WO2021258945A1 - 感光组件、摄像模组和电子设备 - Google Patents

感光组件、摄像模组和电子设备 Download PDF

Info

Publication number
WO2021258945A1
WO2021258945A1 PCT/CN2021/095180 CN2021095180W WO2021258945A1 WO 2021258945 A1 WO2021258945 A1 WO 2021258945A1 CN 2021095180 W CN2021095180 W CN 2021095180W WO 2021258945 A1 WO2021258945 A1 WO 2021258945A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
photosensitive
main body
adjustment layer
board main
Prior art date
Application number
PCT/CN2021/095180
Other languages
English (en)
French (fr)
Inventor
黄桢
许晨祥
干洪锋
栾仲禹
徐童伟
李婷花
戴蓓蓓
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202180040652.6A priority Critical patent/CN115699783A/zh
Publication of WO2021258945A1 publication Critical patent/WO2021258945A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements

Definitions

  • This application relates to camera modules, in particular to photosensitive components, camera modules and electronic equipment.
  • the large-size photosensitive chip Since the large-size photosensitive chip has the characteristics of large area and small thickness, it is more prone to bend when subjected to external force or temperature changes during the assembly process or reliability test, resulting in the degradation of the imaging quality of the camera module.
  • the existing technical idea is to reduce the bending degree of the photosensitive chip as much as possible, for example, by strengthening the bending strength and/or rigidity of the circuit board (for example, sticking on the back of the circuit board) With reinforcement board) to prevent the circuit board from bending to reduce the degree of bending of the photosensitive chip.
  • the inventor of the present application found that: on the one hand, even if the bending degree of the photosensitive chip is reduced as low as possible through the reinforcing plate, the actual imaging quality of the camera module has not been significantly optimized. In addition, the consistency of actual image quality is relatively poor; on the other hand, the use of reinforcing plates also brings some new technical problems, such as poor grounding performance and poor heat dissipation performance.
  • An advantage of the present application is to provide a photosensitive component, a camera module, and an electronic device, wherein the photosensitive component is provided with an adjustment layer for adjusting the degree of curvature of the photosensitive chip under the circuit board to pass the adjustment layer
  • the structural configuration of the photosensitive chip adapts the curvature of the photosensitive chip to the curvature of field of the optical lens.
  • the camera module has a more optimized imaging quality and the actual imaging quality is relatively more consistent.
  • Another advantage of the present application is to provide a photosensitive component, a camera module, and an electronic device, wherein the degree of curvature of the photosensitive chip can be adjusted by the structural configuration of the adjustment layer, so that the field curvature of the photosensitive chip Corresponds to the curvature of field of the optical lens. That is to say, in the embodiment of the present application, the degree of curvature of the photosensitive chip is an effective variable for optimizing the actual imaging quality of the camera module.
  • Another advantage of the present application is to provide a photosensitive component, a camera module, and an electronic device, wherein the degree of curvature of the photosensitive chip can be adjusted and adapted through the adjustment layer, so that a plurality of optical components with different field curvature values can be adjusted and adapted.
  • the lens can also produce a camera module with better consistency of appearance curve. That is to say, in the embodiment of the present application, the inconsistency of the curvature of field value of the optical lens can be adapted by adjusting the degree of curvature of the photosensitive chip, so as to improve the effective utilization rate of the optical lens.
  • the adjustment layer has a slot penetrating the adjustment layer to expose the In this way, at least a part of the conductive layer used for grounding on the lower surface of the circuit board improves the grounding performance of the camera module.
  • Another advantage of the present application is to provide a photosensitive component, a camera module, and an electronic device, wherein, in an embodiment of the present application, the adjustment layer has a slot penetrating the adjustment layer to expose the circuit In this way, at least a part of the lower surface of the board improves the heat dissipation performance of the camera module.
  • Another advantage of the present application is to provide a photosensitive component, a camera module, and an electronic device, wherein the adjustment layer covers the first-type conductive through hole for communication in the circuit board main body to protect the camera module
  • the first type of conductive through holes are not damaged during manufacturing, transportation, and use.
  • a photosensitive component which includes:
  • the circuit board assembly includes a circuit board main body and an adjustment layer.
  • the photosensitive chip is arranged on the circuit board main body and is electrically connected to the circuit board main body, wherein the adjustment layer has a bend for adjusting the photosensitive chip Degree of structural configuration.
  • the adjustment layer is formed on the lower surface of the circuit board main body, and the structural configuration of the adjustment layer is configured to adjust the bending degree of the circuit board to adjust the bending of the photosensitive chip degree.
  • the structural configuration includes a difference between the thermal expansion coefficient of the adjustment layer and the thermal expansion coefficient of the circuit board main body.
  • the structure configuration includes a thickness dimension of the adjustment layer in a range of 0.1 mm to 0.4 mm.
  • the thickness dimension of the adjustment layer ranges from 0.1 mm to 0.2 mm.
  • the structural configuration includes a thickness dimension of the adjustment layer that is less than or equal to 120% of the thickness dimension of the circuit board main body.
  • the thickness dimension of the adjustment layer is less than or equal to 110% of the thickness dimension of the circuit board main body.
  • the thickness dimension of the adjustment layer is less than or equal to the thickness dimension of the circuit board main body.
  • the structural configuration includes that the adjustment layer has at least one groove recessedly formed on the lower surface thereof.
  • the depth dimension of the at least one groove is less than or equal to the thickness of the adjustment layer.
  • the slot is provided on a central axis set by the main body of the circuit board.
  • the at least one slot includes at least two slots, wherein the at least two slots are distributed symmetrically with respect to a central axis set by the circuit board main body.
  • the at least one slot includes at least two slots, wherein the at least two slots are set relative to the center of the circuit board body along the circumferential direction of the adjustment layer.
  • the shafts are arranged evenly and at intervals.
  • the distance between the outermost edge of the groove and the peripheral edge of the adjustment layer is greater than or equal to 0.1 mm.
  • the distance between the outermost edge of the groove and the peripheral edge of the adjustment layer is greater than or equal to 0.3 mm.
  • the adjustment layer is integrally formed on the lower surface of the circuit board.
  • the adjustment layer is made of a resin material.
  • the degree of curvature of the circuit board main body is the height difference between the height of the peripheral area of the circuit board and the middle area of the circuit board main body in the range of -25um to 25um.
  • the degree of curvature of the photosensitive chip is that the height difference between the height of the edge area of the photosensitive chip and the middle area of the photosensitive chip ranges from -5um to 5um.
  • the degree of curvature of the circuit board main body is the height difference between the height of the peripheral area of the circuit board and the middle area of the circuit board main body in the range of -100um to 100um.
  • the degree of curvature of the photosensitive chip is that the height difference between the height of the edge area of the photosensitive chip and the middle area of the photosensitive chip ranges from -30um to 30um.
  • At least one of the at least one groove penetrates the adjustment layer to expose at least a part of the lower surface of the circuit board.
  • the circuit board main body includes a conductive layer formed on the lower surface of the circuit board and used for grounding, and the slot penetrating the adjustment layer exposes the conductive layer At least part of the area.
  • the groove penetrating the adjustment layer is formed in an edge area of the adjustment layer.
  • the circuit board main body includes a multilayer wiring layer formed between its upper surface and its lower surface, and communication between the multilayers of the wiring layers is achieved through the first-type conductive vias.
  • Ground connection wherein the area where the adjustment layer covers the lower surface of the circuit board main body includes at least a part of the area where the first-type conductive vias correspond to the lower surface of the circuit board main body.
  • the circuit board assembly further includes a second conductive layer electrically connected to the conductive layer.
  • the second conductive layer is formed in the groove penetrating the adjustment layer.
  • the second conductive layer is further formed on the lower surface of the adjustment layer.
  • the side wall of the slot penetrating the adjustment layer is inclined to the lower surface of the circuit board main body.
  • the circuit board assembly further includes a flexible connection board electrically connected to the circuit board main body and a connector connected to the flexible connection board, wherein the adjustment layer is connected to the flexible connection board. There is a certain gap between the connecting plates.
  • a camera module which includes:
  • the curvature of field of the optical lens is adapted to the degree of curvature of the photosensitive chip.
  • an electronic device which includes
  • the main body of the electronic equipment The main body of the electronic equipment.
  • the camera module assembled in the main body of the electronic device includes an optical lens and the photosensitive component as described above, wherein the optical lens is held on the photosensitive path of the photosensitive component.
  • the electronic device main body includes a ground wire having an electrical connection terminal, and the electrical connection terminal of the ground wire is electrically connected to the conductive layer.
  • the electronic device main body includes a ground wire having an electrical connection terminal, and the electrical connection terminal of the ground wire is electrically connected to the second conductive layer.
  • Fig. 1 illustrates a schematic diagram of a camera module according to an embodiment of the present application.
  • Fig. 2 illustrates a schematic diagram of a photosensitive component of the camera module according to an embodiment of the present application.
  • Fig. 3 illustrates a schematic diagram of bending of the circuit board assembly of the photosensitive assembly according to an embodiment of the present application.
  • FIG. 4 illustrates a schematic diagram of bending of the circuit board assembly and the photosensitive chip of the photosensitive assembly according to an embodiment of the present application.
  • Fig. 5A illustrates a schematic diagram of a setting method of the slot position of the adjustment layer according to an embodiment of the present application.
  • FIG. 5B illustrates a schematic diagram of another setting method of the slot position of the adjustment layer according to an embodiment of the present application.
  • FIG. 5C illustrates a schematic diagram of yet another way of setting the slot position of the adjustment layer according to an embodiment of the present application.
  • FIG. 5D illustrates a schematic diagram of yet another way of setting the slot position of the adjustment layer according to an embodiment of the present application.
  • Fig. 6 illustrates another schematic diagram of the slot position in the adjustment layer according to an embodiment of the present application.
  • Fig. 7 illustrates a schematic diagram of the setting position of the adjustment layer according to an embodiment of the present application.
  • FIG. 8 illustrates a schematic diagram of a modified implementation of the photosensitive assembly according to an embodiment of the present application.
  • FIG. 9 illustrates a schematic diagram of another modified implementation of the photosensitive assembly according to an embodiment of the present application.
  • Fig. 10 illustrates a schematic diagram of a circuit board main body of the photosensitive assembly according to an embodiment of the present application.
  • FIG. 11 illustrates a schematic diagram of the relative positional relationship between the adjustment layer and the circuit board main body according to an embodiment of the present application.
  • FIG. 12 illustrates a schematic diagram of the electrical connection between the camera module and the main body of the electronic device according to an embodiment of the present application.
  • FIG. 13A illustrates a schematic diagram of another modified implementation of the photosensitive assembly according to an embodiment of the present application.
  • FIG. 13B illustrates a schematic diagram of another modified implementation of the photosensitive assembly according to an embodiment of the present application.
  • FIG. 13C illustrates a schematic diagram of another modified implementation of the photosensitive assembly according to the embodiment of the present application.
  • FIG. 13D illustrates a schematic diagram of another modified implementation of the photosensitive assembly according to an embodiment of the present application.
  • FIG. 13E illustrates a schematic diagram of another modified implementation of the photosensitive assembly according to an embodiment of the present application.
  • FIG. 13F illustrates an enlarged schematic diagram of the layout of the modified implementation of the photosensitive assembly shown in FIG. 13E.
  • Fig. 14 illustrates a schematic diagram of an electronic device according to an embodiment of the present application.
  • the existing technical idea is to reduce the bending degree of the photosensitive chip as much as possible, for example, by strengthening the bending strength and/or rigidity of the circuit board (for example, sticking on the back of the circuit board) With reinforcement board) to prevent the circuit board from bending to reduce the degree of bending of the photosensitive chip.
  • the inventor of the present application found that: on the one hand, even if the degree of curvature of the photosensitive chip is reduced as low as possible through the reinforcing plate, the actual imaging quality of the camera module has not been significantly optimized and is actually The consistency of image quality is relatively poor; on the other hand, the use of reinforcing plates also brings some new technical problems, such as poor grounding performance and poor heat dissipation performance.
  • the inventor of the present application found that the imaging quality of the camera module is not only affected by the degree of curvature of the photosensitive chip (the degree of curvature of the photosensitive chip affects the field curvature of the photosensitive chip), but also by the field curvature of the optical lens. Value.
  • the key to improving the imaging quality of the camera module is to ensure that the field curvature value of the optical lens matches the field curvature value of the photosensitive chip. That is to say, the degree of curvature of the photosensitive chip itself is not a necessary and sufficient condition for the imaging quality of the camera module. Therefore, the existing technical thinking "reduce the degree of curvature of the photosensitive chip as much as possible” does not necessarily improve the imaging quality of the camera module.
  • the imaging quality of the group. In other words, the degree of curvature of the photosensitive chip is not necessarily a negative factor that causes the image quality of the camera module to decline.
  • the inventor of the present application also discovered in actual production situations that different optical lenses often have different field curvature values. If the field curvature value of the optical lens is too large, it will be regarded as defective and scrapped in actual production occasions, resulting in The effective utilization rate of the optical lens is not high.
  • the inventor of the present application realizes that the field curvature value of the optical lens is too large is a relative concept, whether it is too large depends on the field curvature value of the photosensitive chip, that is to say, the field curvature value of the photosensitive chip can be adjusted to adapt the optical lens The field curvature value of, so that the optical lens that was originally regarded as defective can also be effectively used.
  • the basic idea of this application is to regard the degree of curvature of the photosensitive chip as an effective variable that affects the imaging quality of the camera module, and adjust the degree of curvature of the photosensitive chip through the structural configuration to make it It is adapted to the field curvature value of the optical lens to improve the image quality and the consistency of the image quality.
  • the present application provides a photosensitive assembly, a camera module, and an electronic device, wherein the photosensitive assembly includes a photosensitive chip and a circuit board assembly, wherein the circuit board assembly includes a circuit board main body and an adjustment layer, and the photosensitive assembly includes a circuit board main body and an adjustment layer.
  • the chip is disposed on the circuit board main body and electrically connected to the circuit board main body, and the adjustment layer is formed on the lower surface of the circuit board main body and has a function for adjusting the bending degree of the circuit board main body to adjust the The structural configuration of the degree of curvature of the photosensitive chip. In this way, the degree of curvature of the photosensitive chip is adjusted by the adjustment layer to adapt it to the curvature of field of the optical lens.
  • the camera module 30 includes a photosensitive component 20 and an optical lens 10 held on the photosensitive path of the photosensitive component 20.
  • the camera module 30 is implemented as a fixed-focus camera module 30, that is, the relative relationship between the optical lens 10 and the photosensitive assembly 20 The positional relationship remains constant.
  • the type of the camera module 30 is not limited by the present application.
  • the camera module 30 can also be implemented as a dynamic focus camera module, that is, the camera module 30 further includes the optical lens 10 and the photosensitive assembly 20.
  • a driving element (not shown in the figure), wherein the driving original is used to carry and drive the optical lens 10 to move along the photosensitive path to change the relative relationship between the optical lens 10 and the photosensitive assembly 20 Positional relationship.
  • the camera module 30 can also be implemented as an anti-shake camera module, that is, the camera module 30 further includes an anti-shake motor disposed on the optical lens 10 and the photosensitive assembly 20 to pass The anti-shake motor realizes the anti-shake function.
  • the camera module 30 may also include components such as a prism to form a periscope camera module.
  • FIG. 2 illustrates a schematic diagram of the photosensitive component 20 according to an embodiment of the present application.
  • the photosensitive component 20 includes: a circuit board assembly 21, a photosensitive chip 22, and a package Section 23, filter element 24, and at least one electronic component 25.
  • the photosensitive assembly 20 as shown in FIG. 2
  • the photosensitive chip 22 is disposed on the circuit board assembly 21 and is electrically connected to the circuit board assembly 21 through an electrical connection medium such as a wire; At least one electronic component 25 is electrically connected to the circuit board assembly 21 and located in the surrounding area of the photosensitive chip 22; the packaging portion 23 encapsulates the at least one electronic component 25 and the photosensitive chip 22 in the The circuit board assembly 21 and the packaging portion 23 have a light window through which light passing through the optical lens 10 can enter the photosensitive area of the photosensitive chip 22; the filter element 24 is It is arranged on the photosensitive path of the photosensitive chip 22 to filter the light incident on the photosensitive chip 22.
  • the circuit board assembly 21 includes a circuit board main body 211, the photosensitive chip 22 is attached to the upper surface of the circuit board main body 211 by an adhesive, and the packaging portion 23 It is installed on the upper surface of the circuit board main body 211 to package the at least one electronic component 25 and the photosensitive chip 22 on the circuit board main body 211.
  • the encapsulation part 23 is implemented as a stand having an independent structure, which can be attached to the upper surface of the circuit board main body 211 through an adhesive.
  • the encapsulation portion 23 may also be formed on the upper surface of the circuit board main body 211 in other ways, for example, it may be integrally formed through a molding process such as transfer molding, injection molding, and compression molding. On the upper surface of the circuit board main body 211, this is not limited by this application.
  • the circuit board assembly 21 further includes an adjustment layer 212, wherein the adjustment layer 212 can act on the circuit board main body 211 to change the circuit
  • the bending degree of the board main body 211 can be controlled to adjust the bending degree of the photosensitive chip 22. It should be understood that the degree of curvature of the photosensitive chip 22 affects the field curvature value of the photosensitive chip 22, and accordingly, when the field curvature value of the photosensitive chip 22 is adjusted to be the same as the field curvature value of the optical lens 10 When adapted, the camera module 30 has a more optimized and more consistent imaging quality.
  • the adjustment layer 212 is formed on the lower surface of the circuit board main body 211, so that the adjustment layer 212 and the circuit board main body 211 are structurally Make associations.
  • the adjustment layer 212 is integrally bonded to the lower surface of the circuit board body 211 through processes such as injection molding, transfer molding, and compression molding, so that the adjustment layer 212 can be
  • the stress distribution of the circuit board main body 211 is changed to adjust the bending degree of the circuit board main body 211.
  • the adjustment layer 212 has a structural configuration for adjusting the bending degree of the circuit board main body 211 to adjust the bending degree of the photosensitive chip 22.
  • the structural configuration of the adjustment layer 212 first includes a difference between the thermal expansion coefficient of the adjustment layer 212 and the thermal expansion coefficient of the circuit board main body 211. It should be understood that when there is a difference between the thermal expansion coefficient (or flexural modulus) of the material of the adjustment layer 212 and the thermal expansion coefficient (or flexural modulus) of the circuit board main body 211, temperature changes may cause the The adjustment layer 212 and the circuit board main body 211 are bent to different degrees, which causes the circuit board main body 211 to bend downward to drive the photosensitive chip 22 to bend downward.
  • the bending of the circuit board main body 211 can be controlled.
  • the degree is: the height difference between the height of the peripheral area of the circuit board and the middle area of the circuit board main body 211 ranges from -25um to 25um, as shown in FIG. 3, and the photosensitive chip 22 can be controlled
  • the degree of curvature is: the height difference between the height of the edge area of the photosensitive chip 22 and the middle area of the photosensitive chip 22 ranges from -5um to 5um, as shown in FIG. 4.
  • the structural configuration of the adjustment layer 212 further includes the thickness dimension of the adjustment layer 212, more specifically, the thickness dimension of the adjustment layer 212 and the thickness of the circuit board main body 211
  • the relationship between dimensions Specifically, in the embodiment of the present application, the thickness dimension of the adjustment layer 212 may be set to be less than or equal to 120% of the thickness dimension of the circuit board main body 211, or the thickness dimension of the adjustment layer 212 may be The thickness dimension of the circuit board main body 211 is set to be less than or equal to 110%, or the thickness dimension of the adjustment layer 212 may be set to be less than or equal to the thickness dimension of the circuit board main body 211.
  • the range of the thickness dimension of the adjustment layer 212 may be set to 0.1 mm to 0.4 mm, preferably, it may be set to 0.1 mm to 0.2 mm.
  • the structural configuration of the adjustment layer 212 further includes that the adjustment layer 212 has at least one slot 213 recessedly formed on the lower surface thereof. It should be understood that the adjustment layer 212 has different thickness dimensions at the slot 213 and the non-slot 213, so that the adjustment layer 212 has a different thickness at the slot 213 and the non-said slot 213.
  • the grooves 213 have different degrees of bending, so that the degree of bending of the circuit board main body 211 can be increased.
  • the bending degree of the circuit board main body 211 can be controlled as follows: the height of the peripheral area of the circuit board and the circuit board The height difference between the middle areas of the main body 211 ranges from -100um to 100um. That is, in the embodiment of the present application, the height of the peripheral area of the circuit board main body 211 can be controlled by setting the parameters of the slot 213.
  • the height difference between the middle areas of the circuit board main body 211 is any value ranging from -100um to 100um; and the degree of curvature of the photosensitive chip 22 can be controlled as follows: the height of the edge area of the photosensitive chip 22 and the The height difference between the middle areas of the photosensitive chip 22 ranges from -30um to 30um, that is, in the embodiment of the present application, the height of the edge area of the photosensitive chip 22 can be controlled by setting the parameters of the groove 213.
  • the height difference between the middle areas of the photosensitive chip 22 is any value ranging from -30um to 30um (or, it can be controlled from -25um to 25um; or, it can be controlled from -20um to 20um; or, it can be controlled from -15um to 15um).
  • the photosensitive chip 22 can be adapted to the optical lens 10 with more different field curvature values, namely
  • the optical lens 10 with different field curvature values can be used to produce a camera module 30 with qualified imaging quality, so as to increase the utilization rate of the optical lens 10 and reduce the cost.
  • multiple batches of the optical lenses 10 with different field curvature values can produce camera modules 30 with better field curvature uniformity.
  • the configuration of the slot 213 is limited, that is, in the embodiment of the present application, the structural configuration of the adjustment layer 212 further includes the Slotted 213 configuration.
  • the depth dimension of the at least one slot 213 is less than or equal to the thickness of the circuit board main body 211;
  • the shape of the slot 213 is not limited by this application, it can be It is a symmetrical shape of a rectangle, a circle, or a ring light, or other suitable asymmetrical shapes;
  • the number of the slots 213 is not limited by this application, and it can be singular or plural.
  • the formation position of the slot 213 is limited. Specifically, when the number of the slots 213 exceeds two (that is, the at least one slot 213 includes at least two slots 213), preferably, the at least two slots 213 are relative to the circuit board.
  • the central axis set by the main body 211 is symmetrically distributed. It should be understood that when the at least two slots 213 are symmetrically distributed with respect to the central axis set by the circuit board main body 211, the circuit board main body 211 can be more evenly and evenly distributed to the circuit board main body.
  • the central axis of 211 is curved, so that the photosensitive chip 22 can also be more uniformly and evenly curved toward the central area of the photosensitive chip 22.
  • the at least one slot 213 includes only one slot 213, preferably, the slot 213 is disposed on the central axis set by the circuit board main body 211.
  • the at least two slots 213 are arranged evenly and spaced apart from the center of the adjustment layer 212 along the circumferential direction of the adjustment layer 212.
  • the at least two slots 213 are implemented as three slots 213, they are evenly and spaced along the center of the adjustment layer 212 at 120° with respect to the center set by the adjustment layer 212. Circumferential arrangement.
  • the adjustment layer 212 is provided with at least one indicator line for indicating the setting position of the slot 213, specifically, as shown in FIGS. 5A to 5C
  • the adjustment layer 212 uses its two diagonal lines and two axisymmetric lines as indicator lines.
  • the at least one slot 213 includes four slots 213, which are respectively disposed on two diagonals of the adjustment layer 212 and have four slots.
  • the slots 213 are symmetrically distributed with respect to the two symmetry axes of the adjustment layer 212.
  • FIG. 5A the example shown in FIG.
  • the at least one slot 213 includes two slots 213, which are respectively disposed on both sides of the transverse symmetry axis of the adjustment layer 212, and the two slots 213 213 is distributed symmetrically with respect to the longitudinal symmetry axis of the adjustment layer 212 (similarly, the two slots 213 are distributed symmetrically with respect to the transverse symmetry axis of the adjustment layer 212).
  • the at least one slot 213 includes four slots 213 communicating with each other to form a cross shape, which are respectively disposed on the two symmetry axes of the adjustment layer 212 and The four slots 213 are symmetrically distributed with respect to the two symmetry axes of the adjustment layer 212.
  • the at least one slot 213 includes only one slot 213, which is disposed in the central area of the adjustment layer 212 and the slot 213 is relative to the adjustment layer.
  • the two symmetry axes of 212 are distributed symmetrically.
  • the indicator line of the adjustment layer 212 may also be determined based on other methods, for example, based on the two diagonal lines, two axisymmetric lines, and the eighth line of the adjustment layer 212.
  • this application is not limited.
  • the position setting of the at least one slot 213 can also be arranged in other ways, which is not limited by this application.
  • the distance c between the outermost edge of the slot 213 adjacent to the edge of the adjustment layer 212 and the periphery of the adjustment layer 212 is greater than or equal to 0.1 mm, preferably, the distance c is greater than or equal to 0.3 mm.
  • the circuit board assembly 21 further includes a flexible connection board 214 electrically connected to the circuit board main body 211 and a flexible connection board 214 connected to the flexible connection board. 214 of the connector 215.
  • a gap is left on one side, wherein the gap is neither provided in the adjustment layer 212 nor the packaging portion 23.
  • the inventor of the present application found that when the adjustment layer 212 completely covers the conductive layer 2115 formed on the lower surface of the circuit board body 211 for grounding (for example, all of the The depth of the grooves 213 is less than the thickness of the adjustment layer 212, that is, all the grooves 213 are grooves), the grounding performance of the camera module 30 is poor, and it is easy to cause excessive local voltages. Damage to the device poses a potential safety hazard, and at the same time, it may also affect the photographing performance of the camera module 30.
  • the circuit board main body 211 includes a multilayer wiring layer 2111 and a multilayer insulating layer 2112 formed between its upper surface and its lower surface.
  • the wiring layer 2111 and multiple layers of the insulating layer 2112 are interlaced and pressed against each other, wherein the portion of the multilayer wiring layer 2111 formed on the lower surface of the circuit board main body 211 is the conductive layer 2115 ( More specifically, in the embodiment of the present application, the conductive layer 2115 is a copper layer), and the multiple layers of the wiring layers 2111 are connected and conducted through conductive vias.
  • the conductive vias include two types of conductive vias: the first type of conductive vias 2113 are used for signal connection (that is, to realize multiple layers of the wiring layers 2111). Communicable connection), and the second type of conductive via 2114, used for electromagnetic shielding, heat dissipation and grounding.
  • At least one of the grooves 213 penetrates the adjustment layer 212 to expose the circuit board At least part of the area of the lower surface, that is, in this modified embodiment, there is at least one through groove in the groove 213.
  • the formation position of the slot 213 penetrating the adjustment layer 212 corresponds to the conductive layer 2115, so that at least a part of the conductive layer 2115 is exposed. In this way, not only can the The grounding performance of the camera module 30 can also enhance the heat dissipation performance of the camera module 30 at the same time.
  • the ground wire 102 of the electronic device main body has an electrical connection terminal 103.
  • the electrical connection terminal 103 is electrically connected to the portion of the conductive layer 2115 exposed to the slot 213 to realize the connection between the camera module 30 and the ground 102 of the electronic device.
  • the shape of the electrical connection terminal 103 is adapted to the shape of the slot 213.
  • FIG. 9 illustrates a schematic diagram of another modified implementation of the photosensitive component 20 according to an embodiment of the present application.
  • the slot 213 (the through groove) penetrating the adjustment layer 212 is formed in the edge area of the adjustment layer 212, that is, the through groove For the edge groove.
  • the circuit board assembly 21 further includes a second conductive layer 216 electrically connected to the conductive layer 2115, as shown in FIG. Shown in 13A.
  • the camera module 30 can be grounded through the second conductive layer 216.
  • the second conductive layer 216 is formed in the slot 213 penetrating the adjustment layer 212, for example, by spraying, printing, welding, coating,
  • the second conductive layer 216 is arranged in the slot 213 penetrating the adjustment layer 212 by pressing or the like.
  • the second conductive layer 216 includes but is not limited to: conductive glue, conductive silver paste, conductive ink, metal flakes, metal films, conductive films, etc., wherein the thickness of the second conductive layer 216 The range can be set to 2um-30um, preferably, 4um-20um.
  • the second conductive layer 216 covers the sidewall of the slot 213 penetrating through the adjustment layer 212, and the conductive layer 2115 is exposed to the The area inside the slot 213 and the lower surface of the adjustment layer 212. That is, in the modified implementation as shown in FIG. 13A, the second conductive layer 216 covers the entire back surface of the adjustment layer 212.
  • the thickness of the second conductive layer 216 at each location may be uniform or non-uniform, which is not limited by this application.
  • FIG. 13B illustrates a schematic diagram of another modified implementation of the photosensitive assembly 20 according to an embodiment of the present application.
  • the second conductive layer 216 covers a part of the conductive layer 2115 exposed in the slot 213 and a part of the sidewall of the slot 213.
  • FIG. 13C illustrates a schematic diagram of another modified implementation of the photosensitive assembly 20 according to an embodiment of the present application.
  • the second conductive layer 216 fills the slot 213 penetrating the adjustment layer 212.
  • FIG. 13D illustrates a schematic diagram of another modified implementation of the photosensitive assembly 20 according to an embodiment of the present application.
  • the circuit board assembly 21 further includes a conductive member 217 disposed between the conductive layer 2115 and the second conductive layer 216.
  • the conductive member 217 may be implemented as a thin metal sheet, the shape and size of the metal sheet matching the slot 213.
  • FIG. 13E illustrates a schematic diagram of another modified implementation of the photosensitive assembly 20 according to an embodiment of the present application.
  • FIG. 13F illustrates a partial enlarged schematic view of the modified implementation of the photosensitive assembly 20 shown in FIG. 13E.
  • the side wall of the slot 213 penetrating the adjustment layer 212 is inclined to the lower surface of the circuit board main body 211, and the side wall of the slot 213 and the circuit board main body There is an inclination angle between the lower surfaces of 211.
  • the inclination angle can be set between 3° and 80°, further, it can be between 5° and 60°, between 5° and 30°, or other reasonable ranges. , Is not limited by this application.
  • the circuit board main body 211 includes two types of conductive through holes: the first type of conductive through holes 2113 for signal connection and the second type of conductive through holes for electromagnetic shielding, heat dissipation, and grounding. Through hole 2114.
  • the adjustment layer 212 is integrally bonded to the lower surface of the circuit board main body 211 through processes such as injection molding, transfer molding, and compression molding, the groove 213 of the adjustment layer 212 is It is pressed by the indenter of the forming mold so that the corresponding position is not covered by the material of the adjustment layer 212.
  • the indenter of the forming mold should avoid the first-type conductive via 2113 (as shown in FIG. 9) as much as possible, so as to avoid the first-type conductive via 2113 Damaged by the indenter, destroying the electrical conductivity of the circuit board. That is to say, preferably, in the embodiment of the present application, the area where the adjustment layer 212 covers the lower surface of the circuit board main body 211 includes at least part of the first-type conductive vias 2113 corresponding to the circuit board main body 211 is the area of the lower surface.
  • the adjustment layer 212 used to adjust the degree of curvature of the photosensitive chip 22 is arranged under the circuit board to pass the adjustment.
  • the structural configuration of the layer 212 makes the degree of curvature of the photosensitive chip 22 adapt to the curvature of field of the optical lens 10. In this way, the camera module 30 has a more optimized imaging quality and the actual imaging quality is relatively consistent. higher.
  • the degree of curvature of the photosensitive chip 22 can be adjusted by the structural configuration of the adjustment layer 212, so that the curvature of field of the photosensitive chip 22 corresponds to the curvature of field of the optical lens 10. . That is to say, in the embodiment of the present application, the degree of curvature of the photosensitive chip 22 is an effective variable for optimizing the actual imaging quality of the camera module 30.
  • the degree of curvature of the photosensitive chip 22 can be adjusted and adapted through the adjustment layer 212, so that a plurality of optical lenses 10 with different field curvature values can also produce better field curvature uniformity.
  • the camera module 30 that is to say, in the embodiment of the present application, the inconsistency of the curvature of field value of the optical lens 10 can be adapted by adjusting the degree of curvature of the photosensitive chip 22 to improve the effective utilization rate of the optical lens 10. .
  • the adjustment layer 212 has a slot 213 penetrating the adjustment layer 212 to expose at least a part of the conductive layer 2115 formed on the lower surface of the circuit board for grounding. In this way, the grounding performance of the camera module 30 is improved.
  • the adjustment layer 212 has a slot 213 penetrating through the adjustment layer 212 to expose at least a part of the lower surface of the circuit board. In this way, the camera module is lifted. Thermal performance of group 30.
  • FIG. 14 illustrates a schematic diagram of an electronic device according to an embodiment of the present application.
  • the electronic device 100 includes an electronic device main body 101 and a camera module 30 assembled in the electronic device main body 101.
  • the camera module 30 is installed on the front side of the electronic device main body 101 as a front camera module 30; or installed on the back side of the electronic device main body 101 as a rear camera module 30 In this regard, this application is not limited.
  • the electronic device main body 101 includes a ground wire 102 having an electrical connection terminal 103, and the electrical connection terminal 103 is electrically connected to the conductive layer 2115 and is exposed to the opening.
  • the slot 213 is used to connect the camera module 30 with the ground wire 102 of the electronic device 100.
  • the shape of the electrical connection terminal 103 is adapted to the shape of the slot 213.
  • the electrical connection end 103 of the ground wire 102 may also be electrically connected to the second conductive layer 216, so as to realize the connection between the camera module 30 and the electronic device. 100 of the ground wire 102 is connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

公开了一种感光组件、摄像模组和电子设备。所述感光组件包括:感光芯片和线路板组件,所述线路板组件包括线路板主体和调整层,所述感光芯片设置于所述线路板主体上且电连接于所述线路板主体,所述调整层形成于所述线路板主体的下表面且具有用于调整所述线路板主体的弯曲程度以调整所述感光芯片的弯曲程度的结构配置。这样,通过所述调整层调节所述感光芯片的弯曲程度以使之适配于光学镜头的场曲。

Description

感光组件、摄像模组和电子设备 技术领域
本申请涉及摄像模组,尤其涉及感光组件、摄像模组和电子设备。
背景技术
随着移动终端设备的普及,被应用于移动终端设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步。随着消费者对于摄像需求的提升,终端设备上的摄像模组的功能也更为多样化和强大,例如,广角、长焦、变焦功能。为实现上述功能,感光芯片逐渐朝着高像素、大芯片的趋势发展。
由于大尺寸的感光芯片具有面积大、厚度小的特性,其在组装过程中或者可靠性测试中受到外力或者温度变化更容易发生弯曲,导致摄像模组的成像质量的下降。为了优化摄像摄像模组的成像质量,现有的技术思路为:尽可能地降低感光芯片的弯曲程度,例如,通过加强线路板的抗弯强度和/或刚度(例如,在线路板的背面贴附补强板)以防止线路板弯曲以降低感光芯片的弯曲程度。
然而,在具体实施中,本申请发明人发现:一方面,即便通过补强板将感光芯片的弯曲程度降到尽可能地低,但是,摄像模组的实际成像质量也并没有得到明显的优化且实际成像质量的一致性也相对较差;另一方面,补强板的使用也带来了一些新的技术问题,例如,接地性能差、散热性能差等。
因此,需重新审视感光芯片弯曲这一现象,以获得性能更优的摄像模组。
发明内容
本申请的一优势在于提供一种感光组件、摄像模组和电子设备,其中,所述感光组件通过在线路板的下方配置用于调节感光芯片的弯曲程度的调整层,以通过所述调整层的结构配置使得所述感光芯片的弯曲程度适配于光学镜头的场曲,通过这样的方式,所述摄像模组具有更为优化的成像质量且实际成像质量的一致性相对更高。
本申请的另一优势在于提供一种感光组件、摄像模组和电子设备,其中,所述感光芯片的弯曲程度能够通过所述调整层的结构配置来调整,以使得所述感光芯片的场曲对应于所述光学镜头的场曲。也就是说,在本申请实施例中,所述感光芯片的弯曲程度是优化所述摄像模组的实际成像品质的有效变量。
本申请的另一优势在于提供一种感光组件、摄像模组和电子设备,其中,所述感光芯片的弯曲程度能够通过所述调整层来调整适配,以使得场曲值不同的多个光学镜头也能够产生出场曲一致性较好的摄像模组。也就是说,在本申请实施例中,所述光学镜头的场曲值的不一致,能够通过所述感光芯片的弯曲程度的调整来适配,以提高所述光学镜头的有效利用率。
本申请的另一优势在于提供一种感光组件、摄像模组和电子设备,其中,在本申请一实施例中,所述调整层具有贯穿于所述调整层的开槽,以暴露形成于所述线路板下表面的用于接地的导电层的至少一部分,通过这样的方式,提升所述摄像模组的接地性能。
本申请的另一优势在于提供一种感光组件、摄像模组和电子设备,其中,在本申请一实施例中,所述调整层具有贯穿于所述调整层的开槽,以暴露所述线路板下表面的至少一部分,通过这样的方式,提升所述摄像模组的散热性能。
本申请的另一优势在于提供一种感光组件、摄像模组和电子设备,其中所述调整层覆盖所述线路板主体内的用于通信的第一类导电通孔,以保护摄像模组的制造、运输、使用等过程中所述第一类导电通孔不被损坏。
通过下面的描述,本申请的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为实现上述至少一目的或优势,本申请提供一种感光组件,其包括:
感光芯片;以及
线路板组件,包括线路板主体和调整层,所述感光芯片设置于所述线路板主体上且电连接于所述线路板主体,其中,所述调整层具有用于调整所述感光芯片的弯曲程度的结构配置。
在根据本申请的感光组件中,所述调整层形成于所述线路板主体的下表面,所述调整层的结构配置被配置为调整所述线路板的弯曲程度以调整所述感光芯片的弯曲程度。
在根据本申请的感光组件中,所述结构配置包括所述调整层的热膨胀系数与所述线路板主体的热膨胀系数之间存在差值。
在根据本申请的感光组件中,所述结构配置包括所述调整层的厚度尺寸的范围为0.1mm至0.4mm。
在根据本申请的感光组件中,所述调整层的厚度尺寸的范围为0.1mm至0.2mm。
在根据本申请的感光组件中,所述结构配置包括所述调整层的厚度尺寸小于或等于120%的所述线路板主体的厚度尺寸。
在根据本申请的感光组件中,所述调整层的厚度尺寸小于或等于110%的所述线路板主体的厚度尺寸。
在根据本申请的感光组件中,所述调整层的厚度尺寸小于或等于所述线路板主体的厚度尺寸。
在根据本申请的感光组件中,所述结构配置包括所述调整层具有凹陷地形成于其下表面的至少一开槽。
在根据本申请的感光组件中,所述至少一开槽的深度尺寸小于或等于所述调整层的厚度。
在根据本申请的感光组件中,所述开槽被设置于所述线路板主体设定的中心轴上。
在根据本申请的感光组件中,所述至少一开槽包括至少二开槽,其中,所述至少二开槽相对于所述线路板主体设定的中心轴对称地分布。
在根据本申请的感光组件中,所述至少一开槽包括至少二开槽,其中,所述至少二开槽沿着所述调整层的周向相对于所述线路板主体所设定的中心轴均匀地且间隔地布置。
在根据本申请的感光组件中,所述开槽的最外侧边缘与所述调整层的周缘之间的距离大于等于0.1mm。
在根据本申请的感光组件中,所述开槽的最外侧边缘与所述调整层的周缘之间的距离大于等于0.3mm。
在根据本申请的感光组件中,所述调整层一体成型于所述线路板的下表面。
在根据本申请的感光组件中,所述调整层由树脂材料制成。
在根据本申请的感光组件中,所述线路板主体的弯曲程度为所述线路板 的周缘区域的高度与所述线路板主体的中间区域之间的高度差范围为-25um至25um。
在根据本申请的感光组件中,所述感光芯片的弯曲程度为所述感光芯片的边缘区域的高度与所述感光芯片的中间区域之间的高度差范围为-5um至5um。
在根据本申请的感光组件中,所述线路板主体的弯曲程度为所述线路板的周缘区域的高度与所述线路板主体的中间区域之间的高度差范围为-100um至100um。
在根据本申请的感光组件中,所述感光芯片的弯曲程度为所述感光芯片的边缘区域的高度与所述感光芯片的中间区域之间的高度差范围为-30um至30um。
在根据本申请的感光组件中,所述至少一开槽中至少一开槽贯穿于所述调整层,以暴露所述线路板的下表面的至少部分区域。
在根据本申请的感光组件中,所述线路板主体包括形成于所述线路板下表面且用于接地的导电层,所述贯穿于所述调整层的所述开槽暴露所述导电层的至少部分区域。
在根据本申请的感光组件中,所述贯穿于所述调整层的所述开槽形成于所述调整层的边缘区域。
在根据本申请的感光组件中,所述线路板主体包括形成于其上表面和其下表面之间的多层布线层,多层所述布线层之间通过第一类导电通孔实现可通信地连接,其中,所述调整层覆盖所述线路板主体的下表面的区域包含至少部分所述第一类导电通孔对应于所述线路板主体的下表面的区域。
在根据本申请的感光组件中,所述线路板组件进一步包括电连接于所述导电层的第二导电层。
在根据本申请的感光组件中,所述第二导电层形成于所述贯穿于所述调整层的所述开槽内。
在根据本申请的感光组件中,所述第二导电层进一步地形成于所述调整层的下表面。
在根据本申请的感光组件中,所述贯穿于所述调整层的所述开槽的侧壁倾斜于所述线路板主体的下表面。
在根据本申请的感光组件中,所述线路板组件进一步包括电连接于所述 线路板主体的柔性连接板和连接于所述柔性连接板的连接器,其中,所述调整层与所述柔性连接板之间具有一定间隙。
根据本申请另一方面,进一步提供一种摄像模组,其包括:
光学镜头;以及
如上所述的感光组件,其中,所述光学镜头保持于所述感光组件的感光路径上。
在根据本申请的摄像模组中,所述光学镜头的场曲适配于所述感光芯片的弯曲程度。
根据本申请的又一方面,还提供一种电子设备,其包括
电子设备主体;以及
被组装于所述电子设备主体的摄像模组,包括光学镜头和如上所述的感光组件,其中,所述光学镜头保持于所述感光组件的感光路径上。
在根据本申请的电子设备中,所述电子设备主体,包括具有电连接端的地线,所述地线的所述电连接端电连接于所述导电层。
在根据本申请的电子设备中,所述电子设备主体,包括具有电连接端的地线,所述地线的所述电连接端电连接于所述第二导电层。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1图示了根据本申请实施例的摄像模组的示意图。
图2图示了根据本申请实施例的所述摄像模组的感光组件的示意图。
图3图示了根据本申请实施例的所述感光组件的线路板组件的弯曲示意图。
图4图示了根据本申请实施例的所述感光组件的线路板组件和感光芯片的弯曲示意图。
图5A图示了根据本申请实施例的所述调整层的开槽位置的一种设置方式的示意图。
图5B图示了根据本申请实施例的所述调整层的开槽位置的另一种设置方式的示意图。
图5C图示了根据本申请实施例的所述调整层的开槽位置的又一种设置方式的示意图。
图5D图示了根据本申请实施例的所述调整层的开槽位置的又一种设置方式的示意图。
图6图示了根据本申请实施例的所述调整层中所述开槽位置的又一示意图。
图7图示了根据本申请实施例的所述调整层的设置位置的示意图。
图8图示了根据本申请实施例的所述感光组件的一变形实施的的示意图。
图9图示了根据本申请实施例的所述感光组件的另一变形实施的示意图。
图10图示了根据本申请实施例的所述感光组件的线路板主体的示意图。
图11图示了根据本申请实施例的所述调整层与所述线路板主体的相对位置关系的示意图。
图12图示了根据本申请实施例的所述摄像模组与电子设备主体电连接的示意图。
图13A图示了根据本申请实施例的所述感光组件的又一种变形实施的示意图。
图13B图示了根据本申请实施例的所述感光组件的又一种变形实施的示意图。
图13C图示了根据本申请实施例的所述感光组件的又一种变形实施的示意图。
图13D图示了根据本申请实施例的所述感光组件的又一种变形实施的示意图。
图13E图示了根据本申请实施例的所述感光组件的又一种变形实施的示意图。
图13F图示了图13E所示的所述感光组件的变形实施的布局放大示意图。
图14图示了根据本申请实施例的电子设备的示意图。
具体实施方式
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
申请概述
如前所述,由于大尺寸的感光芯片具有面积大、厚度小的特性,其在组装过程中或者可靠性测试中受到外力或者温度变化更容易发生弯曲,导致摄像模组的成像质量的下降。为了优化摄像摄像模组的成像质量,现有的技术思路为:尽可能地降低感光芯片的弯曲程度,例如,通过加强线路板的抗弯强度和/或刚度(例如,在线路板的背面贴附补强板)以防止线路板弯曲以降低感光芯片的弯曲程度。
然而,在具体实施中,本申请发明人发现:一方面,即便通过补强板将感光芯片的弯曲程度降到尽可能地低,但是摄像模组的实际成像质量也没有得到明显的优化且实际成像质量的一致性也相对较差;另一方面,补强板的使用也带来了一些新的技术问题,例如,接地性能差、散热性能差等。
究其原因,本申请发明人发现:摄像模组的成像质量不仅仅受感光芯片的弯曲程度的影响(感光芯片的弯曲程度影响着感光芯片的场曲值),同时还受光学镜头的场曲值的影响。而提高摄像模组的成像质量的关键在于确保光学镜头的场曲值与感光芯片的场曲值适配。也就是说,感光芯片自身的弯曲程度并不是摄像模组成像质量的必要且充分条件,因此,现有的技术思路“将感光芯片的弯曲程度尽可能地降低”,并不一定能够提高摄像模组的成像质量。或者说,感光芯片的弯曲程度并不一定是造成摄像模组成像质量下降的负面因素。
并且,本申请发明人在实际生产场合还发现:不同的光学镜头往往具有不同的场曲值,如果光学镜头的场曲值过大,在实际生产场合中会被视为不良品而报废,导致光学镜头的有效利用率不高。本申请发明人意识到:光学镜头的场曲值过大是个相对概念,其是否过大取决于感光芯片的场曲值,也就是说,可通过调整感光芯片的场曲值来适配光学镜头的场曲值,以使得原 先被视为不良品的光学镜头也能够被有效地应用。
基于上述认知上的改变,本申请的基本构思是将感光芯片的弯曲程度视为影响摄像模组成像质量的有效变量,并通过结构上的配置来调整所述感光芯片的弯曲程度以使之适配于光学镜头的场曲值,以提高成像质量和成像质量的一致性。
基于此,本申请提供一种感光组件、摄像模组和电子设备,其中,所述感光组件包括感光芯片和线路板组件,其中,所述线路板组件包括线路板主体和调整层,所述感光芯片设置于所述线路板主体上且电连接于所述线路板主体,所述调整层形成于所述线路板主体的下表面且具有用于调整所述线路板主体的弯曲程度以调整所述感光芯片的弯曲程度的结构配置。这样,通过所述调整层调节所述感光芯片的弯曲程度以使之适配于光学镜头的场曲。
在介绍了本申请的基本原理之后,下面将参考附图来具体介绍本申请的各种非限制性实施例。
示例性摄像模组和感光组件
如图1所示,根据本申请实施例的摄像模组被阐明,其中,所述摄像模组30,包括:感光组件20和保持于所述感光组件20的感光路径上的光学镜头10。这里,在如图1所示意的所述摄像模组30中,所述摄像模组30被实施为定焦摄像模组30,即,所述光学镜头10与所述感光组件20之间的相对位置关系保持一定。
本领域普通技术人员应可以理解,在本申请实施例中,所述摄像模组30的类型并不为本申请所局限。例如,在本申请其他示例中,所述摄像模组30还可以被实施为动焦摄像模组,即,所述摄像模组30还包括设置于所述光学镜头10和所述感光组件20的驱动元件(图中未示意),其中,所述驱动原件用于承载并驱动所述光学镜头10沿着所述感光路径移动,以改变所述光学镜头10和所述感光组件20之间的相对位置关系。再如,所述摄像模组30还可以被实施为防抖摄像模组,即,所述摄像模组30还包括设置于所述光学镜头10和所述感光组件20的防抖马达,以通过所述防抖马达实现防抖功能。又如,所述摄像模组30还可以包括棱镜等部件,以形成潜望式摄像模组。
图2图示了根据本申请实施例的所述感光组件20的示意图,如图2所 示,在本申请实施例中,所述感光组件20,包括:线路板组件21、感光芯片22、封装部23、滤光元件24、至少一电子元器件25。其中,在如图2所示意的感光组件20中,所述感光芯片22被设置于所述线路板组件21上且通过引线之类的电连接媒介电连接于所述线路板组件21;所述至少一电子元器件25电连接于所述线路板组件21且位于所述感光芯片22的周围区域;所述封装部23将所述至少一电子元器件25、所述感光芯片22封装于所述线路板组件21上且所述封装部23具有一光窗,穿过所述光学镜头10的光线能藉由所述光窗入射至所述感光芯片22的感光区;所述滤光元件24被设置于所述感光芯片22的感光路径上,以对入射至所述感光芯片22的光线进行过滤。
如图2所示,在本申请实施例中,所述线路板组件21包括线路板主体211,所述感光芯片22通过黏着剂附着于所述线路板主体211的上表面,所述封装部23安装于所述线路板主体211的上表面,以将所述至少一电子元器件25、所述感光芯片22封装于所述线路板主体211上。特别地,在如图2所示意的所述感光组件20中,所述封装部23被实施为具有独立结构的支架,其可通过黏着剂附着于所述线路板主体211的上表面。应可以理解,在本申请其他示例中,所述封装部23还可以通过其他方式形成于所述线路板主体211的上表面,例如,其可通过传递模塑、注塑、模压等成型工艺一体成型于所述线路板主体211的上表面,对此,并不为本申请所局限。
特别地,如图2所示,在本申请实施例中,所述线路板组件21进一步包括一调整层212,其中,所述调整层212能够作用于所述线路板主体211以改变所述线路板主体211的弯曲程度,从而可控地调整所述感光芯片22的弯曲程度。应可以理解,所述感光芯片22的弯曲程度影响着所述感光芯片22的场曲值,相应地,当所述感光芯片22的场曲值被调整至与所述光学镜头10的场曲值适配时,所述摄像模组30具有更为优化且更为一致的成像质量。
进一步地,如图2所示,在本申请实施例中,所述调整层212形成于所述线路板主体211的下表面,以使得所述调整层212与所述线路板主体211在结构上产生关联。例如,在本申请一种可能的实现方式中,所述调整层212通过诸如注塑、传递模塑、模压等工艺一体地结合于所述线路板主体211的下表面,从而所述调整层212能够改变所述线路板主体211所受的应力 分布,以调整所述线路板主体211的弯曲程度。特别地,在本申请实施例中,所述调整层212具有用于调整所述线路板主体211的弯曲程度以调整所述感光芯片22的弯曲程度的结构配置。
具体来说,在本申请实施例中,所述调整层212的结构配置首先包括所述调整层212的热膨胀系数与所述线路板主体211的热膨胀系数之间存在差值。应可以理解,当所述调整层212的制成材料的热膨胀系数(或弯曲模量)与所述线路板主体211的热膨胀系数(或弯曲模量)存在差值时,温度变化可导致所述调整层212和所述线路板主体211发生不同程度地弯曲,从而导致所述线路板主体211发生向下地弯曲以带动所述感光芯片22向下弯曲。经实验测试得知,在本申请实施例中,通过控制所述调整层212的热膨胀系数与所述线路板主体211的热膨胀系数之间的差值大小,可控制所述线路板主体211的弯曲程度为:所述线路板的周缘区域的高度与所述线路板主体211的中间区域之间的高度差范围为-25um至25um,如图3所示,并且,可控制所述感光芯片22的弯曲程度为:所述感光芯片22的边缘区域的高度与所述感光芯片22的中间区域之间的高度差范围为-5um至5um,如图4所示。
进一步地,在本申请实施例中,所述调整层212的结构配置进一步包括所述调整层212的厚度尺寸,更明确地,所述调整层212的厚度尺寸与所述线路板主体211的厚度尺寸之间的关系。具体来说,在本申请实施例中,所述调整层212的厚度尺寸可被设置为小于或等于120%的所述线路板主体211的厚度尺寸,或者,所述调整层212的厚度尺寸可被设置小于或等于110%的所述线路板主体211的厚度尺寸,或者,所述调整层212的厚度尺寸可被设置为小于或等于所述线路板主体211的厚度尺寸。特别地,在本申请实施例中,所述调整层212的厚度尺寸的范围可被设置为0.1mm至0.4mm,优选地,可被设置为0.1mm至0.2mm。
进一步地,在本申请实施例中,所述调整层212的结构配置进一步包括所述调整层212具有凹陷地形成于其下表面的至少一开槽213。应可以理解,所述调整层212在所述开槽213处和非所述开槽213处具有不同的厚度尺寸,以使得所述调整层212在所述开槽213处和非所述所述开槽213处具有不同的被弯曲的程度,从而能够增大所述线路板主体211的弯曲程度。经实验测试得知,在本申请实施例中,通过控制所述开槽213的配置,可控制 所述线路板主体211的弯曲程度为:所述线路板的周缘区域的高度与所述线路板主体211的中间区域之间的高度差范围为-100um至100um,也就是,在本申请实施例中,通过设置所述开槽213的参数可以控制所述线路板主体211的周缘区域的高度与所述线路板主体211的中间区域之间的高度差为-100um~100um的任意数值;并且,可控制所述感光芯片22的弯曲程度为:所述感光芯片22的边缘区域的高度与所述感光芯片22的中间区域之间的高度差范围为-30um至30um,也就是,在本申请实施例中,通过设置所述开槽213的参数可以控制所述感光芯片22的边缘区域的高度与所述感光芯片22的中间区域之间的高度差为-30um~30um的任意数值(或者,可以控制在-25um至25um;或者,可以控制在-20um至20um;或者,可以控制在-15um至15um)。
值得一提的是,当所述感光芯片22的弯曲程度的可调控范围被扩增如此大的范围时,所述感光芯片22能够适配更多不同场曲值的所述光学镜头10,即,不同场曲值的所述光学镜头10都能够被利用来生产出具有合格成像质量的摄像模组30,以提高所述光学镜头10的利用率,降低成本。并且,场曲值不同的多批次所述光学镜头10能够生产出场曲一致性较好的摄像模组30。
进一步地,在本申请实施例中,为了获得更加的调整效果,对所述开槽213的配置进行限定,也就是,在本申请实施例中,所述调整层212的结构配置进一步包括所述开槽213的配置。
具体来说,在本申请实施例中,所述至少一开槽213的深度尺寸小于或等于所述线路板主体211的厚度;所述开槽213的形状并不为本申请所局限,其可以是矩形、圆形、环形灯对称形状,也可以是其他合适的非对称形状;所述开槽213的数量也并不为本申请所局限,其可以是单数也可以是复数。
特别地,在本申请实施例中,对所述开槽213的形成位置进行限定。具体来说,当所述开槽213的数量超过两个时(即,所述至少一开槽213包括至少二开槽213),优选地,所述至少二开槽213相对于所述线路板主体211设定的中心轴对称地分布。应可以理解,当所述至少二开槽213相对于所述线路板主体211设定的中心轴对称地分布时,所述线路板主体211能够更为均匀地且均衡地向所述线路板主体211的中心轴方向弯曲,从而所述 感光芯片22也能够更为均匀地且均衡地向所述感光芯片22的中心区域弯曲。当所述至少一开槽213仅包括一个所述开槽213时,优选地,所述开槽213被设置于所述线路板主体211设定的中心轴上。
同样可行的是,为了控制所述感光芯片22的弯曲效果,在本申请其他示例中,当所述开槽213的数量超过两个时(即,所述至少一开槽213包括至少二开槽213),所述至少二开槽213沿着所述调整层212的周向相对于所述调整层212设定的中心均匀地且间隔地布置。例如,当所述至少二开槽213被实施为3个所述开槽213时,其相对于所述调整层212设定的中心以120°均匀地且间隔地沿着所述调整层212的周向布置。
图5A至图5D图示了根据本申请实施例的所述开槽213的位置设定的具体示例。如图5A至5C所示,在这些示例中,所述调整层212设有至少一指示线,用于指示所述开槽213的设定位置,具体地,在图5A至图5C所示意的示例中,所述调整层212以其两条对角线,两条轴对称线为指示线。具体来说,在如图5A所示意的示例中,所述至少一开槽213包括四个所述开槽213,其分别被设置于所述调整层212的两对角线上且四个所述开槽213相对于所述调整层212的两条对称轴对称地分布。在如图5B所示意的示例中,所述至少一开槽213包括两个所述开槽213,其分别被设置于所述调整层212的横向对称轴的两侧且两个所述开槽213相对于所述调整层212的纵向对称轴对称地分布(同样地,两个所述开槽213相对于所述调整层212的横向对称轴对称地分布)。在如图5C所示意的示例中,所述至少一开槽213包括四个相互连通以形成十字状的所述开槽213,其分别被设置于所述调整层212的两条对称轴上且四个所述开槽213相对于所述调整层212的两条对称轴对称地分布。在如图5D所示意的示例中,所述至少一开槽213仅包括一个所述开槽213,其被设置于所述调整层212的中心区域且所述开槽213相对于所述调整层212的两条对称轴对称地分布。
应可以理解,在本申请其他示例中,所述调整层212的指示线还可以基于其他方式确定,例如,以所述调整层212的两条对角线、两条轴对称线、八分线作为指示线,对此,并不为本申请所局限。同时,在本申请其他示例中,所述至少一开槽213的位置设定,也可以以其他方式进行布设,对此,并不为本申请所局限。
值得一提的是,如图6所示,当所述至少一开槽213中部分开槽213 邻近地设置于所述调整层212的边缘位置时,优选地,为了防止所述开槽213边缘破碎,邻近地设置于所述调整层212的边缘的所述开槽213的最外侧边缘与所述调整层212的周缘之间的距离c大于等于0.1mm,优选地,距离c大于等于0.3mm。
同样值得一提的是,如图7所示,在本申请实施例中,所述线路板组件21进一步包括电连接于所述线路板主体211的柔性连接板214和连接于所述柔性连接板214的连接器215。为了确保所述线路板主体211与所述柔性连接板214之间的有足够的强度和硬度,优选地,在本申请实施例中,在所述线路板主体211和所述柔性连接板214的一侧留出间隙,其中,该间隙不设置于所述调整层212也不设置所述封装部23。也就是,为了确保所述线路板主体211与所述柔性连接板214之间的有足够的强度和硬度,在本申请实施例中,所述调整层212与所述柔性连接板214之间具有一定间隙,以使得所述柔性连接板214和所述线路板主体211有充足的结合空间,以提高两者之间的结合强度和硬度。
进一步地,在具体实施中,本申请发明人发现:当所述调整层212完全地覆盖形成于所述线路板主体211的下表面的用于实现接地的导电层2115时(例如,所有的所述开槽213的深度都小于所述调整层212的厚度,即,所有的所述开槽213为凹槽),所述摄像模组30的接地性能较差,容易造成局部位置电压过高会损伤器件,存在安全隐患,同时,还可能会影响所述摄像模组30的拍照性能。
具体来说,如图10所示,在本申请实施例中,所述线路板主体211包括形成于其上表面和其下表面之间的多层布线层2111和多层绝缘层2112,多层所述布线层2111和多层所述绝缘层2112之间相互交错压合,其中,多层所述布线层2111中形成于所述线路板主体211的下表面的部分为所述导电层2115(更明确地,在本申请实施例中,所述导电层2115为铜层),多层所述布线层2111之间通过导电通孔连接导通。更具体地,在所述线路板主体211中,所述导电通孔包括两类导电通孔:第一类导电通孔2113,用于信号连接(即,实现多层所述布线层2111之间的可通信连接),以及,第二类导电通孔2114,用于电磁屏蔽、散热和接地。
为了增强所述感光组件20的接地性能,如图8所示,在本申请一变形实施中,所述开槽213中至少一开槽213贯穿于所述调整层212,以暴露 所述线路板的下表面的至少部分区域,也就是,在该变形实施例中,所述开槽213中至少存在一通槽。特别地,所述贯穿于所述调整层212的开槽213的形成位置对应于所述导电层2115,以使得所述导电层2115的至少部分区域被暴露,通过这样的方式,不仅能增强所述摄像模组30的接地性能,同时,还能增强所述摄像模组30的散热性能。图12图示了根据本申请实施例的所述摄像模组30与电子设备主体101电连接的示意图,如图12所示,所述电子设备主体的地线102具有电连接端103,所述电连接端103电连接于所述导电层2115被暴露于所述开槽213的部分,以实现所述摄像模组30与所述电子设备的地线102连接。优选地,在本申请实施例中,所述电连接端103的形状与所述开槽213的形状相适配。
图9图示了根据本申请实施例的所述感光组件20的另一变形实施的示意图。在如图9所示意的所述变形实施例中,所述贯穿于所述调整层212的开槽213(所述通槽)形成于所述调整层212的边缘区域,即,所述通槽为边缘槽。
为了让所述摄像模组30具有更优的接地性能和散热性能,在本申请实施例中,所述线路板组件21进一步包括电连接于所述导电层2115的第二导电层216,如图13A所示。相应地,所述摄像模组30可通过所述第二导电层216实现接地。
在如图13A所示意的变形实施例中,所述第二导电层216形成于所述贯穿于所述调整层212的所述开槽213内,例如,可通过喷涂、印刷、焊接、镀膜、压合等方式将所述第二导电层216布设于所述贯穿于所述调整层212的所述开槽213内。在具体实施中,所述第二导电层216,包括但不限于:导电胶、导电银浆、导电油墨、金属薄片、金属薄膜、导电薄膜等,其中,所述第二导电层216的厚度尺寸范围可被设置为2um-30um,优选地,4um-20um。
进一步地,在如图13A所示意的变形实施例中,所述第二导电层216覆盖所述贯穿于所述调整层212的所述开槽213的侧壁,所述导电层2115暴露于所述开槽213内的区域,以及,所述调整层212的下表面。也就是,在如图13A所示意的变形实施中,所述第二导电层216覆盖所述调整层212的整个背面。并且,所述第二导电层216在每一处的厚度尺寸可以是均匀的,也可以是不均匀的,对此,并不为本申请所局限。
图13B图示了根据本申请实施例的所述感光组件20的又一种变形实施的示意图。在如图13B所示意的变形实施中,所述第二导电层216覆盖暴露于所述开槽213内的所述导电层2115的一部分和所述开槽213的侧壁的一部分。
图13C图示了根据本申请实施例的所述感光组件20的又一种变形实施的示意图。在如图13C所示意的变形实施中,所述第二导电层216填充满所述贯穿于所述调整层212的所述开槽213。
图13D图示了根据本申请实施例的所述感光组件20的又一种变形实施的示意图。在如图13D所示意的变形实施中,所述线路板组件21进一步包括设置于所述导电层2115和第二导电层216之间的导电件217。具体地,在该变形实施中,所述导电件217可被实施为一金属薄片,所述金属薄片的形状和大小与所述开槽213相适配。
图13E图示了根据本申请实施例的所述感光组件20的又一种变形实施的示意图。图13F图示了图13E所示意的所述感光组件20的变形实施的局部放大示意图。如图13E和图13F所示,在该变形实施中,为了降低所述第二导电层216的布设难度且提高所述第二导电层216与所述调整层212之间的结合强度,在该变形实施中,所述贯穿于所述调整层212的所述开槽213的侧壁倾斜于所述线路板主体211的下表面,及,所述开槽213的侧壁与所述线路板主体211的下表面之间存在倾斜角。在该变形实施中,所述倾斜角可被设置为3°~80°之间,进一步地,可以是5°~60°,5°~30°之间,或者是其他的合理范围,对此,并不为本申请所局限。
如前所述,在本申请实施例中,所述线路板主体211包括两类导电通孔:用于信号连接第一类导电通孔2113和用于电磁屏蔽、散热和接地的第二类导电通孔2114。并且,应可以理解,当所述调整层212通过诸如注塑、传递模塑、模压等工艺一体地结合于所述线路板主体211的下表面时,所述调整层212的所述开槽213处被成型模具的压头压合使得对应位置不被所述调整层212的制成材料所覆盖。优选的,在制成过程中,所述成型模具的压头应尽可能地避开所述第一类导电通孔2113(如图9所示),以避免所述第一类导电通孔2113被所述压头损坏,破坏所述线路板的导电性能。也就是说,优选地,在本申请实施例中,所述调整层212覆盖所述线路板主体211的下表面的区域包含至少部分所述第一类导电通孔2113对应于所述线路板 主体211的下表面的区域。
综上,基于本申请实施例的所述摄像模组30及其感光组件20被阐明,其通过在线路板的下方配置用于调节感光芯片22的弯曲程度的调整层212,以通过所述调整层212的结构配置使得所述感光芯片22的弯曲程度适配于光学镜头10的场曲,通过这样的方式,所述摄像模组30具有更为优化的成像质量且实际成像质量的一致性相对更高。
并且,在本申请实施例中,所述感光芯片22的弯曲程度能够通过所述调整层212的结构配置来调整,以使得所述感光芯片22的场曲对应于所述光学镜头10的场曲。也就是说,在本申请实施例中,所述感光芯片22的弯曲程度是优化所述摄像模组30的实际成像品质的有效变量。
并且,在本申请实施例中,所述感光芯片22的弯曲程度能够通过所述调整层212来调整适配,以使得场曲值不同的多个光学镜头10也能够产生出场曲一致性较好的摄像模组30。也就是说,在本申请实施例中,所述光学镜头10的场曲值的不一致,能够通过所述感光芯片22的弯曲程度的调整来适配,以提高所述光学镜头10的有效利用率。
并且,在本申请一实施例中,所述调整层212具有贯穿于所述调整层212的开槽213,以暴露形成于所述线路板下表面的用于接地的导电层2115的至少一部分,通过这样的方式,提升所述摄像模组30的接地性能。
并且,在本申请一实施例中,所述调整层212具有贯穿于所述调整层212的开槽213,以暴露所述线路板下表面的至少一部分,通过这样的方式,提升所述摄像模组30的散热性能。
示意性电子设备
根据本申请的又一方面,还提供一种电子设备。图14图示了根据本申请实施例的电子设备的示意图,如图14所示,所述电子设备100包括电子设备主体101和组装于所述电子设备主体101的摄像模组30。具体地,所述摄像模组30安装于所述电子设备主体101的前侧,以作为前置摄像模组30;或者安装于所述电子设备主体101的后侧,作为后置摄像模组30,对此,并不为本申请所局限。
如图12所示,在本申请实施例中,所述电子设备主体101包括具有电连接端103的地线102,所述电连接端103电连接于所述导电层2115被暴 露于所述开槽213的部分,以实现将所述摄像模组30与所述电子设备100的地线102连接。优选地,在本申请实施例中,所述电连接端103的形状与所述开槽213的形状相适配。应可以理解,在本申请其他示例中,所述地线102的所述电连接端103也可以电连接于所述第二导电层216,以实现将所述摄像模组30与所述电子设备100的地线102连接。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (35)

  1. 一种感光组件,其特征在于,包括:
    感光芯片;以及
    线路板组件,包括线路板主体和调整层,所述感光芯片设置于所述线路板主体上且电连接于所述线路板主体,其中,所述调整层具有用于调整所述感光芯片的弯曲程度的结构配置。
  2. 根据权利要求1所述的感光组件,其中,所述调整层形成于所述线路板主体的下表面,所述调整层的结构配置被配置为调整所述线路板的弯曲程度以调整所述感光芯片的弯曲程度。
  3. 根据权利要求2所述的感光组件,其中,所述结构配置包括所述调整层的热膨胀系数与所述线路板主体的热膨胀系数之间存在差值。
  4. 根据权利要求2所述的感光组件,其中,所述结构配置包括所述调整层的厚度尺寸的范围为0.1mm至0.4mm。
  5. 根据权利要求4所述的感光组件,其中,所述调整层的厚度尺寸的范围为0.1mm至0.2mm。
  6. 根据权利要求4所述的感光组件,其中,所述结构配置包括所述调整层的厚度尺寸小于或等于120%的所述线路板主体的厚度尺寸。
  7. 根据权利要求6所述的感光组件,其中,所述调整层的厚度尺寸小于或等于110%的所述线路板主体的厚度尺寸。
  8. 根据权利要求7所述的感光组件,其中,所述调整层的厚度尺寸小于或等于所述线路板主体的厚度尺寸。
  9. 根据权利要求2所述的感光组件,其中,所述结构配置包括所述调 整层具有凹陷地形成于其下表面的至少一开槽。
  10. 根据权利要求9所述的感光组件,其中,所述至少一开槽的深度尺寸小于或等于所述调整层的厚度。
  11. 根据权利要求9所述的感光组件,其中,所述开槽被设置于所述线路板主体设定的中心轴上。
  12. 根据权利要求9所述的感光组件,其中,所述至少一开槽包括至少二开槽,其中,所述至少二开槽相对于所述线路板主体设定的中心轴对称地分布。
  13. 根据权利要求9所述的感光组件,其中,所述至少一开槽包括至少二开槽,其中,所述至少二开槽沿着所述调整层的周向相对于所述线路板主体所设定的中心轴均匀地且间隔地布置。
  14. 根据权利要求9所述的感光组件,其中,所述开槽的最外侧边缘与所述调整层的周缘之间的距离大于等于0.1mm。
  15. 根据权利要求15所述的感光组件,其中,所述开槽的最外侧边缘与所述调整层的周缘之间的距离大于等于0.3mm。
  16. 根据权利要求2所述的感光组件,其中,所述调整层一体成型于所述线路板的下表面。
  17. 根据权利要求16所述的感光组件,其中,所述调整层由树脂材料制成。
  18. 根据权利要求3所述的感光组件,其中,所述线路板主体的弯曲程度为所述线路板的周缘区域的高度与所述线路板主体的中间区域之间的高度差范围为-25um至25um。
  19. 根据权利要求18所述的感光组件,其中,所述感光芯片的弯曲程度为所述感光芯片的边缘区域的高度与所述感光芯片的中间区域之间的高度差范围为-5um至5um。
  20. 根据权利要求9所述的感光组件,其中,所述线路板主体的弯曲程度为所述线路板的周缘区域的高度与所述线路板主体的中间区域之间的高度差范围为-100um至100um。
  21. 根据权利要求20所述的感光组件,其中,所述感光芯片的弯曲程度为所述感光芯片的边缘区域的高度与所述感光芯片的中间区域之间的高度差范围为-30um至30um。
  22. 根据权利要求9所述的感光组件,其中,所述至少一开槽中至少一开槽贯穿于所述调整层,以暴露所述线路板的下表面的至少部分区域。
  23. 根据权利要求22所述的感光组件,其中,所述线路板主体包括形成于所述线路板下表面且用于接地的导电层,所述贯穿于所述调整层的所述开槽暴露所述导电层的至少部分区域。
  24. 根据权利要求23所述的感光组件,其中,所述贯穿于所述调整层的所述开槽形成于所述调整层的边缘区域。
  25. 根据权利要求22所述的感光组件,其中,所述线路板主体包括形成于其上表面和其下表面之间的多层布线层,多层所述布线层之间通过第一类导电通孔实现可通信地连接,其中,所述调整层覆盖所述线路板主体的下表面的区域包含至少部分所述第一类导电通孔对应于所述线路板主体的下表面的区域。
  26. 根据权利要求23所述的感光组件,进一步包括电连接于所述导电层的第二导电层。
  27. 根据权利要求26所述的感光组件,其中,所述第二导电层形成于所述贯穿于所述调整层的所述开槽内。
  28. 根据权利要求27所述的感光组件,其中,所述第二导电层进一步地形成于所述调整层的下表面。
  29. 根据权利要求26所述的感光组件,其中,所述贯穿于所述调整层的所述开槽的侧壁倾斜于所述线路板主体的下表面。
  30. 根据权利要求2所述的感光组件,其中,所述线路板组件进一步包括电连接于所述线路板主体的柔性连接板和连接于所述柔性连接板的连接器,其中,所述调整层与所述柔性连接板之间具有一定间隙。
  31. 一种摄像模组,其特征在于,包括:
    光学镜头;以及
    根据权利要求1-30任一所述的感光组件,其中,所述光学镜头保持于所述感光组件的感光路径上。
  32. 根据权利要求31所述的摄像模组,其中,所述光学镜头的场曲适配于所述感光芯片的弯曲程度。
  33. 一种电子设备,其特征在于,包括:
    电子设备主体;以及
    被组装于所述电子设备主体的摄像模组,包括光学镜头和根据权利要求1-30任一所述的感光组件,其中,所述光学镜头保持于所述感光组件的感光路径上。
  34. 根据权利要求33所述的电子设备,其中,所述电子设备主体,包括具有电连接端的地线,所述地线的所述电连接端电连接于所述导电层。
  35. 根据权利要求33所述的电子设备,其中,所述电子设备主体,包括具有电连接端的地线,所述地线的所述电连接端电连接于所述第二导电层。
PCT/CN2021/095180 2020-06-24 2021-05-21 感光组件、摄像模组和电子设备 WO2021258945A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180040652.6A CN115699783A (zh) 2020-06-24 2021-05-21 感光组件、摄像模组和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010588460.6 2020-06-24
CN202010588460.6A CN113840059B (zh) 2020-06-24 2020-06-24 感光组件、摄像模组和电子设备

Publications (1)

Publication Number Publication Date
WO2021258945A1 true WO2021258945A1 (zh) 2021-12-30

Family

ID=78963441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095180 WO2021258945A1 (zh) 2020-06-24 2021-05-21 感光组件、摄像模组和电子设备

Country Status (2)

Country Link
CN (2) CN113840059B (zh)
WO (1) WO2021258945A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500801A (zh) * 2022-01-19 2022-05-13 横店集团东磁有限公司 一种摄像头模组及其封装方法
WO2023203191A1 (fr) 2022-04-21 2023-10-26 Dts Desinfection Technologie Solution Dispositif de désinfection de meubles, notamment de meubles médicaux et procédé de mise en œuvre du dispositif

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150362790A1 (en) * 2014-06-11 2015-12-17 Shenzhen China Star Optoelectronics Technology Co. Ltd. Backlight modules, liquid crystal devices, and oled display devices
CN106323206A (zh) * 2016-08-01 2017-01-11 长安大学 一种实时温度补偿的振弦传感器
CN108010877A (zh) * 2017-12-29 2018-05-08 中芯长电半导体(江阴)有限公司 半导体芯片的封装结构及封装方法
CN209861013U (zh) * 2019-08-01 2019-12-27 宁波舜宇光电信息有限公司 感光组件和摄像模组
CN210016539U (zh) * 2019-07-30 2020-02-04 宁波舜宇光电信息有限公司 摄像模组、复合基板和感光组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150362790A1 (en) * 2014-06-11 2015-12-17 Shenzhen China Star Optoelectronics Technology Co. Ltd. Backlight modules, liquid crystal devices, and oled display devices
CN106323206A (zh) * 2016-08-01 2017-01-11 长安大学 一种实时温度补偿的振弦传感器
CN108010877A (zh) * 2017-12-29 2018-05-08 中芯长电半导体(江阴)有限公司 半导体芯片的封装结构及封装方法
CN210016539U (zh) * 2019-07-30 2020-02-04 宁波舜宇光电信息有限公司 摄像模组、复合基板和感光组件
CN209861013U (zh) * 2019-08-01 2019-12-27 宁波舜宇光电信息有限公司 感光组件和摄像模组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500801A (zh) * 2022-01-19 2022-05-13 横店集团东磁有限公司 一种摄像头模组及其封装方法
WO2023203191A1 (fr) 2022-04-21 2023-10-26 Dts Desinfection Technologie Solution Dispositif de désinfection de meubles, notamment de meubles médicaux et procédé de mise en œuvre du dispositif

Also Published As

Publication number Publication date
CN113840059A (zh) 2021-12-24
CN113840059B (zh) 2023-07-25
CN115699783A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2021258945A1 (zh) 感光组件、摄像模组和电子设备
CN101536488B (zh) 摄像装置及其制造方法及便携式电话装置
US8970781B2 (en) Camera module having MEMS actuator, connecting method for shutter coil of camera module and camera module manufactured by the same method
US8704961B2 (en) Display element having a lens being formed as part of a translucent support substrate having a display disposed thereon
TWI579636B (zh) 電磁驅動模組及應用該電磁驅動模組之相機裝置
US20070171347A1 (en) Liquid crystal display device and manufacturing method thereof
CN102136486B (zh) 半导体封装件
US10965851B2 (en) Camera device and mobile terminal having same
CN210405821U (zh) 感光组件和摄像模组
CN108886566A (zh) 一种摄像头基板组件、摄像头模组及终端设备
CN100524789C (zh) 半导体图像采集设备的封装结构及其制造方法
CN113568127A (zh) 摄像模组及其组装方法、电子设备
WO2021120954A1 (zh) 光学组件、感光组件、摄像模组、光学组件和感光组件的制备方法
WO2021031710A1 (zh) 感光组件、摄像模组及其制备方法
US11393862B2 (en) Manufacture of semiconductor module with dual molding
US7782388B2 (en) Solid image pickup unit and camera module
CN114731358B (zh) 线路板组件、感光组件、摄像模组以及线路板组件和感光组件的制备方法
KR100867512B1 (ko) 표면 실장형 카메라 모듈 패키지
KR20220093553A (ko) 카메라 모듈 및 이를 포함하는 광학기기
CN104902154A (zh) 电路板组件、具有电路板组件的摄像头模组及摄像设备
WO2023165442A1 (zh) 感光组件及其电导通方法和制备方法、摄像模组
US20190082084A1 (en) Image Sensor Modules Having Support Structures
CN116744080A (zh) 摄像模组
CN116744081A (zh) 摄像模组
CN116744097A (zh) 感光组件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829770

Country of ref document: EP

Kind code of ref document: A1