related information and advertisement-related information into correct answer data.
  • the program-related information includes data held by the broadcasting station (1st party data) and externally provided data (3rd party data).
  • the 1st party data (also referred to as party data) is acquired from a server or the like used by a program production company via a network such as the Internet.
  • information acquired from a program production company may be input to a terminal device (not shown) on the broadcasting station side.
  • the 3rd party data (also referred to as third party data) is acquired by selecting from SNS posted data or the like with a specific hash tag such as a program name to be broadcast through API (Application Programming Interface) or the like.
  • the 1st party data included in the program-related information includes at least one of program broadcasting data, program EPG (Electronic Programming Guide) data, and program metadata.
  • Program broadcast data is data related to the contents of a program.
  • the program broadcast data includes the broadcast time of the program, the genre, the performers, BGM (BackGroundMusic), contents, and the like.
  • the program EPG data (also referred to as electronic program guide data) is data edited by the broadcasting station side such as the performers, genres, and keywords of the program, and is provided to the viewer as a program guide or program organization.
  • Program metadata is data used for program management and is presented to the broadcasting station when the program producer carries in the material.
  • the 3rd party data included in the program-related information includes at least one of SNS (Social Networking Service) posting data, browser / SNS search data, and viewer questionnaire data.
  • SNS Social Networking Service
  • the SNS posted data is data related to programs such as program names and performers searched by using hashtags and the like.
  • the browser / SNS search data (also referred to as search data) is data related to a program acquired by using a cookie or the like.
  • Viewer questionnaire data is data on programs that have been broadcast in the past, such as regular programs that are broadcast daily / weekly, and that are collected from viewers by the broadcasting station through an official app or the like.
  • Advertisement-related information includes data held by the advertiser (2nd party data) and externally provided data (3rd party data).
  • the 2nd party data (also referred to as related party data) is acquired from a server or the like used by the advertiser via a network such as the Internet.
  • information acquired from the advertiser may be input in a terminal device (not shown) on the broadcasting station side.
  • the 3rd party data is acquired by selecting from the posted data of the SNS or the like by a specific hash tag such as a program name to be broadcast through API or the like.
  • the 2nd party data included in the advertisement-related information includes at least one of CM broadcast data, CM metadata, and advertiser metadata.
  • CM broadcast data (also referred to as advertisement broadcast data) is data related to the contents of CM.
  • the CM broadcast data includes a CM genre, an advertiser name, performers, BGM, contents, and the like.
  • CM metadata (also called advertising metadata) is data used for CM management.
  • the CM metadata includes a material advertiser name, a CM material name, a product name, a CM work name, and the like.
  • Advertiser metadata is data about an advertiser.
  • the advertiser metadata includes the advertiser's company name, industry, and the like.
  • the 2nd party data may include data related to a company image, a company color, and the like.
  • the 3rd party data included in the advertisement-related information includes SNS posting data, browser / SNS search data, and the like.
  • the SNS posting data and the browser / SNS search data included in the 3rd party data of the advertisement-related information are the same as the SNS posting data and the browser / SNS search data included in the 3rd party data of the program-related information.
  • the learning device 11 generates an estimation model by machine learning using program-related information and advertisement-related information. For example, the learning device 11 generates an estimation model by learning a feature space considering the relationship between program-related information and features extracted from advertisement-related information by using a metric learning method. For example, the learning device 11 uses a deep metric learning method to learn the feature space so that the distance between the feature vectors expressing the features extracted from the program-related information and the advertisement-related information reflects the degree of similarity. By doing so, an estimation model is generated. For example, the learning device 11 generates an estimation model that outputs a degree of relevance that quantifies the degree of matching number of features, time, and the like extracted from each of the program-related information and the advertisement-related information by machine learning.
  • the estimation model generated by the learning device 11 may be configured to estimate the degree of relevance between the feature quantities extracted from each of the program-related information and the advertisement-related information.
  • the estimation model generated by the learning device 11 is used to estimate the relevance between the program and the advertisement, which is the estimation target of the correlation.
  • the estimation device 12 acquires program-related information and advertisement-related information (also referred to as estimation target data) related to the program and advertisement to be estimated for the correlation. For example, the estimation device 12 acquires program-related information of at least one program scheduled to be broadcast during the drafting target period and advertisement-related information of the advertisement scheduled to be inserted during the drafting target period as correlation estimation target data. For example, the estimation device 12 acquires estimation target data from a terminal device (not shown) operated by a worker who makes a draft, or acquires estimation target data from a database.
  • the estimation device 12 extracts the feature amount from the estimation target data related to the program and the advertisement for which the correlation is estimated.
  • the estimation device 12 inputs the feature amount extracted from the estimation target data into the estimation model.
  • the degree of relevance between the program and the advertisement is output.
  • the estimation device 12 outputs the degree of relevance output from the estimation model. That is, the estimation device 12 inputs the feature amount extracted from the program-related information and the advertisement-related information related to the program and the advertisement to be the estimation target of the correlation into the estimation model, and predicts the degree of relevance between those programs and the advertisement. ..
  • the degree of relevance output from the estimation device 12 is displayed on the screen of a terminal device (not shown) operated by the operator who makes the draft. The worker can make a draft by referring to the degree of relevance displayed on the screen.
  • the degree of relevance output from the estimation device 12 may be stored in a storage device (not shown) or used for other purposes without being displayed on the screen.
  • FIG. 2 is a block diagram showing an example of the configuration of the learning device 11.
  • the learning device 11 has a feature amount extraction unit 111, a model construction unit 112, and a model storage unit 113.
  • the feature amount extraction unit 111 acquires the correct answer data 1 to n prepared in advance (n is a natural number). Each of the correct answer data 1 to n is a data set of program-related information and advertisement-related information.
  • the feature amount extraction unit 111 extracts the feature amount from the program-related information and the advertisement-related information included in the acquired correct answer data 1 to n.
  • the feature amount extraction unit 111 extracts a feature amount from metadata such as video data and SNS data included in the acquired program-related information and advertisement-related information.
  • the feature amount extraction unit 111 extracts a feature amount from program-related information and advertisement-related information by image sound recognition using at least one of image recognition and voice recognition.
  • the feature amount extraction unit 111 extracts the feature amount from the program-related information and the advertisement-related information by Web API, text analysis, or the like.
  • the correct answer data 1 to n include program-related information and advertisement-related information related to programs and advertisements that satisfy the predetermined conditions among combinations of programs and advertisements that have been broadcast in the past under predetermined conditions.
  • Dataset is selected. For example, as a predetermined condition, after the commercial is broadcast, the sales of the target service or product have increased by a certain number. For example, as a predetermined condition, after the CM is broadcast, the number of searches / accesses to the homepage of the sponsor of the CM and the target service or product has increased by a certain number. It should be noted that the predetermined conditions are not limited to these examples as long as the degree of relevance between the program and the advertisement can be estimated.
  • the model construction unit 112 acquires the feature amount extracted from the correct answer data 1 to n from the feature amount extraction unit 111.
  • the model building unit 112 performs machine learning using the features extracted from the correct answer data 1 to n, and generates an estimation model for estimating the degree of relevance between the program and the advertisement.
  • the model building unit 112 learns based on each feature amount extracted by the feature amount extracting unit 111 so that the combination of the input program and the advertisement is highly related. For example, the model construction unit 112 generates an estimation model that outputs a degree of relevance obtained by quantifying the degree of matching of feature quantities extracted from correct answer data 1 to n, time, and the like by machine learning.
  • the model construction unit 112 plots the input correct answer data 1 to n in the feature amount space by using a method such as metric learning or deep metric learning, and generates an estimation model according to the target distance.
  • the model building unit 112 learns a feature space in consideration of the relationship between features extracted from the correct answer data 1 to n by using a metric learning method.
  • the model building unit learns the feature space so that the distance between the feature vectors expressing the features extracted from the correct answer data 1 to n reflects the similarity by using the deep metric learning method.
  • the model storage unit 113 stores the estimation model built by the model construction unit 112.
  • the estimation model stored in the model storage unit 113 is used for estimating the relevance between the program and the advertisement by the estimation device 12.
  • FIG. 3 is a block diagram showing an example of the configuration of the estimation device 12.
  • the estimation device 12 has a feature amount extraction unit 121, a correlation estimation unit 122, a correlation storage unit 123, and an input / output unit 124.
  • FIG. 3 illustrates a terminal device 13 connected to the estimation device 12.
  • the input / output unit 124 is connected to the terminal device 13.
  • the terminal device 13 may be included in the relevance estimation system 1. Further, the input / output unit 124 may have separate input and output configurations.
  • the feature amount extraction unit 121 (also referred to as an acquisition unit) inputs program-related information and advertisement-related information (also referred to as estimation target data) related to the program and advertisement to be estimated for the correlation. For example, the feature amount extraction unit 121 is scheduled to insert the program-related information about the program to be broadcast in the program frame included in the timetable of the draft target period designated by the advertiser and the draft target period designated by the advertiser. Enter the ad-related information about the ad. The feature amount extraction unit 111 extracts the feature amount from each of the acquired program-related information and advertisement-related information.
  • the feature amount extraction unit 121 has the same configuration as the feature amount extraction unit 111 of the learning device 11.
  • the correlation estimation unit 122 inputs the feature quantities extracted from each of the program-related information and the advertisement-related information related to the program and the advertisement to be the estimation target of the correlation into the estimation model, and estimates the degree of relevance between the program and the advertisement.
  • the correlation estimation unit 122 stores the estimated degree of relevance in the correlation storage unit 123.
  • the correlation estimation unit 122 inputs the feature amounts of the program-related information and the CM-related information into the estimation model, and calculates the degree of relevance for each feature amount extracted from the program-related information and the advertisement-related information. You may.
  • the correlation storage unit 123 stores the degree of relevance estimated by the correlation estimation unit 122.
  • the correlation storage unit 123 stores the degree of relevance according to the combination of the program and the advertisement in the form of a database or the like.
  • the correlation storage unit 123 may store the degree of relevance for each feature amount extracted from the program-related information and the advertisement-related information.
  • the input / output unit 124 correlates the degree of relevance between the advertisement received from the advertiser and the program broadcast within the broadcast period specified by the advertiser in response to the request from the terminal device 13. Obtained from the relation storage unit 123.
  • the input / output unit 124 outputs the acquired relevance to the terminal device 13.
  • the input / output unit 124 acquires the degree of relevance in response to the request from the terminal device 13 from the correlation storage unit 123, and outputs the acquired degree of relevance to the terminal device 13.
  • FIG. 4 is an example of displaying the relevance degree estimated by the relevance degree estimation system 1 on the screen of the terminal device 13.
  • a value (135.3) indicating the degree of relevance estimated by the relevance estimation system 1 is displayed on the screen.
  • FIG. 5 shows the relevance of each program frame estimated by the relevance estimation system 1 on the screen of the terminal device 13 in association with each of the program frames included in the timetable 140 composed of a plurality of program frames. This is an example of making it work.
  • the relevance degree for each program frame estimated by the relevance degree estimation system 1 is displayed in association with each of the program frames constituting the timetable 140.
  • the timetable 140 of the broadcasting period specified by the inquiry data from the advertiser is displayed on the screen of the terminal device 13.
  • FIG. 6 is an example of changing the display format of the program frame of the timetable 140 according to the value of the degree of relevance in the example of FIG.
  • ranking is performed according to the value of the degree of relevance.
  • the ranks of the top 90 to 100% (%), the top 70 to 90%, and the top 50 to 70% of the relevance values in the timetable 140 are displayed in the same display format.
  • the program frame including the program content closely related to the CM is shown in a conspicuous color or pattern, or is surrounded by a frame to make it stand out. The magnitude relationship of is visualized.
  • FIG. 7 is a flowchart for explaining the learning phase.
  • the learning device 11 will be described as an operation subject.
  • the learning device 11 acquires correct answer data (step S111).
  • the learning device 11 extracts the feature amount from the acquired correct answer data (step S112).
  • the learning device 11 generates an estimation model by machine learning using the extracted features (step S113).
  • the learning device 11 may relearn the estimation model according to the result of verifying the versatility of the estimation model using the verification data or testing the estimation model using the test data.
  • the learning device 11 stores the generated estimation model (step S114).
  • FIG. 8 is a flowchart for explaining the estimation phase.
  • the estimation device 12 will be described as an operation subject.
  • the estimation device 12 acquires estimation target data regarding a program and an advertisement, which are estimation targets of the correlation (step S121).
  • the estimation device 12 extracts the feature amount from the acquired estimation target data (step S122).
  • the estimation device 12 inputs the extracted features into the estimation model and estimates the degree of relevance between the program and the advertisement (step S123).
  • the estimation device 12 stores the degree of relevance estimated using the estimation model in association with the program and the advertisement (step S124).
  • the relevance estimation system of the present embodiment includes a learning device and an estimation device.
  • the learning device has a feature quantity extraction unit, a model construction unit, and a model storage unit.
  • the feature amount extraction unit acquires program-related information and advertisement-related information of programs and advertisements broadcast in the past.
  • the feature amount extraction unit extracts the feature amount from the acquired program-related information and advertisement-related information.
  • the model building unit generates an estimation model that estimates the degree of relevance, which is an index of the correlation between the program and the advertisement, by learning using the extracted features.
  • the model storage unit stores the estimated model generated by the model construction unit.
  • the estimation device has a feature amount extraction unit, a correlation estimation unit, a correlation storage unit, and an input / output unit (also referred to as an output unit).
  • the feature amount extraction unit acquires program-related information related to the program and advertisement-related information related to the advertisement.
  • the feature amount extraction unit extracts the feature amount from the acquired program-related information and advertisement-related information.
  • the correlation estimation unit inputs the extracted features into the estimation model and estimates the degree of relevance between the program for which the correlation is estimated and the advertisement.
  • the correlation storage unit stores the degree of relevance between the program for which the correlation is estimated and the advertisement, which is estimated by the correlation estimation unit.
  • the output unit outputs the degree of relevance between the program and the advertisement stored in the correlation storage unit.
  • the learning device of one aspect of the present embodiment generates an estimation model by learning using the feature amount extracted from the program-related information and the feature amount extracted from the advertisement-related information.
  • program-related information includes party data and third party data.
  • advertising-related information includes party data and third party data.
  • party data includes at least one of program broadcast data, electronic program guide data, and program metadata for previously broadcast programs.
  • stakeholder data includes at least one of advertising broadcast data, advertising metadata, and advertiser metadata for previously broadcast advertisements.
  • third party data includes at least one of posted data and search data for previously broadcast programs.
  • the estimation device inputs program-related information and advertisement-related information about the program and advertisement for which the correlation is to be estimated into the estimation model generated by the model building unit, and determines the degree of relevance between the program for which the correlation is to be estimated and the advertisement. presume.
  • the relationship between the content of the broadcasted program and the public impression of the program and the CM is not taken into consideration.
  • the CMs broadcast in the program slots where such programs are broadcast may be restricted by setting prohibited genres, or the broadcast time zone may be narrowed down. By doing so, some measures may be taken to avoid a decrease in advertising effectiveness.
  • the advertisement was not linked to the highly related program, a broadcasting contract with poor advertising efficiency was sometimes concluded.
  • the method of the present embodiment by extracting the feature amount using the video of the program and the CM, the third party data such as SNS, etc., the content of the program and the CM is stepped on and the mutual relationship is measured.
  • the extraction of the feature amount from the video data of the program and the CM can be automated by video analysis or audio analysis. Therefore, according to the method of the present embodiment, it is possible to construct an estimation model that predicts the degree of relevance between the program to be estimated for the correlation and the advertisement with high accuracy by learning using a huge amount of features related to the program and the CM.
  • the degree of relevance between the program and the advertisement can be predicted with high accuracy, so that the CM related to the content of the program is effective for the viewer who is interested in the content of the program. It will be possible to watch it. Further, according to the present embodiment, even if the program is such that the CM is not broadcast because the audience rating is low, the chance of the CM being broadcast increases according to the degree of relevance between the program and the advertisement. A new effect that has never existed before is born.
  • the relevance estimation system of the present embodiment is different from the relevance estimation system of the first embodiment in that it generates display information regarding the relevance of the program and the advertisement.
  • the estimation device of the present embodiment is a data set (estimation target data) of program-related information and advertisement-related information of programs and advertisements to be estimated for correlation in the estimation model generated by the learning device of the first embodiment. Input the feature amount extracted from, and estimate the degree of relevance between those programs and advertisements.
  • the estimation device of the present embodiment generates aggregated data regarding the feature amount extracted from the estimation target data.
  • the aggregated data is a parameter related to the matching feature amount (also called a keyword) among the feature amount extracted from the program-related information and the feature amount extracted from the advertisement-related information for the program and the advertisement to be estimated for the correlation. It is the aggregated data.
  • FIG. 9 is a block diagram showing an example of the configuration of the relevance estimation system 2 of the present embodiment.
  • the relevance estimation system 2 includes a learning device 21 and an estimation device 22. Since the learning device 21 has the same configuration as the learning device 11 of the first embodiment, detailed description thereof will be omitted.
  • the estimation device 22 is not exactly the same as the estimation device 12 of the first embodiment, but has the same function. In the following, the description of the same function as that of the first embodiment will be simplified.
  • the relevance estimation system 2 may be configured as a single device (relevance estimation device).
  • FIG. 10 is a block diagram showing an example of the configuration of the estimation device 22.
  • the estimation device 22 includes a feature amount extraction unit 221, a correlation estimation unit 222, a correlation storage unit 223, an input / output unit 224, a display information generation unit 225, an aggregated data generation unit 226, and an aggregated data storage unit 227. Since the feature amount extraction unit 221 and the correlation estimation unit 222 and the correlation storage unit 223 are the same as the corresponding configurations of the first embodiment, the description thereof will be omitted. If the aggregated data is not displayed, the aggregated data generation unit 226 and the aggregated data storage unit 227 may be omitted.
  • FIG. 10 illustrates a terminal device 23 connected to the estimation device 22.
  • the input / output unit 224 is connected to the terminal device 23.
  • the terminal device 23 may be included in the relevance estimation system 2. Further, regarding the input / output unit 224, the input and output configurations may be separated.
  • the input / output unit 224 receives a request from the terminal device 23.
  • the input / output unit 224 receives a request for display information (first display information or second display information) from the terminal device 23 from the terminal device 23.
  • first display information the degree of relevance between the program scheduled to be broadcast in the program frame and the advertisement scheduled to be broadcast in the draft target period is associated with each of the plurality of program frames constituting the timetable of the draft target period. Includes timetable images.
  • the second display information includes the feature amount extracted from the program-related information of the program scheduled to be broadcast during the drafting target period, and the aggregated data regarding the feature amount extracted from the advertisement scheduled to be broadcast during the drafting target period.
  • the input / output unit 224 outputs an instruction to generate the first display information and the second display information requested from the terminal device 23 to the display information generation unit 225. Further, when the request for the second display information is acquired from the terminal device 23, the input / output unit 224 issues an instruction to the aggregated data generation unit 226 to acquire the aggregated data.
  • the aggregated data generation unit 226 generates aggregated data using the feature amount extracted from the program-related information and the feature amount extracted from the advertisement-related information. For example, the aggregated data generation unit 226 generates aggregated data such as CM chance ranking and feature amount detailed data described later. The aggregated data generation unit 226 stores the generated aggregated data in the aggregated data storage unit 227.
  • the aggregated data generation unit 226 generates a CM chance ranking that ranks the height of the CM insertion effect based on the degree of matching of the feature amounts extracted from the program-related information and the advertisement-related information. For example, the aggregated data generation unit 226 generates a CM chance ranking for a plurality of CM chances (also referred to as advertising opportunities) included in the program. For example, the aggregated data generation unit 226 uses a matching feature amount as a keyword among the feature amounts extracted from the program-related information and the advertisement-related information, and generates detailed data (also referred to as feature amount detailed data) related to the keyword.
  • the keyword is a feature amount commonly included in the program-related information and the advertisement-related information related to the program and the advertisement for which the relevance is estimated.
  • the aggregated data generation unit 226 generates detailed feature amount data for each program regarding the number of appearances for each keyword, the appearance time, the number of posts on the SNS, the number of reactions in the SNS (also referred to as the number of reactions), and the like.
  • the aggregated data generation unit 226 generates information (for example, a graph) in which the number of appearances of keywords in a time zone near the CM chance is ranked as detailed feature amount data for each program.
  • the aggregated data generation unit 226 generates a graph showing the time transition of the number of posts related to the keyword in the program broadcasted in the past in the broadcast time zone of the program included in the drafting target period as the feature amount detailed data.
  • a general program includes at least one CM chance.
  • a program of about 1 hour in the golden time from 19:00 to 22:00 includes 3 to 4 CM chances of about 1 minute.
  • the aggregated data generation unit 226 ranks the number of appearances of the keyword in the time zone near the CM chance for each program broadcast in the program frame of the drafting target period.
  • the aggregated data generation unit 226 ranks the number of appearances of keywords in a time zone of about 5 minutes before and after the CM chance for each CM chance.
  • a worker who drafts a commercial can refer to the ranking of the number of appearances of keywords in a time zone near the CM chance included in the program, and assign a CM containing a high-ranked keyword to the CM chance.
  • CM that contains a lot of features that are highly related to keywords that appear frequently in the time zone near the CM chance is broadcast at that CM chance, the viewer will be interested in the content of the CM and the CM will The advertising effect of products and services will increase.
  • the aggregated data storage unit 227 stores the aggregated data generated by the aggregated data generation unit 226.
  • the aggregated data stored in the aggregated data storage unit 227 is used to generate the second display information.
  • the display information generation unit 225 acquires the degree of relevance corresponding to a plurality of program frames included in the timetable from the correlation storage unit 223.
  • the display information generation unit 225 generates first display information including a timetable image in which the degree of relevance corresponding to the program frames is displayed in each of the plurality of program frames included in the timetable.
  • the first display information is image information in which a degree of relevance is associated with at least one of the program frames constituting the timetable.
  • the display information generation unit 225 generates the first display information at the timing when the relevance of the programs broadcast in the program frame included in the timetable is aligned or at the timing when the request for the first display information is received from the terminal device 23. Generate.
  • the display information generation unit 225 outputs the generated first display information to the input / output unit 224.
  • FIG. 11 is a conceptual diagram showing an example (first display information 240) of the first display information to be displayed on the screen of the terminal device 23.
  • the first display information 240 includes at least an image relating to a timetable (timetable image 241).
  • the first display information 240 is a GUI (Graphical User Interface) that accepts operations by an operator.
  • FIG. 11 shows a pointer 205 for receiving an operation by an operator.
  • the timetable image 241 accepts inputs such as insertion of an advertisement into a program frame, a time unit of the inserted advertisement, and determination of a draft result.
  • the timetable image 241 may include, in addition to the timetable, a combo box in which the time unit of the advertisement inserted in each program frame of the timetable is set, and a button for accepting the determination of the draft result. good.
  • the contract information image includes the contract identification number (contract code), the name of the ordering party (advertiser), the contract amount, the audience rating conditions (contract seconds, audience rating target value), and the number of reference time zones. Includes items such as (reference number) and contract period.
  • the contract information image is not changed by the operation on the screen based on the contract information included in the inquiry data.
  • the draft result image includes the net price of the inserted advertisement, the multiplication rate, the conditions related to the viewing index set in advance between the ordering side and the ordering side, the advertisement unit price, and the like.
  • the first display information 240 may not include the contract information image or the draft result image, or may include an area other than the contract information image or the draft result image. Further, the layout of the timetable image 241 in the first display information 240, the contract information image, and the draft result image is not limited to the example of FIG. 11, and can be arbitrarily configured.
  • the display information generation unit 225 acquires the aggregated data of the program requested by the terminal device 23 from the aggregated data storage unit 227 in response to the instruction from the input / output unit 224.
  • the display information generation unit 225 generates the second display information including the acquired aggregated data.
  • the display information generation unit 225 generates the second display information including the CM chance ranking, the feature amount detailed data, the search window for searching the feature amount detailed data, and the like.
  • the second display information is image information including aggregated data of the selected program.
  • the display information generation unit 225 generates the second display information at the timing when the instruction for selecting or updating the program frame (program) is received from the input / output unit 224 or at the timing when the aggregated data is acquired from the aggregated data generation unit 226. do.
  • the request for the second display information regarding the feature amount included in the program broadcast in the program frame is related. It is transmitted to the input / output unit 224 of the estimation device 22 of the degree estimation system 2. Then, the second display information transmitted in response to the request is displayed on the screen of the terminal device 23.
  • FIG. 12 is an example in which the second display information 250 is superimposed on the first display information 240 and displayed on the screen of the terminal device 23.
  • the second display information 250 includes a first region 270, a second region 280, and a third region 290.
  • an image also referred to as a CM chance ranking image
  • CM chance ranking image including a CM chance ranking that ranks the height of the CM insertion effect with respect to a plurality of CM chances included in the selected program is displayed.
  • an image also referred to as a search image
  • the search window displayed in the second area 280 functions as a GUI that accepts the selection of keywords.
  • feature amount detailed data including an image (feature amount detailed data image) including detailed data about the keyword selected in the search window displayed in the second area 280 is displayed.
  • FIG. 13 is an example of a CM chance ranking image (CM chance ranking image 271) displayed in the first area 270.
  • the CM chance ranking image 271 includes a CM chance ranking in which four CM chances in a program broadcast in a selected program frame are ranked in descending order of advertising effect with respect to an advertisement scheduled to be inserted during the drafting target period.
  • the promotion effect of the first (1st) CM chance is the highest, and the promotion effect of the third (3rd) CM chance is the lowest.
  • FIG. 14 is an example of a search window (search window 281) displayed in the second area 280.
  • the search window 281 is a marker (star in FIG. 14) indicating keywords extracted from the selected program, the total value of the relevance of those keywords, whether or not they are added to favorites, etc., with respect to the advertisement to be inserted during the drafting target period. Mark) etc. are included.
  • the top keyword (AAA) surrounded by the broken line frame is selected.
  • the search window 281 includes a list box for rearranging the order of displayed keywords, selecting a genre, and displaying a browsing history.
  • the search window 281 of FIG. 14 is an example, and the search window displayed in the second area 280 may have a function of selecting a keyword.
  • FIG. 15 is an example (feature amount detailed data image 291) of the feature amount detailed data image displayed in the third area 290.
  • the feature amount detailed data image 291 is a feature relating to the number of appearances of the keyword selected in the search window of the second area 280 in the program, the appearance time, the number of posts to the SNS, the number of reactions in the SNS (also referred to as the number of reactions), and the like. Includes quantity detailed data.
  • FIG. 16 is another example of the feature amount detailed data image displayed in the third area 290 (feature amount detailed data image 292).
  • the feature amount detailed data image 292 includes a graph in which the number of times the selected keyword appears in the time zone near the CM chance in the selected program is ranked.
  • FIG. 17 is still another example of the feature amount detailed data image displayed in the third area 290 (feature amount detailed data image 293).
  • the feature amount detailed data image 293 includes a graph showing the time transition of the number of posts related to the selected keyword in the broadcast time zone of the past program broadcast in the selected program frame.
  • the feature quantity detailed data of FIGS. 15 to 17 may be displayed individually in the third region 290, or may be collectively displayed in the third region 290.
  • the aggregated data generation process is a process of generating aggregated data using the program-related information related to the program to be estimated to be correlated and the advertisement and the keywords extracted from the advertisement-related information.
  • the estimation phase is a phase in which the estimation target data is input to the estimation model and the degree of relevance is estimated.
  • the sub screen display process is a process for displaying a sub screen.
  • the sub screen update process is a process for updating the display of the sub screen. Since the learning phase of learning the features extracted from the correct answer data and generating the estimation model is the same as that of the first embodiment, the description thereof will be omitted.
  • FIG. 18 is a flowchart for explaining an aggregated data generation process for generating aggregated data using program-related information related to a program to be estimated to be correlated and an advertisement and a feature amount extracted from the advertisement-related information.
  • the aggregated data generation unit 226 included in the estimation device 22 will be described as an operation subject.
  • the aggregated data generation unit 226 acquires the feature amount (keyword) commonly included in the program-related information and the advertisement-related information of the program and the advertisement to be estimated for the correlation for each program (step S211). ).
  • the aggregated data generation unit 226 generates aggregated data related to the acquired keywords for each program (step S212).
  • the aggregated data generation unit 226 stores the generated aggregated data in the aggregated data storage unit 227 in association with the program (step S213).
  • the aggregated data stored in the aggregated data storage unit 227 is used to generate the second display information.
  • FIG. 19 is a flowchart for explaining the estimation phase.
  • the estimation device 22 will be described as an operation subject.
  • the estimation device 22 acquires estimation target data regarding a program and an advertisement, which are estimation targets of the correlation (step S221).
  • the estimation device 22 extracts the feature amount from the acquired estimation target data (step S222).
  • the estimation device 22 inputs the extracted features into the estimation model and estimates the degree of relevance between the program and the advertisement (step S223).
  • the estimation device 22 stores the degree of relevance estimated using the estimation model in association with the program and the advertisement (step S224).
  • the estimation device 22 when generating the first display information (Yes in step S225), the estimation device 22 includes a timetable image in which the degree of relevance is displayed in each program frame of the timetable using the stored relevance degree.
  • the first display information is generated (step S226).
  • the timing of generating the first display information is the timing at which the relevance of the programs broadcast in the program frame included in the timetable is aligned, or the timing at which the request for the first display information is received from the terminal device 23.
  • the first display information is not generated (No in step S225)
  • the process according to the flowchart of FIG. 19 is completed.
  • the estimation device 22 outputs the generated first display information to the terminal device 23 (step S227).
  • the generated first display information is displayed on the screen of the terminal device 23.
  • FIG. 20 is a flowchart for explaining a process of generating the second display information.
  • the display information generation unit 225 will be described as the main body of the operation.
  • the display information generation unit 225 receives an instruction from the input / output unit 224 to generate the second display information of the program selected in the first display information (step S231).
  • the display information generation unit 225 acquires the aggregated data of the selected program from the aggregated data storage unit 227 (step S232).
  • the display information generation unit 225 generates the second display information using the acquired aggregated data (step S233).
  • the display information generation unit 225 outputs the generated second display information to the input / output unit 224 (step S234).
  • the second display information output to the input / output unit 224 is output to the terminal device 23.
  • the generated second display information is displayed on the screen of the terminal device 23. For example, on the screen of the terminal device 23, the second display information is displayed superimposed on the first display information.
  • FIG. 21 is a flowchart for explaining a process of updating the second display information.
  • the display information generation unit 225 will be described as the main body of the operation.
  • the display information generation unit 225 receives an instruction from the input / output unit 224 to update the second display information so that the aggregated data of the keywords selected in the second display information search window is displayed ( Step S241).
  • the display information generation unit 225 acquires the aggregated data of the selected keyword from the aggregated data storage unit 227 (step S242).
  • the display information generation unit 225 generates the updated second display information in the aggregated data image including the aggregated data of the selected keyword (step S243).
  • the display information generation unit 225 outputs the generated second display information to the input / output unit 224 (step S244).
  • the second display information output to the input / output unit 224 is output to the terminal device 23.
  • the updated second display information is displayed on the screen of the terminal device 23.
  • the estimation device of the relevance estimation system of the present embodiment includes the display information generation unit, the aggregated data generation unit, in addition to the feature amount extraction unit, the correlation estimation unit, the correlation storage unit, and the output unit. And it is equipped with an aggregated data storage unit.
  • the display information generation unit generates display information including the degree of relevance between the program for which the correlation is estimated and the advertisement.
  • the output unit outputs the display information generated by the display information generation unit.
  • the display information output from the output unit is displayed on the screen of the terminal device operated by the worker who drafts the CM (advertisement).
  • the operator can recognize the relevance between the program and the advertisement by referring to the display information displayed on the screen of the terminal device.
  • the acquisition unit acquires program-related information of the program scheduled to be broadcast during the drafting target period and advertisement-related information of the advertisement scheduled to be broadcast during the drafting target period.
  • the correlation estimation unit inputs the acquired program-related information and advertisement-related information into the estimation model, and estimates the degree of relevance between the program and the advertisement.
  • the display information generation unit associates each of the plurality of program frames constituting the timetable of the drafting target period with the degree of relevance between the program scheduled to be broadcast in the program frame and the advertisement scheduled to be broadcast in the drafting target period. Generate the first display information including the image.
  • the output unit outputs the generated first display information.
  • the first display information output from the output unit is displayed on the screen of the terminal device operated by the worker who drafts the CM (advertisement).
  • the operator can recognize the relevance between the program and the advertisement included in the timetable by referring to the first display information displayed on the screen of the terminal device.
  • the estimation device includes an aggregated data generation unit and an aggregated data storage unit.
  • the aggregated data generation unit generates aggregated data in which keywords commonly included in the program-related information of the program and the advertisement-related information of the advertisement are aggregated for the program and the advertisement for which the correlation is estimated.
  • the aggregated data storage unit stores the aggregated data generated by the aggregated data generation unit in association with the program.
  • the display information generation unit generates the second display information in which the aggregated data corresponding to the program scheduled to be broadcast is displayed in the program frame selected in the timetable image included in the first display information.
  • the output unit outputs the generated second display information.
  • the display information generation unit generates second display information in which aggregated data is displayed for each keyword associated with a program scheduled to be broadcast during the drafting target period.
  • the aggregated data includes at least one of the number of times a keyword appears in a program, the time the keyword appears in the program, the number of posts to the keyword, and the number of reactions to the keyword.
  • the output unit outputs the second display information generated by the display information generation unit.
  • the display information generation unit has aggregated data that ranks at least one advertising opportunity according to the number of appearances of keywords in a time zone near at least one advertising opportunity included in a program scheduled to be broadcast during the drafting target period. Generate the second display information to be displayed.
  • the input / output unit outputs the second display information generated by the display information generation unit.
  • the display information generation unit generates the second display information including a search window for searching for a keyword to be displayed in the aggregated data.
  • the display information generation unit generates the second display information including the aggregated data of the keywords selected in the search window.
  • the output unit outputs the second display information generated by the display information generation unit.
  • the second display information output from the output unit is displayed on the screen of the terminal device operated by the worker who drafts the CM (advertisement).
  • the operator can recognize statistical information about the feature amount extracted from the program of the advertisement insertion candidate.
  • the learning device of the present embodiment has a simplified configuration of the relevance estimation system of the first to second embodiments.
  • FIG. 22 is a conceptual diagram showing an example of the relevance estimation system 3 of the present embodiment.
  • the relevance estimation system 3 includes a learning device 31 and an estimation device 32.
  • the learning device 31 acquires program-related information and advertisement-related information related to programs and advertisements broadcast in the past.
  • the learning device 31 generates an estimation model that estimates the degree of relevance, which is an index of the correlation between the program and the advertisement, by learning using the acquired program-related information and the advertisement-related information.
  • the estimation device 32 acquires program-related information related to the program and advertisement-related information related to the advertisement.
  • the estimation device 32 inputs the program-related information and the advertisement-related information related to the program and the advertisement for which the correlation is to be estimated into the estimation model, and estimates the relevance between the program and the advertisement for which the correlation is to be estimated.
  • the relevance estimation system of the present embodiment it is possible to construct an estimation model that predicts the relevance between the program to be estimated for the correlation and the advertisement with high accuracy by learning using the information about the program and the advertisement.
  • the relevance between the program and the advertisement can be predicted with high accuracy.
  • the learning device of the present embodiment has a simplified configuration of the learning device of the first to second embodiments.
  • FIG. 23 is a conceptual diagram showing an example of the learning device 41 of the present embodiment.
  • the learning device 41 includes a feature amount extraction unit 411 and a model construction unit 412.
  • the feature amount extraction unit 411 acquires program-related information and advertisement-related information related to programs and advertisements broadcast in the past. The feature amount extraction unit 411 extracts the feature amount from the acquired program-related information and advertisement-related information.
  • the model building unit 412 generates an estimation model 400 that estimates the degree of relevance, which is an index of the correlation between the program and the advertisement, by learning using the extracted features.
  • the learning device of the present embodiment it is possible to construct an estimation model that predicts the relevance between the program to be estimated for the correlation and the advertisement with high accuracy by learning using the information about the program and the advertisement.
  • the learning device of the present embodiment has a simplified configuration of the estimation device of the first to second embodiments.
  • FIG. 24 is a conceptual diagram showing an example of the estimation device 52 of the present embodiment.
  • the estimation device 52 includes an acquisition unit 521 and a relevance estimation unit 522.
  • the acquisition unit 521 acquires program-related information related to the program and advertisement-related information related to the advertisement.
  • the relevance estimation unit 522 inputs the program-related information and the advertisement-related information related to the program to be estimated for the correlation and the advertisement into the estimation model, and estimates the relevance between the program to be estimated for the correlation and the advertisement.
  • the estimation model is a model generated by learning using program-related information and advertisement-related information related to programs and advertisements broadcast in the past.
  • the estimation model outputs the degree of relevance, which is an index of the correlation between the program and the advertisement, when the program-related information and the advertisement-related information regarding the program and the advertisement for which the correlation is estimated are input.
  • the relevance between the program to be estimated for the correlation and the advertisement can be predicted with high accuracy by using the estimation model that predicts the relevance between the program and the advertisement with high accuracy. Therefore, according to the present embodiment, it is possible for a viewer who is interested in the content of the program to effectively view the CM related to the content of the program.
  • the information processing device 90 in FIG. 25 is a configuration example for realizing the device of each embodiment, and does not limit the scope of the present invention.
  • the information processing device 90 includes a processor 91, a main storage device 92, an auxiliary storage device 93, an input / output interface 95, and a communication interface 96.
  • the interface is abbreviated as I / F (Interface).
  • the processor 91, the main storage device 92, the auxiliary storage device 93, the input / output interface 95, and the communication interface 96 are connected to each other via the bus 98 so as to be capable of data communication. Further, the processor 91, the main storage device 92, the auxiliary storage device 93, and the input / output interface 95 are connected to a network such as the Internet or an intranet via the communication interface 96.
  • the processor 91 expands the program stored in the auxiliary storage device 93 or the like to the main storage device 92, and executes the expanded program.
  • the software program installed in the information processing apparatus 90 may be used.
  • the processor 91 executes the processing by the apparatus according to this embodiment.
  • the main storage device 92 has an area in which the program is expanded.
  • the main storage device 92 may be a volatile memory such as a DRAM (Dynamic Random Access Memory). Further, a non-volatile memory such as MRAM (Magnetoresistive Random Access Memory) may be configured / added as the main storage device 92.
  • DRAM Dynamic Random Access Memory
  • MRAM Magnetic Random Access Memory
  • the auxiliary storage device 93 stores various data.
  • the auxiliary storage device 93 is composed of a local disk such as a hard disk or a flash memory. It is also possible to store various data in the main storage device 92 and omit the auxiliary storage device 93.
  • the input / output interface 95 is an interface for connecting the information processing device 90 and peripheral devices.
  • the communication interface 96 is an interface for connecting to an external system or device through a network such as the Internet or an intranet based on a standard or a specification.
  • the input / output interface 95 and the communication interface 96 may be shared as an interface for connecting to an external device.
  • the information processing device 90 may be configured to connect an input device such as a keyboard, a mouse, or a touch panel, if necessary. These input devices are used to input information and settings. When the touch panel is used as an input device, the display screen of the display device may also serve as the interface of the input device. Data communication between the processor 91 and the input device may be mediated by the input / output interface 95.
  • the information processing apparatus 90 may be equipped with a display device for displaying information.
  • a display device it is preferable that the information processing device 90 is provided with a display control device (not shown) for controlling the display of the display device.
  • the display device may be connected to the information processing device 90 via the input / output interface 95.
  • the above is an example of the hardware configuration for enabling the device according to each embodiment.
  • the hardware configuration of FIG. 25 is an example of a hardware configuration for executing arithmetic processing of the device according to each embodiment, and does not limit the scope of the present invention.
  • the scope of the present invention also includes a program for causing a computer to execute a process related to the apparatus according to each embodiment.
  • a recording medium on which a program according to each embodiment is recorded is also included in the scope of the present invention.
  • the recording medium can be realized by, for example, an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the recording medium may be realized by a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card, a magnetic recording medium such as a flexible disk, or another recording medium.
  • the components of the device of each embodiment can be arbitrarily combined. Further, the components of the device of each embodiment may be realized by software or by a circuit.
  • (Appendix 1) An acquisition unit that acquires program-related information related to programs and advertisement-related information related to advertisements, Correlation to an estimation model that estimates the degree of relevance, which is an index of the correlation between the program and the advertisement, generated by learning using the program-related information and the advertisement-related information regarding the programs and advertisements broadcast in the past.
  • the program-related information includes party data including at least one of program broadcast data, electronic program guide data, and program metadata of the previously broadcasted program, and posted data and searches related to the previously broadcasted program.
  • the estimation device according to Appendix 1 which includes third-party data including at least one of the data.
  • the advertisement-related information includes related party data including at least one of advertisement broadcast data, advertisement metadata, and advertiser metadata of the advertisement broadcasted in the past, and the third related to the advertisement broadcast in the past.
  • a display information generation unit that generates display information including the degree of relevance between the program to be estimated for correlation and the advertisement.
  • the estimation device according to any one of Supplementary note 1 to 3, further comprising an output unit that outputs the display information generated by the display information generation unit.
  • the display information generation unit corresponds to each of the plurality of program frames constituting the timetable of the drafting target period with the degree of relevance between the program scheduled to be broadcast in the program frame and the advertisement scheduled to be broadcast during the drafting target period. Generates the first display information including the attached timetable image, The estimation device according to Appendix 4, wherein the output unit outputs the generated first display information.
  • an aggregated data generation unit With respect to the program and the advertisement for which the correlation is estimated, an aggregated data generation unit that generates aggregated data that aggregates keywords commonly included in the program-related information of the program and the advertisement-related information of the advertisement.
  • the display information generation unit generates second display information in which the aggregated data corresponding to the program scheduled to be broadcast in the program frame selected in the timetable image included in the first display information is displayed.
  • the estimation device according to Supplementary Note 5, wherein the output unit outputs the generated second display information.
  • the display information generation unit has the number of times the keyword appears in the program, the time when the keyword appears in the program, and the keyword with respect to the keyword for each keyword associated with the program scheduled to be broadcast during the drafting target period. Generate the second display information in which the aggregated data including at least one of the number of posts and the number of reactions to the keyword is displayed.
  • the estimation device according to Supplementary Note 6, wherein the output unit outputs the second display information generated by the display information generation unit.
  • the display information generation unit ranked the at least one advertising opportunity according to the number of appearances of the keyword in a time zone in the vicinity of at least one advertising opportunity included in the program scheduled to be broadcast during the drafting target period. Generate the second display information on which the aggregated data is displayed, The estimation device according to Appendix 6 or 7, wherein the output unit outputs the second display information generated by the display information generation unit.
  • the display information generation unit generates the second display information including a search window for searching the keyword to be displayed of the aggregated data.
  • the display information generation unit generates the second display information including the aggregated data of the keyword selected in the search window.
  • the estimation device according to any one of Supplementary note 4 to 8, wherein the output unit outputs the second display information generated by the display information generation unit.
  • the computer Get program-related information about programs and advertisement-related information about advertisements, Correlation to an estimation model that estimates the degree of relevance, which is an index of the correlation between the program and the advertisement, generated by learning using the program-related information and the advertisement-related information regarding the programs and advertisements broadcast in the past.
  • An estimation method for estimating the degree of relevance between the program to be estimated for correlation and the advertisement by inputting the program-related information and the advertisement-related information related to the program to be estimated and the advertisement.
  • (Appendix 11) Processing to acquire program-related information about programs and advertisement-related information about advertisements, Correlation to an estimation model that estimates the degree of relevance, which is an index of the correlation between the program and the advertisement, generated by learning using the program-related information and the advertisement-related information regarding the programs and advertisements broadcast in the past.
  • the process of estimating the degree of relevance between the program to be estimated for correlation and the advertisement by inputting the program-related information and the advertisement-related information related to the program to be estimated and the advertisement is made to be executed by a computer. program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Databases & Information Systems (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Signal Processing (AREA)
  • Finance (AREA)
  • Multimedia (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

番組の内容に興味のある視聴者に対して、番組の内容に関係のあるCMを効果的に視聴させるための指標を算出するために、番組に関する番組関連情報と広告に関する広告関連情報とを取得する取得部と、過去に放送された番組と広告に関する番組関連情報および広告関連情報を用いた学習によって生成された、番組と広告の相関関係の指標である関連度を推定する推定モデルに、相関関係の推定対象の番組と広告に関する番組関連情報および広告関連情報を入力して、相関関係の推定対象の番組と広告の関連度を推定する関連度推定部と、を備える推定装置とする。

Description

推定装置、推定方法、および記録媒体
 本発明は、番組と広告の相関関係の指標である関連度を推定する推定装置等に関する。
 テレビジョン放送(以下、テレビ放送と呼ぶ)においては、広告する内容を含むコマーシャルメッセージ(以下、CM:Commercial Message)が放送される。テレビ放送で放送されるCMの取引契約には、タイム契約やスポット契約、放送外契約等がある。これらの契約のうち、スポット契約に基づいて放送されるCMは、組み合わせ方が様々であり、個別条件指定により決定される。スポット契約に基づいてCMが放送される時間帯は、作案と呼ばれる作業において決定される。CMの放送枠(広告枠とも呼ぶ)を提供する放送局(受注側)は、広告主や広告代理店(発注側)から提示された条件(契約条件とも呼ぶ)と当該放送局の番組テーブル等とを照らし合わせて作案を行う。
 特許文献1には、特定のターゲットの含有率が所定の閾値以上である広告枠から構成される有効領域を識別するための情報を用いて、広告枠を最適化する手法が開示されている。特許文献1の手法では、所定の期間の全広告枠に対して有効領域の広告枠によって取得が期待される延べ視聴率(取得GRP(Gross Rating Point))比率の総和が所定の値となるように、所定の期間の全広告枠の取得GRP比率を調整する。
特許第6619116号公報
 特許文献1の手法では、視聴率や放送日時、タイムランクなどのように、番組の内容とは独立した情報に基づいて、広告枠を最適化する。特許文献1の手法では、番組の内容と関係のあるCMが、その番組の番組枠において放送されるとは限らない。そのため、特許文献1の手法では、番組の内容に興味のある視聴者に対して、番組の内容に関係のあるCMを効果的に提供できるとは限らなかった。
 本発明の目的の一例は、上述した課題を解決するため、相関関係の推定対象の番組と広告の関連度を高精度で予測できる推定装置等を提供することにある。
 本発明の一態様の推定装置は、番組に関する番組関連情報と広告に関する広告関連情報とを取得する取得部と、過去に放送された番組と広告に関する番組関連情報および広告関連情報を用いた学習によって生成された、番組と広告の相関関係の指標である関連度を推定する推定モデルに、相関関係の推定対象の番組と広告に関する番組関連情報および広告関連情報を入力して、相関関係の推定対象の番組と広告の関連度を推定する関連度推定部と、を備える。
 本発明の一態様の推定方法においては、コンピュータが、番組に関する番組関連情報と広告に関する広告関連情報とを取得し、過去に放送された番組と広告に関する番組関連情報および広告関連情報を用いた学習によって生成された、番組と広告の相関関係の指標である関連度を推定する推定モデルに、相関関係の推定対象の番組と広告に関する番組関連情報および広告関連情報を入力して、相関関係の推定対象の番組と広告の関連度を推定する。
 本発明の一態様のプログラムは、番組に関する番組関連情報と広告に関する広告関連情報とを取得する処理と、過去に放送された番組と広告に関する番組関連情報および広告関連情報を用いた学習によって生成された、番組と広告の相関関係の指標である関連度を推定する推定モデルに、相関関係の推定対象の番組と広告に関する番組関連情報および広告関連情報を入力して、相関関係の推定対象の番組と広告の関連度を推定する処理と、をコンピュータに実行させる。
 本発明によれば、相関関係の推定対象の番組と広告の関連度を高精度で予測できる推定装置等を提供することが可能になる。
第1の実施形態に係る関連度推定システムの構成の一例を示すブロック図である。 第1の実施形態に係る関連度推定システムに含まれる学習装置の構成の一例を示すブロック図である。 第1の実施形態に係る関連度推定システムに含まれる推定装置の構成の一例を示すブロック図である。 第1の実施形態に係る関連度推定システムに含まれる推定装置が推定した関連度を端末装置の画面に表示させる一例を示す概念図である。 第1の実施形態に係る関連度推定システムに含まれる推定装置が推定した関連度をタイムテーブルの番組枠に対応付けて表示させる一例を示す概念図である。 第1の実施形態に係る関連度推定システムに含まれる推定装置が推定した関連度をタイムテーブルの番組枠に対応付けて表示させる別の一例を示す概念図である。 第1の実施形態に係る関連度推定システムに含まれる学習装置の動作の一例について説明するためのフローチャートである。 第1の実施形態に係る関連度推定システムに含まれる推定装置の動作の一例について説明するためのフローチャートである。 第2の実施形態に係る関連度推定システムの構成の一例を示すブロック図である。 第2の実施形態に係る関連度推定システムに含まれる推定装置の構成の一例を示すブロック図である。 第2の実施形態に係る関連度推定システムに含まれる推定装置が生成する第1表示情報の表示例を示す概念図である。 第2の実施形態に係る関連度推定システムに含まれる推定装置が生成する第2表示情報の表示例を示す概念図である。 第2の実施形態に係る関連度推定システムに含まれる推定装置が生成する第2表示情報に含まれる特徴量詳細データの一例を示す概念図である。 第2の実施形態に係る関連度推定システムに含まれる推定装置が生成する第2表示情報に含まれる特徴量詳細データの一例を示す概念図である。 第2の実施形態に係る関連度推定システムに含まれる推定装置が生成する第2表示情報に含まれる特徴量詳細データの一例を示す概念図である。 第2の実施形態に係る関連度推定システムに含まれる推定装置が生成する第2表示情報に含まれる特徴量詳細データの一例を示す概念図である。 第2の実施形態に係る関連度推定システムに含まれる推定装置が生成する第2表示情報に含まれる特徴量詳細データの一例を示す概念図である。 第2の実施形態に係る関連度推定システムに含まれる学習装置の集計データの生成処理の一例について説明するためのフローチャートである。 第2の実施形態に係る関連度推定システムに含まれる推定装置の動作の一例について説明するためのフローチャートである。 第2の実施形態に係る関連度推定システムに含まれる推定装置の表示情報生成部の動作の一例について説明するためのフローチャートである。 第2の実施形態に係る関連度推定システムに含まれる推定装置の表示情報生成部の動作の別の一例について説明するためのフローチャートである。 第3の実施形態に係る関連度推定システムの構成の一例を示すブロック図である。 第4の実施形態の学習装置の構成の一例を示すブロック図である。 第5の実施形態の推定装置の構成の一例を示すブロック図である。 各実施形態の装置を実現するハードウェア構成の一例を示すブロック図である。
 以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。また、図面中の矢印の向きは、一例を示すものであり、信号等の向きを限定するものではない。
 (第1の実施形態)
 まず、第1の実施形態に係る関連度推定システムについて図面を参照しながら説明する。本実施形態の関連度推定システムは、テレビジョン放送(以下、テレビ放送と呼ぶ)される番組とコマーシャルメッセージ(CM:Commercial Message)の相関関係の指標である関連度を計算する。関連度は、番組に関連する情報(番組関連情報とも呼ぶ)から抽出された特徴量と、CM(広告)に関連する情報(広告関連情報)から抽出された特徴量とが一致する数や時間等に関する度合を数値化した評価指標である。例えば、関連度は、テレビ放送される番組の番組枠に挿入されるコマーシャルメッセージ(CM:Commercial Message)の作案において参照される。以下においては、CMと広告を同じ意味で表現する場合がある。
 (構成)
 図1は、本実施形態の関連度推定システム1の構成の一例を示すブロック図である。関連度推定システム1は、学習装置11と推定装置12を備える。なお、関連度推定システム1は、単一の装置(関連度推定装置)として構成してもよい。
 学習装置11は、過去の番組に関する番組関連情報と、過去の広告に関する広告関連情報とのデータセットを正解データとして入力する。例えば、番組関連情報と広告関連情報は、CMの作案を行う作業者が操作する端末装置(図示しない)において、データセットに編集される。例えば、番組関連情報と広告関連情報は、専用サーバでデータセットに編集されてもよい。番組関連情報と広告関連情報のデータセットを正解データにする手法には、特に限定を加えない。
 番組関連情報は、放送局が保持するデータ(1stパーティデータ)と、外部提供データ(3rdパーティデータ)とを含む。例えば、1stパーティデータ(当事者データとも呼ぶ)は、番組制作会社が使用するサーバ等から、インターネット等のネットワーク経由で取得される。1stパーティデータは、番組制作会社から取得された情報を放送局側の端末装置(図示しない)において入力されてもよい。例えば、3rdパーティデータ(第三者データとも呼ぶ)は、API(Application Programming Interface)等を通じて、SNSの投稿データ等から、放送する番組名などの特定のハッシュタグで選別することによって取得される。
 例えば、番組関連情報に含まれる1stパーティデータは、番組放送データ、番組EPG(Electronic Programming Guide)データ、および番組メタデータのうち少なくともいずれかを含む。番組放送データは、番組の内容に関するデータである。例えば、番組放送データには、番組の放送時間や、ジャンル、出演者、BGM(BackGround Music)、コンテンツ等が含まれる。番組EPGデータ(電子番組表データとも呼ぶ)は、番組の出演者やジャンル、キーワード等の放送局側が編集したデータであり、番組表や番組編成として視聴者に提供される。番組メタデータは、番組の管理上使われるデータであり、番組の製作者側が素材を搬入する際に放送局に提示される。
 例えば、番組関連情報に含まれる3rdパーティデータは、SNS(Social Networking Service)投稿データ、ブラウザ/SNS検索データ、および視聴者アンケートデータのうち少なくともいずれかを含む。SNS投稿データ(投稿データとも呼ぶ)は、ハッシュタグ等を用いて検索される番組名や出演者等の番組に関するデータである。ブラウザ/SNS検索データ(検索データとも呼ぶ)は、クッキー等を用いて取得される番組に関するデータである。視聴者アンケートデータは、毎日/毎週放送されるレギュラー番組のように、過去に放送された番組に関して、放送局が公式アプリなどを通じて視聴者から回収された番組に関するデータである。
 広告関連情報は、広告主が保持するデータ(2ndパーティデータ)と、外部提供データ(3rdパーティデータ)とを含む。例えば、2ndパーティデータ(関係者データとも呼ぶ)は、広告主が使用するサーバ等から、インターネット等のネットワーク経由で取得される。2ndパーティデータは、広告主から取得された情報を放送局側の端末装置(図示しない)において入力されてもよい。例えば、3rdパーティデータは、API等を通じて、SNSの投稿データ等から、放送する番組名などの特定のハッシュタグで選別することによって取得される。
 例えば、広告関連情報に含まれる2ndパーティデータは、CM放送データ、CMメタデータ、および広告主メタデータのうち少なくともいずれかを含む。CM放送データ(広告放送データとも呼ぶ)は、CMの内容に関するデータである。例えば、CM放送データには、CMのジャンルや、広告主名、出演者、BGM、コンテンツ等が含まれる。CMメタデータ(広告メタデータとも呼ぶ)は、CMの管理上使われるデータである。例えば、CMメタデータは、素材広告主名や、CM素材名、商品名、CM作品名等を含む。広告主メタデータは、広告主に関するデータである。例えば、広告主メタデータは、広告主の会社名や業種等を含む。また、2ndパーティデータは、企業イメージや企業カラーなどに関するデータを含んでもよい。
 例えば、広告関連情報に含まれる3rdパーティデータは、SNS投稿データや、ブラウザ/SNS検索データ等を含む。広告関連情報の3rdパーティデータに含まれるSNS投稿データやブラウザ/SNS検索データは、番組関連情報の3rdパーティデータに含まれるSNS投稿データやブラウザ/SNS検索データと同様である。
 学習装置11は、番組関連情報と広告関連情報を用いた機械学習によって、推定モデルを生成する。例えば、学習装置11は、メトリックラーニングの手法を用いて、番組関連情報と広告関連情報から抽出される特徴の関係性を考慮した特徴量空間を学習することによって、推定モデルを生成する。例えば、学習装置11は、ディープメトリックラーニングの手法を用いて、番組関連情報と広告関連情報から抽出される特徴を表現した特徴量ベクトル間の距離が類似度を反映するように特徴量空間を学習することによって、推定モデルを生成する。例えば、学習装置11は、機械学習によって、番組関連情報および広告関連情報の各々から抽出される特徴量の一致する数や時間等に関する度合を数値化した関連度を出力する推定モデルを生成する。学習装置11が生成する推定モデルは、番組関連情報と広告関連情報の各々から抽出される特徴量間の関連度を推定するように構成されてもよい。学習装置11によって生成された推定モデルは、相関関係の推定対象である番組と広告の関連度の推定に用いられる。
 推定装置12は、相関関係の推定対象の番組と広告に関する番組関連情報と広告関連情報(推定対象データとも呼ぶ)を取得する。例えば、推定装置12は、作案対象期間に放送予定の少なくとも一つの番組の番組関連情報と、その作案対象期間に挿入予定の広告の広告関連情報を、相関関係の推定対象データとして取得する。例えば、推定装置12は、作案を行う作業者が操作する端末装置(図示しない)から推定対象データを取得したり、データベースから推定対象データを取得したりする。
 推定装置12は、相関関係の推定対象の番組と広告に関する推定対象データから特徴量を抽出する。推定装置12は、推定対象データから抽出された特徴量を推定モデルに入力する。推定モデルからは、番組と広告の関連度が出力される。推定装置12は、推定モデルから出力された関連度を出力する。すなわち、推定装置12は、相関関係の推定対象である番組と広告に関する番組関連情報と広告関連情報から抽出された特徴量を推定モデルに入力して、それらの番組と広告の関連度を予測する。例えば、推定装置12から出力される関連度は、作案を行う作業者が操作する端末装置(図示しない)の画面に表示される。作業者は、画面に表示された関連度を参照し、作案を行うことができる。なお、推定装置12から出力される関連度は、画面に表示されずに、記憶装置(図示しない)に格納されたり、その他の用途に用いられたりしてもよい。
 〔学習装置〕
 次に、学習装置11の詳細について図面を参照しながら説明する。図2は、学習装置11の構成の一例を示すブロック図である。学習装置11は、特徴量抽出部111、モデル構築部112、およびモデル記憶部113を有する。
 特徴量抽出部111(取得部とも呼ぶ)は、予め用意された正解データ1~nを取得する(nは自然数)。正解データ1~nの各々は、番組関連情報と広告関連情報のデータセットである。特徴量抽出部111は、取得した正解データ1~nに含まれる番組関連情報および広告関連情報から特徴量を抽出する。例えば、特徴量抽出部111は、取得した番組関連情報や広告関連情報に含まれる映像データやSNSデータなどのメタデータから特徴量を抽出する。例えば、特徴量抽出部111は、画像認識と音声認識のうち少なくともいずれかを用いる画音認識によって、番組関連情報や広告関連情報から特徴量を抽出する。例えば、特徴量抽出部111は、Web APIやテキスト解析等によって、番組関連情報や広告関連情報から特徴量を抽出する。
 例えば、正解データ1~nには、予め定められた所定の条件の下で、過去に放送された番組と広告の組み合わせのうち、所定の条件を満たす番組と広告に関する番組関連情報および広告関連情報のデータセットが選択される。例えば、所定の条件として、CMの放送後に、対象のサービスや商品の売り上げが一定数増加したことがあげられる。例えば、所定の条件として、CMの放送後に、そのCMのスポンサーのホームページや、対象のサービスや商品の検索/アクセス回数が一定数増加したことがあげられる。なお、所定の条件は、番組と広告の関連度を推定できれば、これらの例に限定されない。
 モデル構築部112は、正解データ1~nから抽出された特徴量を特徴量抽出部111から取得する。モデル構築部112は、正解データ1~nから抽出された特徴量を用いて機械学習を行い、番組と広告の関連度を推定するための推定モデルを生成する。モデル構築部112は、入力された番組と広告の組み合わせの関連性が高くなるように、特徴量抽出部111によって抽出されたそれぞれの特徴量に基づいて学習する。例えば、モデル構築部112は、機械学習によって、正解データ1~nから抽出される特徴量の一致する数や時間等に関する度合を数値化した関連度を出力する推定モデルを生成する。
 例えば、モデル構築部112は、メトリックラーニングやディープメトリックラーニングなどの手法を用いて、入力された正解データ1~nを特徴量空間にプロットし、対象の距離に応じて推定モデルを生成する。例えば、モデル構築部112は、メトリックラーニングの手法を用いて、正解データ1~nから抽出される特徴の関係性を考慮した特徴量空間を学習する。例えば、モデル構築部は、ディープメトリックラーニングの手法を用いて、正解データ1~nから抽出される特徴を表現した特徴量ベクトル間の距離が類似度を反映するように特徴量空間を学習する。
 モデル記憶部113は、モデル構築部112が構築した推定モデルを記憶する。モデル記憶部113に記憶された推定モデルは、推定装置12による番組と広告の関連度の推定に用いられる。
 〔推定装置〕
 次に、推定装置12の詳細について図面を参照しながら説明する。図3は、推定装置12の構成の一例を示すブロック図である。推定装置12は、特徴量抽出部121、相関関係推定部122、相関関係記憶部123、入出力部124を有する。図3には、推定装置12に接続される端末装置13を図示する。図3の例では、入出力部124は、端末装置13に接続される。端末装置13は、関連度推定システム1に含まれてもよい。また、入出力部124は、入力と出力の構成を別々にしてもよい。
 特徴量抽出部121(取得部とも呼ぶ)は、相関関係の推定対象である番組および広告に関する番組関連情報と広告関連情報(推定対象データとも呼ぶ)を入力する。例えば、特徴量抽出部121は、広告主により指定された作案対象期間のタイムテーブルに含まれる番組枠に放送される番組に関する番組関連情報と、広告主により指定された作案対象期間に挿入予定の広告に関する広告関連情報とを入力する。特徴量抽出部111は、取得された番組関連情報および広告関連情報の各々から特徴量を抽出する。特徴量抽出部121は、学習装置11の特徴量抽出部111と同様の構成である。
 相関関係推定部122は、相関関係の推定対象である番組および広告に関する番組関連情報および広告関連情報の各々から抽出された特徴量を推定モデルに入力し、番組と広告の関連度を推定する。相関関係推定部122は、推定した関連度を相関関係記憶部123に記憶させる。例えば、相関関係推定部122は、番組関連情報およびCM関連情報の特徴量を推定モデルに入力し、番組関連情報および広告関連情報から抽出された特徴量ごとの関連度を算出するように構成してもよい。
 相関関係記憶部123は、相関関係推定部122によって推定された関連度を記憶する。相関関係記憶部123は、番組と広告の組み合わせに応じた関連度をデータベース等の形式で記憶する。相関関係記憶部123は、番組関連情報および広告関連情報から抽出される特徴量ごとの関連度を記憶してもよい。
 入出力部124は、端末装置13からの要求に応じて、広告主からの放送依頼を受けた広告と、広告主から指定された放送期間内に放送される番組の各々との関連度を相関関係記憶部123から取得する。入出力部124は、取得した関連度を端末装置13に出力する。例えば、入出力部124は、端末装置13からの要求に応じた関連度を相関関係記憶部123から取得し、取得した関連度を端末装置13に出力する。
 図4は、関連度推定システム1が推定した関連度を、端末装置13の画面に表示させる例である。図4の例では、関連度推定システム1が推定した関連度を示す値(135.3)が画面に表示される。
 図5は、関連度推定システム1が推定した番組枠ごとの関連度を、複数の番組枠によって構成されるタイムテーブル140に含まれる番組枠の各々に対応付けて、端末装置13の画面に表示させる例である。図5の例では、関連度推定システム1が推定した番組枠ごとの関連度が、タイムテーブル140を構成する番組枠の各々に対応付けて表示される。例えば、広告主からの引合データで指定された放送期間のタイムテーブル140が、端末装置13の画面に表示される。
 図6は、図5の例において、関連度の値に応じて、タイムテーブル140の番組枠の表示形式を変更する例である。図6の例では、タイムテーブル140の各番組枠において、関連度の値に応じてランク分けをする。図6の例では、タイムテーブル140における関連度の値が、上位90~100パーセント(%)、上位70~90%、上位50~70%のランクを同じ表示形式で表示させる。図6のようにランク分けすれば、タイムテーブル140において、CMと関連性の深い番組コンテンツを含む番組枠を、目立つ色や模様で示したり、枠で囲って目立たせたりすることによって、関連度の大小関係が視覚化される。
 (動作)
 次に、本実施形態に係る関連度推定システム1の動作について図面を参照しながら説明する。以下においては、正解データから抽出された特徴量を学習して推定モデルを生成する学習フェーズと、推定対象データを推定モデルに入力して関連度を推定する推定フェーズに大別して説明する。
 〔学習フェーズ〕
 図7は、学習フェーズについて説明するためのフローチャートである。学習フェーズの説明においては、学習装置11を動作主体として説明する。
 図7において、まず、学習装置11は、正解データを取得する(ステップS111)。
 次に、学習装置11は、取得された正解データから特徴量を抽出する(ステップS112)。
 次に、学習装置11は、抽出された特徴量を用いた機械学習によって、推定モデルを生成する(ステップS113)。なお、学習装置11は、検証データを用いて推定モデルの汎用性を検証したり、テストデータを用いて推定モデルのテストを行ったりした結果に応じて、推定モデルを学習しなおしてもよい。
 次に、学習装置11は、生成された推定モデルを記憶する(ステップS114)。
 〔推定フェーズ〕
 図8は、推定フェーズについて説明するためのフローチャートである。推定フェーズの説明においては、推定装置12を動作主体として説明する。
 図8において、まず、推定装置12は、相関関係の推定対象である番組と広告に関する推定対象データを取得する(ステップS121)。
 次に、推定装置12は、取得された推定対象データから特徴量を抽出する(ステップS122)。
 次に、推定装置12は、抽出された特徴量を推定モデルに入力し、番組と広告の関連度を推定する(ステップS123)。
 次に、推定装置12は、推定モデルを用いて推定された関連度を、番組と広告に関連付けて記憶する(ステップS124)。
 以上のように、本実施形態の関連度推定システムは、学習装置と推定装置とを備える。
 学習装置は、特徴量抽出部、モデル構築部、およびモデル記憶部を有する。特徴量抽出部は、過去に放送された番組および広告の番組関連情報および広告関連情報を取得する。特徴量抽出部は、取得された番組関連情報および広告関連情報から特徴量を抽出する。モデル構築部は、抽出された特徴量を用いた学習によって、番組と広告の相関関係の指標である関連度を推定する推定モデルを生成する。モデル記憶部は、モデル構築部によって生成された推定モデルを記憶する。
 推定装置は、特徴量抽出部、相関関係推定部、相関関係記憶部、および入出力部(出力部とも呼ぶ)を有する。特徴量抽出部は、番組に関する番組関連情報と、広告に関する広告関連情報とを取得する。特徴量抽出部は、取得された番組関連情報および広告関連情報から特徴量を抽出する。相関関係推定部は、抽出された特徴量を推定モデルに入力して、相関関係の推定対象の番組と広告の関連度を推定する。相関関係記憶部は、相関関係推定部によって推定された、相関関係の推定対象の番組と広告の関連度を記憶する。出力部は、相関関係記憶部に記憶された、番組と広告の関連度を出力する。
 本実施形態の一態様の学習装置は、番組関連情報から抽出された特徴量と、広告関連情報から抽出された特徴量と、を用いた学習によって推定モデルを生成する。例えば、番組関連情報は、当事者データと第三者データを含む。例えば、広告関連情報は、関係者データと第三者データを含む。例えば、当事者データは、過去に放送された番組の番組放送データ、電子番組表データ、および番組メタデータのうち少なくともいずれかを含む。例えば、関係者データは、過去に放送された広告の広告放送データ、広告メタデータ、および広告主メタデータのうち少なくともいずれかを含む。例えば、第三者データは、過去に放送された番組に関する投稿データおよび検索データのうち少なくともいずれかを含む。推定装置は、モデル構築部によって生成された推定モデルに、相関関係の推定対象の番組と広告に関する番組関連情報および広告関連情報を入力して、相関関係の推定対象の番組と広告の関連度を推定する。
 一般的な広告の作案では、放送される番組の内容や番組に対する世間の印象と、CM(広告)との間の関連性は考慮されない。例えば、アルコール飲料のCMが子供向けの番組の番組枠で放送されないように、そのような番組が放送される番組枠に放送されるCMに禁止ジャンルを設けて制限したり、放送時間帯を絞ったりすることで、広告効果の低減を避ける工夫がされることはある。しかし、関連性の高い番組と広告が紐づけされることはなかったため、宣伝効率の悪い放送契約が結ばれる場合もあった。
 本実施形態の手法では、番組およびCMの映像や、SNS等のサードパーティデータなどを利用して特徴量を抽出することで、番組およびCMのコンテンツに踏み込んで互いの関連性を計測する。例えば、本実施形態の手法では、番組およびCMの映像データからの特徴量の抽出は、映像解析や音声解析による自動化が可能である。そのため、本実施形態の手法によれば、番組およびCMに関する膨大な特徴量を用いた学習によって、相関関係の推定対象の番組と広告の関連度を高精度で予測する推定モデルを構築できる。その結果、本実施形態の手法によれば、番組と広告の関連度を高精度で予測できるため、番組の内容に興味のある視聴者に対して、番組の内容に関係のあるCMを効果的に視聴させることが可能になる。また、本実施形態によれば、視聴率が低いためにCMが放送されなかったような番組であっても、番組と広告の関連度に応じて、CMが放送される機会が増えるという、これまでにはなかった新しい効果が生まれる。
 (第2の実施形態)
 次に、第2の実施形態に係る関連度推定システムについて図面を参照しながら説明する。本実施形態の関連度推定システムは、番組と広告の関連度に関する表示情報を生成する点において、第1の実施形態の関連度推定システムとは異なる。本実施形態の推定装置は、第1の実施形態の学習装置によって生成された推定モデルに、相関関係の推定対象である番組と広告の番組関連情報と広告関連情報のデータセット(推定対象データ)から抽出された特徴量を入力し、それらの番組と広告の関連度を推定する。
 また、本実施形態の推定装置は、推定対象データから抽出される特徴量に関する集計データを生成する。集計データは、相関関係の推定対象である番組と広告に関して、番組関連情報から抽出される特徴量と、広告関連情報から抽出される特徴量のうち、一致する特徴量(キーワードとも呼ぶ)に関するパラメータを集計したデータである。
 (構成)
 図9は、本実施形態の関連度推定システム2の構成の一例を示すブロック図である。関連度推定システム2は、学習装置21と推定装置22を備える。学習装置21は、第1の実施形態の学習装置11と同様の構成であるため、詳細な説明は省略する。推定装置22は、第1の実施形態の推定装置12と全く同じではないものの、同様の機能を有する。以下においては、第1の実施形態と同様の機能については、説明を簡略化する。なお、関連度推定システム2は、単一の装置(関連度推定装置)として構成してもよい。
 〔推定装置〕
 図10は、推定装置22の構成の一例を示すブロック図である。推定装置22は、特徴量抽出部221、相関関係推定部222、相関関係記憶部223、入出力部224、表示情報生成部225、集計データ生成部226、集計データ記憶部227を有する。特徴量抽出部221、相関関係推定部222、および相関関係記憶部223は、第1の実施形態の対応する構成と同様であるため、説明を省略する。なお、集計データを表示させない場合は、集計データ生成部226と集計データ記憶部227を省略してもよい。図10には、推定装置22に接続される端末装置23を図示する。図10の例では、入出力部224は、端末装置23に接続される。端末装置23は、関連度推定システム2に含まれてもよい。また、入出力部224に関しては、入力と出力の構成を別々にしてもよい。
 入出力部224は、端末装置23からの要求を受け付ける。例えば、入出力部224は、端末装置23から表示情報(第1表示情報や第2表示情報)の要求を端末装置23から受け付ける。例えば、第1表示情報は、作案対象期間のタイムテーブルを構成する複数の番組枠の各々に、番組枠で放送予定の番組と、作案対象期間に放送予定の広告との関連度を対応付けたタイムテーブル画像を含む。例えば、第2表示情報は、作案対象期間に放送予定の番組の番組関連情報から抽出された特徴量と、その作案対象期間に放送予定の広告から抽出された特徴量に関する集計データを含む。入出力部224は、端末装置23から要求された第1表示情報や第2表示情報を生成する指示を表示情報生成部225に出力する。また、第2表示情報の要求を端末装置23から取得した場合、入出力部224は、集計データ生成部226に集計データを取得する指示を出す。
 集計データ生成部226は、番組関連情報から抽出された特徴量と、広告関連情報から抽出された特徴量とを用いて、集計データを生成する。例えば、集計データ生成部226は、後述するCMチャンスランキングや特徴量詳細データ等の集計データを生成する。集計データ生成部226は、生成された集計データを集計データ記憶部227に記憶させる。
 例えば、集計データ生成部226は、番組関連情報と広告関連情報から抽出された特徴量の一致する度合等に基づいて、CMの挿入効果の高さをランク付けしたCMチャンスランキングを生成する。例えば、集計データ生成部226は、番組に含まれる複数のCMチャンス(広告機会とも呼ぶ)に関して、CMチャンスランキングを生成する。例えば、集計データ生成部226は、番組関連情報および広告関連情報から抽出された特徴量のうち一致する特徴量をキーワードとし、そのキーワードに関する詳細データ(特徴量詳細データとも呼ぶ)を生成する。キーワードは、関連度の推定対象の番組と広告に関する番組関連情報と広告関連情報に共通に含まれる特徴量である。例えば、集計データ生成部226は、キーワードごとの登場回数、登場時間、SNSへの投稿数、SNSにおけるリアクション数(反応数とも呼ぶ)等に関する特徴量詳細データを、番組ごとに生成する。例えば、集計データ生成部226は、特徴量詳細データとして、CMチャンスの近傍の時間帯におけるキーワードの登場回数をランク付けした情報(例えば、グラフ)を番組ごとに生成する。例えば、集計データ生成部226は、特徴量詳細データとして、作案対象期間に含まれる番組の放送時間帯に過去に放送された番組における、キーワードに関する投稿数の時間推移を示すグラフを生成する。
 一般的な番組には、少なくとも1回のCMチャンスが含まれる。例えば、19時~22時のゴールデンタイムにおける1時間程度の番組には、1分程度のCMチャンスが3~4回含まれる。例えば、集計データ生成部226は、作案対象期間の番組枠で放送される各々の番組に関して、CMチャンスの近傍の時間帯におけるキーワードの登場回数をランク付けする。例えば、集計データ生成部226は、CMチャンスの前後5分程度の時間帯におけるキーワードの登場回数をCMチャンスごとにランク付けする。例えば、CMを作案する作業者は、番組に含まれるCMチャンスの近傍の時間帯におけるキーワードの登場回数のランキングを参照し、ランクの高いキーワードが含まれるCMをそのCMチャンスに割り当てることができる。CMチャンスの近傍の時間帯において登場回数が多いキーワードと関連度の高い特徴量が多く含まれるCMがそのCMチャンスにおいて放送されれば、そのCMの内容に視聴者が興味を持ち、そのCMの商品やサービスの宣伝効果が高まる。
 集計データ記憶部227は、集計データ生成部226によって生成された集計データを記憶する。集計データ記憶部227に記憶された集計データは、第2表示情報の生成に用いられる。
 表示情報生成部225は、タイムテーブルに含まれる複数の番組枠に対応する関連度を相関関係記憶部223から取得する。表示情報生成部225は、タイムテーブルに含まれる複数の番組枠の各々に、それらの番組枠に対応する関連度が表示されるタイムテーブル画像を含む第1表示情報を生成する。第1表示情報は、タイムテーブルを構成する番組枠のうち少なくともいずれかに関連度が対応付けられた画像情報である。例えば、表示情報生成部225は、タイムテーブルに含まれる番組枠で放送される番組の関連度がそろったタイミングや、端末装置23から第1表示情報の要求を受けたタイミングにおいて第1表示情報を生成する。表示情報生成部225は、生成された第1表示情報を入出力部224に出力する。
 図11は、端末装置23の画面に表示させる第1表示情報の一例(第1表示情報240)を示す概念図である。第1表示情報240は、タイムテーブルに関する画像(タイムテーブル画像241)を少なくとも含む。第1表示情報240は、作業者による操作を受け付けるGUI(Graphical User Interface)である。図11には、作業者による操作を受け付けるためのポインタ205が図示されている。例えば、タイムテーブル画像241は、番組枠に対する広告の挿入や、挿入される広告の時間単位、作案結果の決定などの入力を受け付ける。例えば、タイムテーブル画像241には、タイムテーブル以外に、タイムテーブルの各番組枠に挿入される広告の時間単位が設定されるコンボボックスや、作案結果の決定を受け付けるためのボタンが含まれてもよい。
 例えば、第1表示情報240には、タイムテーブル画像241に加えて、契約情報を含む契約情報画像や、作案結果の内容を含む作案結果画像が表示される。例えば、契約情報画像は、契約の識別番号(契約コード)、発注側の名称(広告主)、契約金額、視聴率の条件(契約秒数、視聴率の目標値)、参考時間帯の号数(参考号数)、契約対象期間等の項目を含む。通常、契約情報画像は、引合データに含まれる契約情報に基づき、画面上の操作によって変更されない。例えば、作案結果画像は、挿入される広告の正価や、掛率、発注側と受注側との間で予め設定された視聴指標に関する条件、広告単価等を含む。なお、第1表示情報240は、契約情報画像や作案結果画像を含まなくてもよいし、契約情報画像や作案結果画像以外の領域を含んでもよい。また、第1表示情報240におけるタイムテーブル画像241や、契約情報画像、作案結果画像のレイアウトは、図11の例に限定されず、任意に構成できる。
 また、表示情報生成部225は、入出力部224からの指示に応じて、端末装置23によって要求された番組の集計データを集計データ記憶部227から取得する。表示情報生成部225は、取得された集計データを含む第2表示情報を生成する。
 例えば、表示情報生成部225は、CMチャンスランキングや、特徴量詳細データ、特徴量詳細データを検索するための検索ウィンドウなどが含まれる第2表示情報を生成する。第2表示情報は、選択された番組の集計データを含む画像情報である。例えば、表示情報生成部225は、番組枠(番組)の選択や更新の指示を入出力部224から受け付けたタイミングや、集計データ生成部226から集計データを取得したタイミングにおいて第2表示情報を生成する。
 例えば、図11のように、タイムテーブル画像241のいずれかの番組枠がポインタ205で選択されると、その番組枠で放送される番組に含まれる特徴量に関する第2表示情報の要求が、関連度推定システム2の推定装置22の入出力部224に送信される。そして、その要求に応じて送信されてきた第2表示情報が、端末装置23の画面に表示される。
 図12は、第1表示情報240に重ねられて、第2表示情報250が端末装置23の画面に表示される例である。第2表示情報250は、第1領域270、第2領域280、および第3領域290を含む。例えば、第1領域270には、選択された番組に含まれる複数のCMチャンスに関して、CMの挿入効果の高さをランク付けしたCMチャンスランキングを含む画像(CMチャンスランキング画像とも呼ぶ)が表示される。例えば、第2領域280には、特徴量(キーワード)を検索するための画像(検索画像とも呼ぶ)が表示される。第2領域280に表示される検索ウィンドウは、キーワードの選択を受け付けるGUIとして機能する。例えば、第3領域290には、第2領域280に表示された検索ウィンドウにおいて選択されたキーワードに関する詳細データを含む画像(特徴量詳細データ画像)を含む特徴量詳細データが表示される。
 図13は、第1領域270に表示されるCMチャンスランキング画像の一例(CMチャンスランキング画像271)である。CMチャンスランキング画像271は、作案対象期間に挿入予定の広告に関して、選択された番組枠において放送される番組中の4つのCMチャンスが、宣伝効果が高い順にランク付けされたCMチャンスランキングを含む。CMチャンスランキング画像271においては、1番目(1st)のCMチャンスの宣伝効果が最も高く、三番目(3rd)のCMチャンスの宣伝効果が最も低い。
 図14は、第2領域280に表示される検索ウィンドウの一例(検索ウィンドウ281)である。検索ウィンドウ281は、作案対象期間に挿入予定の広告に関して、選択された番組から抽出されたキーワードや、それらのキーワードの関連度の合計値、お気に入りへの追加有無等を示す目印(図14では星印)等を含む。図14の例では、破線の枠で囲まれた一番上のキーワード(AAA)が選択されている。また、検索ウィンドウ281は、表示されるキーワードの順番を並び替えたり、ジャンルを選択したり、閲覧履歴を表示させたりするためのリストボックスを含む。なお、図14の検索ウィンドウ281は一例であって、第2領域280に表示される検索ウィンドウには、キーワードを選択する機能があればよい。
 図15は、第3領域290に表示される特徴量詳細データ画像の一例(特徴量詳細データ画像291)である。特徴量詳細データ画像291は、第2領域280の検索ウィンドウにおいて選択されたキーワードの番組内での登場回数、登場時間、SNSへの投稿数、SNSにおけるリアクション数(反応数とも呼ぶ)等に関する特徴量詳細データを含む。
 図16は、第3領域290に表示される特徴量詳細データ画像の別の一例(特徴量詳細データ画像292)である。特徴量詳細データ画像292は、選択された番組内において、選択されたキーワードがCMチャンスの近傍の時間帯に登場する回数をランク付けしたグラフを含む。
 図17は、第3領域290に表示される特徴量詳細データ画像のさらに別の一例(特徴量詳細データ画像293)である。特徴量詳細データ画像293は、選択された番組枠で放送された過去の番組の放送時間帯において、選択されたキーワードに関する投稿数の時間推移を示すグラフを含む。例えば、図15~図17の特徴量詳細データは、第3領域290に個別に表示されてもよいし、第3領域290にいくつかまとめて表示されてもよい。
 (動作)
 次に、本実施形態に係る関連度推定システム2の動作について図面を参照しながら説明する。以下においては、集計データ生成処理、推定フェーズ、サブ画面表示処理、およびサブ画面更新処理に大別して説明する。集計データ生成処理は、相関関係の推定対象の番組と広告に関する番組関連情報および広告関連情報から抽出されたキーワードを用いて集計データを生成する処理である。推定フェーズは、推定対象データを推定モデルに入力して関連度を推定するフェーズである。サブ画面表示処理は、サブ画面を表示する処理である。サブ画面更新処理は、サブ画面の表示を更新する処理である。正解データから抽出された特徴量を学習して推定モデルを生成する学習フェーズは、第1の実施形態と同様であるので、説明を省略する。
 〔集計データ生成処理〕
 図18は、相関関係の推定対象の番組と広告に関する番組関連情報および広告関連情報から抽出された特徴量を用いて集計データを生成する、集計データ生成処理について説明するためのフローチャートである。集計データ生成処理の説明においては、推定装置22に含まれる集計データ生成部226を動作主体として説明する。
 図18において、まず、集計データ生成部226は、相関関係の推定対象の番組と広告の番組関連情報および広告関連情報に共通して含まれる特徴量(キーワード)を番組ごとに取得する(ステップS211)。
 次に、集計データ生成部226は、取得されたキーワードに関する集計データを番組ごとに生成する(ステップS212)。
 次に、集計データ生成部226は、番組に関連付けて、生成された集計データを集計データ記憶部227に記憶させる(ステップS213)。集計データ記憶部227に記憶された集計データは第2表示情報の生成に用いられる。
 〔推定フェーズ〕
 図19は、推定フェーズについて説明するためのフローチャートである。推定フェーズの説明においては、推定装置22を動作主体として説明する。
 図19において、まず、推定装置22は、相関関係の推定対象である番組と広告に関する推定対象データを取得する(ステップS221)。
 次に、推定装置22は、取得された推定対象データから特徴量を抽出する(ステップS222)。
 次に、推定装置22は、抽出された特徴量を推定モデルに入力し、番組と広告の関連度を推定する(ステップS223)。
 次に、推定装置22は、推定モデルを用いて推定された関連度を、番組と広告に関連付けて記憶する(ステップS224)。
 ここで、第1表示情報を生成する場合(ステップS225でYes)、推定装置22は、記憶された関連度を用いて、タイムテーブルの各番組枠に関連度が表示されるタイムテーブル画像を含む第1表示情報を生成する(ステップS226)。例えば、第1表示情報を生成するタイミングは、タイムテーブルに含まれる番組枠で放送される番組の関連度がそろったタイミングや、端末装置23から第1表示情報の要求を受けたタイミングである。一方、第1表示情報を生成しない場合(ステップS225でNo)、図19のフローチャートに沿った処理は終了である。
 ステップS226の後、推定装置22は、生成された第1表示情報を端末装置23に出力する(ステップS227)。端末装置23の画面には、生成された第1表示情報が表示される。
 〔第2表示情報生成〕
 図20は、第2表示情報を生成する処理について説明するためのフローチャートである。図20のフローチャートに沿った説明においては、表示情報生成部225を動作の主体として説明する。
 図20において、まず、表示情報生成部225は、第1表示情報において選択された番組の第2表示情報を生成する指示を入出力部224から受け付ける(ステップS231)。
 次に、表示情報生成部225は、選択された番組の集計データを集計データ記憶部227から取得する(ステップS232)。
 次に、表示情報生成部225は、取得された集計データを用いて、第2表示情報を生成する(ステップS233)。
 次に、表示情報生成部225は、生成された第2表示情報を入出力部224に出力する(ステップS234)。入出力部224に出力された第2表示情報は、端末装置23に出力される。端末装置23の画面には、生成された第2表示情報が表示される。例えば、端末装置23の画面には、第1表示情報に重ねられて、第2表示情報が表示される。
 〔第2表示情報更新〕
 図21は、第2表示情報を更新する処理について説明するためのフローチャートである。図21のフローチャートに沿った説明においては、表示情報生成部225を動作の主体として説明する。
 図21において、まず、表示情報生成部225は、第2表示情報の検索ウィンドウで選択されたキーワードの集計データが表示されるように第2表示情報を更新する指示を入出力部224から受け付ける(ステップS241)。
 次に、表示情報生成部225は、選択されたキーワードの集計データを集計データ記憶部227から取得する(ステップS242)。
 次に、表示情報生成部225は、選択されたキーワードの集計データを含む集計データ画像に更新された第2表示情報を生成する(ステップS243)。
 次に、表示情報生成部225は、生成された第2表示情報を入出力部224に出力する(ステップS244)。入出力部224に出力された第2表示情報は、端末装置23に出力される。端末装置23の画面には、更新された第2表示情報が表示される。
 以上のように、本実施形態の関連度推定システムの推定装置は、特徴量抽出部、相関関係推定部、相関関係記憶部、および出力部に加えて、表示情報生成部、集計データ生成部、および集計データ記憶部を備える。
 本実施形態の一態様において、表示情報生成部は、相関関係の推定対象の番組と広告の関連度を含む表示情報を生成する。出力部は、表示情報生成部によって生成された表示情報を出力する。
 例えば、出力部から出力された表示情報は、CM(広告)の作案作業を行う作業者が操作する端末装置の画面に表示される。作業者は、端末装置の画面に表示された表示情報を参照することによって、番組と広告の関連度を認識できる。
 本実施形態の一態様において、取得部は、作案対象期間に放送予定の番組の番組関連情報と、作案対象期間に放送予定の広告の広告関連情報とを取得する。相関関係推定部は、取得された番組関連情報と広告関連情報を推定モデルに入力して、番組と広告の関連度を推定する。表示情報生成部は、作案対象期間のタイムテーブルを構成する複数の番組枠の各々に、番組枠で放送予定の番組と、作案対象期間に放送予定の広告との関連度を対応付けたタイムテーブル画像を含む第1表示情報を生成する。出力部は、生成された第1表示情報を出力する。
 例えば、出力部から出力された第1表示情報は、CM(広告)の作案作業を行う作業者が操作する端末装置の画面に表示される。作業者は、端末装置の画面に表示された第1表示情報を参照することによって、タイムテーブルに含まれる番組と広告の関連度を認識できる。
 本実施形態の一態様において、推定装置は、集計データ生成部と集計データ記憶部とを備える。集計データ生成部は、相関関係の推定対象の番組と広告に関して、番組の番組関連情報と広告の広告関連情報に共通して含まれるキーワードを集計した集計データを生成する。集計データ記憶部は、集計データ生成部によって生成された集計データを番組に対応付けて記憶する。表示情報生成部は、第1表示情報に含まれるタイムテーブル画像において選択された番組枠で放送予定の番組に対応する集計データが表示される第2表示情報を生成する。出力部は、生成された第2表示情報を出力する。
 例えば、表示情報生成部は、作案対象期間に放送予定の番組に対応付けられたキーワードごとに、集計データが表示される第2表示情報を生成する。例えば、集計データは、番組にキーワードが登場する回数、番組に前記キーワードが登場する時間、キーワードに対する投稿数、およびキーワードに対する反応数のうち少なくともいずれかを含む。出力部は、表示情報生成部によって生成された第2表示情報を出力する。
 例えば、表示情報生成部は、作案対象期間に放送予定の番組に含まれる少なくとも一つの広告機会の近傍の時間帯におけるキーワードの登場回数に応じて、少なくとも一つの広告機会をランク付けした集計データが表示される第2表示情報を生成する。入出力部は、表示情報生成部によって生成された第2表示情報を出力する。
 例えば、表示情報生成部は、集計データの表示対象のキーワードを検索するための検索ウィンドウを含む前記第2表示情報を生成する。表示情報生成部は、検索ウィンドウにおいて選択されたキーワードの集計データを含む第2表示情報を生成する。出力部は、表示情報生成部によって生成された第2表示情報を出力する。
 例えば、出力部から出力された第2表示情報は、CM(広告)の作案作業を行う作業者が操作する端末装置の画面に表示される。作業者は、端末装置の画面に表示された第2表示情報を参照することによって、広告の挿入候補の番組から抽出された特徴量に関する統計的な情報を認識できる。
 (第3の実施形態)
 次に、第3の実施形態に係る関連度推定システムについて図面を参照しながら説明する。本実施形態の学習装置は、第1~第2の実施形態の関連度推定システムを簡略化した構成である。
 図22は、本実施形態の関連度推定システム3の一例を示す概念図である。関連度推定システム3は、学習装置31および推定装置32を備える。
 学習装置31は、過去に放送された番組および広告に関する番組関連情報および広告関連情報を取得する。学習装置31は、取得された番組関連情報および広告関連情報を用いた学習によって、番組と広告の相関関係の指標である関連度を推定する推定モデルを生成する。
 推定装置32は、番組に関する番組関連情報と、広告に関する広告関連情報を取得する。推定装置32は、相関関係の推定対象の番組と広告に関する番組関連情報および広告関連情報を推定モデルに入力して、相関関係の推定対象の番組と広告の関連度を推定する。
 本実施形態の関連度推定システムによれば、番組および広告に関する情報を用いた学習によって、相関関係の推定対象の番組と広告の関連度を高精度で予測する推定モデルを構築できる。その結果、本実施形態の手法によれば、番組と広告の関連度を高精度で予測できる。
 (第4の実施形態)
 次に、第4の実施形態に係る学習装置について図面を参照しながら説明する。本実施形態の学習装置は、第1~第2の実施形態の学習装置を簡略化した構成である。
 図23は、本実施形態の学習装置41の一例を示す概念図である。学習装置41は、特徴量抽出部411およびモデル構築部412を備える。
 特徴量抽出部411は、過去に放送された番組および広告に関する番組関連情報および広告関連情報を取得する。特徴量抽出部411は、取得された番組関連情報および広告関連情報から特徴量を抽出する。
 モデル構築部412は、抽出された特徴量を用いた学習によって、番組と広告の相関関係の指標である関連度を推定する推定モデル400を生成する。
 本実施形態の学習装置によれば、番組および広告に関する情報を用いた学習によって、相関関係の推定対象の番組と広告の関連度を高精度で予測する推定モデルを構築できる。
 (第5の実施形態)
 次に、第5の実施形態に係る推定装置について図面を参照しながら説明する。本実施形態の学習装置は、第1~第2の実施形態の推定装置を簡略化した構成である。
 図24は、本実施形態の推定装置52の一例を示す概念図である。推定装置52は、取得部521および関連度推定部522を備える。
 取得部521は、番組に関する番組関連情報と、広告に関する広告関連情報を取得する。
 関連度推定部522は、相関関係の推定対象の番組と広告に関する番組関連情報および広告関連情報を推定モデルに入力して、相関関係の推定対象の番組と広告の関連度を推定する。推定モデルは、過去に放送された番組と広告に関する番組関連情報および広告関連情報を用いた学習によって生成されたモデルである。推定モデルは、相関関係の推定対象の番組と広告に関する番組関連情報および広告関連情報が入力されると、番組と広告の相関関係の指標である関連度を出力する。
 本実施形態の推定装置によれば、番組と広告の関連度を高精度で予測する推定モデルを用いることによって、相関関係の推定対象の番組と広告の関連度を高精度で予測できる。そのため、本実施形態によれば、番組の内容に興味のある視聴者に対して、番組の内容に関係のあるCMを効果的に視聴させることが可能になる。
 (ハードウェア)
 ここで、各実施形態に係る学習装置や推定装置、端末装置等の装置を実現するハードウェア構成について、図25の情報処理装置90を一例として挙げて説明する。なお、図25の情報処理装置90は、各実施形態の装置を実現するための構成例であって、本発明の範囲を限定するものではない。
 図25のように、情報処理装置90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96を備える。図25においては、インターフェースをI/F(Interface)と略して表記する。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96は、バス98を介して互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。
 プロセッサ91は、補助記憶装置93等に格納されたプログラムを主記憶装置92に展開し、展開されたプログラムを実行する。本実施形態においては、情報処理装置90にインストールされたソフトウェアプログラムを用いる構成とすればよい。プロセッサ91は、本実施形態に係る装置による処理を実行する。
 主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリとすればよい。また、MRAM(Magnetoresistive Random Access Memory)などの不揮発性メモリを主記憶装置92として構成・追加してもよい。
 補助記憶装置93は、種々のデータを記憶する。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって構成される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。
 入出力インターフェース95は、情報処理装置90と周辺機器とを接続するためのインターフェースである。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークを通じて、外部のシステムや装置に接続するためのインターフェースである。入出力インターフェース95および通信インターフェース96は、外部機器と接続するインターフェースとして共通化してもよい。
 情報処理装置90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器を接続するように構成してもよい。それらの入力機器は、情報や設定の入力に使用される。なお、タッチパネルを入力機器として用いる場合は、表示機器の表示画面が入力機器のインターフェースを兼ねる構成とすればよい。プロセッサ91と入力機器との間のデータ通信は、入出力インターフェース95に仲介させればよい。
 また、情報処理装置90には、情報を表示するための表示機器を備え付けてもよい。表示機器を備え付ける場合、情報処理装置90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられていることが好ましい。表示機器は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
 以上が、各実施形態に係る装置を可能とするためのハードウェア構成の一例である。なお、図25のハードウェア構成は、各実施形態に係る装置の演算処理を実行するためのハードウェア構成の一例であって、本発明の範囲を限定するものではない。また、各実施形態に係る装置に関する処理をコンピュータに実行させるプログラムも本発明の範囲に含まれる。さらに、各実施形態に係るプログラムを記録した記録媒体も本発明の範囲に含まれる。記録媒体は、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体で実現できる。また、記録媒体は、USB(Universal Serial Bus)メモリやSD(Secure Digital)カードなどの半導体記録媒体や、フレキシブルディスクなどの磁気記録媒体、その他の記録媒体によって実現してもよい。
 各実施形態の装置の構成要素は、任意に組み合わせることができる。また、各実施形態の装置の構成要素は、ソフトウェアによって実現してもよいし、回路によって実現してもよい。
 以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 番組に関する番組関連情報と広告に関する広告関連情報とを取得する取得部と、
 過去に放送された番組と広告に関する前記番組関連情報および前記広告関連情報を用いた学習によって生成された、前記番組と前記広告の相関関係の指標である関連度を推定する推定モデルに、相関関係の推定対象の前記番組と前記広告に関する前記番組関連情報および前記広告関連情報を入力して、相関関係の推定対象の前記番組と前記広告の前記関連度を推定する関連度推定部と、を備える推定装置。
(付記2)
 前記番組関連情報は、過去に放送された前記番組の番組放送データ、電子番組表データ、および番組メタデータのうち少なくともいずれかを含む当事者データと、過去に放送された前記番組に関する投稿データおよび検索データのうち少なくともいずれかを含む第三者データとを含む、付記1に記載の推定装置。
(付記3)
 前記広告関連情報は、過去に放送された前記広告の広告放送データ、広告メタデータ、および広告主メタデータのうち少なくともいずれかを含む関係者データと、過去に放送された前記広告に関する前記第三者データとを含む、付記2に記載の推定装置。
(付記4)
 相関関係の推定対象の前記番組と前記広告の前記関連度を含む表示情報を生成する表示情報生成部と、
 前記表示情報生成部によって生成された前記表示情報を出力する出力部と、を備える付記1乃至3のいずれか一項に記載の推定装置。
(付記5)
 前記表示情報生成部は、作案対象期間のタイムテーブルを構成する複数の番組枠の各々に、前記番組枠で放送予定の番組と、前記作案対象期間に放送予定の広告との前記関連度を対応付けたタイムテーブル画像を含む第1表示情報を生成し、
 前記出力部は、生成された前記第1表示情報を出力する付記4に記載の推定装置。
(付記6)
 相関関係の推定対象の前記番組と前記広告に関して、前記番組の前記番組関連情報と前記広告の前記広告関連情報に共通して含まれるキーワードを集計した集計データを生成する集計データ生成部と、を更に備え、
 前記表示情報生成部は、前記第1表示情報に含まれる前記タイムテーブル画像において選択された前記番組枠で放送予定の前記番組に対応する前記集計データが表示される第2表示情報を生成し、
 前記出力部は、生成された前記第2表示情報を出力する付記5に記載の推定装置。
(付記7)
 前記表示情報生成部は、前記作案対象期間に放送予定の前記番組に対応付けられた前記キーワードごとに、前記番組に前記キーワードが登場する回数、前記番組に前記キーワードが登場する時間、前記キーワードに対する投稿数、および前記キーワードに対する反応数のうち少なくともいずれかを含む前記集計データが表示される前記第2表示情報を生成し、
 前記出力部は、前記表示情報生成部によって生成された前記第2表示情報を出力する付記6に記載の推定装置。
(付記8)
 前記表示情報生成部は、前記作案対象期間に放送予定の前記番組に含まれる少なくとも一つの広告機会の近傍の時間帯における前記キーワードの登場回数に応じて、前記少なくとも一つの広告機会をランク付けした前記集計データが表示される前記第2表示情報を生成し、
 前記出力部は、前記表示情報生成部によって生成された前記第2表示情報を出力する付記6または7に記載の推定装置。
(付記9)
 前記表示情報生成部は、前記集計データの表示対象の前記キーワードを検索するための検索ウィンドウを含む前記第2表示情報を生成し、
 前記表示情報生成部は、前記検索ウィンドウにおいて選択された前記キーワードの前記集計データを含む前記第2表示情報を生成し、
 前記出力部は、前記表示情報生成部によって生成された前記第2表示情報を出力する付記4乃至8のいずれか一項に記載の推定装置。
(付記10)
 コンピュータが、
 番組に関する番組関連情報と広告に関する広告関連情報とを取得し、
 過去に放送された番組と広告に関する前記番組関連情報および前記広告関連情報を用いた学習によって生成された、前記番組と前記広告の相関関係の指標である関連度を推定する推定モデルに、相関関係の推定対象の前記番組と前記広告に関する前記番組関連情報および前記広告関連情報を入力して、相関関係の推定対象の前記番組と前記広告の前記関連度を推定する推定方法。
(付記11)
 番組に関する番組関連情報と広告に関する広告関連情報とを取得する処理と、
 過去に放送された番組と広告に関する前記番組関連情報および前記広告関連情報を用いた学習によって生成された、前記番組と前記広告の相関関係の指標である関連度を推定する推定モデルに、相関関係の推定対象の前記番組と前記広告に関する前記番組関連情報および前記広告関連情報を入力して、相関関係の推定対象の前記番組と前記広告の前記関連度を推定する処理と、をコンピュータに実行させるプログラム。
 1、2、3  関連度推定システム
 11、21、31、41  学習装置
 12、22、32、52 推定装置
 13、23  端末装置
 111、411  特徴量抽出部
 112、412  モデル構築部
 113  モデル記憶部
 121、221  特徴量抽出部
 122、222  相関関係推定部
 123、223  相関関係記憶部
 124、224  入出力部
 225  表示情報生成部
 226  集計データ生成部
 227  集計データ記憶部
 521  取得部
 522  関連度推定部

Claims (11)

  1.  番組に関する番組関連情報と広告に関する広告関連情報とを取得する取得手段と、
     過去に放送された番組と広告に関する前記番組関連情報および前記広告関連情報を用いた学習によって生成された、前記番組と前記広告の相関関係の指標である関連度を推定する推定モデルに、相関関係の推定対象の前記番組と前記広告に関する前記番組関連情報および前記広告関連情報を入力して、相関関係の推定対象の前記番組と前記広告の前記関連度を推定する関連度推定手段と、を備える推定装置。
  2.  前記番組関連情報は、過去に放送された前記番組の番組放送データ、電子番組表データ、および番組メタデータのうち少なくともいずれかを含む当事者データと、過去に放送された前記番組に関する投稿データおよび検索データのうち少なくともいずれかを含む第三者データとを含む、請求項1に記載の推定装置。
  3.  前記広告関連情報は、過去に放送された前記広告の広告放送データ、広告メタデータ、および広告主メタデータのうち少なくともいずれかを含む関係者データと、過去に放送された前記広告に関する前記第三者データとを含む、請求項2に記載の推定装置。
  4.  相関関係の推定対象の前記番組と前記広告の前記関連度を含む表示情報を生成する表示情報生成手段と、
     前記表示情報生成手段によって生成された前記表示情報を出力する出力手段と、を備える請求項1乃至3のいずれか一項に記載の推定装置。
  5.  前記表示情報生成手段は、作案対象期間のタイムテーブルを構成する複数の番組枠の各々に、前記番組枠で放送予定の番組と、前記作案対象期間に放送予定の広告との前記関連度を対応付けたタイムテーブル画像を含む第1表示情報を生成し、
     前記出力手段は、生成された前記第1表示情報を出力する請求項4に記載の推定装置。
  6.  相関関係の推定対象の前記番組と前記広告に関して、前記番組の前記番組関連情報と前記広告の前記広告関連情報に共通して含まれるキーワードを集計した集計データを生成する集計データ生成手段と、を更に備え、
     前記表示情報生成手段は、前記第1表示情報に含まれる前記タイムテーブル画像において選択された前記番組枠で放送予定の前記番組に対応する前記集計データが表示される第2表示情報を生成し、
     前記出力手段は、生成された前記第2表示情報を出力する請求項5に記載の推定装置。
  7.  前記表示情報生成手段は、前記作案対象期間に放送予定の前記番組に対応付けられた前記キーワードごとに、前記番組に前記キーワードが登場する回数、前記番組に前記キーワードが登場する時間、前記キーワードに対する投稿数、および前記キーワードに対する反応数のうち少なくともいずれかを含む前記集計データが表示される前記第2表示情報を生成し、
     前記出力手段は、前記表示情報生成手段によって生成された前記第2表示情報を出力する請求項6に記載の推定装置。
  8.  前記表示情報生成手段は、前記作案対象期間に放送予定の前記番組に含まれる少なくとも一つの広告機会の近傍の時間帯における前記キーワードの登場回数に応じて、前記少なくとも一つの広告機会をランク付けした前記集計データが表示される前記第2表示情報を生成し、
     前記出力手段は、前記表示情報生成手段によって生成された前記第2表示情報を出力する請求項6または7に記載の推定装置。
  9.  前記表示情報生成手段は、前記集計データの表示対象の前記キーワードを検索するための検索ウィンドウを含む前記第2表示情報を生成し、
     前記表示情報生成手段は、前記検索ウィンドウにおいて選択された前記キーワードの前記集計データを含む前記第2表示情報を生成し、
     前記出力手段は、前記表示情報生成手段によって生成された前記第2表示情報を出力する請求項6乃至8のいずれか一項に記載の推定装置。
  10.  コンピュータが、
     番組に関する番組関連情報と広告に関する広告関連情報とを取得し、
     過去に放送された番組と広告に関する前記番組関連情報および前記広告関連情報を用いた学習によって生成された、前記番組と前記広告の相関関係の指標である関連度を推定する推定モデルに、相関関係の推定対象の前記番組と前記広告に関する前記番組関連情報および前記広告関連情報を入力して、相関関係の推定対象の前記番組と前記広告の前記関連度を推定する推定方法。
  11.  番組に関する番組関連情報と広告に関する広告関連情報とを取得する処理と、
     過去に放送された番組と広告に関する前記番組関連情報および前記広告関連情報を用いた学習によって生成された、前記番組と前記広告の相関関係の指標である関連度を推定する推定モデルに、相関関係の推定対象の前記番組と前記広告に関する前記番組関連情報および前記広告関連情報を入力して、相関関係の推定対象の前記番組と前記広告の前記関連度を推定する処理と、をコンピュータに実行させるプログラムを記録させた非一過性の記録媒体。
PCT/JP2020/025308 2020-06-26 2020-06-26 推定装置、推定方法、および記録媒体 WO2021260933A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022532218A JP7487775B2 (ja) 2020-06-26 2020-06-26 推定装置、推定方法、およびプログラム
PCT/JP2020/025308 WO2021260933A1 (ja) 2020-06-26 2020-06-26 推定装置、推定方法、および記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025308 WO2021260933A1 (ja) 2020-06-26 2020-06-26 推定装置、推定方法、および記録媒体

Publications (1)

Publication Number Publication Date
WO2021260933A1 true WO2021260933A1 (ja) 2021-12-30

Family

ID=79282204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025308 WO2021260933A1 (ja) 2020-06-26 2020-06-26 推定装置、推定方法、および記録媒体

Country Status (2)

Country Link
JP (1) JP7487775B2 (ja)
WO (1) WO2021260933A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178240A (ja) * 2002-11-27 2004-06-24 Nippon Telegr & Teleph Corp <Ntt> コンテンツ提供システム,コンテンツ提供方法およびコンテンツ提供プログラム
JP2009088777A (ja) * 2007-09-28 2009-04-23 Dentsu Inc 広告選択最適化処理装置及びその処理方法
JP2016005015A (ja) * 2014-06-13 2016-01-12 大日本印刷株式会社 コンテンツ配信システム及びコンテンツ配信装置
JP2017062525A (ja) * 2015-09-17 2017-03-30 ヤフー株式会社 広告装置、広告抽出方法、広告抽出プログラム、端末装置および端末制御プログラム
JP6552759B1 (ja) * 2019-02-22 2019-07-31 株式会社ビデオリサーチ データ処理装置及びデータ処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178240A (ja) * 2002-11-27 2004-06-24 Nippon Telegr & Teleph Corp <Ntt> コンテンツ提供システム,コンテンツ提供方法およびコンテンツ提供プログラム
JP2009088777A (ja) * 2007-09-28 2009-04-23 Dentsu Inc 広告選択最適化処理装置及びその処理方法
JP2016005015A (ja) * 2014-06-13 2016-01-12 大日本印刷株式会社 コンテンツ配信システム及びコンテンツ配信装置
JP2017062525A (ja) * 2015-09-17 2017-03-30 ヤフー株式会社 広告装置、広告抽出方法、広告抽出プログラム、端末装置および端末制御プログラム
JP6552759B1 (ja) * 2019-02-22 2019-07-31 株式会社ビデオリサーチ データ処理装置及びデータ処理方法

Also Published As

Publication number Publication date
JPWO2021260933A1 (ja) 2021-12-30
JP7487775B2 (ja) 2024-05-21

Similar Documents

Publication Publication Date Title
US9693115B2 (en) Method and system for automatically determining demographics of media assets for targeting advertisements
US8402025B2 (en) Video quality measures
JP6267344B2 (ja) 精度管理を用いたコンテンツ選択
US20160117719A1 (en) Systems and Methods for Planning, Executing, and Reporting a Strategic Advertising Campaign for Television
US20110106584A1 (en) System and method for measuring customer interest to forecast entity consumption
US20080120646A1 (en) Automatically associating relevant advertising with video content
KR101817042B1 (ko) 온라인 영상광고 계약 중개 시스템, 방법 및 그 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체
CN101107858A (zh) 自动产生包括产品安置的预告片
US20180322513A1 (en) Tracking performance of digital design asset attributes
US20190050890A1 (en) Video dotting placement analysis system, analysis method and storage medium
US20170287000A1 (en) Dynamically generating video / animation, in real-time, in a display or electronic advertisement based on user data
JP5422157B2 (ja) 動画広告を配信する方法
US20130211912A1 (en) System, apparatus and method for providing advertisement based on user interest information
JP4516856B2 (ja) 広告料金設定システムおよび広告料金設定プログラム
KR20090099439A (ko) 멀티미디어 콘텐츠 정보에 포함된 메타 정보 기반 키워드광고 서비스 방법 및 그 서비스를 위한 시스템
US20150046255A1 (en) Asset maps
CN103593382A (zh) 信息处理设备、信息处理方法和程序
US20150227970A1 (en) System and method for providing movie file embedded with advertisement movie
WO2021260933A1 (ja) 推定装置、推定方法、および記録媒体
JP2002298015A (ja) 広告評価システム、広告評価方法及び広告評価プログラム
US20130036006A1 (en) Advertisement matching
JP2001249927A (ja) 広告提供方法および広告提供システム
US10586127B1 (en) Extracting audiovisual features from content elements on online documents
JP2020024599A (ja) 露出状況計測システム、方法及びプログラム
JP7503190B1 (ja) タレント選出システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941660

Country of ref document: EP

Kind code of ref document: A1