WO2021259369A1 - 天线模块及移动终端 - Google Patents

天线模块及移动终端 Download PDF

Info

Publication number
WO2021259369A1
WO2021259369A1 PCT/CN2021/102167 CN2021102167W WO2021259369A1 WO 2021259369 A1 WO2021259369 A1 WO 2021259369A1 CN 2021102167 W CN2021102167 W CN 2021102167W WO 2021259369 A1 WO2021259369 A1 WO 2021259369A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna module
antenna
conductor support
baffle
bracket body
Prior art date
Application number
PCT/CN2021/102167
Other languages
English (en)
French (fr)
Inventor
黄国书
Original Assignee
深圳市万普拉斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市万普拉斯科技有限公司 filed Critical 深圳市万普拉斯科技有限公司
Publication of WO2021259369A1 publication Critical patent/WO2021259369A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components

Definitions

  • This application relates to the field of antenna technology, in particular to antenna modules and mobile terminals.
  • the antenna module in the mobile terminal usually includes two or more radiating units, and the radio frequency transceiver feeds power to the radiating unit, so that the radiating unit emits electromagnetic waves.
  • the traditional antenna module has a low radiation gain rate.
  • This application provides an antenna module and a mobile terminal.
  • An antenna module including:
  • the conductor support has a first surface
  • the antenna module is installed on the first surface of the conductor support, the orthographic projection of the antenna module on the first surface is smaller than the first surface and is located in the first surface; the antenna module The group includes an antenna ground plane, the antenna ground plane is electrically connected to the conductor support, and the conductor support is located on a side of the antenna module away from the radiation direction.
  • the conductor support includes a support body and a baffle
  • the bracket body has the first surface to install the antenna module
  • the baffle is connected to the side of the bracket body, and the baffle and the bracket body form a groove structure, and the first surface constitutes a bottom surface of the groove structure.
  • an included angle is formed between the baffle and the bracket body
  • the included angle is greater than or equal to 90 degrees and less than or equal to 180 degrees.
  • the bracket body and the baffle are integrally formed.
  • the antenna module further includes:
  • the wave absorber is arranged on the conductor support and is located on the side of the conductor support close to the antenna module, and the wave absorber surrounds the antenna module.
  • the wave absorber surrounds the antenna module to form a ring structure.
  • the wave absorber includes a plurality of wave absorbers
  • a plurality of the wave absorbers surround the antenna module, and two adjacent wave absorbers are spaced apart from each other.
  • a plurality of the wave absorbers and the conductor support are integrally formed.
  • the first surface is provided with a receiving groove, and at least part of the antenna module is provided in the receiving groove.
  • a mobile terminal including:
  • the conductor bracket is installed on the metal frame and is electrically connected to the metal frame.
  • the mobile terminal further includes:
  • the printed circuit board has a ground layer, and the conductor support is electrically connected to the ground layer.
  • the above-mentioned antenna module includes a conductor support and an antenna module installed on the conductor support.
  • the conductor support has a first surface.
  • the antenna module is installed on the first surface and located in the first surface.
  • the antenna module includes an antenna ground plane, and the antenna ground plane is electrically connected to the conductor support.
  • the conductor support is located on the back of the antenna module away from the radiation direction.
  • the antenna ground surface of the antenna module is electrically connected to the conductor support, which can increase the area of the antenna ground surface in a disguised form, thereby shielding the interference source from the back of the antenna module, and Reduce the space occupied by the antenna module and improve the radiation efficiency and gain efficiency of the antenna module.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of an antenna module in an embodiment of the application
  • FIG. 2 is a schematic diagram of a three-dimensional structure of an antenna module in an embodiment of the application.
  • 3 is a diagram of radiation field patterns of different radiating elements of the antenna module in an embodiment of the application.
  • FIG. 4 is a diagram of radiation field patterns of different radiating units of the antenna module in another embodiment of the application.
  • FIG. 5 is a comparison diagram of radiation field patterns between the antenna module of the present application and the conventional technology in an embodiment
  • FIG. 6 is a comparison diagram of radiation field patterns between the antenna module of the present application and the conventional technology in another embodiment
  • FIG. 7 is a schematic diagram of a partial cross-sectional structure of an antenna module in an embodiment of the application.
  • FIG. 8 is a schematic cross-sectional structure diagram of an antenna module in another embodiment of the application.
  • FIG. 9 is a schematic diagram of a cross-sectional structure of an antenna module in another embodiment of the application.
  • FIG. 10 is a schematic cross-sectional structure diagram of an antenna module in another embodiment of the application.
  • FIG. 11 is a schematic top view of the structure of the antenna module in an embodiment of the application.
  • FIG. 12 is a schematic diagram of a top view structure of an antenna module in another embodiment of the application.
  • FIG. 13 is a schematic cross-sectional structure diagram of an antenna module in another embodiment of the application.
  • FIG. 14 is a comparison diagram of radiation field patterns between the antenna module of the present application and the conventional technology in another implementation
  • FIG. 15 is a comparison diagram of radiation field patterns between the antenna module of the present application and the conventional technology in another implementation
  • FIG. 16 is a comparison diagram of radiation field patterns between the antenna module of the present application and the conventional technology in another implementation
  • FIG. 17 is a comparison diagram of radiation field patterns between the antenna module of the present application and the conventional technology in another implementation
  • FIG. 18 is a schematic structural diagram of a mobile terminal in an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of a mobile terminal in another embodiment of the application.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • connection connection
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. get in touch with.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • this application provides an antenna module and a mobile terminal using the antenna module.
  • the present application provides an antenna module 10 including a conductor support 110 and an antenna module 120.
  • the conductor support 110 is used to install the antenna module 120 and is used to transmit electrical signals.
  • the material of the conductor holder 110 may be any one or more solid metals.
  • the conductor support 110 has a first surface 111 and a second surface 113 opposite to the first surface.
  • the first surface 111 here is relative to the second surface 113, and it can be any surface of the conductor support 110.
  • the first surface 111 is used for mounting the antenna module 120, and the conductor support 110 is located on the side of the antenna module 120 away from the radiation direction.
  • the antenna module 120 is installed on the first surface 111 of the conductor support 110.
  • the orthographic projection of the antenna module 120 on the first surface 111 is smaller than that of the first surface 111, and the orthographic projection of the antenna module 120 on the first surface 111 is located in the first surface.
  • the antenna module 120 includes an antenna ground plane 124, and the antenna ground plane 124 is electrically connected to the conductor support 110.
  • the antenna module 120 may include a radio frequency transceiver 122, an antenna ground plane 124, an antenna substrate 126, and a radiation unit 128.
  • the radio frequency transceiver 122 is used to receive or transmit radio frequency signals.
  • the radio frequency transceiver 122 is installed on the first surface 111 of the conductor support 110, and the orthographic projection of the radio frequency transceiver 122 on the first surface 111 is located in the first surface 111. In other words, the radio frequency transceiver 122 is completely located in the first surface 111 of the conductor support 110.
  • the antenna ground plane 124 is stacked on the side of the radio frequency transceiver 122 away from the first surface 111.
  • the radio frequency transceiver 122 is located between the antenna ground plane 124 and the conductor support 110.
  • the antenna ground surface 124 refers to a conductive surface of the antenna module 10 for connecting with the ground line GND. Therefore, the antenna ground surface 124 may also be made of a metal material.
  • the antenna ground plane 124 is also electrically connected to the conductor support 110, thereby increasing the area of the antenna ground plane 124 in a disguised form.
  • the antenna substrate 126 is stacked on the side of the antenna ground plane 124 away from the radio frequency transceiver 122.
  • the antenna substrate 126 is used to separate the radio frequency transceiver 122 and the radiation unit 128.
  • the radiating unit 128 is disposed on the surface of the antenna substrate 126 away from the antenna ground plane 124. In other words, the radiation unit 128 is provided on the surface of the antenna substrate 126 away from the radio frequency transceiver 122.
  • the radiation unit 128 is also electrically connected to the radio frequency transceiver 122, so that the radio frequency transceiver 122 can transmit radio frequency signals to the radiation unit 128; after the radio frequency signal is obtained by the radiation unit 128, the radio frequency signal can be converted into electromagnetic waves and emitted. Similarly, after the radiation unit 128 obtains electromagnetic waves, it can also convert the electromagnetic waves into radio frequency signals and transmit them to the radio frequency transceiver 122.
  • the antenna module 10 includes a conductor support 110, a radio frequency transceiver 122, an antenna ground plane 124, and a radiation unit 128.
  • the conductor support 110 has a first surface 111.
  • the radio frequency transceiver 122 is installed on the first surface 111 and is located in the first surface 111.
  • the antenna ground plane 124, the antenna substrate 126 and the radiation unit 128 are sequentially stacked on a side of the radio frequency transceiver 122 away from the first surface 111, and the antenna ground plane 124 is electrically connected to the conductor support 110.
  • 3 and 4 show the radiation field pattern of the antenna module 10 of the present application.
  • 3 is a radiation pattern diagram of the antenna module 10 when the frequency of the alternating current signal in the radio frequency transceiver 122 is 28 GHz.
  • curves 1-5 respectively represent radiating elements 128 of different shapes.
  • Fig. 4 is a radiation pattern diagram of the antenna module 10 when the frequency of the alternating current signal in the radio frequency transceiver 122 is 39 GHz.
  • curves 1-5 also respectively represent radiating elements 128 of different shapes.
  • FIG. 5 is a comparison diagram of the radiation pattern when the frequency of the alternating current signal in the radio frequency transceiver 122 is 28 GHz.
  • the curve 1 represents the radiation pattern of the antenna module 10 when there is no conductor support 110 and the rotation angle of the radiating unit 128 is 0 degrees.
  • Curve 2 represents the radiation pattern of the antenna module 10 with the conductor support 110 and the rotation angle of the radiation unit 128 is 0 degrees.
  • Curve 3 represents the radiation pattern of the antenna module 10 when the radiating unit 128 is rotated at a 90 degree angle without the conductor support 110.
  • the curve 4 represents the radiation pattern of the antenna module 10 when the conductor support 110 is provided and the rotation angle of the radiation unit 128 is 90 degrees.
  • FIG. 6 is a comparison diagram of radiation field patterns when the frequency of the alternating current signal in the radio frequency transceiver 122 is 39 GHz.
  • the curve 1 represents the radiation pattern of the antenna module 10 when there is no conductor support 110 and the rotation angle of the radiating unit 128 is 0 degrees.
  • Curve 2 represents the radiation pattern of the antenna module 10 with the conductor support 110 and the rotation angle of the radiation unit 128 is 0 degrees.
  • Curve 3 represents the radiation pattern of the antenna module 10 when the radiating unit 128 is rotated at a 90 degree angle without the conductor support 110.
  • the curve 4 represents the radiation pattern of the antenna module 10 when the conductor support 110 is provided and the rotation angle of the radiation unit 128 is 90 degrees.
  • the antenna module 10 of the present application is connected to the antenna ground plane 124 through the conductor support 110, which can reduce the ripples in the radiation field pattern of the antenna module 10 and reduce the radiation field of the antenna module 10.
  • the side lobes in the pattern diagram improve the signal-to-noise ratio of the signal in the space. In this way, the radiation efficiency and gain efficiency of the antenna module 10 can be improved.
  • the antenna module 10 described above is provided with a conductor support 110 on the back side away from the radiation direction, and the radio frequency transceiver 122 is completely located in the first surface 111 of the conductor support 110, so that interference from the back of the antenna module 10 can be shielded by the conductor support 110 Therefore, the radiation efficiency and gain efficiency of the antenna module 10 are improved, and the space occupied by the antenna module 10 is reduced.
  • the conductor support 110 of the antenna module 10 is electrically connected to the antenna ground plane 124, which increases the area of the antenna ground plane 124 in a disguised form, thereby improving the radiation efficiency and gain efficiency of the antenna module 10.
  • the antenna module 120 further includes a communication column 129 for connecting the radio frequency transceiver 122 and the radiation unit 128.
  • the communication column 129 is used to connect the radio frequency transceiver 122 and the radiation unit 128, so that the radio frequency transceiver 122 and the radiation unit 128 can realize the transmission of electrical signals.
  • the communication pillar 129 may be a conductive material such as metal.
  • the antenna ground plane 124 may be provided with a first through hole (not labeled in the figure) that penetrates the antenna ground plane 124; the antenna substrate 126 may be provided with a second through hole (not labeled in the figure) that penetrates the antenna substrate 126.
  • the orthographic projections of the first through hole and the second through hole on the radio frequency transceiver 122 at least partially overlap.
  • the communication pillar 129 can be connected between the radio frequency transceiver 122 and the radiation unit 128 through the first through hole and the second through hole.
  • the connecting pillar 129 and the antenna ground plane 124 there may be a certain gap between the edge of the first through hole and the connecting pillar 129, so that the antenna ground plane 124 and the connecting pillar 129 can pass through the gap. Insulate between.
  • the size of the gap may satisfy the following condition: the size of the antenna ground plane 124 is the smallest under the premise that the antenna ground plane 124 is insulated from the communication column 129 through the gap. In this way, the area of the antenna ground plane 124 can be ensured as much as possible, so as to ensure the radiation efficiency and gain efficiency of the antenna module 10.
  • the antenna module 10 of the present application is explained in the implementation manner of “electrically connecting the radio frequency transceiver 122 and the radiation unit 128 through the communication column 129”. However, this does not mean that in the antenna module 10 of the present application, the radio frequency transceiver 122 and the radiation unit 128 can only communicate with each other in the form of a connecting rod 129. In other embodiments, the radio frequency transceiver 122 and the radiation unit 128 may also be connected by a metal wire around the periphery of the antenna module 10. No longer.
  • the idea of the present application is to electrically connect the conductor support 110 and the antenna grounding surface 124 through the arrangement of the conductor support 110, thereby increasing the surface area of the antenna grounding surface 124 in a disguised manner, thereby improving the radiation efficiency and gain efficiency of the antenna module 10, and reducing
  • the antenna module 10 occupies space. Therefore, all embodiments that conform to the concept of the present application should be understood as falling within the protection scope of the present application.
  • the distance between two adjacent radiating units 128 in the antenna module 120 is greater than a half wavelength of the electromagnetic wave emitted by the radiating unit 128.
  • the wavelength of the electromagnetic wave emitted by the radiation unit 128 is also fixed.
  • the distance between two adjacent radiation units 128 should be greater than a half wavelength of the electromagnetic waves emitted by the radiation units. In this way, the beam of the electromagnetic wave emitted by the radiation unit 128 can be narrowed, thereby improving the signal resolution in the space.
  • a metal partition may be provided between two adjacent radiating units 128 to separate the two adjacent radiating units 128.
  • the conductor support 110 of the antenna module 10 of the present application includes a support body 112.
  • the bracket body 112 may be made of a conductive material such as metal.
  • the bracket body 112 has a first surface 111 for mounting the radio frequency transceiver 122.
  • the orthographic projection of the radio frequency transceiver 122 on the first surface 111 of the conductor support 110 is located in the first surface 111.
  • the first surface 111 of the conductor holder 110 may be provided with a receiving groove.
  • the length and width of the receiving slot may be equal to the length and width of the radio frequency transceiver 122 and the length and width of the antenna ground plane 124.
  • the height of the receiving slot can be greater than the height of the radio frequency transceiver 122 and less than or equal to the sum of the height of the radio frequency transceiver 122 and the antenna ground plane 124. In this way, the radio frequency transceiver 122 and the antenna grounding surface 124 can be arranged in the receiving groove of the conductor support 110, and at the same time, the electrical connection between the conductor support 110 and the antenna grounding surface 124 can be realized.
  • the conductor support 110 of the antenna module 10 of the present application further includes a baffle 114 connected to the support body 112.
  • the first surface 111 of the conductor holder 110 may be rectangular.
  • the conductor holder 110 has four sides, and the four sides of the rectangular first surface 111 are located on the four sides of the conductor holder 110, respectively.
  • the conductor support 110 has a baffle 114, and the baffle 114 is connected to the side of the support body 112.
  • the conductor support 110 may have one or more baffles 114, where multiple refers to two or more, and each baffle 114 is connected to one side of the support body 112.
  • the even number of baffles 114 are respectively provided on two opposite sides of the conductor support 110.
  • the baffle 114 is connected to the side of the bracket body 112 to form a groove structure, and the first surface 111 constitutes the bottom surface of the groove structure.
  • the first surface 111 is a part of the inner surface of the groove structure.
  • the radio frequency transceiver 122 is located in the groove structure, and the antenna ground plane 124, the antenna substrate 126 and the radiation unit 128 are sequentially stacked on the side of the radio frequency transceiver 122 away from the first surface 111.
  • the baffle 114 and the bracket body 112 are connected in a groove structure, which can better shield the interference source from the back of the antenna module 10, thereby improving the radiation efficiency and gain efficiency of the antenna module 10.
  • an included angle ⁇ is formed between the baffle 114 and the bracket body 112, and the included angle is greater than or equal to 90 degrees and less than or equal to 180 degrees. That is, the included angle can be 90 degrees, 180 degrees, or 135 degrees.
  • the baffle 114 and the bracket body 112 form an included angle ⁇ at the connection. It is found through experiments that as the included angle ⁇ increases, the antenna module 10 has a worse effect of shielding interference sources from the back. When the included angle ⁇ is 135 degrees, the antenna module 10 has the best effect of shielding the interference source from the back. Among them, FIG. 8 shows an embodiment where the included angle ⁇ is 135 degrees. Figure 10 shows an embodiment where the included angle is 180 degrees.
  • the conductor support 110 only includes the support body 112 and does not include the baffle 114.
  • the bracket body 112 is provided with an accommodating cavity for accommodating the antenna module 120.
  • the conductor support 110 includes a support body 112 and a baffle 114.
  • the bracket body 112 is not provided with an accommodating cavity, and the antenna module 120 is directly disposed on the bracket body 112.
  • the baffle 114 is connected to the bracket body 112 to form a groove structure.
  • the baffle 114 may only be provided on both sides of the antenna module 120.
  • the baffle 114 in the embodiment shown in FIG. 10 can be added.
  • a groove for accommodating the antenna module 120 may also be provided on the bracket body 112, which will not be repeated.
  • bracket body 112 and the baffle 114 of the above-mentioned antenna module 10 may be an integrally formed structure.
  • the bracket body 112 and the baffle 114 as two different components.
  • the above-mentioned baffle 114 and the support body 112 function as a complete device, that is, the conductor support 110. Therefore, the baffle 114 and the body between them can be two devices that are fixedly connected and electrically connected together; they can also be a complete device in an integrally formed structure.
  • the conductor support 110 is electrically connected to the antenna grounding surface 124 by the arrangement of the support body 112 of the conductor support 110 and the baffle 114, so as to increase the surface area of the antenna grounding surface 124 in a disguised manner, thereby improving the radiation of the antenna module 10 Efficiency and gain efficiency, and reduce the space occupied by the antenna module 10.
  • the antenna module 10 of the present application further includes a wave absorber 130.
  • the antenna module 10 further includes a wave absorber 130.
  • the wave absorber 130 is disposed on the conductor support 110 and is located on the side of the conductor support 110 close to the antenna module 120.
  • the wave absorber 130 is arranged around the antenna module 120.
  • the wave absorber 130 can be provided on the support body 112 of the conductor support 110, or can be provided on the baffle 114 of the conductor support 110, which is not limited here.
  • the wave absorber 130 surrounds the antenna substrate 126 to form a ring structure.
  • the wave absorber 130 may be made of materials with high dielectric constant and high loss factor, such as PBT (Polybutylene terephthalate, polybutylene terephthalate).
  • PBT Polybutylene terephthalate, polybutylene terephthalate
  • the wave absorber 130 forms a ring structure around the antenna substrate 126 to absorb the reflected waves caused by the electromagnetic waves emitted by the radiation unit 128.
  • the wave absorber 130 includes a plurality of wave absorbers 132.
  • the plurality of wave absorbers 132 are spaced apart from each other and arranged around the antenna substrate 126. Wherein, each wave absorber 132 individually forms a ring structure.
  • the wave absorber 132 may be made of a metal material.
  • the wave absorber 132 and the conductor support 110 may be connected by means of EBG (Electronic Band Gap) or PBG (Photonic Band Gap) or the like.
  • the wave absorber 132 can also be an integral structure with the conductor support 110.
  • the wave absorber 132 in addition to absorbing reflected waves, the wave absorber 132 also has a filtering function.
  • the wave absorber 130 can be provided on the bracket body 112 of the conductor support 110 or on the baffle 114 of the conductor support 110.
  • the wave absorber 130 is also It may be located on the surface of the baffle 114 away from the bracket body 112.
  • FIGS. 14 to 17 are compared, and the comparison results are shown in FIGS. 14 to 17.
  • 14 is a comparison diagram of radiation field patterns when the frequency of the alternating current signal in the radio frequency transceiver 122 is 28 GHz and the rotation angle of the radiation unit 128 is 0 degrees.
  • curve 1 represents the radiation pattern of the antenna module 10 with the wave absorber 130
  • curve 2 represents the radiation pattern of the antenna module 10 without the wave absorber 130.
  • 15 is a comparison diagram of radiation field patterns when the frequency of the alternating current signal in the radio frequency transceiver 122 is 28 GHz and the rotation angle of the radiation unit 128 is 90 degrees.
  • curve 1 represents the radiation pattern of the antenna module 10 with the wave absorber 130
  • curve 2 represents the radiation pattern of the antenna module 10 without the wave absorber 130.
  • 16 is a comparison diagram of radiation field patterns when the frequency of the alternating current signal in the radio frequency transceiver 122 is 39 GHz and the rotation angle of the radiation unit 128 is 0 degrees.
  • curve 1 represents the radiation pattern of the antenna module 10 with the wave absorber 130
  • curve 2 represents the radiation pattern of the antenna module 10 without the wave absorber 130.
  • FIG. 17 is a comparison diagram of radiation field patterns when the frequency of the alternating current signal in the radio frequency transceiver 122 is 39 GHz and the rotation angle of the radiation unit 128 is 90 degrees.
  • curve 1 represents the radiation pattern of the antenna module 10 with the wave absorber 130
  • curve 2 represents the radiation pattern of the antenna module 10 without the wave absorber 130. It can be seen from the figure that the antenna module 10 of the present application absorbs the reflection of electromagnetic waves through the wave absorber 130, which can reduce the backlobe of the electromagnetic wave emitted by the antenna module 10.
  • the antenna module 10 of the present application may also be provided with an insulating layer covering the antenna module 10 outside.
  • the insulating layer wraps the antenna module 10 to prevent water and oxygen in the air from oxidizing the metal material in the antenna module 10, thereby affecting the normal operation of the antenna module 10.
  • the present application also provides a mobile terminal 20, which includes a metal frame and the antenna module 10 in any one of the above embodiments.
  • the mobile terminal 20 may be a smart phone, a tablet computer, or the like.
  • the metal frame is the frame of the mobile terminal 20.
  • the frame can be made of any one or more solid metals.
  • the mobile terminal 20 further includes the antenna module 10 as in any one of the foregoing embodiments.
  • the antenna module 10 includes a conductor support 110, a radio frequency transceiver 122, an antenna ground plane 124, an antenna substrate 126 and a radiation unit 128.
  • the conductor support 110 has a first surface 111.
  • the radio frequency transceiver 122 is installed on the first surface 111 of the conductor support 110, and the orthographic projection of the radio frequency transceiver 122 on the first surface 111 is located in the first surface 111.
  • the antenna ground plane 124 is stacked on a side of the radio frequency transceiver 122 away from the first surface 111, and the antenna ground plane 124 is electrically connected to the conductor support 110.
  • the antenna substrate 126 is stacked on the side of the antenna ground plane 124 away from the radio frequency transceiver 122.
  • the radiation unit 128 is disposed on the surface of the antenna substrate 126 away from the antenna ground plane 124, and the radiation unit 128 is electrically connected to the radio frequency transceiver 122.
  • the conductor bracket 110 of the antenna module 10 is installed on the metal frame of the mobile terminal 20 to facilitate the fixation of the antenna module 10.
  • the conductor support 110 of the antenna module 10 is also electrically connected to the metal frame of the mobile terminal 20.
  • the antenna ground layer 210 can be electrically connected to the metal frame of the mobile terminal 20, thereby further increasing the area of the antenna ground surface 124 in disguised form.
  • the mobile terminal 20 includes an antenna module 10 and a metal frame.
  • a conductor support 110 is provided on the back side away from the radiation direction, and the radio frequency transceiver 122 is completely located in the first surface 111 of the conductor support 110. Therefore, the conductor support 110 can be used to shield the interference source from the back of the antenna module 10, thereby improving the antenna The radiation efficiency and gain efficiency of the module 10.
  • the metal frame of the mobile terminal 20 is also electrically connected to the conductor support 110 and the antenna ground plane 124, which increases the area of the antenna ground plane 124 in a disguised form, thereby improving the radiation efficiency and gain efficiency of the antenna module 10.
  • the conductor support 110 of the mobile terminal 20 of the present application includes a support body 112 and a baffle 114.
  • the bracket body 112 has a first surface 111 for mounting the radio frequency transceiver 122.
  • the baffle 114 is connected to the side of the bracket body 112, and the baffle 114 and the bracket body 112 form a groove structure, and the first surface 111 constitutes the bottom surface of the groove structure.
  • an included angle ⁇ is formed between the baffle 114 and the bracket body 112, and the included angle ⁇ is greater than or equal to 135 degrees and less than or equal to 180 degrees.
  • the bracket body 112 and the baffle 114 are integrally formed.
  • the antenna module 10 further includes a wave absorber 130.
  • the wave absorber 130 is disposed on the conductor support 110 and is located on the side of the conductor support 110 close to the radio frequency transceiver 122, and the wave absorber 130 surrounds the antenna substrate 126.
  • the wave absorber 130 surrounds the antenna substrate 126 to form a ring structure.
  • the wave absorber 130 includes a plurality of wave absorbers 132, the plurality of wave absorbers 132 surround the antenna substrate 126, and two adjacent wave absorbers 132 are spaced apart from each other.
  • the multiple wave absorbers 132 and the conductor support 110 are integrally formed.
  • the mobile terminal 20 of the present application further includes a printed circuit board.
  • the printed circuit board is a provider of electrical connections for various electronic components in the mobile terminal 20.
  • the printed circuit board will have a larger area of the ground layer 210, so that the printed circuit board is connected to the ground GND.
  • the conductor support 110 of the antenna module 10 is also connected to the ground layer 210 of the printed circuit board.
  • the antenna ground plane 124 can be electrically connected to the ground layer 210 of the printed circuit board, thereby further increasing the area of the antenna ground plane 124 in a disguised manner, thereby improving the radiation efficiency and gain efficiency of the antenna module 10.
  • FIG. 18 shows a schematic diagram of the connection of the mobile terminal 20 when the antenna module 120 is directly installed on the first surface 111 of the conductor support 110.
  • FIG. 19 shows a schematic diagram of the connection of the mobile terminal 20 when the conductor support 110 has an accommodating groove and the antenna module 120 is disposed in the accommodating groove.
  • the mobile terminal 20 of the present application may further include a cover plate.
  • the cover plate and the antenna module 10 are stacked on top of each other, and are located on the radiation layer of the antenna module 10.
  • the cover plate is provided on the side of the antenna module 10 where the radiation unit 128 is provided.
  • the cover plate can be connected with the metal frame in the above embodiment, so as to encapsulate the antenna module 10 inside. In this way, the cover can provide functions such as circuit protection and waterproofing.
  • the thickness of the cover plate can satisfy the following conditions, thereby reducing the electromagnetic waves paid by the radiation unit 128 from being reflected back and forth between the cover plate and the antenna module 10:
  • the thickness of the cover plate is an integer multiple of the half wavelength of the electromagnetic wave.
  • the antenna module 10 of the present application and the mobile terminal 20 using the antenna module 10 are provided with a conductor support 110 on the back away from the radiation direction, and the radio frequency transceiver 122 is completely located in the first surface 111 of the conductor support 110, so that The conductor bracket 110 is used to shield the interference source from the back of the antenna module 10, thereby improving the radiation efficiency and gain efficiency of the antenna module 10.
  • the conductor support 110 of the antenna module 10 is electrically connected to the antenna ground plane 124, which increases the area of the antenna ground plane 124 in a disguised form, thereby improving the radiation efficiency and gain efficiency of the antenna module 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Support Of Aerials (AREA)
  • Telephone Set Structure (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请涉及一种天线模块及移动终端。该天线模块,包括导体支架及安装于导体支架上的天线模组。其中,导体支架具有第一表面。天线模组安装于第一表面且位于第一表面内。天线模组包括天线接地面,天线接地面与该导体支架电连接。导体支架位于天线模组远离辐射方向的背面。

Description

天线模块及移动终端
相关申请的交叉引用
本申请基于申请号为202010588762.3、申请日为2020年6月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及天线技术领域,特别是涉及天线模块及移动终端。
背景技术
随着电子技术的发展,诸如手机等移动终端的功能越来越丰富,对移动终端中天线模块的要求也越来越高。
传统技术中,移动终端中的天线模块通常包括两个或两个以上的辐射单元,由射频收发器向辐射单元馈电,使辐射单元发射电磁波。
但是,传统的天线模块,其辐射增益率较低。
发明内容
本申请提供一种天线模块及移动终端。
一种天线模块,包括:
导体支架,具有第一表面;
天线模组,安装于所述导体支架的所述第一表面,所述天线模组在所述第一表面的正投影小于所述第一表面且位于所述第一表面内;所述天线模组包括天线接地面,所述天线接地面与所述导体支架电连接,所述导体支架位于所述天线模组远离辐射方向的一侧。
在其中一个实施例中,所述导体支架包括支架本体及挡板;
所述支架本体具有所述第一表面,以安装所述天线模组;
所述挡板与所述支架本体的侧边连接,且所述挡板与所述支架本体形成凹槽结构,所述第一表面构成所述凹槽结构的底面。
在其中一个实施例中,所述挡板与所述支架本体之间形成夹角;
所述夹角大于等于90度且小于等于180度。
在其中一个实施例中,所述支架本体与所述挡板为一体成型结构。
在其中一个实施例中,所述天线模块还包括:
波吸收器,设于所述导体支架上,且位于所述导体支架靠近所述天线模组的一侧,所述波吸收器环绕所述天线模组。
在其中一个实施例中,所述波吸收器环绕所述天线模组形成环形结构。
在其中一个实施例中,所述波吸收器包括多个波吸收件;
多个所述波吸收件环绕所述天线模组,且相邻两个所述波吸收件彼此间隔。
在其中一个实施例中,多个所述波吸收件与所述导体支架为一体成型结构。
在其中一个实施例中,所述第一表面设有容纳槽,所述天线模组的至少部分设于所述容纳槽内。
一种移动终端,包括:
金属边框;
如上述任意一个实施例中所述的天线模块,所述导体支架安装于所述金属边框,且与所述金属边框电连接。
在其中一个实施例中,所述移动终端还包括:
印制电路板,具有接地层,所述导体支架与所述接地层电连接。
上述天线模块,包括导体支架及安装于导体支架上的天线模组。其中,导体支架具有第一表面。天线模组安装于第一表面且位于第一表面内。天 线模组包括天线接地面,天线接地面与该导体支架电连接。导体支架位于天线模组远离辐射方向的背面。该天线模块,通过设置位于天线模组背面的导电支架,使天线模组的天线接地面与导体支架电连接,可以变相增大天线接地面的面积,从而屏蔽来自天线模块背面的干扰源,并降低天线模块占用空间,提升天线模块的辐射效率和增益效率。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一个实施例中天线模块的剖面结构示意图;
图2为本申请一个实施例中天线模块的立体结构示意图;
图3为本申请一个实施例中天线模块的不同辐射单元辐射场型图;
图4为本申请另一个实施例中天线模块的不同辐射单元的辐射场型图;
图5为一个实施例中本申请与传统技术的天线模块的辐射场型比较图;
图6为另一个实施例中本申请与传统技术的天线模块的辐射场型比较图;
图7为本申请一个实施例中天线模块的局部剖面结构示意图;
图8为本申请另一个实施例中天线模块的剖面结构示意图;
图9为本申请又一个实施例中天线模块的剖面结构示意图;
图10为本申请又一个实施例中天线模块的剖面结构示意图;
图11为本申请一个实施例中天线模块的俯视结构示意图;
图12为本申请另一个实施例中天线模块的俯视结构示意图;
图13为本申请又一个实施例中天线模块的剖面结构示意图;
图14为又一个实施中本申请与传统技术的天线模块的辐射场型比较图;
图15为又一个实施中本申请与传统技术的天线模块的辐射场型比较图;
图16为又一个实施中本申请与传统技术的天线模块的辐射场型比较图;
图17为又一个实施中本申请与传统技术的天线模块的辐射场型比较图;
图18为本申请一个实施例中移动终端的结构示意图;
图19为本申请另一个实施例中移动终端的结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特 定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本申请针对传统技术中天线模块的辐射效率和增益效率较低的问题,提供一种天线模块及使用该天线模块的移动终端。
在一个实施例中,如图1和图2所示,本申请提供一种天线模块10,包括导体支架110和天线模组120。
导体支架110用于安装天线模组120,并用于传递电信号。在此,导体支架110的材料可以是任意一种或多种的固体金属。为便于描述,我们定义导体支架110具有第一表面111和与第一表面相对的第二表面113。这里的第一表面111是相对第二表面113而言的,其可以是导体支架110的任一表面。该第一表面111用于安装天线模组120,且导体支架110位于天线模组120远离辐射方向的一侧。
天线模组120安装于导体支架110的第一表面111。在本实施例中,天线模组120在第一表面111的正投影小于第一表面111,且天线模组120在第一表面111的正投影位于第一表面内。天线模组120包括天线接地面124,天线接地面124与导体支架110电连接。
具体来说,天线模组120可以包括射频收发器122、天线接地面124、天线基板126和辐射单元128。
其中,射频收发器122用于接收或发射射频信号。在本实施例中,射 频收发器122安装于导体支架110的第一表面111,且射频收发器122在第一表面111上的正投影位于第一表面111内。换句话说,射频收发器122完全位于导体支架110的第一表面111内。
天线接地面124叠设于射频收发器122远离第一表面111的一侧。换句话说,射频收发器122位于天线接地面124与导体支架110之间。在此,天线接地面124指天线模块10用于与地线GND连接的导电面,因此,天线接地面124也可以是金属材质。在本实施例中,天线接地面124还与导体支架110电连接,从而变相增大天线接地面124的面积。
天线基板126叠设于天线接地面124远离射频收发器122的一侧。天线基板126用于间隔射频收发器122及辐射单元128。
辐射单元128设于天线基板126远离天线接地面124的表面。换句话说,辐射单元128设于天线基板126远离射频收发器122的表面。辐射单元128还与射频收发器122电连接,从而使射频收发器122可以将射频信号传递至辐射单元128;辐射单元128获取该射频信号后,可以将射频信号转换为电磁波并发射。同样的,辐射单元128在获取电磁波后,也可以将电磁波转换为射频信号并传递至射频收发器122。
更具体的,该天线模块10,包括导体支架110、射频收发器122、天线接地面124和辐射单元128。其中,导体支架110具有第一表面111。射频收发器122安装于第一表面111,且位于第一表面111内。天线接地面124、天线基板126和辐射单元128依次叠设于射频收发器122远离第一表面111的一侧,且天线接地面124与导体支架110电连接。
图3和图4示出了本申请的天线模块10的辐射场型图。其中,图3为射频收发器122内交流电信号的频率为28GHz时,天线模块10的辐射场型图。该附图中,曲线1-5分别代表不同形状的辐射单元128。辐射单元128不同时,其射频信号馈入点的位置也不同。图4为射频收发器122内交流 电信号的频率为39GHz时,天线模块10的辐射场型图。该附图中,曲线1-5也分别代表不同形状的辐射单元128。
将不具有导体支架110的天线模块10和具有导体支架110的本申请天线模块10的辐射场型图进行对比,对比结果如图5和图6所示。其中,图5为射频收发器122内交流电信号的频率为28GHz时,辐射场型的比较图。该附图中,曲线1代表不具有导体支架110,辐射单元128旋转角度为0度时天线模块10的辐射场型图。曲线2代表具有导体支架110,辐射单元128旋转角度为0度时天线模块10的辐射场型图。曲线3代表不具有导体支架110,辐射单元128旋转角度为90度时天线模块10的辐射场型图。曲线4代表具有导体支架110,辐射单元128旋转角度为90度时天线模块10的辐射场型图。图6为射频收发器122内交流电信号的频率为39GHz时,辐射场型的比较图。该附图中,曲线1代表不具有导体支架110,辐射单元128旋转角度为0度时天线模块10的辐射场型图。曲线2代表具有导体支架110,辐射单元128旋转角度为0度时天线模块10的辐射场型图。曲线3代表不具有导体支架110,辐射单元128旋转角度为90度时天线模块10的辐射场型图。曲线4代表具有导体支架110,辐射单元128旋转角度为90度时天线模块10的辐射场型图。从上述附图中可以看出,本申请的天线模块10,通过导体支架110连接天线接地面124的设置,可以减少天线模块10的辐射场型图中的涟波,降低天线模块10的辐射场型图中的旁波瓣,改善空间中信号的杂信比。以此,即可提升天线模块10的辐射效率和增益效率。
上述天线模块10,在远离辐射方向的背面设有导体支架110,且射频收发器122完全位于导体支架110的第一表面111内,以此,可以通过导体支架110屏蔽来自天线模块10背面的干扰源,从而提升天线模块10的辐射效率和增益效率,并降低天线模块10占用空间。同时,该天线模块10的导体支架110与天线接地面124电连接,变相增大了天线接地面124的 面积,从而提升天线模块10的辐射效率和增益效率。
在一个实施例中,如图7所示,本申请的天线模块10,其天线模组120还包括用于连接射频收发器122和辐射单元128的连通柱129。
具体的,连通柱129用于连接射频收发器122和辐射单元128,以使射频收发器122和辐射单元128之间可以实现电信号的传输。在此,连通柱129可以是如金属等的导电材料。天线接地面124上可以设有贯穿天线接地面124的第一通孔(图中未标注);天线基板126可以设有贯穿天线基板126的第二通孔(图中未标注)。第一通孔和第二通孔在射频收发器122上的正投影至少部分重合。换句话说,第一通孔和第二通孔的至少部分在水平方向上的位置一致。以此,即可使连通柱129通过第一通孔和第二通孔连接于射频收发器122和辐射单元128之间。
进一步的,为了避免连通柱129与天线接地面124之间短路,因此,第一通孔的边缘应与连通柱129之间可以具有一定空隙,以使天线接地面124通过该空隙与连通柱129之间间隔绝缘。该空隙的大小可以满足如下条件:在使天线接地面124通过该空隙与连通柱129之间间隔绝缘的前提下尺寸最小。以此,可以尽可能的保证天线接地面124的面积,从而保证天线模块10的辐射效率和增益效率。
需要理解的是,在上述实施例中,以“通过连通柱129使射频收发器122和辐射单元128之间电连接”这一实施方式对本申请的天线模块10进行解释说明。然而,这并不代表本申请的天线模块10中,射频收发器122和辐射单元128之间仅能以连通柱129的形式连通。在其它实施例中,射频收发器122与辐射单元128之间还可以通过绕于天线模块10外围的金属导线连接。不再赘述。本申请的构思在于:通过导体支架110的设置,使导体支架110与天线接地面124电连接,从而变相增大天线接地面124的表面积,进而提升天线模块10的辐射效率和增益效率,并降低天线模块10 占用空间。因此,凡是符合本申请的构思的实施例均应理解为在本申请的保护范围之内。
在一个实施例中,本申请的天线模块10,其天线模组120中相邻两个辐射单元128之间的间距大于辐射单元128所发射电磁波的二分之一波长。
具体的,当射频收发单元内的电磁波的频率固定时,辐射单元128所发射的电磁波的波长也固定。此时,相邻两个辐射单元128之间的间距应大于射单元所发射电磁波的二分之一波长。以此,即可使辐射单元128所发射的电磁波的波束变窄,从而提升空间中的信号解析度。
进一步的,相邻两个辐射单元128之间可以设有金属隔板,以将相邻两个辐射单元128间隔开来。
在一个实施例中,如图8所示,本申请的天线模块10,其导体支架110包括支架本体112。
具体的,支架本体112可以是如金属等的导体材质。支架本体112具有第一表面111,用于安装射频收发器122。射频收发器122在导体支架110的第一表面111的正投影位于第一表面111内。
在一个具体的实施例中,如图9所示,为便于天线接地面124与导体支架110的连接,导体支架110的第一表面111可以设有一容纳槽。该容纳槽的长宽可以等于射频收发器122的长宽,并等于天线接地面124的长宽。该容纳槽的高度可以大于射频收发器122的高度,并小于等于射频收发器122与天线接地面124的高度之和。以此,即可将射频收发器122与天线接地面124设置于导体支架110的容纳槽内,同时实现导体支架110与天线接地面124的电连接。
进一步的,如图8和图10所示,本申请的天线模块10,其导体支架110还包括与支架本体112连接的挡板114。
具体的,导体支架110的第一表面111可以呈矩形,此时,导体支架 110具有四个侧边,矩形第一表面111的四个边分别位于导体支架110的四个侧边。
在本实施例中,导体支架110具有挡板114,挡板114与支架本体112的侧边连接。导体支架110可以具有一个或多个挡板114,这里的多个指两个以上,每个挡板114与支架本体112的一个侧边连接。在一个实施例中,当支架本体112具有偶数个挡板114时,如图8所述,偶数个挡板114分别设于导体支架110相对的两个侧边。
如图8和图10所示,挡板114与支架本体112的侧边连接形成凹槽结构,且第一表面111构成凹槽结构的底面。换句话说,第一表面111为该凹槽结构的内表面的一部分。射频收发器122位于该凹槽结构内,天线接地面124、天线基板126和辐射单元128依次叠设于射频收发器122远离第一表面111的一侧。在此,挡板114与支架本体112连接呈凹槽结构,可以更好的屏蔽来自天线模块10背面的干扰源,从而提升天线模块10的辐射效率和增益效率。
进一步的,如图8所示,挡板114与支架本体112之间形成夹角α,该夹角大于等于90度且小于等于180度。即该夹角可以是90度,也可以是180度,还可以是135度。
具体的,挡板114与支架本体112在连接处形成夹角α。经实验发现,随着该夹角α的增大,天线模块10屏蔽来自背面的干扰源的效果越差。当夹角α为135度时,天线模块10屏蔽来自背面的干扰源的效果最好。其中,图8示出了夹角α为135度的实施例。图10示出了夹角为180度的实施例。
需要说明的是,图9与图10所示的实施例的区别在于:在图9所示的实施例中,导体支架110仅包括支架本体112,不包括挡板114。在该实施例中,支架本体112设有容纳腔,用于容纳天线模组120。而在图10所示的实施例中,导体支架110包括支架本体112和挡板114。在该实施例中, 支架本体112未设有容纳腔,天线模组120直接设于支架本体112上。挡板114与支架本体112连接,形成凹槽结构。在该实施例中,可以仅在天线模组120的两侧设有挡板114。图9与图10所示的实施例可以任意结合,即可以在图9所示的实施例的基础上,增加图10所示实施例中的挡板114。对于图8或图10所示的实施例,也同样可以在支架本体112上设置用于容纳天线模组120的凹槽,不再赘述。
进一步的,上述天线模块10,其支架本体112及挡板114可以是一体成型结构。
具体的,在上述实施例中,为便于描述,我们将支架本体112与挡板114作为两个不同的部件进行描述。事实上,上述挡板114与支架本体112是作为一个完整的器件,即导体支架110发挥作用的。因此,挡板114与之间本体可以是固定连接且电连接在一起的两个器件;也可以是呈一体成型结构的一个完整器件。
该天线模块10,通过导体支架110的支架本体112与挡板114的设置,使导体支架110与天线接地面124电连接,从而变相增大天线接地面124的表面积,进而提升天线模块10的辐射效率和增益效率,并降低天线模块10占用空间。
在一个实施例中,本申请的天线模块10,还包括波吸收器130。
具体的,当天线模组120的辐射单元128辐射电磁波时,电磁波会在移动终端20内来回反射,该反射会影响电磁波的发射。基于此,在本实施例中,天线模块10还包括波吸收器130。波吸收器130设于导体支架110上,且位于导体支架110靠近天线模组120的一侧。波吸收器130环绕天线模组120设置。波吸收器130可以设于导体支架110的支架本体112上,也可以设于导体支架110的挡板114上,在此不做限定。下面从波吸收器130的不同实现方式对本申请的天线模块10进行描述:
在一个具体的实施例中,如图11所示,波吸收器130环绕天线基板126形成环形结构。该波吸收器130可以采用如PBT(Polybutylene terephthalate,聚对苯二甲酸丁二醇酯)等具有高介电常数和高损耗因子的材料。波吸收器130环绕天线基板126形成环形结构,以吸收辐射单元128发射的电磁波造成的反射波。
在另一个具体的实施例中,如图12所示,波吸收器130包括多个波吸收件132。多个波吸收件132彼此间隔,且环绕天线基板126设置。其中,每个波吸收件132单独形成环形结构。在此,波吸收件132可以采用金属材料制成。波吸收件132与导体支架110之间可以通过EBG(Electronic Band Gap,电子带隙)或PBG(Photonic Band Gap,光子带隙)等方式连接。当然,波吸收件132也可以与导体支架110为一体成型结构。在本实施例中,除吸收反射波外,波吸收件132还具有滤波功能。
在上述实施例中,已经对波吸收器130的位置进行了简单描述,即波吸收器130可以设于导体支架110的支架本体112上,也可以设于导体支架110的挡板114上。在一个具体的实施例中,如图13所示,当导体支架110包括支架本体112及挡板114,且挡板114与支架本体112形成的夹角α为90度时,波吸收器130也可以位于挡板114远离支架本体112的表面。
更具体的,将不具有波吸收器130的天线模块10和具有波吸收器130的天线的辐射场型图进行对比,对比结果如图14至图17所示。其中,图14为射频收发器122内交流电信号的频率为28GHz,辐射单元128旋转角度为0度时的辐射场型比较图。图中曲线1代表具有波吸收器130的天线模块10的辐射场型图;曲线2代表不具有波吸收器130的天线模块10的辐射场型图。图15为射频收发器122内交流电信号的频率为28GHz,辐射单元128旋转角度为90度时的辐射场型比较图。图中曲线1代表具有波吸收器130的天线模块10的辐射场型图;曲线2代表不具有波吸收器130的 天线模块10的辐射场型图。图16为射频收发器122内交流电信号的频率为39GHz,辐射单元128旋转角度为0度时的辐射场型比较图。图中曲线1代表具有波吸收器130的天线模块10的辐射场型图;曲线2代表不具有波吸收器130的天线模块10的辐射场型图。图17为射频收发器122内交流电信号的频率为39GHz,辐射单元128旋转角度为90度时的辐射场型比较图。图中曲线1代表具有波吸收器130的天线模块10的辐射场型图;曲线2代表不具有波吸收器130的天线模块10的辐射场型图。从图中可以看出,本申请的天线模块10,通过波吸收器130吸收电磁波的反射,可以减小天线模块10发射电磁波的后瓣。
在一个实施例中,本申请的天线模块10,其外部还可以设有覆盖天线模块10的绝缘层。绝缘层包裹天线模块10,从而避免空气中的水氧使天线模块10中的金属材质氧化,从而影响天线模块10的正常工作。
本申请还提供一种移动终端20,包括金属边框及上述任意一个实施例中的天线模块10。该移动终端20可以是智能手机、平板电脑等。
具体的,金属边框为移动终端20的边框。该边框可以使用任意一种或多种固体金属制备形成。
在本申请中,移动终端20还包括如上述任意一个实施例中的天线模块10。该天线模块10包括导体支架110、射频收发器122、天线接地面124、天线基板126和辐射单元128。其中,导体支架110具有第一表面111。射频收发器122安装于导体支架110的第一表面111,且射频收发器122在第一表面111的正投影位于第一表面111内。天线接地面124叠设于射频收发器122远离第一表面111的一侧,且天线接地面124与导体支架110电连接。天线基板126叠设于天线接地面124远离射频收发器122的一侧。辐射单元128设于天线基板126远离天线接地面124的表面,且辐射单元128与射频收发器122电连接。
在本实施例中,天线模块10的导体支架110安装于移动终端20的金属边框,以便于天线模块10的固定。同时,天线模块10的导体支架110还与移动终端20的金属边框电连接。以此,即可使天线接地层210与移动终端20的金属边框电连接,从而进一步变相增大天线接地面124的面积。
该移动终端20,包括天线模块10及金属边框。在远离辐射方向的背面设有导体支架110,且射频收发器122完全位于导体支架110的第一表面111内,以此,可以通过导体支架110屏蔽来自天线模块10背面的干扰源,从而提升天线模块10的辐射效率和增益效率。同时,该移动终端20的金属边框还与导体支架110、天线接地面124电连接,变相增大了天线接地面124的面积,从而提升天线模块10的辐射效率和增益效率。
在其中一个实施例中,本申请的移动终端20,其导体支架110包括支架本体112及挡板114。
具体的,支架本体112具有第一表面111,用于安装射频收发器122。挡板114与支架本体112的侧边连接,且挡板114与支架本体112形成凹槽结构,第一表面111构成凹槽结构的底面。
在其中一个实施例中,本申请的移动终端20,挡板114与支架本体112之间形成夹角α,该夹角α大于等于135度且小于等于180度。
在其中一个实施例中,本申请的移动终端20,支架本体112与挡板114为一体成型结构。
在其中一个实施例中,本申请的移动终端20,天线模块10还包括波吸收器130。波吸收器130设于导体支架110上,且位于导体支架110靠近射频收发器122的一侧,波吸收器130环绕天线基板126。
在其中一个实施例中,本申请的移动终端20,波吸收器130环绕天线基板126形成环形结构。
在其中一个实施例中,本申请的移动终端20,波吸收器130包括多个 波吸收件132,多个波吸收件132环绕天线基板126,且相邻两个波吸收件132彼此间隔。
在其中一个实施例中,本申请的移动终端20,多个波吸收件132与导体支架110为一体成型结构。
在一个实施例中,如图18或图19所示,本申请的移动终端20,还包括印制电路板。
具体的,印制电路板是移动终端20内各电子元器件电连接的提供者。通常来说,印制电路板内会具有较大面积的接地层210,从而使印制电路板与地线GND连接。在本实施例中,天线模块10的导体支架110还与印制电路板的接地层210连接。以此,即可使天线接地面124与印制电路板的接地层210电连接,从而进一步变相增大天线接地面124的面积,从而提升天线模块10的辐射效率和增益效率。图18示出了天线模组120直接设于导体支架110的第一表面111时,移动终端20的连接示意图。图19示出了导体支架110具有容纳槽,且天线模组120设于该容纳槽内时,移动终端20的连接示意图。
在一个实施例中,本申请的移动终端20,还可以包括盖板。
具体的,盖板与天线模块10叠层设置,且位于天线模块10的辐射层。换句话说,盖板设于天线模块10设有辐射单元128的一侧。盖板可以与上述实施例中的金属边框相连接,从而将天线模块10封装于内。以此,盖板可以提供保护电路及防水等功能。
在本实施例中,盖板的厚度可以满足如下条件,从而减小辐射单元128付出的电磁波在盖板与天线模块10之间来回反射:
盖板的厚度为电磁波半波长的整数倍。
本申请的天线模块10及使用该天线模块10的移动终端20,在远离辐射方向的背面设有导体支架110,且射频收发器122完全位于导体支架110 的第一表面111内,以此,可以通过导体支架110屏蔽来自天线模块10背面的干扰源,从而提升天线模块10的辐射效率和增益效率。同时,该天线模块10的导体支架110与天线接地面124电连接,变相增大了天线接地面124的面积,从而提升天线模块10的辐射效率和增益效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种天线模块,包括:
    导体支架(110),具有第一表面(111);
    天线模组(120),安装于所述导体支架(110)的所述第一表面(111),所述天线模组(120)在所述第一表面(111)的正投影小于所述第一表面(111)且位于所述第一表面(111)内;所述天线模组(120)包括天线接地面(124),所述天线接地面(124)与所述导体支架(110)电连接,所述导体支架(110)位于所述天线模组(120)远离辐射方向的一侧。
  2. 根据权利要求1所述的天线模块,所述导体支架(110)包括支架本体(112)及挡板(114);
    所述支架本体(112)具有所述第一表面(111),以安装所述天线模组(120);
    所述挡板(114)与所述支架本体(112)的侧边连接,且所述挡板(114)与所述支架本体(112)形成凹槽结构,所述第一表面(111)构成所述凹槽结构的底面。
  3. 根据权利要求2所述的天线模块,所述挡板(114)与所述支架本体(112)之间形成夹角;
    所述夹角大于等于90度且小于等于180度。
  4. 根据权利要求2所述的天线模块,所述支架本体(112)与所述挡板(114)为一体成型结构。
  5. 根据权利要求2所述的天线模块,还包括:
    波吸收器(130),设于所述导体支架(110)上,且位于所述导体支架(110)靠近所述天线模组(120)的一侧,所述波吸收器(130)环绕所述天线模组(120)。
  6. 根据权利要求5所述的天线模块,所述波吸收器(130)环绕所述 天线模组(120)形成环形结构。
  7. 根据权利要求5所述的天线模块,所述波吸收器(130)包括多个波吸收件(132);
    多个所述波吸收件(132)环绕所述天线模组(120),且相邻两个所述波吸收件(132)彼此间隔。
  8. 根据权利要求2所述的天线模块,所述第一表面(111)设有容纳槽,所述天线模组(120)的至少部分设于所述容纳槽内。
  9. 根据权利要求1所述的天线模块,还包括:
    波吸收器(130),设于所述导体支架(110)上,且位于所述导体支架(110)靠近所述天线模组(120)的一侧,所述波吸收器(130)环绕所述天线模组(120)。
  10. 根据权利要求9所述的天线模块,所述波吸收器(130)环绕所述天线模组(120)形成环形结构。
  11. 根据权利要求9所述的天线模块,所述波吸收器(130)包括多个波吸收件(132);
    多个所述波吸收件(132)环绕所述天线模组(120),且相邻两个所述波吸收件(132)彼此间隔。
  12. 根据权利要求1所述的天线模块,所述第一表面(111)设有容纳槽,所述天线模组(120)的至少部分设于所述容纳槽内。
  13. 根据权利要求1所述的天线模块,所述导体支架(110)包括支架本体(112)及挡板(114);
    所述挡板(114)与所述支架本体(112)之间形成夹角;所述夹角大于等于90度且小于等于180度;所述支架本体(112)与所述挡板(114)为一体成型结构;
    所述支架本体(112)具有所述第一表面(111),以安装所述天线模组 (120);
    所述挡板(114)与所述支架本体(112)的侧边连接,且所述挡板(114)与所述支架本体(112)形成凹槽结构,所述第一表面(111)构成所述凹槽结构的底面。
  14. 一种移动终端,包括:
    金属边框;
    如权利要求1至13任意一项所述的天线模块(10),所述导体支架(110)安装于所述金属边框,且与所述金属边框电连接。
  15. 根据权利要求14所述的移动终端,还包括:
    印制电路板,具有接地层(210),所述导体支架(110)与所述接地层(210)电连接。
PCT/CN2021/102167 2020-06-24 2021-06-24 天线模块及移动终端 WO2021259369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010588762.3A CN113839170B (zh) 2020-06-24 2020-06-24 天线模块及移动终端
CN202010588762.3 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021259369A1 true WO2021259369A1 (zh) 2021-12-30

Family

ID=78964500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102167 WO2021259369A1 (zh) 2020-06-24 2021-06-24 天线模块及移动终端

Country Status (2)

Country Link
CN (1) CN113839170B (zh)
WO (1) WO2021259369A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182523A (ja) * 2007-01-25 2008-08-07 Mitsumi Electric Co Ltd アンテナ装置
CN102110891A (zh) * 2009-12-23 2011-06-29 西北工业大学 S波段超材料完全吸收基板微带天线
CN102956964A (zh) * 2011-08-26 2013-03-06 欧姆龙株式会社 天线装置
CN104733832A (zh) * 2013-12-18 2015-06-24 纬创资通股份有限公司 电子装置
CN107078381A (zh) * 2016-03-01 2017-08-18 深圳市大疆创新科技有限公司 天线组件、接地部件及无人机
CN206516759U (zh) * 2017-02-08 2017-09-22 四川泰克科技有限公司 一种定位天线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147263A (ja) * 2011-01-12 2012-08-02 Sony Corp アンテナ・モジュール並びに無線通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182523A (ja) * 2007-01-25 2008-08-07 Mitsumi Electric Co Ltd アンテナ装置
CN102110891A (zh) * 2009-12-23 2011-06-29 西北工业大学 S波段超材料完全吸收基板微带天线
CN102956964A (zh) * 2011-08-26 2013-03-06 欧姆龙株式会社 天线装置
CN104733832A (zh) * 2013-12-18 2015-06-24 纬创资通股份有限公司 电子装置
CN107078381A (zh) * 2016-03-01 2017-08-18 深圳市大疆创新科技有限公司 天线组件、接地部件及无人机
CN206516759U (zh) * 2017-02-08 2017-09-22 四川泰克科技有限公司 一种定位天线

Also Published As

Publication number Publication date
CN113839170A (zh) 2021-12-24
CN113839170B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
US11605879B2 (en) Communication device
JP6528748B2 (ja) アンテナ装置
US11527812B2 (en) Terminal device
CN109728413B (zh) 天线结构及终端
JP6809600B2 (ja) 高周波モジュール
CN113678318B (zh) 一种封装天线装置及终端设备
WO2020010941A1 (zh) 天线及通信设备
WO2014122925A1 (ja) アンテナ装置
WO2021213182A1 (zh) 一种电子设备及天线装置
CN110581339A (zh) 一种电子设备
WO2021259369A1 (zh) 天线模块及移动终端
WO2020083075A1 (zh) 终端
US6861995B2 (en) Slot bracket antenna
CN114389005B (zh) 一种电子设备
CN219513308U (zh) 一种天线及电子设备
CN211150755U (zh) 一种多功能支架镶嵌式鲨鱼鳍天线
WO2024001837A1 (zh) 电子设备
WO2024109231A1 (zh) 一种天线装置、投屏器和终端设备
CN215497078U (zh) 多频微带天线和具有天线的装置
CN112821068B (zh) 天线模组和客户前置设备
CN114389035A (zh) 天线模块
KR20060035999A (ko) 이동통신 단말기의 내장형 안테나
CN114665265A (zh) 电子设备
CN115441162A (zh) 天线结构与电子装置
CN115832674A (zh) 电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21829059

Country of ref document: EP

Kind code of ref document: A1