WO2021260789A1 - 電動機のインシュレータ及び電動機の電機子 - Google Patents

電動機のインシュレータ及び電動機の電機子 Download PDF

Info

Publication number
WO2021260789A1
WO2021260789A1 PCT/JP2020/024588 JP2020024588W WO2021260789A1 WO 2021260789 A1 WO2021260789 A1 WO 2021260789A1 JP 2020024588 W JP2020024588 W JP 2020024588W WO 2021260789 A1 WO2021260789 A1 WO 2021260789A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
sensor
insulator
accommodating groove
temperature sensor
Prior art date
Application number
PCT/JP2020/024588
Other languages
English (en)
French (fr)
Inventor
公貴 能勢
郷 井口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/024588 priority Critical patent/WO2021260789A1/ja
Publication of WO2021260789A1 publication Critical patent/WO2021260789A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation

Definitions

  • This disclosure relates to an insulator of a motor and an armature of a motor equipped with the insulator.
  • Patent Document 1 describes an insulator and an armature.
  • the insulator has a coil insulating portion placed on the tooth and two coil holding portions provided at both ends in the radial direction of the coil insulating portion.
  • a groove in which a temperature sensor is arranged is formed in the coil insulation portion along the radial direction.
  • the groove has a shape that matches the outer shape of the temperature sensor.
  • the temperature sensor may be formed in a cross-sectional dimension relatively small with respect to the groove depending on the processing tolerance of the temperature sensor and the groove. In this case, there is a problem that the temperature sensor and the coil do not come into contact with each other and the temperature of the coil may not be detected accurately.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide an insulator of a motor and an armature of a motor that can detect the temperature of a coil more accurately.
  • the insulator of the electric motor according to the present disclosure includes a coil winding portion having a winding surface around which a coil is wound, and the coil winding portion has a sensor accommodating groove in which a temperature sensor for detecting the temperature of the coil is accommodated. It is formed across the winding surface, and a guide surface for guiding the temperature sensor inserted from one end to the other end of the sensor accommodating groove is formed inside the sensor accommodating groove. The guide surface is inclined so as to be closer to the winding surface as the distance from the one end portion of the sensor accommodating groove increases.
  • the armature of the motor according to the present disclosure includes an insulator of the motor according to the present disclosure.
  • the temperature of the coil can be detected more accurately.
  • FIG. 1 It is a perspective view which shows the partial structure of the armature of the electric motor which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the structure of the insulator of the electric motor which concerns on Embodiment 1.
  • FIG. It is a rear view which shows the structure which saw the insulator of the electric motor which concerns on Embodiment 1 from the outside in the radial direction.
  • It is a top view which shows the structure which looked at the insulator of the electric motor which concerns on Embodiment 1 along the axial direction.
  • sectional drawing which shows the VV cross section of FIG.
  • FIG. It is sectional drawing which shows the manufacturing process of the armature of the electric motor which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the manufacturing process of the armature of the electric motor which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the manufacturing process of the armature of the electric motor which concerns on Embodiment 1.
  • FIG. 1 is a perspective view showing a partial configuration of an armature of an electric motor according to the present embodiment.
  • the stator 10 is illustrated as an armature of an electric motor.
  • the axial direction of the stator 10, the radial direction of the stator 10, and the circumferential direction of the stator 10 may be simply referred to as "axial direction”, “diametrical direction”, and “circumferential direction”, respectively.
  • the stator 10 has an arcuate unit core 11.
  • the unit core 11 has a configuration in which a plurality of divided cores 12 arranged in parallel in the circumferential direction are connected.
  • a plurality of unit cores 11 are connected in the circumferential direction to form an annular stator core of the stator 10.
  • FIG. 1 shows one unit core 11 with five split cores 12.
  • Each of the divided cores 12 has a back yoke 13 extending along the circumferential direction of the stator 10 and a teeth 14 extending radially inward from the back yoke 13 of the stator 10.
  • Each of the divided cores 12 has a structure in which a plurality of iron core pieces punched from an electromagnetic steel sheet are laminated in the axial direction of the stator 10.
  • the stator 10 has a pair of insulators 20a and 20b and a coil 30 for each divided core 12.
  • the pair of insulators 20a and 20b are attached to the respective teeth 14 of the split core 12.
  • the coil 30 is wound around the teeth 14 and the pair of insulators 20a and 20b.
  • Each of the insulator 20a and the insulator 20b is an insulating component that insulates between the split core 12 and the coil 30 and suppresses the winding disorder of the coil 30.
  • the insulator 20a is attached to one side of the teeth 14 in the axial direction of the stator 10.
  • the insulator 20b is attached to the other side of the teeth 14 in the axial direction of the stator 10. That is, the insulator 20a and the insulator 20b are attached to the teeth 14 so as to be sandwiched from both sides in the axial direction of the stator 10.
  • the insulator 20a and the insulator 20b have shapes that are substantially symmetrical with respect to a plane perpendicular to the axial direction of the stator 10.
  • the coil 30 is wound around the teeth 14 and the pair of insulators 20a and 20b after the insulator 20a and the insulator 20b are attached to the teeth 14.
  • the stator 10 further has a temperature sensor 40 that detects the temperature of the coil 30.
  • the temperature information of the coil 30 detected by the temperature sensor 40 is output to the control unit of the electric motor.
  • the control unit of the electric motor the amount of current flowing through the coil 30 is controlled based on the temperature of the coil 30.
  • the temperature sensor 40 is attached to the insulator 20a after the coil 30 is wound around the teeth 14 and the pair of insulators 20a and 20b.
  • One temperature sensor 40 may be provided for each of the plurality of divided cores 12, or one temperature sensor 40 may be provided for all the divided cores 12.
  • FIG. 2 is a perspective view showing the configuration of the insulator of the electric motor according to the present embodiment.
  • FIG. 3 is a rear view showing a configuration of an insulator of an electric motor according to the present embodiment as viewed from the outside in the radial direction.
  • FIG. 4 is a top view showing a configuration in which the insulator of the motor according to the present embodiment is viewed along the axial direction.
  • FIG. 5 is a cross-sectional view showing a VV cross section of FIG.
  • the insulator 20a includes a coil winding portion 21 around which the coil 30 is wound, an inner flange portion 22 and an outer flange portion 23 formed on both sides of the coil winding portion 21. have.
  • the coil winding portion 21 has a semi-elliptical cross-sectional shape as a whole. That is, the coil winding portion 21 has a pair of planes 21a and 21b parallel to each other and a folded surface 21c that connects the pair of planes 21a and 21b by folding back as a winding surface around which the coil 30 is wound. ing.
  • the inner flange portion 22 is located inside the coil winding portion 21 in the radial direction of the stator 10.
  • the inner flange portion 22 is arranged along the tip surface of the teeth 14 of the split core 12.
  • the outer flange portion 23 is located outside the coil winding portion 21 in the radial direction of the stator 10.
  • the outer flange portion 23 is arranged along the back yoke 13 of the split core 12.
  • the outer flange portion 23 is formed with a drawer groove 24 from which the conductor wire is drawn.
  • the conductor wire wound around the coil winding portion 21 as the coil 30 is drawn out through the drawing groove 24 and is electrically connected to the coil 30 wound around another insulator 20a.
  • a sensor insertion hole 50 into which the temperature sensor 40 is inserted is formed in the outer flange portion 23.
  • the sensor insertion hole 50 penetrates the outer flange portion 23 and is connected to the sensor accommodating groove 51 described later.
  • a sensor accommodating groove 51 is formed on the folded surface 21c of the coil winding portion 21.
  • the sensor accommodating groove 51 is configured to accommodate the temperature sensor 40 inserted through the sensor insertion hole 50.
  • the sensor accommodating groove 51 is opened on one end side in the axial direction of the stator 10 so as to face the inner peripheral surface of the coil 30 wound around the coil winding portion 21.
  • the sensor accommodating groove 51 is formed across the folded surface 21c so as to intersect the coil 30 wound around the coil winding portion 21.
  • the sensor accommodating groove 51 extends linearly between the inner flange portion 22 and the outer flange portion 23 along the radial direction of the stator 10.
  • One end portion 51a of the sensor accommodating groove 51 is connected to a sensor insertion hole 50 formed in the outer flange portion 23.
  • the sensor accommodating groove 51 also opens to the outside in the radial direction of the stator 10 via the sensor insertion hole 50.
  • the other end 51b of the sensor accommodating groove 51 is closed by the inner flange portion 22.
  • the sensor accommodating groove 51 has a pair of inner wall surfaces 51c and 51d facing each other.
  • the sensor accommodating groove 51 is not provided with a bottom portion.
  • the sensor accommodating groove 51 penetrates into the teeth accommodating space 25 in which the teeth 14 are accommodated.
  • a protrusion 52 and a protrusion 53 are formed inside the sensor accommodating groove 51.
  • the protrusion 52 is formed on the inner wall surface 51c of the sensor accommodating groove 51, and protrudes toward the inner wall surface 51d.
  • the protrusion 53 is formed on the inner wall surface 51d of the sensor accommodating groove 51, and protrudes toward the inner wall surface 51c.
  • the protrusion 52 and the protrusion 53 face each other via a gap. Both the protrusion 52 and the protrusion 53 are stretched along the stretching direction of the sensor accommodating groove 51.
  • the protruding height of the protrusion 52 from the inner wall surface 51c is relatively low near the one end portion 51a of the sensor accommodating groove 51, and the one end portion 51a is along the sensor accommodating groove 51. The farther away it is, the higher it becomes.
  • the protruding height of the protrusion 53 from the inner wall surface 51d is relatively low at a position close to one end 51a of the sensor accommodating groove 51, and increases as the distance from the one end 51a along the sensor accommodating groove 51 increases. It has become.
  • the upper surface facing the inner peripheral surface of the coil 30 is a guide surface 52a for guiding the temperature sensor 40.
  • the upper surface of the surface of the protrusion 53 facing the inner peripheral surface of the coil 30 is a guide surface 53a for guiding the temperature sensor 40.
  • Both the guide surface 52a and the guide surface 53a are configured to guide the temperature sensor 40 when the temperature sensor 40 is inserted from one end 51a of the sensor accommodating groove 51 toward the other end 51b.
  • Each of the guide surface 52a and the guide surface 53a is formed in a convex curved surface shape that is convex in a cross section perpendicular to the extending direction of the sensor accommodating groove 51.
  • the guide surface 52a of the protrusion 52 is inclined so as to be closer to the folded surface 21c as the distance from one end portion 51a along the sensor accommodating groove 51.
  • a point at an arbitrary position on the guide surface 52a is referred to as a first point 52a1
  • a point at a position farther than the first point 52a1 from one end portion 51a is referred to as a second point 52a2.
  • the distance L2 between the second point 52a2 and the folded surface 21c is shorter than the distance L1 between the first point 52a1 and the folded surface 21c (L2 ⁇ L1).
  • the guide surface 53a of the protrusion 53 is also inclined so as to be closer to the folded surface 21c as the distance from one end portion 51a along the sensor accommodating groove 51.
  • 6 and 7 are cross-sectional views showing a manufacturing process of an armature of an electric motor according to the present embodiment.
  • a pair of insulators 20a and 20b are attached to the teeth 14 of the split core 12 produced by laminating a plurality of iron core pieces.
  • the coil 30 is wound around the teeth 14 and the pair of insulators 20a and 20b.
  • the split core 12 and the coil 30 are insulated from each other by a pair of insulators 20a and 20b.
  • the temperature sensor 40 is inserted into the sensor accommodating groove 51 via the sensor insertion hole 50 formed in the outer flange portion 23 of the insulator 20a.
  • the temperature sensor 40 has a temperature detection unit 41 and a lead wire 42.
  • the temperature sensor 40 inserted in the sensor accommodating groove 51 is guided by the guide surface 52a and the guide surface 53a (not shown) so as to approach the folded surface 21c, that is, the inner peripheral surface of the coil 30. .. That is, the temperature detection unit 41 of the temperature sensor 40 moves upward in FIG. 7 so as to approach the inner peripheral surface of the coil 30 according to the amount of insertion of the temperature sensor 40 into the sensor accommodating groove 51. As a result, the temperature detection unit 41 is pressed against the inner peripheral surface of the coil 30 and comes into direct contact with the inner peripheral surface of the coil 30. Therefore, the temperature sensor 40 is attached so that the temperature of the coil 30 can be detected more accurately.
  • the stator 10 is manufactured through the above steps.
  • the distance between the temperature sensor 40 and the inner peripheral surface of the coil 30 can be adjusted according to the insertion amount of the temperature sensor 40. Therefore, even if the dimensions of the temperature sensor 40 and the sensor accommodating groove 51 vary in manufacturing, the temperature sensor 40 can be reliably brought into contact with the coil 30. Therefore, according to the present embodiment, the temperature of the coil 30 can be detected more accurately by the temperature sensor 40. Therefore, according to the present embodiment, damage to the coil 30 due to an excessive temperature rise can be suppressed more reliably. Further, according to the present embodiment, the temperature sensor 40 can be surely brought into contact with the coil 30 by inserting the temperature sensor 40 into the sensor accommodating groove 51, so that the assembling workability of the temperature sensor 40 is improved. be able to.
  • the temperature sensor 40 since the temperature sensor 40 is inserted into the sensor accommodating groove 51 after the coil 30 is wound, the coil 30 and the temperature sensor 40 come into contact with each other when the coil 30 is wound around the insulator 20a. Can be avoided. Therefore, it is possible to reduce the winding disorder of the coil 30 caused by the contact of the coil 30 with the temperature sensor 40, and it is possible to prevent the temperature sensor 40 from being damaged by the contact of the temperature sensor 40 with the coil 30.
  • the temperature sensor when the temperature sensor is fixed to the inner peripheral surface of the coil using an adhesive, it takes time to cure the adhesive, so that the process of attaching the temperature sensor takes a long time.
  • the step of curing the adhesive since the step of curing the adhesive is unnecessary, the step of attaching the temperature sensor 40 can be shortened.
  • each of the guide surface 52a and the guide surface 53a is formed in a convex curved surface shape, but even if each of the guide surface 52a and the guide surface 53a is formed in a planar shape or a concave curved surface shape. good.
  • the sensor accommodating groove 51 is not provided with a bottom portion, and the sensor accommodating groove 51 penetrates the teeth accommodating space 25, but the sensor accommodating groove 51 is provided with a bottom portion. good.
  • the insulator 20a of the electric motor includes a coil winding portion 21 having a folded surface 21c around which the coil 30 is wound.
  • the folded surface 21c is an example of a winding surface.
  • a sensor accommodating groove 51 accommodating a temperature sensor 40 for detecting the temperature of the coil 30 is formed across the folded surface 21c.
  • a guide surface 52a and a guide surface 53a for guiding the temperature sensor 40 inserted from one end 51a to the other end 51b of the sensor accommodating groove 51 are formed inside the sensor accommodating groove 51.
  • Each of the guide surface 52a and the guide surface 53a is inclined so as to be closer to the folded surface 21c as the distance from one end portion 51a of the sensor accommodating groove 51 increases.
  • the temperature sensor 40 can be brought closer to the inner peripheral surface of the coil 30 according to the insertion amount of the temperature sensor 40. Therefore, the temperature sensor 40 can be brought into contact with the coil 30 without depending on the processing tolerances of the temperature sensor 40 and the sensor accommodating groove 51. Therefore, according to this configuration, the temperature of the coil 30 can be detected more accurately.
  • the insulator 20a of the electric motor according to the present embodiment further includes an outer flange portion 23 provided adjacent to the coil winding portion 21.
  • the outer flange portion 23 is an example of the flange portion.
  • a sensor insertion hole 50 into which the temperature sensor 40 is inserted is formed in the outer flange portion 23.
  • One end 51a of the sensor accommodating groove 51 is connected to the sensor insertion hole 50. According to this configuration, the temperature sensor 40 can be easily inserted into the sensor accommodating groove 51 through the sensor insertion hole 50 even after the coil 30 is wound around the coil winding portion 21.
  • each of the guide surface 52a and the guide surface 53a may be formed in a curved surface shape.
  • each of the guide surface 52a and the guide surface 53a may be formed in a convex curved surface shape.
  • the stator 10 according to the present embodiment includes the insulator 20a of the electric motor according to the present embodiment.
  • the stator 10 is an example of an armature of an electric motor. According to this configuration, the above effect can be obtained in the stator 10.
  • stator 11 unit core, 12 split core, 13 back yoke, 14 teeth, 20a, 20b insulator, 21 coil winding part, 21a, 21b flat surface, 21c folded surface, 22 inner flange part, 23 outer flange part, 24 drawer Groove, 25 teeth accommodation space, 30 coil, 40 temperature sensor, 41 temperature detection unit, 42 lead wire, 50 sensor insertion hole, 51 sensor accommodation groove, 51a one end, 51b other end, 51c, 51d inner wall surface, 52 protrusion , 52a guide surface, 52a1 first point, 52a2 second point, 53 protrusion, 53a guide surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

電動機のインシュレータは、コイルが巻き付けられる巻付け面を有するコイル巻付け部を備え、コイル巻付け部には、コイルの温度を検出する温度センサが収容されるセンサ収容溝が巻付け面を横切って形成されており、センサ収容溝の内部には、センサ収容溝の一端部から他端部に向かって挿入される温度センサを案内する案内面が形成されており、案内面は、センサ収容溝の一端部から離れるほど巻付け面に近づくように傾斜している。

Description

電動機のインシュレータ及び電動機の電機子
 本開示は、電動機のインシュレータ及びそれを備えた電動機の電機子に関するものである。
 特許文献1には、インシュレータ及び電機子が記載されている。インシュレータは、ティース上に載置されるコイル絶縁部と、コイル絶縁部の径方向両端部に設けられた2つのコイル押さえ部と、を有している。コイル絶縁部には、温度センサが配置される溝が径方向に沿って形成されている。溝は、温度センサの外形と整合する形状を有している。インシュレータ及びティースの周囲に導線が巻かれて電機子コイルが形成されると、温度センサは、電機子コイルのテンションによって溝に押し付けられて固定される。同文献には、これにより温度センサが電機子コイルに接触するため、温度センサの温度検出能力が向上すると記載されている。
特開2010-4637号公報
 しかしながら、特許文献1の構成において、温度センサ及び溝の加工公差によっては、温度センサが溝に対して相対的に小さい断面寸法に形成されてしまう場合がある。この場合、温度センサとコイルとが接触せず、コイルの温度を正確に検出できない可能性があるという課題があった。
 本開示は、上述のような課題を解決するためになされたものであり、コイルの温度をより正確に検出できる電動機のインシュレータ及び電動機の電機子を提供することを目的とする。
 本開示に係る電動機のインシュレータは、コイルが巻き付けられる巻付け面を有するコイル巻付け部を備え、前記コイル巻付け部には、前記コイルの温度を検出する温度センサが収容されるセンサ収容溝が前記巻付け面を横切って形成されており、前記センサ収容溝の内部には、前記センサ収容溝の一端部から他端部に向かって挿入される前記温度センサを案内する案内面が形成されており、前記案内面は、前記センサ収容溝の前記一端部から離れるほど前記巻付け面に近づくように傾斜している。
 本開示に係る電動機の電機子は、本開示に係る電動機のインシュレータを備える。
 本開示によれば、コイルの温度をより正確に検出することができる。
実施の形態1に係る電動機の電機子の部分的な構成を示す斜視図である。 実施の形態1に係る電動機のインシュレータの構成を示す斜視図である。 実施の形態1に係る電動機のインシュレータを径方向外側から見た構成を示す背面図である。 実施の形態1に係る電動機のインシュレータを軸方向に沿って見た構成を示す上面図である。 図4のV-V断面を示す断面図である。 実施の形態1に係る電動機の電機子の製造工程を示す断面図である。 実施の形態1に係る電動機の電機子の製造工程を示す断面図である。
 実施の形態1.
 実施の形態1に係る電動機のインシュレータ及び電動機の電機子について説明する。図1は、本実施の形態に係る電動機の電機子の部分的な構成を示す斜視図である。本実施の形態では、電動機の電機子として、ステータ10を例示している。以下の説明では、ステータ10の軸方向、ステータ10の径方向、及びステータ10の周方向のことを、それぞれ単に「軸方向」、「径方向」、及び「周方向」という場合がある。
 図1に示すように、ステータ10は、円弧状のユニットコア11を有している。ユニットコア11は、周方向に並列した複数の分割コア12が連結した構成を有している。ユニットコア11は、周方向に複数連結されることにより、ステータ10の円環状のステータコアを構成する。図1では、5つの分割コア12を有する1つのユニットコア11が示されている。
 分割コア12のそれぞれは、ステータ10の周方向に沿って延びたバックヨーク13と、バックヨーク13からステータ10の径方向内側に向かって延びたティース14と、を有している。分割コア12のそれぞれは、電磁鋼板から打ち抜かれた複数の鉄心片がステータ10の軸方向に積層された構成を有している。
 また、ステータ10は、分割コア12毎に、一対のインシュレータ20a、20bとコイル30とを有している。一対のインシュレータ20a、20bは、分割コア12のそれぞれのティース14に取り付けられている。コイル30は、ティース14及び一対のインシュレータ20a、20bの周囲に巻き付けられている。
 インシュレータ20a及びインシュレータ20bのそれぞれは、分割コア12とコイル30との間を絶縁するとともに、コイル30の巻き乱れを抑制する絶縁部品である。インシュレータ20aは、ステータ10の軸方向においてティース14の一方側に取り付けられている。インシュレータ20bは、ステータ10の軸方向においてティース14の他方側に取り付けられている。すなわち、インシュレータ20a及びインシュレータ20bは、ティース14に対して、ステータ10の軸方向の両側から挟むように取り付けられている。インシュレータ20a及びインシュレータ20bは、ステータ10の軸方向に垂直な平面を基準として、概ね対称となる形状を有している。コイル30は、インシュレータ20a及びインシュレータ20bがティース14に取り付けられた後に、ティース14及び一対のインシュレータ20a、20bの周囲に巻き付けられている。
 図1では示していないが、ステータ10は、コイル30の温度を検出する温度センサ40をさらに有している。温度センサ40により検出されたコイル30の温度の情報は、電動機の制御部に出力される。電動機の制御部では、コイル30の温度に基づき、コイル30に流れる電流量が制御される。これにより、コイル30の温度上昇が抑えられるため、過度の温度上昇によるコイル30の損傷を抑制することができる。後述するように、温度センサ40は、コイル30がティース14及び一対のインシュレータ20a、20bの周囲に巻き付けられた後に、インシュレータ20aに取り付けられている。温度センサ40は、複数の分割コア12毎に1つ設けられていてもよいし、全ての分割コア12に1つずつ設けられていてもよい。
 図2は、本実施の形態に係る電動機のインシュレータの構成を示す斜視図である。図3は、本実施の形態に係る電動機のインシュレータを径方向外側から見た構成を示す背面図である。図4は、本実施の形態に係る電動機のインシュレータを軸方向に沿って見た構成を示す上面図である。図5は、図4のV-V断面を示す断面図である。
 図2~図5に示すように、インシュレータ20aは、コイル30が巻き付けられるコイル巻付け部21と、コイル巻付け部21を挟んで両側に形成された内側フランジ部22及び外側フランジ部23と、を有している。コイル巻付け部21は、全体として半長円状の断面形状を有している。つまり、コイル巻付け部21は、コイル30が巻き付けられる巻付け面として、互いに平行な一対の平面21a、21bと、一対の平面21a、21b同士を折り返して接続する折返し面21cと、を有している。
 内側フランジ部22は、ステータ10の径方向においてコイル巻付け部21よりも内側に位置している。内側フランジ部22は、分割コア12のティース14の先端面に沿うように配置される。外側フランジ部23は、ステータ10の径方向においてコイル巻付け部21よりも外側に位置している。外側フランジ部23は、分割コア12のバックヨーク13に沿うように配置される。
 外側フランジ部23には、導体線が引き出される引出し溝24が形成されている。コイル巻付け部21にコイル30として巻き付けられた導体線は、引出し溝24を通って外部に引き出され、別のインシュレータ20aに巻き付けられたコイル30と電気的に接続される。
 また、外側フランジ部23には、温度センサ40が挿入されるセンサ挿入孔50が形成されている。センサ挿入孔50は、外側フランジ部23を貫通しており、後述するセンサ収容溝51につながっている。
 コイル巻付け部21のうちの折返し面21cには、センサ収容溝51が形成されている。センサ収容溝51は、センサ挿入孔50から挿入された温度センサ40が収容されるように構成されている。センサ収容溝51は、コイル巻付け部21に巻き付けられるコイル30の内周面と向き合うように、ステータ10の軸方向の一端側に開口されている。
 センサ収容溝51は、コイル巻付け部21に巻き付けられるコイル30と交差するように、折返し面21cを横切って形成されている。センサ収容溝51は、内側フランジ部22と外側フランジ部23との間をステータ10の径方向に沿って直線状に延伸している。センサ収容溝51の一端部51aは、外側フランジ部23に形成されたセンサ挿入孔50につながっている。これにより、センサ収容溝51は、センサ挿入孔50を介して、ステータ10の径方向外側にも開口している。センサ収容溝51の他端部51bは、内側フランジ部22によって閉じられている。センサ収容溝51は、互いに対向する一対の内壁面51c、51dを有している。センサ収容溝51には底部が設けられていない。センサ収容溝51は、ティース14が収容されるティース収容空間25に貫通している。
 センサ収容溝51の内部には、突起52及び突起53が形成されている。突起52は、センサ収容溝51の内壁面51cに形成されており、内壁面51dに向かって突出している。突起53は、センサ収容溝51の内壁面51dに形成されており、内壁面51cに向かって突出している。突起52と突起53とは、空隙を介して対向している。突起52及び突起53はいずれも、センサ収容溝51の延伸方向に沿って延伸している。
 図4に示すように、内壁面51cからの突起52の突出高さは、センサ収容溝51の一端部51aに近い位置では相対的に低くなっており、センサ収容溝51に沿って一端部51aから離れるほど高くなっている。同様に、内壁面51dからの突起53の突出高さは、センサ収容溝51の一端部51aに近い位置では相対的に低くなっており、センサ収容溝51に沿って一端部51aから離れるほど高くなっている。
 突起52の表面のうち、コイル30の内周面と向き合う上面は、温度センサ40を案内する案内面52aとなっている。同様に、突起53の表面のうちコイル30の内周面と向き合う上面は、温度センサ40を案内する案内面53aとなっている。案内面52a及び案内面53aはいずれも、温度センサ40がセンサ収容溝51の一端部51aから他端部51bに向かって挿入される際に、温度センサ40を案内するように構成されている。案内面52a及び案内面53aのそれぞれは、センサ収容溝51の延伸方向に垂直な断面において凸となる凸曲面状に形成されている。
 図5に示すように、突起52の案内面52aは、センサ収容溝51に沿って一端部51aから離れるほど、折返し面21cに近づくように傾斜している。案内面52a上の任意の位置の点を第1点52a1とし、一端部51aからの距離が第1点52a1よりも遠い位置の点を第2点52a2とする。このとき、第2点52a2と折返し面21cとの間の距離L2は、第1点52a1と折返し面21cとの間の距離L1よりも短くなっている(L2<L1)。図5では図示していないが、突起53の案内面53aも同様に、センサ収容溝51に沿って一端部51aから離れるほど、折返し面21cに近づくように傾斜している。
 次に、本実施の形態に係る電動機のインシュレータを用いた電動機の電機子の製造方法について説明する。図6及び図7は、本実施の形態に係る電動機の電機子の製造工程を示す断面図である。
 図6に示すように、まず、複数の鉄心片が積層されることにより作製された分割コア12のティース14に対し、一対のインシュレータ20a、20bが取り付けられる。次に、ティース14及び一対のインシュレータ20a、20bの周囲にコイル30が巻き付けられる。分割コア12とコイル30との間は、一対のインシュレータ20a、20bによって絶縁される。次に、インシュレータ20aの外側フランジ部23に形成されたセンサ挿入孔50を介して、センサ収容溝51に温度センサ40が挿入される。ここで、温度センサ40は、温度検出部41とリード線42とを有している。
 図7に示すように、センサ収容溝51に挿入された温度センサ40は、案内面52aと不図示の案内面53aとによって、折返し面21cすなわちコイル30の内周面に近づくように案内される。つまり、温度センサ40の温度検出部41は、センサ収容溝51に対する温度センサ40の挿入量に応じて、コイル30の内周面に近づくように図7中で上方に移動する。これにより、温度検出部41は、コイル30の内周面に押し付けられ、コイル30の内周面に直接接触する。したがって、温度センサ40は、コイル30の温度をより正確に検出できるように取り付けられる。以上のような工程を経て、ステータ10が製造される。
 本実施の形態によれば、温度センサ40の挿入量に応じて、温度センサ40とコイル30の内周面との距離を調整することができる。このため、温度センサ40及びセンサ収容溝51のそれぞれの寸法に製造ばらつきが生じていたとしても、温度センサ40をコイル30に確実に接触させることができる。したがって、本実施の形態によれば、温度センサ40によってコイル30の温度をより正確に検出することができる。よって、本実施の形態によれば、過度の温度上昇によるコイル30の損傷をより確実に抑制することができる。また、本実施の形態によれば、温度センサ40をセンサ収容溝51に挿入することによって温度センサ40をコイル30に確実に接触させることができるため、温度センサ40の組付け作業性を向上させることができる。
 また、本実施の形態によれば、コイル30が巻き付けられた後に温度センサ40がセンサ収容溝51に挿入されるため、コイル30をインシュレータ20aに巻き付ける際にコイル30と温度センサ40とが接触するのを回避できる。したがって、コイル30が温度センサ40と接触することにより生じるコイル30の巻き乱れを低減することができるとともに、温度センサ40がコイル30と接触することにより生じる温度センサ40の破損を防ぐことができる。
 コイルの外周面に温度センサを固定する場合、温度センサを固定するための部品が必要となる。このため、ステータの部品点数が増加してしまうとともに、ステータの軸方向寸法が増加してしまう。これに対し、本実施の形態によれば、温度センサ40を固定するための部品が不要となるため、部品点数を削減することができるとともに、ステータ10の軸方向寸法を減少させることができる。
 また、接着剤を用いてコイルの内周面に温度センサを固定する場合、接着剤を硬化させるための時間が必要となるため、温度センサを取り付ける工程が長時間化してしまう。これに対し、本実施の形態によれば、接着剤を硬化させる工程が不要となるため、温度センサ40を取り付ける工程を短時間化することができる。
 なお、本実施の形態では、案内面52a及び案内面53aのそれぞれは凸曲面状に形成されているが、案内面52a及び案内面53aのそれぞれは平面状又は凹曲面状に形成されていてもよい。
 また、本実施の形態では、センサ収容溝51に底部が設けられておらず、センサ収容溝51がティース収容空間25に貫通しているが、センサ収容溝51には底部が設けられていてもよい。
 以上説明したように、本実施の形態に係る電動機のインシュレータ20aは、コイル30が巻き付けられる折返し面21cを有するコイル巻付け部21を備えている。ここで、折返し面21cは、巻付け面の一例である。コイル巻付け部21には、コイル30の温度を検出する温度センサ40が収容されるセンサ収容溝51が折返し面21cを横切って形成されている。センサ収容溝51の内部には、センサ収容溝51の一端部51aから他端部51bに向かって挿入される温度センサ40を案内する案内面52a及び案内面53aが形成されている。案内面52a及び案内面53aのそれぞれは、センサ収容溝51の一端部51aから離れるほど折返し面21cに近づくように傾斜している。
 この構成によれば、温度センサ40の挿入量に応じて、温度センサ40をコイル30の内周面に近づけさせることができる。このため、温度センサ40及びセンサ収容溝51の加工公差に依存せず、温度センサ40をコイル30に接触させることができる。したがって、この構成によれば、コイル30の温度をより正確に検出することができる。
 また、本実施の形態に係る電動機のインシュレータ20aは、コイル巻付け部21に隣接して設けられた外側フランジ部23をさらに備えている。ここで、外側フランジ部23は、フランジ部の一例である。外側フランジ部23には、温度センサ40が挿入されるセンサ挿入孔50が形成されている。センサ収容溝51の一端部51aは、センサ挿入孔50とつながっている。この構成によれば、コイル巻付け部21にコイル30が巻き付けられた後であっても、センサ挿入孔50を介してセンサ収容溝51に温度センサ40を容易に挿入することができる。
 また、本実施の形態に係る電動機のインシュレータ20aにおいて、案内面52a及び案内面53aのそれぞれは、曲面状に形成されていてもよい。例えば、案内面52a及び案内面53aのそれぞれは、凸曲面状に形成されていてもよい。
 また、本実施の形態に係るステータ10は、本実施の形態に係る電動機のインシュレータ20aを備えている。ここで、ステータ10は、電動機の電機子の一例である。この構成によれば、ステータ10において上記の効果が得られる。
 10 ステータ、11 ユニットコア、12 分割コア、13 バックヨーク、14 ティース、20a、20b インシュレータ、21 コイル巻付け部、21a、21b 平面、21c 折返し面、22 内側フランジ部、23 外側フランジ部、24 引出し溝、25 ティース収容空間、30 コイル、40 温度センサ、41 温度検出部、42 リード線、50 センサ挿入孔、51 センサ収容溝、51a 一端部、51b 他端部、51c、51d 内壁面、52 突起、52a 案内面、52a1 第1点、52a2 第2点、53 突起、53a 案内面。

Claims (4)

  1.  コイルが巻き付けられる巻付け面を有するコイル巻付け部を備え、
     前記コイル巻付け部には、前記コイルの温度を検出する温度センサが収容されるセンサ収容溝が前記巻付け面を横切って形成されており、
     前記センサ収容溝の内部には、前記センサ収容溝の一端部から他端部に向かって挿入される前記温度センサを案内する案内面が形成されており、
     前記案内面は、前記センサ収容溝の前記一端部から離れるほど前記巻付け面に近づくように傾斜している電動機のインシュレータ。
  2.  前記コイル巻付け部に隣接して設けられたフランジ部をさらに備え、
     前記フランジ部には、前記温度センサが挿入されるセンサ挿入孔が形成されており、
     前記センサ収容溝の前記一端部は、前記センサ挿入孔とつながっている請求項1に記載の電動機のインシュレータ。
  3.  前記案内面は、曲面状に形成されている請求項1又は請求項2に記載の電動機のインシュレータ。
  4.  請求項1~請求項3のいずれか一項に記載の電動機のインシュレータを備える電動機の電機子。
PCT/JP2020/024588 2020-06-23 2020-06-23 電動機のインシュレータ及び電動機の電機子 WO2021260789A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024588 WO2021260789A1 (ja) 2020-06-23 2020-06-23 電動機のインシュレータ及び電動機の電機子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024588 WO2021260789A1 (ja) 2020-06-23 2020-06-23 電動機のインシュレータ及び電動機の電機子

Publications (1)

Publication Number Publication Date
WO2021260789A1 true WO2021260789A1 (ja) 2021-12-30

Family

ID=79282259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024588 WO2021260789A1 (ja) 2020-06-23 2020-06-23 電動機のインシュレータ及び電動機の電機子

Country Status (1)

Country Link
WO (1) WO2021260789A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243663A1 (ja) * 2022-06-15 2023-12-21 株式会社デンソー ステータ及び回転電機
WO2024033653A1 (en) * 2022-08-11 2024-02-15 Libertine Fpe Ltd A sensor device and method for controlling a free piston mover

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993872A (ja) * 1995-09-20 1997-04-04 Fujitsu General Ltd 電動機
JP2008306886A (ja) * 2007-06-11 2008-12-18 Sanyo Electric Co Ltd モータ及びモータの製造方法
JP2010004637A (ja) * 2008-06-19 2010-01-07 Daikin Ind Ltd インシュレータ、電機子及びモータ
JP2013172478A (ja) * 2012-02-17 2013-09-02 Nifco Inc インシュレータ及びステータ
JP2018186608A (ja) * 2017-04-25 2018-11-22 住友電装株式会社 樹脂成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993872A (ja) * 1995-09-20 1997-04-04 Fujitsu General Ltd 電動機
JP2008306886A (ja) * 2007-06-11 2008-12-18 Sanyo Electric Co Ltd モータ及びモータの製造方法
JP2010004637A (ja) * 2008-06-19 2010-01-07 Daikin Ind Ltd インシュレータ、電機子及びモータ
JP2013172478A (ja) * 2012-02-17 2013-09-02 Nifco Inc インシュレータ及びステータ
JP2018186608A (ja) * 2017-04-25 2018-11-22 住友電装株式会社 樹脂成形品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243663A1 (ja) * 2022-06-15 2023-12-21 株式会社デンソー ステータ及び回転電機
WO2024033653A1 (en) * 2022-08-11 2024-02-15 Libertine Fpe Ltd A sensor device and method for controlling a free piston mover

Similar Documents

Publication Publication Date Title
KR101854386B1 (ko) 전자 모터용 고정자의 권선 절연 구조
CN108886287B (zh) 磁极、磁极的制造方法及定子
US9793774B2 (en) Armature for rotary electric machine
WO2015186835A1 (ja) ステータの組立方法およびステータの組立装置
JP5087880B2 (ja) リアクトル
WO2021260789A1 (ja) 電動機のインシュレータ及び電動機の電機子
KR102387991B1 (ko) 스테이터 코어 및 이를 포함하는 모터
US20160268866A1 (en) Axial gap type rotating electrical machine
US20180006512A1 (en) Armature and rotating electric machine
JP2000032694A (ja) 固定子用絶縁ボビン
US11139709B2 (en) Stator assembly of hairpin winding motor
US11329526B2 (en) Stator, stator assembly, and transducer for converting between electrical energy and mechanical energy
CN111245164B (zh) 旋转电机及其制造方法
CN105009426A (zh) 旋转电机
CN110277856B (zh) 旋转电机的定子
KR101745127B1 (ko) 회전 전기기기의 전기자
US11632010B2 (en) Insulator set and stator used for generator and electric motor, and method for manufacturing stator
JP6652308B2 (ja) 電機子、回転電機および電機子の製造方法
JP7246224B2 (ja) 回転電機
CN112236925A (zh) 旋转电机的定子以及旋转电机
JP5901432B2 (ja) 電機子と電機子の製造方法
KR100308294B1 (ko) 리니어 모터의 스테이터 조립체 구조
JP2009240000A (ja) 電動モータ用インシュレータ
KR102566024B1 (ko) 차량용 구동모터의 보빈
KR102627578B1 (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP