WO2021259083A1 - 背光模组以及显示装置 - Google Patents

背光模组以及显示装置 Download PDF

Info

Publication number
WO2021259083A1
WO2021259083A1 PCT/CN2021/099753 CN2021099753W WO2021259083A1 WO 2021259083 A1 WO2021259083 A1 WO 2021259083A1 CN 2021099753 W CN2021099753 W CN 2021099753W WO 2021259083 A1 WO2021259083 A1 WO 2021259083A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical device
guide plate
light
backlight module
light guide
Prior art date
Application number
PCT/CN2021/099753
Other languages
English (en)
French (fr)
Inventor
孙川
陈雷
汪志强
马鑫
王秋里
姚建峰
谭丁炀
王新宇
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2021259083A1 publication Critical patent/WO2021259083A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members

Definitions

  • the present disclosure generally relates to the field of display technology, and particularly relates to a backlight module and a display device.
  • Liquid crystal display (LCD) backlight module characteristics are characterized by the highest brightness at the front viewing angle, and the brightness gradually decreases with the increase in viewing angle, and this characteristic is related to the number of pixels per inch (PPI). The higher the PPI, the brightness decreases with the viewing angle. The more obvious the performance.
  • PPI pixels per inch
  • the light of the LCD display enters the human eye through the lens.
  • the light intensity of the main light used for imaging in different areas of the LCD backlight module will be different.
  • the strong light perpendicular to the light guide plate is used as the main light for imaging, while the strong light at the edge of the screen is not perpendicular to the light guide plate as the main light for imaging.
  • the central field of view is bright and the edge field of view is dark, which affects the realism and immersion of the VR display.
  • the present disclosure provides an improved backlight module and display device.
  • a backlight module in a first aspect, includes a backlight source, a light guide plate, and an optical device located on the light exit side of the light guide plate.
  • the light of the device is deflected by a target angle after passing through the corresponding sub-area of the optical device.
  • the optical device includes a first optical device, the first optical device includes a first surface and a second surface, the second surface is far from the light guide plate, and the first surface is close to the light guide plate;
  • the first surface is a free-form surface
  • the second surface is a flat surface
  • an air interlayer is formed between the first surface and the light guide plate.
  • the size of the first surface portion corresponding to each sub-region is determined.
  • the curvature is used to determine the shape of the first surface, and the exit angle is equal to the target angle.
  • the material of the first optical device includes polycarbonate.
  • the optical device includes a second optical device and a third optical device sequentially located on the light exit side of the light guide plate, the refractive index of the third optical device is greater than the refractive index of the second optical device,
  • the second optical device includes a third surface and a fourth surface, the third surface is a flat surface and is adjacent to the light guide plate, and the fourth surface is a free-form surface and is away from the light guide plate;
  • the third optical device includes a fifth surface and a sixth surface.
  • the fifth surface is attached to the fourth surface and has the same shape.
  • the sixth surface is a flat surface.
  • the incident angle of the light incident on the fifth surface, the refractive index of the second optical device and the refractive index of the third optical device, and the exit angle of the light exiting from the sixth surface it is determined to be related to each sub
  • the area corresponds to the curvature of the fifth surface portion of the third optical device to determine the shape of the fifth surface, and the exit angle is equal to the target angle.
  • the material of the second optical device includes polycarbonate, and the material of the third optical device includes polymethylmethacrylate.
  • one end of the light guide plate is a trapezoidal boss, and the surface of the light exit side of the boss and the second surface of the first optical device are substantially in the same plane;
  • the other end of the light guide plate is provided with a limiting recess
  • one end of the first optical device is provided with a limiting protrusion
  • the limiting protrusion is located in the limiting recess.
  • one end of the light guide plate is a trapezoidal boss, and the surface on the light exit side of the boss and the sixth surface of the third optical device are substantially in the same plane;
  • the other end of the light guide plate is provided with a limiting recess
  • one end of the third optical device is provided with a limiting protrusion
  • the limiting protrusion is located in the limiting recess.
  • the first surface of the first optical device is convex toward the second surface.
  • the first surface of the first optical device is recessed in the direction of the light guide plate.
  • the fifth surface of the third optical device is convex toward the sixth surface.
  • the fifth surface of the third optical device is recessed in the direction of the light guide plate.
  • the plurality of predetermined sub-regions of the optical device include a circular sub-region in the center and one or more circular sub-regions surrounding the circular sub-region in the center.
  • a display device including the backlight module, the display panel, and the lens provided by each embodiment of the present application, wherein the display panel is located between the backlight module and the lens.
  • Figure 1 shows a schematic diagram of light emitted by a backlight module
  • Fig. 2 shows an exemplary structural block diagram of a backlight module according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of the division of optical device regions according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of the light path of the backlight module of FIG. 2;
  • Fig. 5 shows an exemplary structural block diagram of a backlight module according to another embodiment of the present application.
  • FIG. 6 shows a schematic diagram of the light path of the backlight module of FIG. 5;
  • Fig. 7 shows an exemplary structural block diagram of a display device according to an embodiment of the present application.
  • Fig. 8 shows an exemplary structural block diagram of a backlight module according to another embodiment of the present application.
  • FIG. 9 shows a schematic diagram of the light path of the backlight module of FIG. 8;
  • FIG. 10 shows an exemplary structural block diagram of a backlight module according to another embodiment of the present application.
  • FIG. 11 shows a schematic diagram of the light path of the backlight module of FIG. 10.
  • the backlight module includes a backlight source and optical components, and a common backlight module is composed of a backlight source and a light guide plate.
  • L1 to L5 respectively represent the principal rays of light emitted from the backlight module corresponding to the regions D1 to D5 that are perpendicular to the light-emitting surface.
  • the intensity of the light in each region perpendicular to the light-emitting surface is the strongest and the intensity of each region is the highest.
  • the intensity of the chief rays is equal.
  • the chief ray L3 perpendicular to the light exit surface has the highest light intensity, while the light intensity of the light that forms a certain offset angle ⁇ with the light L3 decreases as the angle ⁇ increases.
  • the light rays that play a major role in image formation are L1, L2-1, L3-1, L4-1, and L5-1, not the chief rays L1 to L5, and their light intensity is L1, L2-1 ( The light intensity is the same as L4-1) and L3-1 (the light intensity is the same as L5-1) decreases in order. Therefore, the center brightness of the image displayed by the VR display device is higher than the edge brightness.
  • the light in the direction of the light with the strongest light intensity is called the chief ray.
  • the backlight module includes a backlight source E, a light guide plate B, and an optical device located on the light exit side of the light guide plate.
  • the light of the device (for ease of description, hereinafter referred to as the first ray) is deflected by a target angle after passing through the corresponding sub-region of the optical device (for ease of description, the light deflected by the target angle is hereinafter referred to as the second ray).
  • the first light is light that plays a major role in image formation.
  • the principal rays L1, L2, L3, L4, L5 with the strongest light intensity perpendicular to the light-emitting surface in Figure 1 can be deflected to L1, L2-1, L3-1, L4-1, and L5-1, respectively.
  • the location of the light makes it possible to obtain images with uniform brightness in the VR display device.
  • the size of the target angle of each light deflection is set according to needs, and there is no limitation here.
  • the optical device is divided into a plurality of preset sub-areas as required, which can be divided into circular ring-shaped sub-areas 102 and 103 from the inside to the outside as shown in FIG. It can also be divided into strip-shaped regions or matrix-shaped regions, and the shape of the sub-regions and the number of sub-regions are not limited here.
  • the optical device is a single optical device. In other embodiments, the optical device is a combined optical device.
  • Figure 2 shows the backlight module in which the optical device is a single optical device.
  • the optical device includes a first optical device A.
  • the first optical device A includes a first surface A1 and a second surface A2.
  • the second surface A2 is far away from the guide.
  • Light plate B, the first surface A1 is close to the light guide plate;
  • the first surface A1 is a free-form surface
  • the second surface A2 is a flat surface
  • an air interlayer G is formed between the first surface A1 and the light guide plate B.
  • one end of the light guide plate is a trapezoidal boss B1, and the surface B2 on the light exit side of the boss B1 and the second surface A2 of the optical device are substantially in the same plane;
  • the other end of the light guide plate is provided with a limiting recess, one end of the first optical device A is provided with a limiting protrusion F, and the limiting protrusion F is located in the limiting recess.
  • the surface B2 on the light exit side of the boss B1 and the second surface A2 of the optical device are located in the same reference plane. In other embodiments, the surface B2 on the light exit side of the boss B1 and the second surface A2 of the optical device are substantially located in the same reference plane, that is, the inclination angle of the surface B2 relative to the reference plane and the second surface A2 are opposite to each other.
  • the angle of inclination to the reference plane is smaller than a preset angle, such as 10°.
  • the incident angle ⁇ 3 of the first light ray 201 incident on the first surface A1, the refractive index n of the optical device, and the exit angle ⁇ of the second light ray 202 emitted from the second surface of the optical device The curvature of the portion of the first surface A1 corresponding to each sub-region is used to determine the shape of the first surface, and the exit angle ⁇ is equal to the target angle.
  • the target angle of the principal ray deviation is ⁇
  • the refractive index of the first optical device A is n
  • the refractive index of air is 1.
  • the incident angle of the first ray at the interface between the first surface A2 and the air is ⁇ 3, the exit angle is ⁇ 2; the incident angle of the interface of the second surface A1 and the air interface is ⁇ 1, and the exit angle is ⁇ ; the angle between the tangent of the first surface A1 and the horizontal direction is ⁇ .
  • ⁇ and n are known terms.
  • n ⁇ sin ⁇ 1 sin ⁇ ——(1)
  • the value of ⁇ can be obtained by solving equation (7) to determine the curvature of each part of the first surface, and then determine the shape of the first surface.
  • the curvature of a curve is the rotation rate of the tangent direction angle of a certain point on the curve to the arc length, so the curvature can indicate the degree of curvature of the curve at a certain point. It can be seen that after the first light 201 perpendicular to the light guide plate passes through the first optical device, the second light 202 deflected by the target angle ⁇ is formed.
  • the material of the first optical device includes polycarbonate.
  • Figure 5 shows the backlight module in which the optical device is a combined optical device.
  • the optical device includes a second optical device C and a third optical device A that are sequentially located on the light exit side of the light guide plate.
  • the refractive index of the third optical device A is greater than that of the second optical device.
  • the refractive index of optical device C is greater than that of the second optical device.
  • the second optical device C includes a third surface C1 and a fourth surface C2.
  • the third surface C1 is a flat surface and is adjacent to the light guide plate B.
  • the fourth surface C2 is a free-form surface and is away from the light guide plate B;
  • the third optical device A includes a fifth surface A5 and a sixth surface A6.
  • the fifth surface A5 and the fourth surface C2 are attached to each other and have the same shape.
  • the sixth surface A6 is a flat surface.
  • one end of the light guide plate of FIG. 5 is a trapezoidal boss, and the surface of the light exit side of the boss and the sixth surface A6 of the third optical device A are basically in the same plane;
  • the other end of the light guide plate is provided with a limiting recess (not marked in Figure 5), and one end of the optical device or the third optical device is provided with a limiting protrusion (not marked in Figure 5), and the limiting protrusion is located in the limiting position. In the depression.
  • the incident angle ⁇ 3 of the first light 201 incident on the fifth surface A5 the refractive index n1 of the second optical device and the refractive index n2 of the third optical device, and the The exit angle ⁇ of the second light ray 202 emitted from the six surfaces A6 determines the curvature of the portion of the fifth surface A5 corresponding to each sub-area to determine the shape of the fifth surface A5.
  • the exit angle ⁇ is the same as the target angle. It is understandable that because the shape of the fourth surface is the same as that of the fifth surface, the shape of the fourth surface can be determined by determining the shape of the fifth surface.
  • the target angle of the principal ray deviation is ⁇
  • the refractive index of the third optical device A is n1
  • the refractive index of the second optical device C is n2
  • the incident angle of the first ray at the interface between the fifth surface A5 and the second optical device Is ⁇ 3, the exit angle is ⁇ 2
  • the incident angle at the interface between the sixth surface A6 and the air is ⁇ 1
  • the exit angle is ⁇
  • the tangent of the fifth surface A5 and the horizontal direction include an angle of ⁇ .
  • n1, n2 are known terms.
  • n2 ⁇ sin ⁇ 3 n1 ⁇ sin ⁇ 2——(2)
  • the value of ⁇ can be obtained by solving equation (7), the curvature of each part of the first surface is determined, and the shape of the fifth surface A5 of the third optical device A is determined.
  • the fourth surface C2 of the second optical device C has the same shape as the fifth surface A5. It can be seen that after the first light 201 perpendicular to the light guide plate passes through the first optical device, the second light 202 deflected by the target angle ⁇ is formed.
  • the material of the second optical device includes polycarbonate, and the material of the third optical device includes polymethylmethacrylate.
  • the refractive index of the second optical device is less than the refractive index of the third optical device.
  • the present application also provides a display device.
  • the display device includes the backlight module 10, the display panel 30, and the lens 40 provided by each embodiment of the present application.
  • the display panel 30 is located between the backlight module 10 and the lens 40. between.
  • the magnified virtual image 50 is seen.
  • the lens 40 may be a single lens, or a lens combination including at least two lenses, and the lens combination may include a convex lens, a Fresnel lens, and the like. It can be seen that, in a display device with a convex lens, the characteristics of the main light of the light guide plate that participates in imaging are shown in Fig. 1, and the related description is shown in Fig. 1 for details. An image with a gradual decrease in brightness from the center to the edges will be formed.
  • the chief ray emitted from the edge of the light guide plate needs to be deflected to a certain angle to make it the main ray of the lens for imaging.
  • the optical device is a single optical device.
  • the optical device is a combined optical device.
  • the first surface of the single optical device is convex toward the second surface, as shown in FIG. 2; or, the fifth surface of the third optical device in the combined optical device is convex toward the sixth surface, as shown in FIG. 5.
  • the optical path of the chief ray emitted from the light guide plate and perpendicular to the light guide plate is referred to FIG. 3 and FIG. 6 respectively, where the optical path of the chief ray undergoes the required deflection after passing through the optical device.
  • the optical device can also be circular and divided into a plurality of ring-shaped sub-areas, as shown in FIG. 3, and the curvature of each sub-areas is determined respectively.
  • the optical device may also adopt the following structure:
  • the first surface of the optical device is recessed in the direction of the light guide plate, or
  • the fifth surface of the third optical device is recessed in the direction of the light guide plate.
  • FIG. 8 shows a backlight module in which the optical device is a single optical device.
  • the optical device includes a first surface A1 and a second surface A2.
  • the second surface A2 is away from the light guide plate B, and the first surface A1 is close to the guide plate.
  • the first surface A1 is a free-form surface
  • the second surface A2 is a flat surface
  • an air interlayer G is formed between the first surface A1 and the light guide plate B.
  • the difference between the optical device in FIG. 8 and FIG. 2 is that the first surface of the optical device in FIG. 2 is convex toward the second surface, while the first surface of the optical device in FIG. 8 is recessed in the direction of the light guide plate.
  • the corresponding to each sub-area is determined
  • the curvature of the first surface portion is used to determine the shape of the first surface, and the exit angle ⁇ is the same as the target angle.
  • the target angle of the principal ray deviation is ⁇
  • the refractive index of the first optical device A is n
  • the refractive index of air is 1.
  • the incident angle of the first ray 201 at the interface between the first surface A2 and the air Is ⁇ 3, the exit angle is ⁇ 2; the incident angle of the interface between the second surface A1 and the air is ⁇ 1, and the exit angle is ⁇ ; the angle between the tangent of the first surface A1 and the horizontal direction is ⁇ .
  • ⁇ and n are known terms.
  • n ⁇ sin ⁇ 1 sin ⁇ ——(1)
  • the value of ⁇ can be obtained by solving equation (7), the curvature of each part of the first surface is determined, and the shape of the first surface is determined. It can be seen that after the first light 201 perpendicular to the light guide plate passes through the first optical device, the second light 202 deflected by the target angle ⁇ is formed.
  • Figure 10 shows the backlight module in which the optical device is a combined optical device.
  • the optical device includes a second optical device C and a third optical device A which are sequentially located on the light exit side of the light guide plate.
  • the refractive index of the third optical device A is greater than that of the second optical device.
  • the refractive index of optical device C is greater than that of the second optical device.
  • the second optical device C includes a third surface C1 and a fourth surface C2.
  • the third surface C1 is a flat surface and is adjacent to the light guide plate B.
  • the fourth surface C2 is a free-form surface and is away from the light guide plate B;
  • the third optical device A includes a fifth surface A5 and a sixth surface A6.
  • the fifth surface A5 and the fourth surface C2 are attached to each other and have the same shape.
  • the sixth surface A6 is a flat surface.
  • the difference between the optical device of FIG. 10 and FIG. 5 is that the fifth surface of the optical device of FIG. 5 is convex in the direction of the sixth surface, while the fifth surface of the optical device of FIG. 10 is recessed in the direction of the light guide plate.
  • the exit angle ⁇ of the light rays determines the curvature of the fifth surface A5 of the third optical device corresponding to each sub-area to determine the shape of the fifth surface A5.
  • the exit angle ⁇ is the same as the target angle.
  • the refractive index n1 is smaller than the refractive index n2.
  • the target angle of the principal ray deviation is ⁇
  • the refractive index of the third optical device A is n1
  • the refractive index of the second optical device C is n2
  • the first ray 201 is on the fifth surface A5 and the second optical device
  • the incident angle of the interface of the device is ⁇ 3, and the exit angle is ⁇ 2
  • the incident angle of the interface between the sixth surface A6 and the air is ⁇ 1
  • the angle between the tangent of the fifth surface A5 and the horizontal direction is ⁇ .
  • n1, n2 are known terms.
  • n2 ⁇ sin ⁇ 3 n1 ⁇ sin ⁇ 2——(2)
  • the value of ⁇ can be obtained by solving equation (7), the curvature of each part of the first surface is determined, and the shape of the fifth surface A5 of the third optical device A is determined.
  • the fourth surface C2 of the second optical device C has the same shape. It can be seen that after the first light 201 perpendicular to the light guide plate passes through the first optical device, the second light 202 deflected by the target angle ⁇ is formed.
  • an optical device including a plurality of preset sub-areas on the light-emitting side of the light guide plate, the light emitted by the light guide plate and incident on the optical device after passing through the corresponding sub-areas of the optical device
  • the deflection corresponds to the target angle, which can solve the problem of uneven display brightness of a VR display device with a lens.
  • one end of the first optical device or the third optical device is provided with a limiting protrusion, and the limiting protrusion is located in the limiting recess, It can also solve the problems of friction and deviation of light distribution caused by the movement between the light guide plate and the optical device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种背光模组(10)以及显示装置。背光模组(10)包括背光源(E)、导光板(B)和位于导光板(B)的出光侧的光学器件(A,C),其中,光学器件(A,C)包括多个预设子区域,并且从导光板(B)入射至光学器件(A,C)的光在穿过光学器件(A,C)的对应子区域之后偏转目标角度。

Description

背光模组以及显示装置
相关申请的交叉引用
本申请要求于2020年6月24日提交的名称为“背光模组以及显示装置”的中国专利申请第202010589604.X号的优先权,该申请的公开通过引用被全部结合于此。
技术领域
本公开一般涉及显示技术领域,尤其涉及背光模组以及显示装置。
背景技术
液晶显示器(LCD)背光模组特性表现为正视角亮度最高,亮度随视角增大逐渐降低,且此特性与每英寸的像素数(PPI)相关,PPI越高的模组,亮度随视角的衰减表现越明显。
尤其,在虚拟现实(VR)显示领域,LCD显示屏的光通过透镜进入人眼。此时,LCD背光模组不同区域用于成像的主要光的光强将不同。如图1所示,屏幕中心位置,是垂直于导光板的光强较强的光作为成像的主要光,而屏幕边缘并不是垂直于导光板的光强较强的光作为成像的主要光,从而导致中心视场亮,边缘视场暗的显示问题,影响VR显示的真实感和沉浸感。
发明内容
本公开提供一种改进的背光模组以及显示装置。
第一方面,提供一种背光模组,背光模组包括背光源、导光板和位于导光板的出光侧的光学器件,其中,光学器件包括多个预设子区域,并且从导光板入射至光学器件的光在穿过光学器件的对应子区域之后偏转目标角度。
在一些实施例中,光学器件包括第一光学器件,第一光学器件包括第一表面和第二表面,第二表面远离导光板,第一表面靠近导光板;
第一表面为自由曲面,第二表面为平面,第一表面与导光板之间为空气夹层。
在一些实施例中,根据入射至第一表面的光的入射角、第一光学器件的折射率、以及从第二表面出射的光的出射角,确定与每个子区域对应的第一表面部分的曲率,以确定第一表面的形状,出射角的大小与目标角度的大小相等。
在一些实施例中,第一光学器件的材料包括聚碳酸酯。
在一些实施例中,光学器件包括依次位于导光板的出光侧的第二光学器件和第三光学器件,第三光学器件的折射率大于第二光学器件的折射率,
第二光学器件包括第三表面和第四表面,第三表面为平面,与导光板相邻,第四表面为自由曲面,远离导光板;
第三光学器件包括第五表面和第六表面,第五表面与第四表面贴合且两者形状相同,第六表面为平面。
在一些实施例中,根据入射至第五表面的光的入射角、第二光学器件的折射率和第三光学器件的折射率、以及从第六表面出射的光的出射角,确定与每个子区域对应的第三光学器件的第五表面部分的曲率,以确定第五表面的形状,出射角的大小与目标角度的大小相等。
在一些实施例中,第二光学器件的材料包括聚碳酸酯,第三光学器件的材料包括聚甲基丙烯酸甲酯。
在一些实施例中,导光板的一端为梯形凸台,凸台的出光侧的表面与第一光学器件的第二表面基本上位于同一平面内;
导光板的另一端设置有限位凹陷,第一光学器件的一端设置有限位凸起,限位凸起位于限位凹陷内。
在一些实施例中,导光板的一端为梯形凸台,凸台的出光侧的表面与所述第三光学器件的第六表面基本上位于同一平面内;
导光板的另一端设置有限位凹陷,第三光学器件的一端设置有限位凸起,限位凸起位于限位凹陷内。
在一些实施例中,第一光学器件的第一表面向第二表面方向凸起。
在一些实施例中,第一光学器件的第一表面向导光板方向凹陷。
在一些实施例中,第三光学器件的第五表面向第六表面方向凸起。
在一些实施例中,第三光学器件的第五表面向导光板方向凹陷。
在一些实施例中,光学器件的多个预设子区域包括中心的圆形子区域以及围绕中心的圆形子区域的一个或多个圆环形子区域。
第二方面、提供一种显示装置,包括本申请各实施例所提供的背光模组、显示面板和透镜,其中,显示面板位于背光模组和透镜之间。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它 特征、目的和优点将会变得更清楚:
图1示出了一种背光模组出射的光的示意图;
图2示出了根据本申请实施例的背光模组的示例性结构框图;
图3示出了根据本申请实施例的光学器件区域划分示意图;
图4示出了图2的背光模组的光路示意图;
图5示出了根据本申请另一实施例的背光模组的示例性结构框图;
图6示出了图5的背光模组的光路示意图;
图7示出了根据本申请实施例的显示装置的示例性结构框图;
图8示出了根据本申请另一实施例的背光模组的示例性结构框图;
图9示出了图8的背光模组的光路示意图;
图10示出了根据本申请又一实施例的背光模组的示例性结构框图;
图11示出了图10的背光模组的光路示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
请参考图1,给出一种LCD背光模组,该背光模组的亮度具有随视角衰减的特性,即中心视场亮,边缘视场暗,造成VR显示装置显示的图像中心亮度大于边缘亮度,影响VR的真实感和沉浸感。其中,背光模组包括背光源和光学组件,常见的背光模组由背光源和导光板组成。
具体地,如图1所示,L1至L5分别表示D1至D5区所对应的背光模组发射的垂直于出光面的主光线,每个区域垂直于出光面的光线强度最强且各区域的主光线的光强均等。例如,对于位于D3区的光线而言,垂直于出光面的主光线L3的光线强度最大,而与光线L3形成一定偏移角度β的光线光强随着角度β的增加而减弱。在VR显示装置,图像形成中起主要作用的光线是L1、L2-1、L3-1、L4-1以及L5-1并不是主光线L1至L5,且其光强以L1、L2-1(与L4-1的光强相同)、L3-1(与L5-1的光强相同)的顺序依次减弱,因此VR显示装置显示的图像的中心亮度高于边缘亮度。为了说明的便利,光强最强的出光方向的光线称为主光线。
为了解决上述问题,本申请提出一种背光模组。如图2、图5所示,背光模组包括背光源E、导光板B和位于导光板的出光侧的光学器件,其中,光学器件包括多个预设子区域,并且从导光板入射至光学器件的光(为了便于描述,以下称作第一光线)在穿过光学器件的对应子区域之后偏转目标角度(为了便于描述,以下将偏转了目标角度的光称作第二光线)。
该第一光线为在图像形成中起到主要作用的光线。通过该光学器件可将图1中光强最强的垂直于出光面的主光线L1、L2、L3、L4、L5分别偏转至L1、L2-1、L3-1、L4-1以及L5-1光线所在位置,使得VR显示装置中获得亮度均匀的图像。其中,各光线偏转的目标角度的大小根据需要设定,这里不做限定。
另外,光学器件根据需要划分为多个预设子区域,可以划分为如图3所示的从里到外的圆环形子区域102和103,中心子区域为圆形101。还可以划分为条形区域或矩阵式区域,子区域形状和子区域的数量这里不做限定。
在一些实施例中,该光学器件是单个光学器件。在另一些实施例中,该光学器件是组合的光学器件。
图2给出该光学器件为单个光学器件的背光模组,此时,光学器件包括第一光学器件A,第一光学器件A包括第一表面A1和第二表面A2,第二表面A2远离导光板B,第一表面A1靠近导光板;
第一表面A1为自由曲面,第二表面A2为平面,第一表面A1与导光板B之间为空气夹层G。
如图2所示,导光板的一端为梯形凸台B1,凸台B1的出光侧的表面B2与光学器件的第二表面A2基本上位于同一平面内;
导光板的另一端设置有限位凹陷,第一光学器件A的一端设置有限位凸起F,限位凸起F位于限位凹陷内。
在一些实施例中,凸台B1的出光侧的表面B2与光学器件的第二表面A2位于同一基准平面内。在另一些实施例中,凸台B1的出光侧的表面B2与光学器件的第二表面A2基本上位于同一基准平面内,也就是,表面B2相对于基准平面的倾斜角度以及第二表面A2相对于基准平面的倾斜角度分别小于预设的角度,比如10°。
在一些实施例中,根据入射至第一表面A1的第一光线201的入射角α3、光学器件的折射率n、以及从光学器件的第二表面出射的第二光线202的出射角θ,确定与每个子区域对应的第一表面A1的部分的曲率,以确定第一表面形状,出射角θ的大小与目标角度大小相等。
如图4所示,主光线偏移的目标角度为θ,第一光学器件A的折射率为n,空气折射率为1;第一光线在第一表面A2与空气的交界面的入射角为α3,出射角为α2;第二表面A1的交界面与空气交界面的入射角为α1,出射角为θ;第一表面A1的切线与水平方向的夹角为γ。其中θ、n为已知项。
根据折射定律,可得:
n×sinα1=sinθ          ——(1)
sinα3=n×sinα2         ——(2)
根据几何关系:
(90°-α1)+α2+α3=90°      ——(3)
γ=α3          ——(4)
整理可得:
α2=arcsin(sinγ/n)        ——(5)
α1=arcsin(sinθ/n)         ——(6)
将公式(5),(6)代入(3)中得:
arcsin(sinγ/n)+arcsin(sinθ/n)=γ        ——(7)
通过解方程(7)可得γ值,以确定第一表面的各部分的曲率,进而确定第一表面的形状。一个曲线的曲率是曲线上某一点的切线方向角度对弧长的转动率,因此曲率可以表示出曲线在某一点的弯曲程度。可见,垂直于导光板的第一光线201经过第一光学器件后,形成偏转目标角度θ的第二光线202。
在一些实施例中,第一光学器件的材料包括聚碳酸酯。
图5给出该光学器件为组合光学器件的背光模组,光学器件包括依次位于导光板的出光侧的第二光学器件C和第三光学器件A,第三光学器件A的折射率大于第二光学器件C的折射率,
第二光学器件C包括第三表面C1和第四表面C2,第三表面C1为平面,与导光板B相邻,第四表面C2为自由曲面,远离导光板B;
第三光学器件A包括第五表面A5和第六表面A6,第五表面A5与第四表面C2贴合且两者形状相同,第六表面A6为平面。
可以理解的是,类似图2的背光模组,图5的导光板的一端为梯形凸台,凸台的出光侧的表面与第三光学器件A的第六表面A6基本上位于同一平面内;
导光板的另一端设置有限位凹陷(图5中并未标出),光学器件或第三光学器件的一端设置有限位凸起(图5中并未标出),限位凸起位于限位凹陷内。
如图6所示,在一些实施例中,根据入射至第五表面A5的第一光线201的入射角α3、第二光学器件的折射率n1和第三光学器件的折射率n2、以及从第六表面A6出射的第二光线202的出射角θ,确定与每个子区域对应的第五表面A5的部分的曲率,以确定第五表面A5形状,出射角θ的大小与目标角度的大小相同。可以理解的是,因第四表面与第五表面形状相同,因此确定了第五表面的形状就可以确定第四表面形状了。
主光线偏移的目标角度为θ,第三光学器件A折射率为n1,第二光学器件C的折射率为n2;第一光线在第五表面A5与第二光学器件的交界面的入射角为α3,出射角为α2;在第六表面A6与空气交界面的入射角为α1,出射角为θ;第五表面A5的切线与水平方向夹角为γ。其中θ、n1、n2为已知项。
根据折射定律,可得:
n1×sinα1=sinθ         ——(1)
n2×sinα3=n1×sinα2         ——(2)
根据几何关系:
(90°-α1)+α2+α3=90°        ——(3)
γ=α3         ——(4)
整理可得:
α2=arcsin(n2×sinγ/n1)        ——(5)
α1=arcsin(sinθ/n1)         ——(6)
将公式(5),(6)代入(3)中得:
arcsin(n2×sinγ/n1)+arcsin(sinθ/n1)=γ        ——(7)
通过解方程(7)可得γ值,确定第一表面的各部分的曲率,进而确定第三光学器件A的第五表面A5的形状。第二光学器件C的第四表面C2与第五表面A5形状相同。可见,垂 直于导光板的第一光线201经过第一光学器件后,形成偏转目标角度θ的第二光线202。
在一些实施例中,第二光学器件的材料包括聚碳酸酯,第三光学器件的材料包括聚甲基丙烯酸甲酯。在一些实施例中,第二光学器件的折射率小于第三光学器件的折射率。
本申请还提供一种显示装置,如图7所示,显示装置包括本申请各实施例所提供的背光模组10、显示面板30和透镜40,显示面板30位于背光模组10和透镜40之间。显示面板30的图像经透镜放大后,看到放大的虚像50。该透镜40可以是单个透镜,也可以是包括至少两个透镜的透镜组合,该透镜组合中可以包括凸透镜、菲涅尔透镜等。可见,具有凸透镜的显示装置中,参与成像的导光板的主要光线的特点如图1所示,详见图1相关描述。将形成从中心向边缘方向亮度逐渐衰减的图像。
为了获得亮度均匀的图像,需要将导光板的边缘发射的主光线偏转一定角度,使其作为透镜成像的主要光线。
此时,通过在导光板的出光侧设置光学器件,获得所需的光线。在一些实施例中,该光学器件是单个光学器件。在另一些实施例中,该光学器件是组合的光学器件。其中,单个光学器件的第一表面向第二表面方向凸起,如图2所示;或者,组合光学器件中的第三光学器件的第五表面向第六表面方向凸起,如图5所示。导光板发射的垂直于导光板的主光线的光路分别参考图3和图6,其中主光线经光学器件后光路发生了所需的偏转。
针对采用圆形透镜40的显示装置而言,光学器件也可采用圆形,并划分为多个环形子区域,如图3所示,并分别确定各个子区域的曲率。
又如图8至11所示,在一些实施例中,光学器件还可以采用如下结构:
光学器件的第一表面向导光板方向凹陷,或者
第三光学器件的第五表面向导光板方向凹陷。
具体地,图8给出该光学器件为单个光学器件的背光模组,此时,光学器件包括第一表面A1和第二表面A2,第二表面A2远离导光板B,第一表面A1靠近导光板;
第一表面A1为自由曲面,第二表面A2为平面,第一表面A1与导光板B之间为空气夹层G。图8与图2的光学器件区别在于,图2的光学器件的第一表面向第二表面方向凸起,而图8光学器件的第一表面向导光板方向凹陷。
在一些实施例中,根据入射至第一表面的第一光线的入射角α3、光学器件的折射率n、以及从第二表面出射的第二光线的出射角θ,确定与每个子区域对应的第一表面部分的曲率,以确定第一表面形状,出射角θ大小与目标角度大小相同。
如图9所示,主光线偏移的目标角度为θ,第一光学器件A的折射率为n,空气折射率为1;第一光线201在第一表面A2与空气的交界面的入射角为α3,出射角为α2;第二表面A1的交界面与空气交界面的入射角为α1,出射角为θ;第一表面A1的切线与水平方向的夹角为γ。其中θ、n为已知项。
根据折射定律,可得:
n×sinα1=sinθ          ——(1)
sinα3=n×sinα2         ——(2)
根据几何关系:
(90°-α1)+α2+α3=90°          ——(3)
γ=α3         ——(4)
整理可得:
α2=arcsin(sinγ/n)         ——(5)
α1=arcsin(sinθ/n)           ——(6)
将公式(5),(6)代入(3)中得:
arcsin(sinγ/n)+arcsin(sinθ/n)=γ        ——(7)
通过解方程(7)可得γ值,确定第一表面的各部分的曲率,进而确定第一表面的形状。可见,垂直于导光板的第一光线201经过第一光学器件后,形成偏转目标角度θ的第二光线202。
图10给出该光学器件为组合光学器件的背光模组,光学器件包括依次位于导光板的出光侧的第二光学器件C和第三光学器件A,第三光学器件A的折射率大于第二光学器件C的折射率,
第二光学器件C包括第三表面C1和第四表面C2,第三表面C1为平面,与导光板B相邻,第四表面C2为自由曲面,远离导光板B;
第三光学器件A包括第五表面A5和第六表面A6,第五表面A5与第四表面C2贴合且两者形状相同,第六表面A6为平面。图10与图5的光学器件的区别在于,图5的光学器件的第五表面向第六表面方向凸起,而图10光学器件的第五表面向导光板方向凹陷。
在一些实施例中,根据入射至第五表面A5的第一光线的入射角α3、第二光学器件的折射率n1和第三光学器件的折射率n2、以及从第六表面A6出射的第二光线的出射角θ,确定与每个子区域对应的第三光学器件的第五表面A5的部分的曲率,以确定第五表面A5形状,出射角θ的大小与目标角度的大小相同。其中,折射率n1小于折射率n2。
如图11所示,主光线偏移的目标角度为θ,第三光学器件A折射率为n1,第二光学器件C的折射率为n2;第一光线201在第五表面A5与第二光学器件的交界面的入射角为α3,出射角为α2;在第六表面A6与空气交界面的入射角为α1;第五表面A5的切线与水平方向夹角为γ。其中θ、n1、n2为已知项。
根据折射定律,可得:
n1×sinα1=sinθ         ——(1)
n2×sinα3=n1×sinα2        ——(2)
根据几何关系:
(90°-α1)+α2+α3=90°         ——(3)
γ=α3         ——(4)
整理可得:
α2=arcsin(n2×sinγ/n1)         ——(5)
α1=arcsin(sinθ/n1)           ——(6)
将公式(5),(6)代入(3)中得:
arcsin(n2×sinγ/n1)+arcsin(sinθ/n1)=γ        ——(7)
通过解方程(7)可得γ值,确定第一表面的各部分的曲率,进而确定第三光学器件A的第五表面A5的形状。第二光学器件C的第四表面C2与形状相同。可见,垂直于导光板的第一光线201经过第一光学器件后,形成偏转目标角度θ的第二光线202。
根据本申请实施例提供的技术方案,通过在导光板的出光侧设置包括多个预设子区域的光学器件,使得导光板发射的入射至光学器件的光在穿过光学器件的对应子区域之后偏转对应目标角度,能够解决带有透镜的VR显示装置的显示亮度不均衡问题。进一步的,根据本申请的某些实施例,通过在导光板的一端设置有限位凹陷,第一光学器件或第三光学器件的一端设置有限位凸起,限位凸起位于限位凹陷内,还能解决导光板与光学器件之间移动造成的摩擦和光线分布的偏差问题。
以上描述仅为本申请的示例实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (15)

  1. 一种背光模组,包括:背光源、导光板和位于所述导光板的出光侧的光学器件,其中,所述光学器件包括多个预设子区域,并且从所述导光板入射至所述光学器件的光在穿过所述光学器件的对应子区域之后偏转目标角度。
  2. 根据权利要求1所述的背光模组,其中,所述光学器件包括第一光学器件,所述第一光学器件包括第一表面和第二表面,所述第二表面远离所述导光板,所述第一表面靠近导光板;
    所述第一表面为自由曲面,所述第二表面为平面,所述第一表面与所述导光板之间为空气夹层。
  3. 根据权利要求2所述的背光模组,其中,根据入射至所述第一表面的所述光的入射角、所述第一光学器件的折射率、以及从所述第二表面出射的所述光的出射角,确定与每个子区域对应的第一表面部分的曲率,以确定所述第一表面的形状,所述出射角的大小与所述目标角度的大小相等。
  4. 根据权利要求2所述的背光模组,其中,所述第一光学器件的材料包括聚碳酸酯。
  5. 根据权利要求1所述的背光模组,其中,所述光学器件包括依次位于所述导光板的出光侧的第二光学器件和第三光学器件,所述第三光学器件的折射率大于所述第二光学器件的折射率,
    所述第二光学器件包括第三表面和第四表面,所述第三表面为平面并且与所述导光板相邻,所述第四表面为自由曲面并且远离所述导光板;
    所述第三光学器件包括第五表面和第六表面,所述第五表面与所述第四表面贴合且两者形状相同,所述第六表面为平面。
  6. 根据权利要求5所述的背光模组,其中,根据入射至所述第五表面的所述光的入射角、所述第二光学器件的折射率和所述第三光学器件的折射率、以及从所述第六表面出射的所述光的出射角,确定与每个子区域对应的第五表面部分的曲率,以确定所述第五表面的形状,所述出射角的大小与所述目标角度的大小相等。
  7. 根据权利要求5所述的背光模组,其中,所述第二光学器件的材料包括聚碳酸酯,所述第三光学器件的材料包括聚甲基丙烯酸甲酯。
  8. 根据权利要求2至4任一项所述的背光模组,其中,所述导光板的一端为梯形凸台,所述凸台的出光侧的表面与所述第一光学器件的第二表面基本上位于同一平面 内;
    所述导光板的另一端设置有限位凹陷,所述第一光学器件的一端设置有限位凸起,所述限位凸起位于所述限位凹陷内。
  9. 根据权利要求5至7任一项所述的背光模组,其中,所述导光板的一端为梯形凸台,所述凸台的出光侧的表面与所述第三光学器件的第六表面基本上位于同一平面内;
    所述导光板的另一端设置有限位凹陷,所述第三光学器件的一端设置有限位凸起,所述限位凸起位于所述限位凹陷内。
  10. 根据权利要求2至4任一项所述的背光模组,其中,所述第一光学器件的第一表面向第二表面方向凸起。
  11. 根据权利要求2至4任一项所述的背光模组,其中,所述第一光学器件的第一表面向所述导光板方向凹陷。
  12. 根据权利要求5至7任一项所述的背光模组,其中,所述第三光学器件的第五表面向第六表面方向凸起。
  13. 根据权利要求5至7任一项所述的背光模组,其中,所述第三光学器件的第五表面向所述导光板方向凹陷。
  14. 根据权利要求2至7任一项所述的背光模组,其中,所述光学器件的所述多个预设子区域包括中心的圆形子区域以及围绕中心的圆形子区域的一个或多个圆环形子区域。
  15. 一种显示装置,包括:权利要求1至14任一项所述的背光模组、显示面板和透镜,其中,所述显示面板位于所述背光模组和透镜之间。
PCT/CN2021/099753 2020-06-24 2021-06-11 背光模组以及显示装置 WO2021259083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010589604.X 2020-06-24
CN202010589604.XA CN111610594B (zh) 2020-06-24 2020-06-24 背光模组以及显示装置

Publications (1)

Publication Number Publication Date
WO2021259083A1 true WO2021259083A1 (zh) 2021-12-30

Family

ID=72194216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099753 WO2021259083A1 (zh) 2020-06-24 2021-06-11 背光模组以及显示装置

Country Status (2)

Country Link
CN (1) CN111610594B (zh)
WO (1) WO2021259083A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610594B (zh) * 2020-06-24 2022-08-16 京东方科技集团股份有限公司 背光模组以及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070127268A1 (en) * 2005-12-06 2007-06-07 Han-Jung Chen Edge-type backlight module
CN104049296A (zh) * 2014-05-27 2014-09-17 瑞仪光电股份有限公司 导光板及光源模组
CN107942431A (zh) * 2018-01-05 2018-04-20 京东方科技集团股份有限公司 准直背光源、显示装置及其光致聚合物层制备方法
CN110161758A (zh) * 2019-06-24 2019-08-23 京东方科技集团股份有限公司 光转换结构、背光模组及虚拟现实显示装置
CN110908032A (zh) * 2019-12-18 2020-03-24 京东方科技集团股份有限公司 一种背光模组及显示装置
CN111610594A (zh) * 2020-06-24 2020-09-01 京东方科技集团股份有限公司 背光模组以及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603649B2 (ja) * 1987-08-13 1997-04-23 松下電工株式会社 面状照明器具
JP5553077B2 (ja) * 2012-03-15 2014-07-16 オムロン株式会社 面光源装置
CN103438587B (zh) * 2013-09-09 2014-12-10 中国科学技术大学 带有空气夹层的太阳能内壁透镜式复合抛物面聚光器
CN104977755A (zh) * 2015-05-28 2015-10-14 京东方科技集团股份有限公司 背光模组、曲面显示装置及背光模组的光源调整方法
CN205229504U (zh) * 2015-08-27 2016-05-11 瑞仪光电(南京)有限公司 导光板、背光模块和显示设备
CN106094096A (zh) * 2016-08-17 2016-11-09 京东方科技集团股份有限公司 一种导光板、背光模组及显示装置
CN207851344U (zh) * 2018-03-12 2018-09-11 京东方科技集团股份有限公司 一种导光板、背光模组和显示装置
CN108469642B (zh) * 2018-03-29 2021-03-12 京东方科技集团股份有限公司 一种棱镜膜、背光模组及显示装置
CN208314417U (zh) * 2018-05-30 2019-01-01 北京京东方技术开发有限公司 背光模组及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070127268A1 (en) * 2005-12-06 2007-06-07 Han-Jung Chen Edge-type backlight module
CN104049296A (zh) * 2014-05-27 2014-09-17 瑞仪光电股份有限公司 导光板及光源模组
CN107942431A (zh) * 2018-01-05 2018-04-20 京东方科技集团股份有限公司 准直背光源、显示装置及其光致聚合物层制备方法
CN110161758A (zh) * 2019-06-24 2019-08-23 京东方科技集团股份有限公司 光转换结构、背光模组及虚拟现实显示装置
CN110908032A (zh) * 2019-12-18 2020-03-24 京东方科技集团股份有限公司 一种背光模组及显示装置
CN111610594A (zh) * 2020-06-24 2020-09-01 京东方科技集团股份有限公司 背光模组以及显示装置

Also Published As

Publication number Publication date
CN111610594B (zh) 2022-08-16
CN111610594A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
KR100903028B1 (ko) 쐐기형 배면프리즘을 포함하는 액정표시장치 백라이트 유닛용 도광판
TWI728252B (zh) 光學膜及具有光學膜的顯示裝置
CN109493746A (zh) 显示面板及显示装置
TWI481932B (zh) 顯示裝置及組合成之顯示系統
US9081225B2 (en) Liquid crystal display device
WO2016206261A1 (zh) 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
TWI470319B (zh) 液晶顯示器
WO1996023245A1 (fr) Dispositif d'affichage a cristaux liquides
US10921645B2 (en) Display module
JP2008145550A (ja) 光学シートおよび表示装置
WO2016197519A1 (zh) 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
US10324249B2 (en) Display device
WO2016194716A1 (ja) エッジライト型バックライト装置及び液晶表示装置
JPH10301110A (ja) 画像表示装置
US10809434B2 (en) Display device
KR100838322B1 (ko) 비대칭전면프리즘을 구비하는 액정표시장치 백라이트유닛용 도광판
WO2021259083A1 (zh) 背光模组以及显示装置
US10203429B2 (en) Light refraction structure and its manufacture method, color filter substrate and its manufacture method, and display device
TW201719201A (zh) 光學膜及窄邊框顯示裝置
JP7161687B2 (ja) 光学構造体および表示装置
JP2002169149A (ja) 反射型液晶表示装置
KR20150034933A (ko) 바텀 케이스 및 이를 포함하는 백라이트 어셈블리
US11947152B1 (en) Display module including a through-hole and photosensitive element and a display device including the same
CN221613049U (zh) 逆棱镜片、背光模组及显示器件
JPH09179113A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829921

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21829921

Country of ref document: EP

Kind code of ref document: A1