WO2021258669A1 - 定标方法、装置、设备及存储介质 - Google Patents

定标方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021258669A1
WO2021258669A1 PCT/CN2020/136227 CN2020136227W WO2021258669A1 WO 2021258669 A1 WO2021258669 A1 WO 2021258669A1 CN 2020136227 W CN2020136227 W CN 2020136227W WO 2021258669 A1 WO2021258669 A1 WO 2021258669A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation depth
modulator
noise ratio
candidate
signal
Prior art date
Application number
PCT/CN2020/136227
Other languages
English (en)
French (fr)
Inventor
陈�胜
郑科佳
陈晓曼
张武平
谢卉
胡毅
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2021258669A1 publication Critical patent/WO2021258669A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • This application relates to the field of coherent optical communication technology, and in particular to a calibration method, device, equipment, and storage medium.
  • coherent optical technology has been widely used in many modern fields such as lidar, high-precision spectral analysis, and coherent communication. Since the transmitting end of the coherent optical module has requirements for the size of the optical power, an amplifier needs to be added at the transmitting end of the module to amplify the output optical power. However, when the amplifier amplifies the optical power, it also amplifies the noise, which makes the signal-to-noise ratio of the coherent optical module difficult to meet the expected requirements, and affects the signal quality of the optical signal.
  • the embodiments of the present application expect to provide a calibration method, device, equipment, and storage medium.
  • the first aspect of the embodiments of the present application provides a calibration method, including:
  • the candidate modulation depth is determined as the target modulation depth, where the target modulation depth is The modulation depth used by the modulator of the sending end when the end sends an optical signal.
  • a second aspect of the embodiments of the present application provides a calibration device, which includes:
  • the first determining module is configured to determine the candidate modulation depth of the modulator at the transmitting end
  • the second determining module is configured to determine whether the actual signal-to-noise ratio value of the optical signal emitted by the modulator of the transmitting end meets the standard under the candidate modulation depth;
  • the third determining module is configured to determine the candidate modulation depth as the target modulation depth if the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end meets the standard under the candidate modulation depth, wherein
  • the target modulation depth is the modulation depth used by the modulator of the transmitting end when sending an optical signal to the receiving end.
  • the third aspect of the embodiments of the present application provides a calibration device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, and the processor runs the executable program
  • the method provided in any one of the first aspect is executed at the time.
  • a fourth aspect of the embodiments of the present application provides a computer storage medium that stores an executable program; after the executable program is executed by a processor, the method provided in any one of the first aspects can be implemented.
  • the calibration method, device, device, and storage medium provided by the embodiments of the present application determine the candidate modulation depth of the modulator at the transmitting end, and then determine the optical signal emitted by the modulator at the transmitting end under the candidate modulation depth. Whether the actual signal-to-noise ratio value meets the standard; if the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end meets the standard under the candidate modulation depth, the candidate modulation depth is determined as the target modulation depth, where:
  • the target modulation depth is the modulation depth used by the modulator at the transmitting end when the optical signal is sent to the receiving end, so that the signal-to-noise ratio of the coherent optical module meets the expected requirements, reduces the influence of noise signals on normal signals, and ensures light The signal quality of the signal.
  • FIG. 1 is a schematic flowchart of a calibration method provided by an embodiment of this application
  • FIG. 2 is a schematic structural diagram of a calibration device provided by an embodiment of the application.
  • Figure 3 is a schematic structural diagram of a calibration device provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a calibration method provided by a specific embodiment of this application.
  • Figure 5 is a structural diagram of a calibration device in a calibration method provided by a specific embodiment of this application.
  • FIG. 6 is a structural diagram of a calibration device in a calibration method provided by a specific embodiment of this application.
  • FIG. 1 is a schematic flow chart of the calibration method provided in an embodiment of the application.
  • the calibration method provided in the embodiment of the application may include:
  • S101 Determine the candidate modulation depth of the modulator at the transmitting end.
  • the candidate modulation depth is a modulation depth value within the modulation range interval of the modulator, and is not a uniquely determined value, and may include an initial value and an adjusted value after adjustment.
  • the modulation range interval can be the range provided by the equipment factory, or it can be a reasonable range interval determined based on work experience. By determining the candidate modulation depth, the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end under the candidate modulation depth can be determined.
  • S102 Determine whether the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end meets the standard under the alternative modulation depth.
  • the signal-to-noise ratio target value of the optical signal can be preset to 100. If the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end reaches or exceeds the target value of the signal-to-noise ratio under the alternative modulation depth, such as the actual signal-to-noise ratio value.
  • the noise ratio value is 102, it is determined that the actual signal-to-noise ratio is up to the standard; if the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end is less than the target value of the signal-to-noise ratio, such as the actual signal-to-noise ratio value under the alternative modulation depth If it is 90, it is determined to be substandard.
  • the alternative modulation depth is determined as the target modulation depth, where the target modulation depth is sent when the optical signal is sent to the receiving end Modulation depth used by the modulator at the end.
  • the alternative modulation depth is determined as the target modulation depth, that is, the modulator at the transmitting end uses when the optical signal is sent to the receiving end Modulation depth.
  • the modulation depth may include: the ratio between the output amplitude of the modulation driver and the initial light output power.
  • the signal-to-noise ratio of the optical signal is the ratio of the optical signal to the noise in the electronic device or electronic system.
  • the optical signal is the electronic signal that needs to be processed from the transmitting end of the coherent optical module to the modulator, and the noise is the original light generated by the modulator.
  • the irregular extra signal that does not exist in the signal, and this signal does not change with the change of the original signal. Under the premise that other factors remain unchanged, if the modulation depth is changed, the signal-to-noise ratio of the optical signal will change accordingly. Therefore, the corresponding actual signal-to-noise ratio value can be obtained by determining the alternative modulation depth of the modulator at the transmitting end.
  • the target modulation of the optical signal sent to the receiving end is determined by determining the candidate modulation depth and determining whether the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end meets the standard under the alternative modulation depth.
  • the depth enables the signal-to-noise ratio of the coherent optical module to meet the expected requirements, reduces the influence of noise signals on normal signals, and ensures the signal quality of the optical signals.
  • the above method includes: if the actual signal-to-noise ratio of the optical signal emitted by the modulator at the transmitting end under the alternative modulation depth does not meet the standard, returning to the step of determining the alternative modulation depth.
  • the modulation range interval may be divided according to a certain gradient interval, so as to determine multiple modulation depth values. For example, assuming that the modulation range is 60% to 80%, with 5% as the gradient interval, multiple modulation depth values can be obtained, namely 60%, 65%, 70%, 75%, and 80%. If one of the modulation depths is The actual signal-to-noise ratio corresponding to the value is not up to the standard, and then another value in the modulation range interval is selected for re-determination.
  • determining the candidate modulation depth of the modulator at the transmitting end includes:
  • the default modulation depth of the modulator is used as the candidate modulation depth.
  • the default modulation depth of the modulator can be used as the first candidate modulation depth, and then it is directly determined whether the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end meets the standard under the candidate modulation depth.
  • the default modulation depth is any value at which the output power meets the expected requirements and the theoretical signal-to-noise ratio meets the standard.
  • the staff can also adjust the default modulation depth based on work experience, and use the adjusted value to replace the default modulation depth as an alternative modulation depth.
  • determining the candidate modulation depth of the modulator at the transmitting end includes:
  • the next candidate modulation depth is determined according to the relationship curve between the modulation depth of the modulator and the signal-to-noise ratio.
  • the relationship curve here is a relationship curve established based on the mapping relationship between the modulation depth of the modulator and the signal-to-noise ratio, which can be stored in the storage center of the device and displayed on the display screen. From the relationship curve, the modulation depth corresponding to one of the signal-to-noise ratio values can be read, and then the next candidate modulation depth can be determined.
  • determining the next candidate modulation depth according to the relationship curve between the modulation depth and the signal-to-noise ratio of the modulator includes:
  • the next candidate modulation depth is determined.
  • the extreme points of the above-mentioned relationship curve include maximum points and/or minimum points, and the minimum points represent the best point of the signal-to-noise ratio at the sending end of the module. In addition, other points that meet the expected target value of the signal-to-noise ratio can also be determined. Since there can be multiple minimum points in the relationship curve, including both the global minimum point of the entire curve and the local local minimum point of the curve, in this embodiment, priority is given to the global minimum point of the entire curve. The minimum point determines the next said candidate modulation depth.
  • determining the next candidate modulation depth according to the extreme point includes:
  • the candidate modulation depth range includes at least one of the following:
  • the minimum value of the modulation depth range, the maximum value of the modulation depth range, and the middle value of the modulation depth are the minimum value of the modulation depth range, the maximum value of the modulation depth range, and the middle value of the modulation depth.
  • the corresponding modulation depth range can be determined.
  • the signal-to-noise ratio interval includes the global minimum point that characterizes the optimal point of the signal-to-noise ratio at the sending end of the module, and also includes other points that meet the expected target value of the signal-to-noise ratio, combined with the modulation depth and
  • the mapping relationship of the signal-to-noise ratio can determine the modulation depth range corresponding to the signal-to-noise ratio interval.
  • the above method includes: if the actual signal-to-noise ratio does not meet the standard when the candidate modulation depth reaches the saturated modulation depth of the modulator, outputting a calibration failure alarm.
  • the saturation modulation depth of the modulator characterizes the maximum modulation depth that the modulator can achieve. If the actual signal-to-noise ratio of the optical signal emitted by the modulator at the transmitting end under all the modulation depth values set at a certain gradient interval within the saturation modulation depth does not meet the standard, it means that the modulator is set to have a problem or malfunctions, and the output is fixed. Mark failure alarm.
  • the above method includes: determining the actual light output power of the modulator when the modulator is working at the target modulation depth;
  • Normal conditions and abnormal alarm conditions can be displayed by different colored signal lights. For example, a green light on indicates that everything is normal, a red light on indicates that the output light power is abnormal, and it can also be performed by different sound information or text pattern information and other methods that can distinguish different signals. Call the police.
  • the above method includes: before determining the target modulation depth of the modulator, controlling the modulator to work in a preset working state.
  • the preset working state represents the state in which the modulation data can be modulated onto the optical carrier according to the output amplitude of the modulation driver.
  • the modulator is controlled to work in a preset working state, so as to realize the modulation and/or amplification of the optical signal.
  • controlling the modulator to work in a preset working state includes:
  • the bias voltage of the modulator is adjusted to make the modulator work in a preset working state, wherein, in the preset working state, the modulator can modulate the modulation data onto the optical carrier according to the output amplitude of the modulation driver.
  • the bias voltage is the voltage that should be set between the base-emitter and the collector-base when the transistor amplifying circuit is in the amplifying state.
  • the above method includes: turning off the modulation driver that outputs the modulation amplitude value according to the modulation data;
  • the modulator is controlled to work at the alternative modulation depth.
  • the candidate modulation depth is obtained by adjusting the output of the modulation driver and the modulator, and then the actual signal-to-noise ratio is determined according to the method in the above embodiment when the candidate modulation depth reaches the saturation modulation depth of the modulator Whether it meets the standard.
  • a calibration device is provided. Please refer to FIG. 2.
  • the calibration device includes:
  • the first determining module 201 is configured to determine the candidate modulation depth of the modulator at the transmitting end.
  • the candidate modulation depth is a modulation depth value within the modulation range interval of the modulator, and is not a uniquely determined value, and may include an initial value and an adjusted value after adjustment.
  • the modulation range interval can be the range provided by the equipment factory, or it can be a reasonable range interval determined based on work experience. By determining the candidate modulation depth, the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end under the candidate modulation depth can be determined.
  • the second determining module 202 is configured to determine whether the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end meets the standard under the alternative modulation depth.
  • the signal-to-noise ratio target value of the optical signal can be preset to 100. If the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end reaches or exceeds the target signal-to-noise ratio value under the alternative modulation depth, such as If the actual signal-to-noise ratio is 102, it is determined that the actual signal-to-noise ratio is up to the standard; if the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end is less than the target value of the signal-to-noise ratio, such as the actual If the signal-to-noise ratio is 90, it is determined to be substandard.
  • the third determining module 203 is configured to determine the candidate modulation depth as the target modulation depth if the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end meets the standard under the candidate modulation depth, where the target modulation depth is the target modulation depth.
  • the alternative modulation depth is determined as the target modulation depth, that is, the modulator at the transmitting end uses when the optical signal is sent to the receiving end Modulation depth.
  • the modulation depth is the peak amplitude deviation value that must be limited in the double-sideband amplitude modulation mode, and is related to the output amplitude of the modulation driver and the initial light output power.
  • the signal-to-noise ratio of the optical signal is the ratio of the optical signal to the noise in the electronic device or electronic system.
  • the optical signal is the electronic signal that needs to be processed from the transmitting end of the coherent optical module to the modulator, and the noise is the original light generated by the modulator.
  • the irregular extra signal that does not exist in the signal, and this signal does not change with the change of the original signal. Under the premise that other factors remain unchanged, if the modulation depth is changed, the signal-to-noise ratio of the optical signal will change accordingly. Therefore, the corresponding actual signal-to-noise ratio value can be obtained by determining the alternative modulation depth of the modulator at the transmitting end.
  • the target modulation of the optical signal sent to the receiving end is determined by determining the candidate modulation depth and determining whether the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end meets the standard under the alternative modulation depth.
  • the depth enables the signal-to-noise ratio of the coherent optical module to meet the expected requirements, reduces the influence of noise signals on normal signals, and ensures the signal quality of the optical signals.
  • the calibration device further includes a return module configured to return to the step of determining the candidate modulation depth when the actual signal-to-noise ratio of the optical signal emitted by the modulator at the transmitting end does not meet the standard under the candidate modulation depth.
  • the modulation range interval may be divided according to a certain gradient interval, so as to determine multiple modulation depth values. For example, assuming that the modulation range is 60% to 80%, with 5% as the gradient interval, multiple modulation depth values can be obtained, namely 60%, 65%, 70%, 75%, and 80%. If one of the modulation depths is If the actual signal-to-noise ratio corresponding to the value does not meet the standard, select other values in the modulation range interval to re-determine.
  • the first determining module includes: a default unit configured to use the default modulation depth of the modulator as the candidate modulation depth when the candidate modulation depth is determined for the first time.
  • the default modulation depth of the modulator can be used as the alternative modulation depth, and then it can be directly determined whether the actual signal-to-noise ratio value of the optical signal emitted by the modulator at the transmitting end meets the standard under the alternative modulation depth.
  • the default modulation depth is any value at which the output power meets the expected requirements and the theoretical signal-to-noise ratio meets the standard.
  • the staff can also adjust the default modulation depth based on work experience, and use the adjusted value to replace the default modulation depth as an alternative modulation depth.
  • the first determining module further includes: a first determining unit configured to, when the actual signal-to-noise ratio of the optical signal of the current candidate modulation depth does not meet the standard, according to the difference between the modulation depth of the modulator and the signal-to-noise ratio To determine the next candidate modulation depth.
  • the relationship curve here is a relationship curve established based on the mapping relationship between the modulation depth of the modulator and the signal-to-noise ratio, which can be stored in the storage center of the device and displayed on the display screen. From the relationship curve, the modulation depth corresponding to one of the signal-to-noise ratio values can be read, and then the next candidate modulation depth can be determined.
  • it further includes: a second determining unit configured to determine an extreme point of the relationship curve;
  • the next candidate modulation depth is determined.
  • the extreme points of the above-mentioned relationship curve include maximum points and/or minimum points, and the minimum points represent the best point of the signal-to-noise ratio at the sending end of the module. In addition, other points that meet the expected target value of the signal-to-noise ratio can also be determined. Since there can be multiple minimum points in the relationship curve, including both the global minimum point of the entire curve and the local local minimum point of the curve, in this embodiment, priority is given to the global minimum point of the entire curve. The minimum point determines the next said candidate modulation depth.
  • it further includes: a third determining unit configured to determine a modulation depth range including the extreme point on the relationship curve according to the extreme point;
  • the candidate modulation depth range includes at least one of the following:
  • the minimum value of the modulation depth range, the maximum value of the modulation depth range, and the middle value of the modulation depth are the minimum value of the modulation depth range, the maximum value of the modulation depth range, and the middle value of the modulation depth.
  • the corresponding modulation depth range can be determined.
  • the signal-to-noise ratio interval includes the global minimum point that characterizes the optimal point of the signal-to-noise ratio at the sending end of the module, and also includes other points that meet the expected target value of the signal-to-noise ratio, combined with the modulation depth and
  • the mapping relationship of the signal-to-noise ratio can determine the modulation depth range corresponding to the signal-to-noise ratio interval.
  • the calibration device further includes: a first output module configured to output a calibration failure alarm if the actual signal-to-noise ratio does not meet the standard when the candidate modulation depth reaches the saturated modulation depth of the modulator.
  • the saturation modulation depth of the modulator characterizes the maximum modulation depth that the modulator can achieve. If the actual signal-to-noise ratio of the optical signal emitted by the modulator at the transmitting end under all the modulation depth values set at a certain gradient interval within the saturation modulation depth does not meet the standard, it means that the modulator is set up or malfunctions, and the output calibration fails. Call the police.
  • the calibration device further includes: a second output module configured to determine the actual light output power of the modulator when the modulator is operating at the target modulation depth;
  • Normal conditions and abnormal alarm conditions can be displayed by different colored signal lights. For example, a green light on indicates that everything is normal, a red light on indicates that the output light power is abnormal, and other methods that can distinguish different signals such as different sound information or text pattern information can be used. Call the police.
  • the calibration device further includes: a control module configured to control the modulator to work in a preset working state before determining the target modulation depth of the modulator.
  • the preset working state represents the state in which the modulation data can be modulated onto the optical carrier according to the output amplitude of the modulation driver.
  • the modulator is controlled to work in a preset working state, so as to realize the modulation and/or amplification of the optical signal.
  • control module includes an adjustment unit configured to adjust the bias voltage of the modulator so that the modulator works in a preset working state, where the modulator can adjust the output amplitude of the driver according to the preset working state. Modulate the modulated data onto the optical carrier.
  • the bias voltage is the voltage that should be set between the base-emitter and the collector-base when the transistor amplifying circuit is in the amplifying state.
  • the calibration device further includes: an adjustment module configured to turn off the modulation driver that outputs the modulation amplitude value according to the modulation data;
  • the modulator is controlled to work at the alternative modulation depth.
  • the candidate modulation depth is obtained by adjusting the output of the modulation driver and the modulator, and then the actual signal-to-noise ratio is determined according to the method in the above embodiment when the candidate modulation depth reaches the saturation modulation depth of the modulator Whether it meets the standard.
  • an electronic device including a processor, a communication interface, a memory and a bus, the processor, the communication interface, the memory completes mutual communication through the bus, the processor can call the memory Logic instructions to execute the steps described in the above method embodiments.
  • a non-transitory computer-readable storage medium is provided, and a computer program is stored thereon, and when the computer program is executed by a processor, the steps described in the foregoing method embodiments are implemented.
  • this embodiment provides a calibration method, which includes:
  • the modulation depth is set to 60% to 80% to prevent overmodulation and undermodulation. condition.
  • the coherent optical module where the modulator is located is a coherent optical module that needs to be calibrated at the receiving end, and the specific type and packaging form of the coherent optical module are not specifically limited.
  • This step can be performed before setting the optical power of the transmitting end of the coherent optical module, or can be performed afterwards or simultaneously.
  • the local oscillator optical power of the coherent optical module and the upper and lower thresholds of the gain control voltage need to be set in advance.
  • calibrate the lock factor of the coherent optical module at the transmitting end specifically, in the previous preset state, scan and modify the lock factor of the six loops of the modulator in turn, and read the DC bias of the six loops Whether the voltage value is stable near the normal operating point. If the jitter is small near the lock point, the integral sum value calculated by PD sampling is near 0, indicating that the lock factor has been adjusted to the best value at this time. Find the best locking factor of the six loops of the modulator in turn to ensure that the module is stable at the normal operating point.
  • the modulation depth of the transmitting end of the coherent optical module is calibrated based on the preset state.
  • modulation depth driver RF output amplitude/DC_Vpi, where DC_Vpi is the output amplitude of the modulator, and finally makes the modulation depth reach the preset value.
  • OSNR optical signal-to-noise ratio
  • TX OSNR target signal-to-noise ratio
  • the above method can be implemented by the calibration device shown in FIG. 5 and the calibration device shown in FIG. 6.
  • the method provided in the embodiments of this application by obtaining the preset state, calibrate the modulation depth of the transmitting end of the coherent optical module, to ensure that the coherent optical module passed the calibration is within a certain output optical power range, and the performance of the transmitting end meets the best Good threshold value, to avoid the performance degradation of the sender under extreme conditions, and to automatically intercept and filter the problematic modules that have failed calibration.
  • the disclosed method, device, device, and storage medium may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, such as: multiple units or components can be combined, or It can be integrated into another system, or some features can be ignored or not implemented.
  • the coupling, or direct coupling, or communication connection between the components shown or discussed can be indirect coupling or communication connection through some interfaces, devices or units, and can be electrical, mechanical or other forms of.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units; Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional units in the embodiments of the present application may all be integrated into one processing module, or each unit may be individually used as a unit, or two or more units may be integrated into one unit; the above-mentioned integration
  • the unit of can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • a person of ordinary skill in the art can understand that all or part of the steps in the above method embodiments can be implemented by a program instructing relevant hardware.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, the program is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: removable storage devices, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks, etc.
  • ROM read-only memory
  • RAM Random Access Memory
  • magnetic disks or optical disks etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种定标方法、装置、设备及存储介质,所述方法包括:确定发送端的调制器的备选调制深度;确定在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值是否达标;若在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值达标,将所述备选调制深度确定为目标调制深度,其中,所述目标调制深度为向接收端发送光信号时所述发送端的调制器使用的调制深度。

Description

定标方法、装置、设备及存储介质
相关申请的交叉引用
本申请基于申请号为202010591788.3、申请日为2020年06月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及相干光通信技术领域,尤其涉及一种定标方法、装置、设备及存储介质。
背景技术
近年来,相干光技术在现代诸多领域如激光雷达、高精度光谱分析以及相干通信等有着广泛的应用。相干光模块的发送端,由于对光功率大小有要求,因而需要在模块内部发送端增加放大器对出光功率进行放大。然而放大器对光功率放大的同时,也将噪声放大了,导致了相干光模块的信噪比难以达到预期要求,影响了光信号的信号质量。
发明内容
本申请实施例期望提供一种定标方法、装置、设备及存储介质。
本申请的技术方案是这样实现的:
本申请实施例第一方面提供一种定标方法,包括:
确定发送端的调制器的备选调制深度;
确定在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值是否达标;
若在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值达标,将所述备选调制深度确定为目标调制深度,其中,所述目标调制深度为向接收端发送光信号时所述发送端的调制器使用的调制深度。
本申请实施例第二方面提供一种定标装置,所述装置包括:
第一确定模块,配置为确定发送端的调制器的备选调制深度;
第二确定模块,配置为确定在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值是否达标;
第三确定模块,配置为若在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值达标,将所述备选调制深度确定为目标调制深度,其中,所述目标调制深度为向接收端发送光信号时所述发送端的调制器使用的调制深度。
本申请实施例第三方面提供一种定标设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行如第一方面任一项提供的方法。
本申请实施例第四方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如第一方面任一项提供的方法。
本申请实施例提供的定标方法、装置、设备及存储介质,通过确定发送端的调制器的备选调制深度,进而确定在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值是否达标;若在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值达标,将所述备选调制深度确定为目标调制深度,其中,所述目标调制深度为向接收端发送光信号时所述发送端的调制器使用的调制深度,从而使得相干光模块的信噪比达到预期要求,降低了噪声信号对正常信号的影响,确保了光信号的信号质量。
附图说明
图1为本申请实施例提供的一种定标方法的流程示意图;
图2为本申请实施例提供的一种定标装置的结构示意图;
图3为本申请实施例提供的定标设备的结构示意图;
图4为本申请一具体施例提供的定标方法的流程示意图;
图5为本申请一具体施例提供的定标方法中定标装置结构图;
图6为本申请一具体施例提供的定标方法中定标设备结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请实施例提供的定标方法流程示意图,本申请实施例提供的定标方法可以包括:
S101:确定发送端的调制器的备选调制深度。
备选调制深度为调制器的调制范围区间内的一个调制深度值,并非唯一确定值,可以包括初始值和经过调整后的调整值。调制范围区间可以设备出厂提供的范围,也可以是根据工作经验确定的一个合理范围区间。通过确定备选调制深度,可以确定在备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值。
S102:确定在备选调制深度下发送端的调制器所发射光信号的实际信噪比值是否达标。
具体地,可以预先设置光信号的信噪比目标值为100,若在备选调制深 度下发送端的调制器所发射光信号的实际信噪比值达到或超过信噪比目标值,如实际信噪比值为102,则确定为实际信噪比值达标;若在备选调制深度下发送端的调制器所发射光信号的实际信噪比值小于信噪比目标值,如实际信噪比值为90,则确定为不达标。
S103:若在备选调制深度下发送端的调制器所发射光信号的实际信噪比值达标,将备选调制深度确定为目标调制深度,其中,目标调制深度为向接收端发送光信号时发送端的调制器使用的调制深度。
若在备选调制深度下发送端的调制器所发射光信号的实际信噪比值达标,将备选调制深度确定为目标调制深度,即向接收端发送光信号时所述发送端的调制器使用的调制深度。
调制深度为可包括:调制驱动器的输出幅度和初始出光功率之间的比值。光信号信噪比为电子设备或电子系统中光信号与噪声的比例,光信号为由相干光模块发送端发射至调制器的需要进行处理的电子信号,噪声是经过调制器后产生的原光信号中本不存在的无规则的额外信号,并且这种信号不随原信号的变化而变化。在其他因素确定不变的前提下,改变调制深度,光信号信噪比会随之改变,因此,可以通过确定发送端的调制器的备选调制深度,得到对应的实际信噪比值。
在本实施例中,通过确定备选调制深度,并确定在备选调制深度下发送端的调制器所发射光信号的实际信噪比值是否达标,从而确定向接收端发送的光信号的目标调制深度,使得相干光模块的信噪比达到预期要求,降低了噪声信号对正常信号的影响,确保了光信号的信号质量。
在一实施例中,上述方法包括:若在备选调制深度下发送端的调制器所发射光信号的实际信噪比不达标时,返回确定备选调制深度的步骤。
具体的,可以按照一定的梯度间隔将调制范围区间进行划分,从而确定多个调制深度值。例如,假设调制范围区间为60%至80%,以5%为梯度 间隔,如此可以得到多个调制深度值,即60%、65%、70%、75%和80%,若其中一个调制深度值所对应的实际信噪比不达标,则选择所述调制范围区间中的其他值重新进行确定。
在一实施例中,确定发送端的调制器的备选调制深度,包括:
在首次确定备选调制深度时,将调制器的默认调制深度作为备选调制深度。
在实际操作过程中,可以将调制器的默认调制深度作为第一个所述备选调制深度,然后直接确定在备选调制深度下发送端的调制器所发射光信号的实际信噪比值是否达标。默认调制深度为出光功率满足预期要求且理论上对应的信噪比达标的任意一个值。工作人员也可以根据工作经验,对默认调制深度进行调整,使用调整值取代该默认调制深度,作为备选调制深度。
在一实施例中,确定发送端的调制器的备选调制深度,包括:
在当前备选调制深度的光信号的实际信噪比不达标时,根据调制器的调制深度和信噪比之间的关系曲线,确定下一个备选调制深度。
此处的关系曲线为根据调制器的调制深度和信噪比的映射关系所建立的关系曲线,可以存储在设备的存储中心,并且可以通过显示屏进行展示。从该关系曲线关系中可以读取与其中一个信噪比值对应的调制深度,进而确定下一个备选调制深度。
在一实施例中,根据所述调制器的调制深度和信噪比之间的关系曲线,确定下一个备选调制深度,包括:
确定关系曲线的极值点;
根据极值点,确定下一个备选调制深度。
上述的关系曲线的极值点包括极大值点和/或极小值点,而极小值点表征模块发送端的信噪比值最佳点。除此之外,还可以确定达到预期的信噪 比目标值要求的其他点。由于上述极小值点在关系曲线中可以有多个,既包括整个曲线的全局极小值点,也包括曲线局部的局部极小值点,因此在本实施例中,优先根据整个曲线的全局极小值点确定下一个所述备选调制深度。
在一实施例中,根据所述极值点,确定下一个备选调制深度,包括:
根据极值点,确定关系曲线上包含极值点的调制深度范围;
在调制深度范围内,确定备选调制深度,其中,备选调制深度范围包括以下至少之一:
调制深度范围的最小值、调制深度范围的最大值及调制深度的中间值。
具体地,根据包括极值点在内的信噪比值区间,可以确定对应的调制深度范围。如上一实施例所述的,信噪比区间包括表征模块发送端的信噪比值最佳点的全局极小值点,还包括达到预期的信噪比目标值要求的其他点,结合调制深度和信噪比的映射关系,即可确定与信噪比区间对应的调制深度范围。
在一实施例中,上述方法包括:若在备选调制深度达到所述调制器的饱和调制深度时实际信噪比不达标,输出定标失败报警。
调制器的饱和调制深度表征调制器能够达到的最大调制深度。如果在饱和调制深度内的按一定梯度间隔设置的所有调制深度值下所述发送端的调制器所发射光信号的实际信噪比值均不达标,说明调制器设置有问题或者出现故障,输出定标失败报警。
在一实施例中,上述方法包括:在调制器以目标调制深度工作时,确定调制器的实际出光功率;
确定实际出光功率是否位于期望出光功率范围内;
若实际出光功率位于期望出光功率范围外,输出出光功率异常报警。
检测在调制器以目标调制深度工作时调制器的实际出光功率,确定实 际出光功率是否位于期望出光功率范围内;若实际出光功率位于期望出光功率范围,则一切正常;反之,若实际出光功率位于期望出光功率范围外,不论是实际出光功率过大还是过小,输出出光功率异常报警。正常情况和异常报警情况可以通过不同颜色的信号灯进行显示,如绿灯亮表示一切正常,红灯亮表示输出出光功率异常,还可以通过不同声音信息或者文字图案信息等其他可以区分不同信号的方式进行报警。
在一实施例中,上述方法包括:在确定调制器的目标调制深度之前,控制调制器工作在预设工作状态。
预设工作状态表征能够根据调制驱动器的输出幅度将调制数据调制到光载波上的状态。控制调制器工作在预设工作状态,从而实现对光信号的调制和/或放大。
在一实施例中,控制所述调制器工作在预设工作状态,包括:
调节调制器的偏置电压,使得调制器工作在预设工作状态,其中,调制器在所述预设工作状态下,能够根据调制驱动器的输出幅度将调制数据调制到光载波上。
偏置电压为晶体管放大电路处于放大状态时,基极-射极之间,集电极-基极之间应该设置的电压。通过调节调制器的偏置电压,保证放大电路功能的正常运行,使得调制器稳定地工作在预设工作状态。
在一实施例中,上述方法包括:关闭根据调制数据输出调制幅度值的调制驱动器;
在调制驱动器关闭后,测量调制器在光源发出的光载波激励下的初始出光输出功率;
打开调制驱动器;
根据初始出光输出功率,通过调整调制驱动器的输出幅度,控制调制器工作在备选调制深度。
在本实施例中,备选调制深度通过对调制驱动器和调制器的输出进行调节而得到,进而根据上述实施例中的方法确定在备选调制深度达到调制器的饱和调制深度时实际信噪比是否达标。
在一些实施例中,提供了一种定标装置,请参阅图2,定标装置包括:
第一确定模块201,配置为确定发送端的调制器的备选调制深度。
备选调制深度为调制器的调制范围区间内的一个调制深度值,并非唯一确定值,可以包括初始值和经过调整后的调整值。调制范围区间可以设备出厂提供的范围,也可以是根据工作经验确定的一个合理范围区间。通过确定备选调制深度,可以确定在备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值。
第二确定模块202,配置为确定在备选调制深度下发送端的调制器所发射光信号的实际信噪比值是否达标。
具体地,可以预先设置光信号的信噪比目标值为100,若在备选调制深度下发送端的调制器所发射光信号的实际信噪比值达到或超过所述信噪比目标值,如实际信噪比值为102,则确定为实际信噪比值达标;若在备选调制深度下发送端的调制器所发射光信号的实际信噪比值小于所述信噪比目标值,如实际信噪比值为90,则确定为不达标。
第三确定模块203,配置为若在备选调制深度下发送端的调制器所发射光信号的实际信噪比值达标,将备选调制深度确定为目标调制深度,其中,目标调制深度为向接收端发送光信号时发送端的调制器使用的调制深度。
若在备选调制深度下发送端的调制器所发射光信号的实际信噪比值达标,将备选调制深度确定为目标调制深度,即向接收端发送光信号时所述发送端的调制器使用的调制深度。
调制深度为在双边带调幅方式情况下,必须加以限制的峰值幅偏值,与调制驱动器的输出幅度和初始出光功率相关。光信号信噪比为电子设备 或电子系统中光信号与噪声的比例,光信号为由相干光模块发送端发射至调制器的需要进行处理的电子信号,噪声是经过调制器后产生的原光信号中本不存在的无规则的额外信号,并且这种信号不随原信号的变化而变化。在其他因素确定不变的前提下,改变调制深度,光信号信噪比会随之改变,因此,可以通过确定发送端的调制器的备选调制深度,得到对应的实际信噪比值。
在本实施例中,通过确定备选调制深度,并确定在备选调制深度下发送端的调制器所发射光信号的实际信噪比值是否达标,从而确定向接收端发送的光信号的目标调制深度,使得相干光模块的信噪比达到预期要求,降低了噪声信号对正常信号的影响,确保了光信号的信号质量。
在一实施例中,定标装置还包括:返回模块,配置为若在备选调制深度下发送端的调制器所发射光信号的实际信噪比不达标时,返回确定备选调制深度的步骤。
具体的,可以按照一定的梯度间隔将调制范围区间进行划分,从而确定多个调制深度值。例如,假设调制范围区间为60%至80%,以5%为梯度间隔,如此可以得到多个调制深度值,即60%、65%、70%、75%和80%,若其中一个调制深度值所对应的实际信噪比不达标,则选择调制范围区间中的其他值重新进行确定。
在一实施例中,第一确定模块包括:默认单元,配置为在首次确定备选调制深度时,将调制器的默认调制深度作为备选调制深度。
在实际操作过程中,可以将调制器的默认调制深度作为备选调制深度,然后直接确定在备选调制深度下发送端的调制器所发射光信号的实际信噪比值是否达标。默认调制深度为出光功率满足预期要求且理论上对应的信噪比达标的任意一个值。工作人员也可以根据工作经验,对默认调制深度进行调整,使用调整值取代该默认调制深度,作为备选调制深度。
在一实施例中,第一确定模块还包括:第一确定单元,配置为在当前备选调制深度的光信号的实际信噪比不达标时,根据调制器的调制深度和信噪比之间的关系曲线,确定下一个备选调制深度。
此处的关系曲线为根据调制器的调制深度和信噪比的映射关系所建立的关系曲线,可以存储在设备的存储中心,并且可以通过显示屏进行展示。从该关系曲线关系中可以读取与其中一个信噪比值对应的调制深度,进而确定下一个备选调制深度。
在一实施例中,还包括:第二确定单元,配置为确定关系曲线的极值点;
根据极值点,确定下一个备选调制深度。
上述的关系曲线的极值点包括极大值点和/或极小值点,而极小值点表征模块发送端的信噪比值最佳点。除此之外,还可以确定达到预期的信噪比目标值要求的其他点。由于上述极小值点在关系曲线中可以有多个,既包括整个曲线的全局极小值点,也包括曲线局部的局部极小值点,因此在本实施例中,优先根据整个曲线的全局极小值点确定下一个所述备选调制深度。
在一实施例中,还包括:第三确定单元,配置为根据极值点,确定关系曲线上包含极值点的调制深度范围;
在调制深度范围内,确定备选调制深度,其中,备选调制深度范围包括以下至少之一:
调制深度范围的最小值、调制深度范围的最大值及调制深度的中间值。
具体地,根据包括极值点在内的信噪比值区间,可以确定对应的调制深度范围。如上一实施例所述的,信噪比区间包括表征模块发送端的信噪比值最佳点的全局极小值点,还包括达到预期的信噪比目标值要求的其他点,结合调制深度和信噪比的映射关系,即可确定与信噪比区间对应的调 制深度范围。
在一实施例中,定标装置还包括:第一输出模块,配置为若在备选调制深度达到调制器的饱和调制深度时实际信噪比不达标,输出定标失败报警。
调制器的饱和调制深度表征调制器能够达到的最大调制深度。如果在饱和调制深度内的按一定梯度间隔设置的所有调制深度值下发送端的调制器所发射光信号的实际信噪比值均不达标,说明调制器设置有问题或者出现故障,输出定标失败报警。
在一实施例中,定标装置还包括:第二输出模块,配置为在调制器以目标调制深度工作时,确定调制器的实际出光功率;
确定实际出光功率是否位于期望出光功率范围内;
若实际出光功率位于期望出光功率范围外,输出出光功率异常报警。
检测在调制器以目标调制深度工作时所述调制器的实际出光功率,确定实际出光功率是否位于期望出光功率范围内;若实际出光功率位于期望出光功率范围,则一切正常;反之,若实际出光功率位于期望出光功率范围外,不论是实际出光功率过大还是过小,输出出光功率异常报警。正常情况和异常报警情况可以通过不同颜色的信号灯进行显示,如绿灯亮表示一切正常,红灯亮表示输出出光功率异常,还可以通过不同声音信息或者文字图案信息等其他可以区分不同信号的方式进行报警。
在一实施例中,定标装置还包括:控制模块,配置为在确定调制器的目标调制深度之前,控制调制器工作在预设工作状态。
预设工作状态表征能够根据调制驱动器的输出幅度将调制数据调制到光载波上的状态。控制调制器工作在预设工作状态,从而实现对光信号的调制和/或放大。
在一实施例中,控制模块包括调节单元,配置为调节调制器的偏置电 压,使得调制器工作在预设工作状态,其中,调制器在预设工作状态下,能够根据调制驱动器的输出幅度将调制数据调制到光载波上。
偏置电压为晶体管放大电路处于放大状态时,基极-射极之间,集电极-基极之间应该设置的电压。通过调节调制器的偏置电压,保证放大电路功能的正常运行,使得调制器稳定地工作在所述预设工作状态。
在一实施例中,定标装置还包括:调整模块,配置为关闭根据调制数据输出调制幅度值的调制驱动器;
在调制驱动器关闭后,测量调制器在光源发出的光载波激励下的初始出光输出功率;
打开调制驱动器;
根据初始出光输出功率,通过调整调制驱动器的输出幅度,控制调制器工作在备选调制深度。
在本实施例中,备选调制深度通过对调制驱动器和调制器的输出进行调节而得到,进而根据上述实施例中的方法确定在备选调制深度达到调制器的饱和调制深度时实际信噪比是否达标。
在一些实施例,提供了一种电子设备,如图3所示,包括处理器、通信接口、存储器和总线,处理器,通信接口,存储器通过总线完成相互间的通信,处理器可以调用存储器中的逻辑指令,以执行上述方法实施例所述的步骤。
在一些实施例中,提供了一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例所述的步骤。
在一具体实施例中,如图4、图5和图6所示,本实施例提供了一种定标方法,该方法包括:
首先预先设置相干光模块的发送端光功率,发送端光功率为相干光模 块在工作状态下的发送端光功率默认功率。
然后扫描该输出功率下,调制深度与模块发送端信噪比的关系曲线,并对此关系曲线采用三次或者四次曲线进行分段拟合,通过上位机对拟合的分段曲线取极值点(极小值,即模块发送端性能最佳点)。对于某些模块,曲线性能较好的点可能有很多个,因此将性能较好的点限定在一个范围区间内,例如将调制深度定为60%~80%区间,从而防止过调和欠调的情况。
关闭驱动器RF输出,测得调制器的调制曲线。此处,调制器所在的相干光模块为需要进行接收端定标的相干光模块,相干光模块的具体类型和封装形式不做具体限定。这一步骤既可以在设置相干光模块的发送端的光功率之前执行,也可以在之后或者同步执行。在进行定标之前,需要预先设置相干光模块的本振光功率,以及增益控制电压的上下门限值。
再然后,对相干光模块发送端锁定因子进行定标;具体地,在前面的预设状态下,依次扫描和修改调制器六个环路的锁定因子,读取六个环路的直流偏置电压值是否稳定在正常工作点附近。如果在锁定点附近跳动较小,PD采样计算得到的积分和值在0附近,说明此时锁定因子已调节到最佳值。依次找到调制器六个环路的最佳锁定因子,保证模块稳定得工作在正常工作点。
最后,基于预设状态下对相干光模块的发送端调制深度进行定标。
具体地,依次调节驱动器四路RF输出幅度值,上位机同步自动计算调制深度值,即调制深度=驱动器RF输出幅度/DC_Vpi,,其中,DC_Vpi为调制器的输出幅度,最终使得调制深度达到预设的目标值附近,通过光谱仪等设备,同时读取此时调制深度下模块发送端的光信噪比值(OSNR)。
如果满足目标信噪比(TX OSNR)下限值,则确认相干光模块的发送端定标通过。如果不满足,则确认相干光模块的发送端定标失败,按照一定步长增加调制深度目标值,重新进行模块调制深度的定标,直到模块发 送端光信噪比满足要求;如果重复调制深度定标直到调制深度达到饱和都不能满足要求,则测试系统自动拦截,上报Fail,测试失败,并将测试数据保留在上位机中。
上述方法可以通过图5所示的定标装置及图6所示的定标设备实现。
本申请实施例提供的方法,通过获取预设状态下,对相干光模块的发送端调制深度进行定标,保证定标通过的相干光模块在一定输出光功率范围内,其发送端性能满足最佳门限值,避免极端状态下发送端性能劣化,并且能够对定标失败的问题模块进行自动化拦截和筛选。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置、设备和存储介质,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种定标方法,所述方法包括:
    确定发送端的调制器的备选调制深度;
    确定在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值是否达标;
    若在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值达标,将所述备选调制深度确定为目标调制深度,其中,所述目标调制深度为向接收端发送光信号时所述发送端的调制器使用的调制深度。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    若在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比不达标时,返回确定所述备选调制深度的步骤。
  3. 根据权利要求1或2所述的方法,其中,所述确定发送端的调制器的备选调制深度,包括:
    在首次确定所述备选调制深度时,将所述调制器的默认调制深度作为所述备选调制深度。
  4. 根据权利要求3所述的方法,其中,所述确定发送端的调制器的备选调制深度,包括:
    在当前备选调制深度的光信号的实际信噪比不达标时,根据所述调制器的调制深度和信噪比之间的关系曲线,确定下一个所述备选调制深度。
  5. 根据权利要求4所述的方法,其中,所述根据所述调制器的调制深度和信噪比之间的关系曲线,确定下一个所述备选调制深度,包括:
    确定所述关系曲线的极值点;
    根据所述极值点,确定下一个所述备选调制深度。
  6. 根据权利要求5所述的方法,其中,所述根据所述极值点,确定下一个所述备选调制深度,包括:
    根据所述极值点,确定所述关系曲线上包含所述极值点的调制深度范围;
    在所述调制深度范围内,确定所述备选调制深度,其中,所述备选调制深度范围包括以下至少之一:
    所述调制深度范围的最小值、所述调制深度范围的最大值及所述调制深度的中间值。
  7. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    若在所述备选调制深度达到所述调制器的饱和调制深度时所述实际信噪比不达标,输出定标失败报警。
  8. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    在所述调制器以所述目标调制深度工作时,确定所述调制器的实际出光功率;
    确定所述实际出光功率是否位于期望出光功率范围内;
    若所述实际出光功率位于所述期望出光功率范围外,输出出光功率异常报警。
  9. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    在确定所述调制器的目标调制深度之前,控制所述调制器工作在预设工作状态。
  10. 根据权利要求1或2所述的方法,其中,所述控制所述调制器工作在预设工作状态,包括:
    调节所述调制器的偏置电压,使得所述调制器工作在所述预设工作状态,其中,所述调制器在所述预设工作状态下,能够根据调制驱动器的输出幅度将调制数据调制到光载波上。
  11. 根据权利要1或2所述的方法,其中,所述方法还包括:
    关闭根据调制数据输出调制幅度值的调制驱动器;
    在所述调制驱动器关闭后,测量所述调制器在光源发出的光载波激励下的初始出光输出功率;
    打开所述调制驱动器;
    根据所述初始出光输出功率,通过调整所述调制驱动器的输出幅度,控制所述调制器工作在所述备选调制深度。
  12. 一种定标装置,所述装置包括:
    第一确定模块,配置为确定发送端的调制器的备选调制深度;
    第二确定模块,配置为确定在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值是否达标;
    第三确定模块,配置为若在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比值达标,将所述备选调制深度确定为目标调制深度,其中,所述目标调制深度为向接收端发送光信号时所述发送端的调制器使用的调制深度。
  13. 根据权利要12所述的装置,其中,所述装置还包括:返回模块,配置为若在所述备选调制深度下所述发送端的调制器所发射光信号的实际信噪比不达标时,返回确定所述备选调制深度的步骤。
  14. 根据权利要13所述的装置,其中,所述第一确定模块包括:默认单元,配置为在首次确定所述备选调制深度时,将所述调制器的默认调制深度作为所述备选调制深度。
  15. 根据权利要14所述的装置,其中,所述第一确定模块还包括:第一确定单元,配置为在当前备选调制深度的光信号的实际信噪比不达标时,根据所述调制器的调制深度和信噪比之间的关系曲线,确定下一个所述备选调制深度。
  16. 一种定标设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,所述处理器运行所述可执行程序 时执行如权利要求1至11任一项提供的方法。
  17. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至11任一项提供的方法。
PCT/CN2020/136227 2020-06-24 2020-12-14 定标方法、装置、设备及存储介质 WO2021258669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010591788.3 2020-06-24
CN202010591788.3A CN111817782B (zh) 2020-06-24 2020-06-24 定标方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021258669A1 true WO2021258669A1 (zh) 2021-12-30

Family

ID=72855037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136227 WO2021258669A1 (zh) 2020-06-24 2020-12-14 定标方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN111817782B (zh)
WO (1) WO2021258669A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817782B (zh) * 2020-06-24 2021-10-12 武汉光迅科技股份有限公司 定标方法、装置、设备及存储介质
CN111818627B (zh) * 2020-07-24 2022-07-08 成都爱瑞无线科技有限公司 一种动态调整的下行发端定标方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904635A (zh) * 2012-10-25 2013-01-30 中兴通讯股份有限公司 一种光信噪比检测的方法、系统和设备
CN107306153A (zh) * 2016-04-18 2017-10-31 上海贝尔股份有限公司 光纤通信系统中的信号处理的方法和设备
CN107359939A (zh) * 2016-05-09 2017-11-17 中兴通讯股份有限公司 一种光调顶信号的传输方法及装置
CN111817782A (zh) * 2020-06-24 2020-10-23 武汉光迅科技股份有限公司 定标方法、装置、设备及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2269067B (en) * 1992-07-22 1995-10-25 Northern Telecom Ltd Modulation depth control for FSK/IM optical transmitter
JP3019284B2 (ja) * 1992-08-10 2000-03-13 シャープ株式会社 空間光伝送装置
CN1949690B (zh) * 2006-10-09 2011-06-22 华为技术有限公司 一种光通信系统中激光安全保护方法和装置
CN102611950A (zh) * 2012-02-22 2012-07-25 中兴通讯股份有限公司 波长标签信号的调制深度控制方法和装置
CN102624478B (zh) * 2012-03-16 2017-11-07 中兴通讯股份有限公司 一种波长标签加载方法和装置
WO2013185343A1 (zh) * 2012-06-15 2013-12-19 华为技术有限公司 抑制导频信号串扰的方法、装置及导频信号接收装置
US20150280820A1 (en) * 2014-03-25 2015-10-01 Osram Sylvania Inc. Techniques for adaptive light modulation in light-based communication
WO2015149254A1 (zh) * 2014-03-31 2015-10-08 华为技术有限公司 控制导频信号调制深度的方法、发射机及导频锁定装置
CN107547128B (zh) * 2016-06-23 2022-06-07 中兴通讯股份有限公司 光模块出光功率定标的方法及装置
CN110198193A (zh) * 2018-02-24 2019-09-03 中兴通讯股份有限公司 一种相干光控制的方法及装置
CN109495182B (zh) * 2018-10-16 2020-07-31 武汉光迅科技股份有限公司 一种相干光模块的收端定标方法和装置
CN109495181B (zh) * 2018-12-07 2021-09-10 青岛海信宽带多媒体技术有限公司 光模块信号处理方法、装置及光模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904635A (zh) * 2012-10-25 2013-01-30 中兴通讯股份有限公司 一种光信噪比检测的方法、系统和设备
US20150222354A1 (en) * 2012-10-25 2015-08-06 Zte Corporation Method, system, and device for detecting optical signal-to-noise ratio
CN107306153A (zh) * 2016-04-18 2017-10-31 上海贝尔股份有限公司 光纤通信系统中的信号处理的方法和设备
CN107359939A (zh) * 2016-05-09 2017-11-17 中兴通讯股份有限公司 一种光调顶信号的传输方法及装置
CN111817782A (zh) * 2020-06-24 2020-10-23 武汉光迅科技股份有限公司 定标方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN111817782A (zh) 2020-10-23
CN111817782B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2021258669A1 (zh) 定标方法、装置、设备及存储介质
US20210281228A1 (en) Apparatus and method for calibrating an envelope tracking lookup table
US7826740B2 (en) Apparatus and method for adaptive adjustment and performance monitoring of avalanche photo-diode optical receiver and laser transmitter for fiber link long haul applications
US6891866B2 (en) Calibration of laser systems
WO2018133122A1 (zh) 控制方法、无人机及遥控设备
US11662370B2 (en) Frequency spectrum detection system
US20120177367A1 (en) Method and apparatus for adjusting the gain of an amplifier of an optical receiver module based on link bit error rate (ber) measurements
US7400662B2 (en) Calibration of laser systems
US20060110157A1 (en) Transceiver with interrupt unit
US20030043439A1 (en) Control loop circuit and method therefor
US20090310961A1 (en) Method and apparatus for calibrating burst mode laser transmitters
US20130243439A1 (en) Optical transceiver, method for controlling the optical transceiver and non-transitory computer readable medium embodying instructions for controlling a device
US20040136729A1 (en) Calibration of laser systems
US11558131B2 (en) Method and apparatus for measuring wireless performance of receiver of wireless terminal
KR20040033917A (ko) 휴대단말기의 출력전력 제어장치 및 그 운용방법
US20060018404A1 (en) Radio frequency transmitter and method of operating a radio frequency transmitter
JP2016012856A (ja) 光受信回路、光トランシーバ、および受信出力波形のクロスポイント制御方法
US20210203124A1 (en) High power and high quality laser system and method
JP2018198416A (ja) 無線通信装置及び判定方法
KR20080016731A (ko) 트랜시버
WO2021081989A1 (zh) 分时检测控制电路、无线收发系统及其分时检测控制方法
WO2019241907A1 (zh) 一种增益控制方法及拉曼光纤放大器
KR102163461B1 (ko) 위상변조 실시간 모니터링 시스템 및 방법
KR101307344B1 (ko) 선형성을 알려주는 가시광 송신 장치 및 방법
US12003260B2 (en) Antenna unit, transmission system and method for operating an antenna unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941766

Country of ref document: EP

Kind code of ref document: A1