WO2013185343A1 - 抑制导频信号串扰的方法、装置及导频信号接收装置 - Google Patents

抑制导频信号串扰的方法、装置及导频信号接收装置 Download PDF

Info

Publication number
WO2013185343A1
WO2013185343A1 PCT/CN2012/076991 CN2012076991W WO2013185343A1 WO 2013185343 A1 WO2013185343 A1 WO 2013185343A1 CN 2012076991 W CN2012076991 W CN 2012076991W WO 2013185343 A1 WO2013185343 A1 WO 2013185343A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
amount
module
optical
dispersion amount
Prior art date
Application number
PCT/CN2012/076991
Other languages
English (en)
French (fr)
Inventor
何俊
冯志勇
罗小东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280000697.1A priority Critical patent/CN102870351B/zh
Priority to PCT/CN2012/076991 priority patent/WO2013185343A1/zh
Publication of WO2013185343A1 publication Critical patent/WO2013185343A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2537Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering

Definitions

  • the embodiments of the present invention relate to the field of optical network technologies, and in particular, to a method, a device, and a pilot signal receiving apparatus for suppressing crosstalk of a pilot signal. Background technique
  • FIG. 1 is a schematic diagram of a WDM optical network state monitoring method based on pilot signals. As shown in Figure 1, the A site and the B site are connected by optical fibers and optical amplifiers, and the optical amplifier includes a doped fiber amplifier.
  • a pilot signal receiving device is provided at the monitoring port of the optical amplifier.
  • the pilot signal receiving device comprises: a photodetector, an amplifier, a filter and an electrical spectrum analyzer. First, a frequency-only pilot signal is modulated on each wavelength channel in the WDM optical network, and then a small portion of the optical signal is downloaded to the pilot signal receiving device using a beam splitter at the monitoring port of the optical amplifier.
  • the optical signal is received by the photodetector, processed by the amplifier and the filter, the frequency of the pilot signal is detected by the electrical spectrum analyzer to identify the wavelength channel, and the amplitude of the pilot signal is detected to calculate the corresponding wavelength.
  • the optical power of the channel can be used at a monitoring port of a node such as an Optical Add/Drop Multiplexer (OADM) of the WDM optical network.
  • OADM Optical Add/Drop Multiplexer
  • the Stimulated Raman scattering (SRS) effect crosstalks the pilot signal to other wavelength channels.
  • the same photodetector is used to simultaneously receive the guides of multiple wavelength channels.
  • the frequency signal, the crosstalk on the other wavelength channels and the pilot signal on the local wavelength channel are at the same frequency and cannot be resolved. Therefore, the crosstalk generated by the SRS effect introduces an error in calculating the optical power of the wavelength channel, and is used to determine the channel of the wavelength.
  • the state introduces interference.
  • the scheme for suppressing the SRS effect based on the tunable optical filter is to sequentially filter out the respective wavelengths through the tunable optical filter, receive using the same photodiode, sequentially detect each wavelength channel, and calculate the corresponding optical power.
  • the wavelength channels are separated in time, and the crosstalk of the pilot signals and other wavelength channels is isolated, thus eliminating interference.
  • the scheme of suppressing the SRS effect based on the band filter is: Since the wavelength interval is larger, the SRS crosstalk is more serious, so the optical band signal is divided into two bands by the use of the band filter, and the wavelength interval with the most severe crosstalk is large.
  • the optical signals are spatially isolated and independently perform photoelectric conversion and pilot signal detection, thereby reducing crosstalk.
  • Embodiments of the present invention provide a method, a device, and a pilot signal receiving apparatus for suppressing crosstalk of a pilot signal, to provide a solution for suppressing the SRS effect with low cost and simple structure.
  • an embodiment of the present invention provides a method for suppressing crosstalk of a pilot signal, including: acquiring a current accumulated astigmatism amount of an optical signal of a downloaded multi-wavelength channel, where the optical signal of the downloaded multi-wavelength channel carries At least two pilot signals;
  • an embodiment of the present invention provides an apparatus for suppressing crosstalk of a pilot signal, including: a current dispersion obtaining unit, configured to acquire a current accumulated dispersion amount of an optical signal of a downloaded multi-wavelength channel, the downloaded The optical signal of the multi-wavelength channel carries at least two pilot signals; a dispersion target determining unit, configured to, according to the stimulated Raman scattering SRS crosstalk target value, link configuration information, frequency and amplitude of the at least two pilot signals a value that determines a target cumulative dispersion amount required to satisfy the SRS crosstalk target value; An adjustment amount determining unit, configured to determine, according to the target cumulative dispersion amount and the current accumulated dispersion amount, a quantity of dispersion to be adjusted;
  • an adjustment control unit configured to control dispersion accumulation of the optical signal of the currently downloaded multi-wavelength channel according to the amount of dispersion to be adjusted.
  • an embodiment of the present invention provides a pilot signal receiving apparatus, including: a chromatic dispersion module, configured to perform chromatic dispersion accumulation on an optical signal of a multi-wavelength channel downloaded from a wavelength division multiplexing WDM optical network link.
  • the optical signal of the multi-wavelength channel carries at least two pilot signals;
  • a photoelectric conversion module coupled to the dispersion module, configured to convert an optical signal output by the dispersion module into an electrical signal
  • An amplification and filtering circuit is connected to the photoelectric conversion module, and is configured to sequentially perform amplification and band pass filtering on the electrical signal output by the photoelectric conversion module, wherein the frequency band of the band pass filtering is the at least two pilot signals Frequency Range;
  • a frequency detecting module coupled to the amplifying and filtering circuit, configured to perform frequency detection on an electrical signal output by the amplifying and filtering circuit to obtain a frequency and an amplitude value of the at least two pilot signals;
  • a dispersion amount adjustment module configured to be connected to the frequency detection module and the dispersion module, configured to determine, according to the SRS crosstalk target value, link configuration information, frequency and amplitude values of the at least two pilot signals, that the SRS crosstalk target is met.
  • the target cumulative dispersion amount required for the value determining the amount of dispersion to be adjusted according to the target cumulative dispersion amount and the current cumulative dispersion amount, and adjusting the dispersion amount of the dispersion module according to the amount of dispersion to be adjusted.
  • the embodiment of the present invention determines, according to the frequency, the amplitude value and the link configuration information of the pilot signal, the target cumulative dispersion amount that satisfies the SRS crosstalk target value, and obtains the dispersion to be adjusted according to the target cumulative dispersion amount and the current accumulated dispersion amount.
  • FIG. 1 is a schematic diagram of a WDM optical network state monitoring method based on a pilot signal
  • FIG. 2 is a schematic diagram of wavelength path tracking in an OADM node
  • 3A is a frequency spectrum diagram of optical frequency and RF of a two-wavelength channel without SRS crosstalk
  • 3B is a frequency spectrum diagram of optical frequency and RF of a two-wavelength channel with SRS crosstalk
  • FIG. 4 is a schematic flow chart of a method for suppressing crosstalk of a pilot signal according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an apparatus for suppressing crosstalk of a pilot signal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a pilot signal receiving apparatus according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of another pilot signal receiving apparatus according to an embodiment of the present invention
  • a schematic structural diagram of a pilot signal receiving apparatus The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. The embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the pilot signal can be used to implement automatic fiber discovery, wavelength path tracking, wavelength channel optical power monitoring, optical network power management, and link fault detection in a WDM optical network, which provides a simple, WDM optical network condition monitoring.
  • a low-cost solution. 2 is a schematic diagram of wavelength path tracking in an OADM node. As shown in FIG. 2, the A station loads the pilot signal 1 in the wavelength channel 1 with the center wavelength, and the pilot signal 2 in the wavelength channel 2 with the center wavelength ⁇ 2 ; the ⁇ site is the ROADM node, which will be loaded. The wavelength channel 1 having the pilot signal 1 is transmitted to the C site, and the wavelength channel 2 loaded with the pilot signal 2 is transmitted to the D site.
  • FIG. 3A is an optical spectrum diagram of a two-wavelength channel and a radio frequency (RF) frequency spectrum diagram after photoelectric conversion without SRS crosstalk, wherein the left side is an optical frequency diagram, and the right side is an RF spectrum diagram after photoelectric conversion.
  • FIG. 3B is an optical spectrum diagram of the two-wavelength channel and an RF spectrum diagram after photoelectric conversion in the case of SRS crosstalk, wherein the left side is an optical spectrum diagram, and the right side is a photoelectrically converted RF spectrum diagram.
  • RF radio frequency
  • the two WDM wavelength channels whose center wavelength is ⁇ 1 ⁇ 2 are respectively optical frequencies fc l and fc2, and the optical powers are P l and P2 respectively, and pilot signals fl and f2 are respectively applied thereto.
  • the pilot signals are loaded on the two sidebands of the optical carrier. Assuming that the modulation depths of the pilot signals fl and f2 are both m, the amplitude values of the optical carriers are:
  • the optical powers P l and P2 of the corresponding WDM wavelength channel can be calculated by using the amplitude values P(fl) and P(f2) of fl and f2 in the received RF spectrum.
  • the sidebands of their respective optical frequencies fcl and fc2 include not only the respective pilot signals fl, f2 but also between them.
  • Crosstalk f2, fl, the amplitude values are:
  • the photodetector converts the optical signal into an electrical signal
  • the pilot signal fl on the sideband of the optical frequency fcl and the crosstalk fl on the sideband of the optical frequency fc2 overlap on the RF spectrum
  • the embodiment of the present invention provides a scheme for suppressing crosstalk of a pilot signal, which can be specifically implemented by the method shown in FIG.
  • FIG. 4 is a schematic flow chart of a method for suppressing crosstalk of a pilot signal according to an embodiment of the present invention. As shown in Figure 4, it includes:
  • a device that suppresses pilot signal crosstalk performs 401.
  • the means for suppressing crosstalk of the pilot signal is usually disposed at each monitoring point and connected to the pilot signal receiving means of the same monitoring point.
  • Each of the at least two pilot signals corresponds to one of the multi-wavelength channels.
  • the optical signal of the multi-wavelength channel is uplinked from the WDM optical network link.
  • the optical signal of the multi-wavelength channel is uplinked from the WDM optical network link.
  • there are at least two implementation manners for obtaining the current accumulated dispersion amount one is obtained according to the link configuration information, and the other is obtained by directly detecting the optical quantity of the downloaded multi-wavelength channel.
  • the download location information in the link configuration information includes the number of fiber segments through which the optical signal of the downloaded multi-wavelength channel passes, the length of each fiber segment, and each fiber segment. a dispersion coefficient and a number of dispersion modules through which the optical signal of the downloaded multi-wavelength channel passes, and a dispersion amount of each dispersion module, wherein the passed fiber segment includes a Dispersion Compensating Fiber (DCF) segment; , 401 specifically includes:
  • N is the number of passing fiber segments
  • D t , ⁇ are respectively the dispersion coefficient and length of the ith segment of the fiber
  • M is The number of dispersion modules passed
  • Z) is the amount of dispersion of the i-th dispersion module.
  • the passed chromatic dispersion module includes not only a chromatic dispersion module that the optical signal of the multi-wavelength channel passes during transmission of the WDM optical network link, but also a pilot of the monitoring point.
  • a dispersion module in the signal receiving device includes not only a chromatic dispersion module that the optical signal of the multi-wavelength channel passes during transmission of the WDM optical network link, but also a pilot of the monitoring point.
  • the dispersion coefficient and length of the DCF segment of the dispersion compensation fiber that has passed need to be added.
  • the partial optical signal may be downloaded through the beam splitter after the dispersion module in the pilot signal receiving device, and the current cumulative dispersion amount of the downloaded partial optical signal is directly measured by the dispersion monitoring method.
  • the dispersion monitoring methods include: clock power monitoring method, clock phase shift monitoring method, and double-side pilot phase shift monitoring method.
  • the frequency and amplitude values of the at least two pilot signals are detected by a pilot signal receiving device of the same monitoring point.
  • the above SRS crosstalk target value is a target value preset according to the tolerance for optical power calculation and channel state determination.
  • the link configuration information may be obtained from the control plane, and may include: a fiber type, a download position information of the optical signal of the multi-wavelength channel, a fiber input optical power of the optical signal of the multi-wavelength channel, and the like, where the fiber input optical power.
  • the device for detecting the post-reporting control plane can be detected by the pilot signal receiving device of the transmitting station of the optical signal, and then the device for notifying the crosstalk of the pilot signal at the monitoring point by the control plane.
  • the download location information of the optical signal of the multi-wavelength channel may be a location of a transmitting station of the optical signal of the multi-wavelength channel relative to the multi-wavelength channel on the WDM optical network link.
  • 402 specifically may include:
  • is the Raman gain coefficient
  • A// is the effective mode of the fiber.
  • Field area, "the loss factor for the fiber, the transmission distance, P. is the fiber-optic power, and is the wavelength interval of one of the at least two pilot signals relative to the first other pilot signal.
  • the frequency of a pilot signal, / ⁇ ) is the amplitude value of the one pilot signal
  • C SRS is the SRS crosstalk target value.
  • Equation (10) only gives the total SRS crosstalk of all other pilot signals to the pilot signal for one pilot signal.
  • the total accumulated dispersion amount determined according to formula (10) is also only For the one pilot signal, however, since at least two pilot signals are all transmitted on the same link, the total accumulated dispersion amount D A corresponding to one pilot signal is applicable to each of the other pilot signals.
  • the current cumulative dispersion amount is smaller than the target cumulative dispersion amount, and therefore, the target cumulative dispersion amount is subtracted from the current accumulated dispersion amount to obtain the amount of dispersion to be adjusted.
  • the SRS crosstalk occurs in the optical signals of the two wavelength channels that are amplitude-modulated, if the accumulated dispersion amount is 0, the accumulation and transmission efficiency of the pilot signal of one wavelength channel to the crosstalk of the other wavelength channel is high. That is, the pilot signal of another wavelength channel is subjected to a large SRS crosstalk; if the accumulated dispersion amount is not 0, the optical signals of the two wavelength channels are dispersed, and the pilot signal of one wavelength channel is crosstalked to the other wavelength channel. The accumulation transfer efficiency is lowered, that is, the SRS crosstalk of the pilot signal of another wavelength channel is reduced.
  • the frequency and amplitude values of at least two pilot signals can be obtained again, and SRS interference is suppressed due to dispersion accumulation, and at least this time is obtained.
  • the frequency and amplitude values of the two pilot signals are more accurate than the frequency and amplitude values of the at least two pilot signals used in 402.
  • the object of control is typically a dispersion module in the pilot signal receiving device.
  • the dispersive module is a tunable unit
  • the 404 specifically includes:
  • a chromatic dispersion that is used to chromatic dispersion of the optical signal of the currently downloaded multi-wavelength channel
  • the amount of dispersion of the unit is adjusted to be the sum of the current amount of dispersion of the tunable unit and the amount of dispersion to be adjusted.
  • the 404 specifically includes: determining a fixed chromatic dispersion unit whose dispersion amount is closest to the sum of the chromatic dispersion amount of the current fixed chromatic dispersion unit and the chromatic dispersion amount to be adjusted, and Enter the closest fixed dispersion unit.
  • the accessing the closest fixed dispersion unit can be implemented by switching an optical switch in the dispersive module.
  • performing dispersion accumulation is to increase the absolute value of the accumulated dispersion amount.
  • the target cumulative dispersion value cannot usually be adjusted in one position at a time. It may be necessary to execute 401 ⁇ 404 multiple times until the 403 determines that the amount of dispersion to be adjusted is within a preset range, and then stops executing 404.
  • the embodiment of the present invention determines, according to the frequency, the amplitude value and the link configuration information of the pilot signal, the target cumulative dispersion amount that satisfies the SRS crosstalk target value, and obtains the dispersion to be adjusted according to the target cumulative dispersion amount and the current accumulated dispersion amount.
  • FIG. 5 is a schematic structural diagram of an apparatus for suppressing crosstalk of a pilot signal according to an embodiment of the present invention. As shown in Figure 5, it includes:
  • the current dispersion obtaining unit 51 is configured to acquire a current accumulated dispersion amount of the optical signal of the downloaded multi-wavelength channel, where the optical signal of the downloaded multi-wavelength channel carries at least two pilot signals; a dispersion target determining unit 52, And determining, according to the SRS crosstalk target value, the link configuration information, the frequency and the amplitude value of the at least two pilot signals, a target cumulative dispersion amount required to satisfy the SRS crosstalk target value;
  • the adjustment amount determining unit 53 is configured to determine the amount of dispersion to be adjusted according to the target cumulative dispersion amount and the current accumulated dispersion amount;
  • the adjustment control unit 54 is configured to control dispersion accumulation of the optical signal of the currently downloaded multi-wavelength channel according to the amount of dispersion to be adjusted.
  • the apparatus for suppressing pilot signal crosstalk in the embodiment of the present invention is generally disposed at each monitoring point and connected to the pilot signal receiving apparatus of the same monitoring point.
  • the at least two pilot signals are The frequency and amplitude values are detected by the pilot signal receiving device of the same monitoring point.
  • the above SRS crosstalk target value is a target value preset according to the tolerance for optical power calculation and channel state determination.
  • the link configuration information may be obtained from the control plane, and may include: a fiber type, a download position information of the optical signal of the multi-wavelength channel, a fiber input optical power of the optical signal of the multi-wavelength channel, and the like, where the fiber input optical power
  • the device for detecting the post-reporting control plane can be detected by the pilot signal receiving device of the transmitting station of the optical signal, and then the device for notifying the crosstalk of the pilot signal at the monitoring point by the control plane.
  • chromatic dispersion target determining unit 52 is specifically configured to:
  • the current dispersion obtaining unit 51 obtains at least two implementation manners of the current accumulated dispersion amount, one is obtained according to the link configuration information, and the other is directly detected by the optical signal of the downloaded multi-wavelength channel. Come to get.
  • the download location information in the link configuration information includes the number of fiber segments through which the optical signal of the downloaded multi-wavelength channel passes, the length of each fiber segment, and each fiber segment.
  • the dispersion coefficient and the number of dispersion modules through which the optical signal of the downloaded multi-wavelength channel passes, the dispersion amount of each dispersion module, the passing fiber segment includes a dispersion compensation fiber DCF segment;
  • the current dispersion acquisition unit 51 is specifically configured to Get the current cumulative dispersion according to formula (9)
  • the partial optical signal may be downloaded through the beam splitter after the dispersion module in the pilot signal receiving device, and the current cumulative dispersion amount of the downloaded partial optical signal is directly measured by the dispersion monitoring method.
  • the dispersion monitoring methods include: clock power monitoring method, clock phase shift monitoring method, and double-side pilot phase shift monitoring method.
  • the current cumulative dispersion amount is less than the target cumulative dispersion amount.
  • the adjustment amount determination sheet The element 53 is specifically used to subtract the current cumulative dispersion amount from the target cumulative dispersion amount to obtain the amount of dispersion to be adjusted.
  • the object indicated by the adjustment control unit 54 is typically a dispersion module in the pilot signal receiving device.
  • the adjustment control unit 54 is specifically configured to adjust the chromatic dispersion amount of the tonable unit for performing dispersion dispersion on the optical signal of the currently downloaded multi-wavelength channel to the adjustable The sum of the current dispersion amount of the dispersion unit and the amount of dispersion to be adjusted.
  • the adjustment control unit 54 is specifically configured to determine a fixed dispersion in which the amount of dispersion is closest to the sum of the amount of dispersion of the current fixed dispersive unit and the amount of dispersion to be adjusted. a unit, and accessing the closest fixed dispersion unit.
  • the accessing the closest fixed dispersion unit can be implemented by switching an optical switch in the dispersive module.
  • the embodiment of the present invention determines, according to the frequency, the amplitude value and the link configuration information of the pilot signal, the target cumulative dispersion amount that satisfies the SRS crosstalk target value, and obtains the dispersion to be adjusted according to the target cumulative dispersion amount and the current accumulated dispersion amount.
  • FIG. 6 is a schematic structural diagram of a pilot signal receiving apparatus according to an embodiment of the present invention. As shown in Figure 6, it includes:
  • a dispersion module 61 configured to perform chromatic dispersion accumulation on an optical signal of a multi-wavelength channel downloaded from a WDM optical network link, where the optical signal of the multi-wavelength channel carries at least two pilot signals; the photoelectric conversion module 62, and the dispersion The module 61 is connected to convert the optical signal output by the dispersion module 61 into an electrical signal;
  • the amplification and filtering module 63 is connected to the photoelectric conversion module 62 for sequentially performing amplification and band pass filtering on the electrical signal outputted by the photoelectric conversion module 62.
  • the frequency band of the band pass filtering is the frequency of the at least two pilot signals. Scope
  • the frequency detecting module 64 is connected to the amplification and filtering module 63, and configured to perform frequency detection on the electrical signal output by the amplification and filtering circuit to obtain a frequency sum of the at least two pilot signals. Amplitude value
  • the chromaticity adjustment module 65 is connected to the frequency detection module 64 and the chromatic dispersion module 61, and is configured to determine that the SRS crosstalk is satisfied according to the SRS crosstalk target value, the link configuration information, and the frequency and amplitude values of the at least two pilot signals.
  • the target cumulative dispersion amount required for the target value, the amount of dispersion to be adjusted is determined according to the target cumulative dispersion amount and the current accumulated dispersion amount, and the dispersion amount of the dispersion module 61 is adjusted according to the amount of dispersion to be adjusted.
  • the photoelectric conversion module 62 can be realized by a photodiode or a photodetector, and the photodetector includes a PIN photodetector, an APD photodetector, and the like.
  • the amplification and filtering module 63 may include an amplification module and a filtering module that are sequentially connected, and the amplification module may be implemented by a transimpedance amplifier and a subsequent multi-stage voltage amplifier, and the filtering module may be implemented by using an analog circuit or an analog-to-digital converter. Implemented with a digital filter.
  • the frequency detecting module 64 can be implemented by an electrical spectrum analyzer, or can be implemented by an analog-to-digital converter and a Field-Programmable Gate Array (FPGA), wherein the analog-to-digital converter is amplified and banded. The signal outputted by the filtering is sampled, and then the spectrum of the pilot signal is obtained by performing Fast Fourier Transform (FFT) on the FPGA.
  • FFT Fast Fourier Transform
  • the frequency detecting module 64 is implemented by an analog-to-digital converter and an FPGA, optionally, a voltage amplifier is further added before the frequency detecting module 64 for amplifying the electrical signal output by the amplification and filtering module 63 to meet analog-to-digital conversion. The input voltage amplitude requirement of the device.
  • the function of the dispersion amount adjustment module 65 is similar to the device for suppressing pilot signal crosstalk provided by the embodiment of the present invention.
  • dispersion amount adjustment module 65 specifically includes:
  • the current dispersion obtaining unit 651 is configured to acquire a current accumulated dispersion amount of the optical signal of the multi-wavelength channel;
  • the scatter target determining unit 652 is connected to the frequency detecting module 64, and configured to determine, according to the SRS crosstalk target value, the link configuration information, the frequency and the amplitude value of the at least two pilot signals, that the SRS crosstalk target value is met. The cumulative amount of dispersion of the target;
  • the adjustment amount determining unit 653 is connected to the current dispersion obtaining unit 651 and the chromatic dispersion target determining unit 652, and is configured to subtract the current cumulative chromatic dispersion amount from the target cumulative chromatic dispersion amount to obtain the chromatic dispersion amount to be adjusted;
  • the adjustment control unit 654 is connected to the adjustment amount determining unit 653 and the dispersion module 61 for adjusting the amount of dispersion of the dispersion module 61 according to the amount of dispersion to be adjusted.
  • the link configuration information includes a fiber type, download position information of an optical signal of the multi-wavelength channel, and an optical fiber power of an optical signal of the multi-wavelength channel;
  • the target determining unit 652 is specifically configured to:
  • the download location information includes a number of fiber segments through which the optical signal passes, a length of each fiber segment, a dispersion coefficient of each fiber segment, and a dispersion module through which the optical signal passes.
  • the number, the amount of dispersion of each dispersion module, the passing fiber segment includes a dispersion compensation fiber DCF segment;
  • the current dispersion acquisition unit 651 is specifically configured to obtain the current cumulative dispersion amount according to formula (9). In this scenario, the dispersion amount is adjusted.
  • Module 65 as a whole can be implemented by an FPGA or a CPU.
  • FIG. 7 is a schematic structural diagram of still another pilot signal receiving apparatus according to an embodiment of the present invention.
  • the pilot signal receiving apparatus further includes: a first beam splitter 66, a dispersion module 61 and a photoelectric conversion module 62 connected by the first beam splitter 66;
  • the current dispersion acquisition unit 651 is connected to the first beam splitter 66.
  • the current dispersion acquisition unit 651 is specifically configured to download a part of the optical signal from the first beam splitter 66, and perform detection of the amount of dispersion on the part of the optical signal to obtain the Current cumulative dispersion amount;
  • the photoelectric conversion module 62 is specifically configured to convert another portion of the optical signal downloaded from the first beam splitter 66 into an electrical signal.
  • the current dispersion obtaining unit 651 can detect the amount of dispersion by using a clock power monitoring method, a clock phase shift monitoring method, a double-side pilot phase shift monitoring method, or the like.
  • the current dispersion acquisition unit 651 can be implemented by a separate hardware, and the dispersion amount adjustment module 65
  • the other units can be implemented by FPGA or CPU.
  • the dispersion module 61 is a tunable unit; the adjustment control unit 654 is specifically configured to adjust the chromatic dispersion amount of the tonable unit to the chromatic dispersion The sum of the current dispersion amount of the unit and the amount of dispersion to be adjusted.
  • the dispersion amount of the dispersion module 61 is set to zero.
  • the tunable cell includes a circulator and a fiber Bragg grating (FBG) which are sequentially connected, or other devices having a high dispersion coefficient and a variable dispersion amount.
  • the circulator is configured to receive the optical signal from the input port of the dispersive module, send the optical signal to the FBG with adjustable dispersion amount, and then send the optical signal with the accumulated chromatic dispersion amount reflected back by the FBG to the dispersive module. Output port.
  • the amount of dispersion is adjustable.
  • FBG is used to increase the amount of accumulated dispersion, so that the dispersion between the optical signals of the multi-wavelength channel is separated, and the amount of dispersion is adjustable.
  • the amount of dispersion of the FBG can be set by the dispersion adjustment port.
  • the dispersion module 61 includes a 1*Y optical switch and a plurality of fixed dispersion units, wherein ⁇ is a natural number greater than 1, and the plurality of fixed dispersion units have different amounts of dispersion;
  • the adjustment control unit 654 is further connected to the 1*-thin switch, and the adjustment control unit is specifically configured to determine a fixed dispersion unit whose dispersion amount is closest to the amount of dispersion to be adjusted, and the 1*-thin switch Switch to the closest fixed dispersion unit.
  • the dispersion amount of the dispersion module 61 is set to 0 in the initial state, that is, the 1* chopper switch is switched to the fixed dispersion unit having the dispersion amount of 0 in the initial state.
  • the fixed dispersion unit includes a dispersion compensation fiber DCF, a high dispersion coefficient fiber, a ring resonator, a sequentially connected ring and a fixed dispersion amount of FBG, or other devices having a high dispersion coefficient.
  • FIG. 8 is a schematic structural diagram of still another pilot signal receiving apparatus according to an embodiment of the present invention.
  • the pilot signal receiving apparatus further includes:
  • the channel analysis module 67 is connected to the frequency detecting module 64, configured to perform frequency and amplitude values according to the at least two pilot signals, an amplification gain coefficient, a filter attenuation coefficient, a responsiveness of the photoelectric conversion module, and each pilot signal. a modulation depth, calculating optical power of a wavelength channel corresponding to the at least two pilot signals, and determining channel states of the wavelength channels corresponding to the at least two pilot signals.
  • Equation (11) According to the frequency fi of the pilot signal and the amplitude value P(fi), where i is the wavelength channel number, according to Equation (11) can obtain the optical power Pi of the wavelength channel corresponding to the pilot signal:
  • Pi P(fi) / k*m ( 11 )
  • k is the conversion coefficient of the pilot signal receiving device and m is the modulation depth of the pilot signal.
  • the modulation depth of each pilot signal is preset, and the conversion coefficient can be obtained according to the amplification gain coefficient of the amplification and filtering circuit 63, the filter attenuation coefficient, and the responsivity of the photoelectric conversion module 62, and the amplification gain coefficient and the filter attenuation coefficient.
  • the responsiveness can be set in advance according to the actual condition of the pilot signal receiving device.
  • the channel state of the wavelength channel refers to a determination result of whether the optical power of the wavelength channel is within a preset range. If the optical power is within a preset range, the channel state is normal; if the optical power is not in advance Within the set range, the channel status is abnormal. Further, the pilot signal for the wavelength channel whose channel state is abnormal may not be detected, and correspondingly, the dispersion target determining unit 652 does not consider the pilot signal when determining the target cumulative dispersion amount according to the formula (10).
  • the pilot signal receiving apparatus further includes:
  • the communication and control module 68 is respectively connected to the amplification and filtering module 63, the frequency detecting module 64, the dispersion amount adjusting module 65, and the channel analyzing module 67, and is configured to set an amplification gain coefficient of the amplification and filtering module 63;
  • the frequency and amplitude values of the at least two pilot signals output by the frequency detecting module 64 are reported, and the channel analysis module 67 outputs the optical power and channel state of the wavelength channel corresponding to the at least two pilot signals; Link configuration information.
  • the communication and control module 68 can also inform the channel analysis module 67 of the frequency allocation of the at least two pilot signals, so that the channel analysis module 67 knows the correspondence between the frequency and the wavelength channel, thereby determining the channel state.
  • the communication and control module 68 can also control the overall operation of the pilot signal receiving device according to the control command, such as starting or stopping the operation.
  • the communication and control module 68 can also control the sampling process of the analog to digital converter in the frequency detection module 64.
  • the frequency detection module 64 includes an analog to digital converter 641 and an FFT unit 642.
  • the communication and control module 68 specifically includes:
  • the gain setting unit 681 is connected to the amplification and filtering module 63, and is configured to set an amplification gain coefficient of the amplification and filtering module 63;
  • a sampling control unit 682 is coupled to the analog to digital converter 641 for controlling the analog to digital converter 641 Sampling process
  • the control interaction unit 683 is connected to the FFT unit 642, the target dispersion determining unit 652, and the channel analyzing module 67, and is configured to report the frequency and amplitude values of the at least two pilot signals output by the frequency detecting module 64 according to the control instruction of the control plane.
  • the channel analysis module 67 outputs optical power and channel status of the wavelength channel corresponding to the at least two pilot signals, and acquires link configuration information from the control plane.
  • control interaction unit 683 can be implemented by a CPU, and the gain setting unit 681, the sampling control unit 682, the FFT unit 642, and the channel analysis module can be implemented in one FPGA.
  • the pilot signal receiving apparatus further includes: a second beam splitter, coupled to the dispersive module 61, for downloading the multi-wavelength channel from a WDM optical network link The optical signal, and the dispersion module 61 is described.
  • the optical signals downloaded by the beam splitters of the multiple monitoring points can also be switched by the 1*Z optical switch, that is, multiple monitoring points share one pilot.
  • the second beam splitter is Z
  • Z is a natural number greater than 1
  • each second beam splitter is disposed at a different monitoring point on the WDM optical network link;
  • the apparatus further includes: a 1*Z optical switch, wherein the Z second beam splitters are coupled to the dispersive module 61 via the 1*Z optical switch.
  • one of the optical signals is selected and sent to the dispersion module 61.
  • the embodiment of the present invention adds a dispersion module before the photoelectric conversion module in the pilot signal receiving device, and sets the dispersion amount to satisfy the amount of dispersion required to be adjusted by the SRS crosstalk, thereby increasing the output of the dispersion module.
  • the cumulative amount of dispersion of the optical signal causes dispersion to occur between the pilot signals of different wavelength channels, thereby suppressing the crosstalk of the pilot signal to a desired degree.
  • the dispersion module is in the pilot signal receiving device, the amount of dispersion on the link does not change, so the traffic is not affected.
  • the pilot signal-based monitoring technology can be applied to optical networks with long distance, dense wavelength division, and high fiber input power. Multi-point monitoring can also be achieved with 1 x Z optical switches, further reducing costs.
  • a dispersion module composed of a circulator and a ⁇ FBG is used, and the cumulative dispersion amount introduced is 1360 picoseconds per nanometer (ps/nm), and the insertion loss is 4 decibels (dB).
  • the single-wave input optical power is 1 dB milliwatt (dBm).
  • the SRS crosstalk of the pilot signal is reduced by 4 dB.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例提供一种抑制导频信号串扰的方法、装置及导频信号接收装置。方法包括:获取已下载的多波长信道的光信号的当前累积色散量,所述已下载的多波长信道的光信号携带有至少两个导频信号;根据SRS串扰目标值、链路配置信息、所述至少两个导频信号的频率和幅度值,确定满足所述SRS串扰目标值所需的目标累积色散量;根据所述目标累积色散量和当前累积色散量确定需调整的色散量;根据所述需调整的色散量,控制对当前下载的多波长信道的光信号进行色散累积。本发明实施例可以将导频信号的SRS串扰抑制在所需的程度。

Description

抑制导频信号串扰的方法、 装置及导频信号接收装置 技术领域
本发明实施例涉及光网络技术领域, 尤其涉及一种抑制导频信号串扰 的方法、 装置及导频信号接收装置。 背景技术
随着移动网络和互联网业务近年来突飞猛进的发展, 业务需求对承载 网络的带宽、 传输距离和交换容量等方面提出了更高的要求, 波分复用 ( Wavelength Division Multiplexing, 简称 WDM ) 光网络因此得到迅速普 及。 大容量波分复用光网络中大量的光纤互联、 密集的波长资源和动态的 波长业务调度给网络运营、 管理和维护提出了巨大的挑战。 图 1为一种基 于导频信号的 WDM光网络状态监测方法的示意图。 如图 1所示, A站点 和 B站点通过光纤及光放大器相连接, 光放大器包括掺饵光纤放大器
( Erbium-doped Optical Fiber Amplifier, 简称 EDFA ) 和分束器, 在光放 大器的监测端口设置有导频信号接收装置。其中,导频信号接收装置包括: 光电探测器, 放大器, 滤波器和电学频谱分析仪。 首先为 WDM光网络中 的每个波长信道上调制一个频率唯一的导频信号, 然后在光放大器的监测 端口使用分束器将一小部分光信号下载, 接入导频信号接收装置。 在导频 信号接收装置中, 光信号由光电探测器接收, 经放大器和滤波器处理, 由 电学频谱分析仪检测导频信号的频率来识别波长信道, 检测导频信号的幅 度来计算出相应波长信道的光功率。 另外, 还可以在 WDM光网络的光分 叉复用器 ( Optical Add/Drop Multiplexer, 简称 OADM ) 等节点的监测端 口处使用导频信号接收装置。
但是, 受激拉曼散射 ( Stimulated Raman scattering, 简称 SRS ) 效应 会将导频信号串扰至其他波长信道中, 而在导频信号接收装置中, 使用同 一光电探测器同时接收多个波长信道的导频信号, 其他波长信道上的串扰 和本波长信道上的导频信号处于相同的频率, 无法分辨。 因此, SRS效应 产生的串扰对计算本波长信道的光功率引入了误差, 对判断本波长信道的 状态引入了干扰。
基于可调光滤波器的抑制 SRS效应的方案是:通过可调光滤波器依次 滤出各波长, 使用同一光电二极管接收, 依次探测各波长信道, 并计算相 应的光功率。 各波长信道在时间上分开, 导频信号和其他波长信道的串扰 被隔离, 因此消除了干扰。 基于波带滤波器的抑制 SRS效应的方案是: 由 于波长间隔越大, SRS串扰越严重, 因此利用波带滤波器将光信号分成长 短两个波带, 将串扰最严重的波长间隔较大的光信号从空间上隔离, 分别 独立地进行光电转换及导频信号检测, 从而降低了串扰。 可调光学滤波器 方案需要使用昂贵的可调光滤波器, 成本较高, 而波带滤波器方案则需使 用多个并列的光电二极管和导频信号检测装置, 结构复杂, 并且 SRS抑制 效果越好, 复杂度越高。 发明内容 本发明实施例提供一种抑制导频信号串扰的方法、 装置及导频信号接 收装置, 用以提供一种成本低、 结构简单的抑制 SRS效应的解决方案。
一方面, 本发明实施例提供了一种抑制导频信号串扰的方法, 包括: 获取已下载的多波长信道的光信号的当前累积色散量, 所述已下载的 多波长信道的光信号携带有至少两个导频信号;
根据受激拉曼散射 SRS串扰目标值、链路配置信息、 所述至少两个导 频信号的频率和幅度值,确定满足所述 SRS串扰目标值所需的目标累积色 散量;
根据所述目标累积色散量和当前累积色散量确定需调整的色散量; 根据所述需调整的色散量, 控制对当前下载的多波长信道的光信号进 行色散累积。
另一方面,本发明实施例提供了一种抑制导频信号串扰的装置, 包括: 当前色散获取单元, 用于获取已下载的多波长信道的光信号的当前累 积色散量, 所述已下载的多波长信道的光信号携带有至少两个导频信号; 色散目标确定单元, 用于根据受激拉曼散射 SRS串扰目标值、链路配 置信息、 所述至少两个导频信号的频率和幅度值, 确定满足所述 SRS串扰 目标值所需的目标累积色散量; 调整量确定单元, 用于根据所述目标累积色散量和当前累积色散量确 定需调整的色散量;
调整控制单元, 用于根据所述需调整的色散量, 控制对当前下载的多 波长信道的光信号进行色散累积。
再一方面, 本发明实施例提供了一种导频信号接收装置, 包括: 色散模块, 用于对从波分复用 WDM光网络链路上下载的多波长信道 的光信号进行色散累积, 所述多波长信道的光信号携带有至少两个导频信 号;
光电转换模块, 与所述色散模块连接, 用于将所述色散模块输出的光 信号转换成电信号;
放大与滤波电路, 与所述光电转换模块连接, 用于对所述光电转换模 块输出的电信号依次进行放大和带通滤波, 所述带通滤波的频带为所述至 少两个导频信号的频率范围;
频率检测模块, 与所述放大与滤波电路连接, 用于对所述放大与滤波 电路输出的电信号进行频率检测, 得到所述至少两个导频信号的频率和幅 度值;
色散量调整模块, 与所述频率检测模块和色散模块连接, 用于根据 SRS串扰目标值、链路配置信息、所述至少两个导频信号的频率和幅度值, 确定满足所述 SRS串扰目标值所需的目标累积色散量,根据所述目标累积 色散量和当前累积色散量确定需调整的色散量, 并根据所述需调整的色散 量调整所述色散模块的色散量。
本发明实施例采用根据导频信号的频率、 幅度值和链路配置信息, 确 定为满足所述 SRS串扰目标值的目标累积色散量,结合目标累积色散量和 当前累积色散量得到需调整的色散量, 再根据需调整的色散量控制对从当 前下载的多波长信道的光信号进行色散累积的技术手段, 使得色散累积后 不同波长信道的光信号发生色散走离, 一个波长信道中的导频信号向另一 波长信道串扰的累积效率降低, 从而将当前下载的多波长信道的光信号中 导频信号的 SRS串扰抑制在所需的程度。 附图说明 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲 , 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为一种基于导频信号的 WDM光网络状态监测方法的示意图; 图 2为 OADM节点中的波长路径跟踪的示意图;
图 3A为无 SRS串扰时两波长信道的光频和 RF的频谱图;
图 3B为有 SRS串扰时两波长信道的光频和 RF的频谱图;
图 4为本发明实施例提供的一种抑制导频信号串扰的方法的流程示意 图;
图 5为本发明实施例提供的一种抑制导频信号串扰的装置的结构示意 图;
图 6为本发明实施例提供的一种导频信号接收装置的结构示意图; 图 7为本发明实施例提供的又一种导频信号接收装置的结构示意图; 图 8为本发明实施例提供的再一种导频信号接收装置的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
导频信号可以用来实现 WDM光网络中的光纤自动发现、 波长路径跟 踪、 波长信道光功率监测与光网络功率管理、 链路故障发现等功能, 为 WDM光网络状态监测提供了一种简单、低成本的方案。 图 2为 OADM节 点中的波长路径跟踪的示意图。 如图 2所示, A站点将导频信号 1加载在 中心波长为 的波长信道 1中, 将导频信号 2加载在中心波长为 λ 2的波 长信道 2中; Β站点为 ROADM节点, 将加载有导频信号 1的波长信道 1 传递给 C站点, 将加载有导频信号 2的波长信道 2传递给 D站点。 在光 网络中的各个监测点, 如各站点, 使用导频信号接收装置来检测导频信号 1和导频信号 2便可获知波长信道 1和波长信道 2的传输路径和光功率。 图 3A为无 SRS串扰时两波长信道的光频谱图和光电转换后的射频 ( Radio Frequency, 简称 RF ) 频语图, 其中, 左边为光频语图, 右边为 光电转换后的 RF频谱图。 图 3B为有 SRS串扰时两波长信道的光频谱图 和光电转换后的 RF频谱图, 其中, 左边为光频谱图, 右边为光电转换后 的 RF频谱图。
如图 3A所示, 两路中心波长为 λ 1 λ 2的 WDM波长信道, 光频分 别为 fc l、 fc2 , 光功率分别为 P l、 P2 , 对其分别施加导频信号 fl、 f2。 从 光频谱图上看, 导频信号加载在光载波的两个边带上, 假设导频信号 fl、 f2的调制深度均为 m, 则光载波的幅度值分别为:
P(fcl+fl)=m*P l ( 1 )
P(fc2+f2)=m*P2 ( 2 ) 在将光信号转化为电信号后, 得到 RF频谱, 从中提取导频频率 fl和 f2 , 其幅度值分别为:
P(fl)= k*P(fcl+fl)= k*m*Pl ( 3 )
P(f2)= k*P(fc2+f2)= k*m*P2 ( 4 ) 其中, k为导频信号接收装置的转化系数。 k和光电探测器的响应度、 放大器的增益系数、 滤波器的衰减系数有关。 因此, 利用接收的 RF频谱 中 fl、 f2的幅度值 P(fl)、 P(f2)可以计算出相应 WDM波长信道的光功率 P l、 P2。
如图 3B所示, 由于 SRS效应, 对于 λ 和 λ 2两个 WDM波长信道, 其各自的光频 fcl和 fc2的边带上不仅包含各自的导频信号 fl、 f2 , 还有 相互之间的串扰 f2、 fl , 其幅度值分别为:
P(fcl+f2)=c*P2 ( 5 ) P(fc2+fl)=c*P l ( 6 ) c为和 SRS效应有关的串扰系数。
在光电探测器将光信号转化为电信号后, 光频 fcl边带上的导频信号 fl和光频 fc2边带上的串扰 fl在 RF频谱上重叠, 光频 fc2边带上的导频 信号 f2和光频 fcl边带上的串扰 f2在 RF频谱上重叠。 因此, 在 RF频谱 中, 导频信号 fl和 f2的幅度值分别为: P(fl )= k* [P(fc l+fl )+ P(fc2+fl)]= k*m*P l+k*c*P2 ( 7 )
P(f2)= k* [P(fc2+f2)+ P(fc l +f2)]= k*m*P2+k*c*P l ( 8 )
( 7 ) 式中的 k*c*P2、 ( 8 ) 两式中的 k*c*P l均为 SRS串扰项, 可以 看出, SRS串扰对光功率检测引入了误差, 且若 SRS串扰足够大, 会引起 对信道状态的误判。
针对上述问题, 本发明实施例提供了一种抑制导频信号串扰的方案, 具体可以通过图 4所示方法实现。
图 4为本发明实施例提供的一种抑制导频信号串扰的方法的流程示意 图。 如图 4所示, 包括:
401、 获取已下载的多波长信道的光信号的当前累积色散量, 所述已 下载的多波长信道的光信号携带有至少两个导频信号。
举例来说, 抑制导频信号串扰的装置执行 401。 抑制导频信号串扰的 装置通常设置在各监测点, 与同一监测点的导频信号接收装置连接。 所述 至少两个导频信号中每个导频信号分别对应所述多波长信道中的一个。
需要说明的是, 所述多波长信道的光信号是从 WDM光网络链路上下 载的。 具体地, 当前累积色散量的获取有至少两种实现方式, 一种是根据 链路配置信息来获取, 一种是直接对已下载的多波长信道的光信号进行色 散量的检测来获取。
若根据链路配置信息来获取, 具体地, 所述链路配置信息中的下载位 置信息包括所述已下载的多波长信道的光信号经过的光纤段数目、 各光纤 段的长度、 各光纤段的色散系数以及所述已下载的多波长信道的光信号经 过的色散模块数目、 各色散模块的色散量, 所述经过的光纤段包括色散补 偿光纤 ( Dispersion Compensating Fiber, 简称 DCF )段; 对应地, 401具 体包括:
根据公式 (9 ) 获取当前累积色散量
DA' =∑l1 Di - Li +∑f=1 DRii ( 9 ) 其中, N为经过的光纤段数目, Dt、 ^分别为第 i段光纤的色散系数 和长度, M为经过的色散模块数目, Z) 为第 i个色散模块的色散量。
具体地, 所述经过的色散模块不仅包括所述多波长信道的光信号在 WDM光网络链路的传输过程中经过的色散模块, 还包括本监测点的导频 信号接收装置中的色散模块。
需要说明的是, 在计算当前累积色散量时, 经过的色散补偿光纤 DCF 段的色散系数和长度也需累加进来。
若是直接对光信号进行检测来获取, 则可以在导频信号接收装置中色 散模块后通过分束器下载部分光信号, 利用色散监测方法直接测量下载的 部分光信号的当前累积色散量, 具体的色散监测方法包括: 时钟功率监测 法、 时钟相移监测法、 双边带导频相移监测法等。
402、 根据 SRS串扰目标值、 链路配置信息、 所述至少两个导频信号 的频率和幅度值, 确定满足所述 SRS串扰目标值所需的目标累积色散量。
具体地, 所述至少两个导频信号的频率和幅度值为同一监测点的导频 信号接收装置检测得到的。
上述 SRS串扰目标值为根据对光功率计算和信道状态判断的容忍度 预设的一个目标值。 链路配置信息可以从控制平面获取, 具体可以包括光 纤类型、 所述多波长信道的光信号的下载位置信息、 所述多波长信道的光 信号的入纤光功率等, 其中, 入纤光功率可以由该光信号的发送站点的导 频信号接收装置检测获知后上报控制平面, 再由控制平面告知本监测点的 抑制导频信号串扰的装置。 具体地, 所述多波长信道的光信号的下载位置 信息可以是抑制导频信号串扰的装置在 WDM光网络链路上相对于所述多 波长信道的光信号的发送站点的位置。
进一步地, 402具体可以包括:
根据所述光纤类型确定拉曼增益系数、 光纤有效模场面积和光纤的损 耗系数, 并根据所述下载位置信息确定所述已下载的多波长信道的光信号 的传输距离;
根据所述至少两个导频信号的频率和预先设置的频率与波长的对应 关系, 确定所述至少两个导频信号中的一个导频信号相对各其他导频信号 的波长间隔;
根据公式 ( 10 ) 确定满足所述 SRS串扰目标值所需的总累积色散量
Figure imgf000009_0001
其中, 为导频信号的个数, ^为拉曼增益系数, A//为光纤有效模 场面积, "为光纤的损耗系数, 为传输距离, P。为入纤光功率, 为所 述至少两个导频信号中的一个导频信号相对第 个其他导频信号的波长间 隔, 为所述一个导频信号的频率, /ρ)为所述一个导频信号的幅度值, CSRS为 SRS串扰目标值。
由于针对每个导频信号, 各其他导频信号均会对其造成 SRS串扰, 因 此, 需要将所有其他导频信号对该导频信号的 SRS串扰累加, 并且使得累 加得到的总 SRS串扰不超过 SRS串扰目标值。 需要说明的是,公式( 10 ) 仅给出了针对一个导频信号计算所有其他导频信号对该导频信号的总 SRS串扰, 对应地, 根据公式 ( 10 ) 确定的总累积色散量 也仅针对该 一个导频信号的,但是,由于至少两个导频信号均是在相同的链路上传输, 因此一个导频信号对应的总累积色散量 DA对各其他导频信号均适用。
403、 根据所述目标累积色散量和当前累积色散量确定需调整的色散 量。
通常, 当前累积色散量小于目标累积色散量, 因此, 将目标累积色散 量减去当前累积色散量, 得到需调整的色散量。
404、 根据所述需调整的色散量, 控制对当前下载的多波长信道的光 信号进行色散累积。
需要说明的是, 当经过幅度调制的两个波长信道的光信号发生 SRS 串扰时, 若累积色散量为 0 , 则一个波长信道的导频信号向另一个波长信 道串扰的积累转移效率较高, 即另一个波长信道的导频信号受到的 SRS 串扰大; 若累积色散量不为 0 , 则两波长信道的光信号会发生色散走离, 一个波长信道的导频信号向另一个波长信道串扰的积累转移效率会降低, 即另一个波长信道的导频信号受到的 SRS串扰降低。
404之后, 基于所述色散累积后的光信号进行导频信号的检测, 可以 再次得到至少两个导频信号的频率和幅度值, 由于进行了色散累积, 抑制 了 SRS干扰,此次的得到至少两个导频信号的频率和幅度值要比 402中使 用的至少两个导频信号的频率和幅度值更准确。
所述控制的对象通常是导频信号接收装置中的色散模块。 当色散模块 为可调色散单元时, 404具体包括:
将用于对当前下载的多波长信道的光信号进行色散累积的可调色散 单元的色散量调整为所述可调色散单元的当前色散量与所述需调整的色 散量之和。
当色散模块包括多个色散量相异的固定色散单元时, 404具体包括: 确定色散量与当前固定色散单元的色散量和所述需调整的色散量之 和最接近的固定色散单元, 并接入所述最接近的固定色散单元。
具体地, 所述接入所述最接近的固定色散单元可以通过切换色散模块 中的光开关来实现。
需要说明的是, 进行色散累积就是增加累积色散量的绝对值。 目标累 积色散值通常无法一次调整到位, 可能需要多次执行 401〜404 , 直至 403 中确定需调整的色散量在一个预设的范围内, 才停止继续执行 404。
本发明实施例采用根据导频信号的频率、 幅度值和链路配置信息, 确 定为满足所述 SRS串扰目标值的目标累积色散量,结合目标累积色散量和 当前累积色散量得到需调整的色散量, 再根据需调整的色散量控制对从当 前下载的多波长信道的光信号进行色散累积的技术手段, 使得色散累积后 不同波长信道的光信号发生色散走离, 一个波长信道中的导频信号向另一 波长信道串扰的累积效率降低, 从而将当前下载的多波长信道的光信号中 导频信号的 SRS串扰抑制在所需的程度。
图 5为本发明实施例提供的一种抑制导频信号串扰的装置的结构示意 图。 如图 5所示, 包括:
当前色散获取单元 51 ,用于获取已下载的多波长信道的光信号的当前 累积色散量, 所述已下载的多波长信道的光信号携带有至少两个导频信号; 色散目标确定单元 52 , 用于根据 SRS串扰目标值、 链路配置信息、 所述至少两个导频信号的频率和幅度值,确定满足所述 SRS串扰目标值所 需的目标累积色散量;
调整量确定单元 53 ,用于根据所述目标累积色散量和当前累积色散量 确定需调整的色散量;
调整控制单元 54 , 用于根据所述需调整的色散量, 控制对当前下载的 多波长信道的光信号进行色散累积。
本发明实施例中的抑制导频信号串扰的装置通常设置在各监测点, 与 同一监测点的导频信号接收装置连接。 具体地, 所述至少两个导频信号的 频率和幅度值为同一监测点的导频信号接收装置检测得到的。 上述 SRS串扰目标值为根据对光功率计算和信道状态判断的容忍度 预设的一个目标值。 链路配置信息可以从控制平面获取, 具体可以包括光 纤类型、 所述多波长信道的光信号的下载位置信息、 所述多波长信道的光 信号的入纤光功率等, 其中, 入纤光功率可以由该光信号的发送站点的导 频信号接收装置检测获知后上报控制平面, 再由控制平面告知本监测点的 抑制导频信号串扰的装置。
进一步地, 色散目标确定单元 52具体用于:
根据所述光纤类型确定拉曼增益系数、 光纤有效模场面积和光纤的损 耗系数, 并根据所述下载位置信息确定所述已下载的多波长信道的光信号 的传输距离;
根据所述至少两个导频信号的频率和预先设置的频率与波长的对应 关系, 确定所述至少两个导频信号中的一个导频信号相对各其他导频信号 的波长间隔;
根据公式 ( 10 ) 确定满足所述 SRS串扰目标值所需的总累积色散量
DA
具体地, 当前色散获取单元 51获取当前累积色散量有至少两种实现 方式, 一种是根据链路配置信息来获取, 一种是直接对已下载的多波长信 道的光信号进行色散量的检测来获取。
若根据链路配置信息来获取, 具体地, 所述链路配置信息中的下载位 置信息包括所述已下载的多波长信道的光信号经过的光纤段数目、 各光纤 段的长度、 各光纤段的色散系数以及所述已下载的多波长信道的光信号经 过的色散模块数目、 各色散模块的色散量, 所述经过的光纤段包括色散补 偿光纤 DCF段; 当前色散获取单元 51具体用于, 根据公式 (9 ) 获取当 前累积色散量
若是直接对光信号进行检测来获取, 则可以在导频信号接收装置中色 散模块后通过分束器下载部分光信号, 利用色散监测方法直接测量下载的 部分光信号的当前累积色散量, 具体的色散监测方法包括: 时钟功率监测 法、 时钟相移监测法、 双边带导频相移监测法等。
通常, 当前累积色散量小于目标累积色散量。 对应地, 调整量确定单 元 53具体用于, 将目标累积色散量减去当前累积色散量, 得到需调整的 色散量。
具体地, 调整控制单元 54指示的对象通常是导频信号接收装置中的 色散模块。 当色散模块为可调色散单元时, 调整控制单元 54具体用于, 将用于对当前下载的多波长信道的光信号进行色散累积的可调色散 单元的色散量调整为所述可调色散单元的当前色散量与所述需调整的色 散量之和。
当色散模块包括多个色散量相异的固定色散单元时,调整控制单元 54 具体用于, 确定色散量与当前固定色散单元的色散量和所述需调整的色散 量之和最接近的固定色散单元, 并接入所述最接近的固定色散单元。
具体地, 所述接入所述最接近的固定色散单元可以通过切换色散模块 中的光开关来实现。
本发明实施例采用根据导频信号的频率、 幅度值和链路配置信息, 确 定为满足所述 SRS串扰目标值的目标累积色散量,结合目标累积色散量和 当前累积色散量得到需调整的色散量, 再根据需调整的色散量控制对从当 前下载的多波长信道的光信号进行色散累积的技术手段, 使得色散累积后 不同波长信道的光信号发生色散走离, 一个波长信道中的导频信号向另一 波长信道串扰的累积效率降低, 从而将当前下载的多波长信道的光信号中 导频信号的 SRS串扰抑制在所需的程度。
图 6为本发明实施例提供的一种导频信号接收装置的结构示意图。 如 图 6所示, 包括:
色散模块 61 ,用于对从 WDM光网络链路上下载的多波长信道的光信 号进行色散累积, 所述多波长信道的光信号携带有至少两个导频信号; 光电转换模块 62 , 与色散模块 61连接, 用于将色散模块 61输出的光 信号转换成电信号;
放大与滤波模块 63 , 与光电转换模块 62连接, 用于对光电转换模块 62输出的电信号依次进行放大和带通滤波,所述带通滤波的频带为所述至 少两个导频信号的频率范围;
频率检测模块 64 , 与放大与滤波模块 63连接, 用于对所述放大与滤 波电路输出的电信号进行频率检测, 得到所述至少两个导频信号的频率和 幅度值;
色散量调整模块 65 , 与频率检测模块 64和色散模块 61连接, 用于根 据 SRS串扰目标值、链路配置信息、 所述至少两个导频信号的频率和幅度 值, 确定满足所述 SRS串扰目标值所需的目标累积色散量,根据所述目标 累积色散量和当前累积色散量确定需调整的色散量, 并根据所述需调整的 色散量调整色散模块 61的色散量。
具体地, 光电转换模块 62可以通过光电二极管或光电探测器实现, 光电探测器包括 PIN光电探测器、 APD光电探测器等。
具体地, 放大与滤波模块 63可以包括依次连接的放大模块和滤波模 块, 放大模块可以通过跨阻放大器及后续多级电压放大器实现, 滤波模块 可以利用模拟电路实现, 也可以经模数转换器后利用数字滤波器实现。
具体地, 频率检测模块 64可以通过电学频谱分析仪实现, 也可以由 模数转换器和现场可编程门阵列 ( Field - Programmable Gate Array , 简称 FPGA ) 实现, 其中模数转换器对述放大和带通滤波后输出的信号进行采 样,再通过 FPGA进行快速傅立叶变换( Fast Fourier Transform,简称 FFT ) 得到导频信号的频谱。当频率检测模块 64由模数转换器和 FPGA实现时, 可选地还在频率检测模块 64之前增加一个电压放大器, 用于对放大与滤 波模块 63输出的电信号进行放大, 以满足模数转换器的输入电压幅度要 求。
具体地, 色散量调整模块 65的功能与本发明实施例提供的抑制导频 信号串扰的装置相近。
进一步地, 色散量调整模块 65具体包括:
当前色散获取单元 651 , 用于获取所述多波长信道的光信号的当前累 积色散量;
色散目标确定单元 652, 与频率检测模块 64连接, 用于根据 SRS串 扰目标值、 链路配置信息、 所述至少两个导频信号的频率和幅度值, 确定 满足所述 SRS串扰目标值所需的目标累积色散量;
调整量确定单元 653 , 与当前色散获取单元 651和色散目标确定单元 652连接, 用于将所述目标累积色散量减去所述当前累积色散量, 得到所 述需调整的色散量; 调整控制单元 654 , 与调整量确定单元 653和色散模块 61连接, 用于 根据所述需调整的色散量调整色散模块 61的色散量。
在本发明的一个可选的实施例中, 所述链路配置信息包括光纤类型、 所述多波长信道的光信号的下载位置信息、 所述多波长信道的光信号的入 纤光功率; 色散目标确定单元 652具体用于,
根据所述光纤类型确定拉曼增益系数、 光纤有效模场面积和光纤的损 耗系数, 并根据所述下载位置信息确定所述多波长信道的光信号的传输距 离;
根据所述至少两个导频信号的频率和预先设置的频率与波长的对应 关系, 确定所述至少两个导频信号中的一个导频信号相对各其他导频信号 的波长间隔;
根据公式 ( 10 ) 确定满足所述 SRS串扰目标值所需的总累积色散量
DA
在本发明的又一个可选的实施例中, 所述下载位置信息包括所述光信 号经过的光纤段数目、 各光纤段的长度、 各光纤段的色散系数以及所述光 信号经过的色散模块数目、 各色散模块的色散量, 所述经过的光纤段包括 色散补偿光纤 DCF段; 当前色散获取单元 651具体用于, 根据公式 (9 ) 获取当前累积色散量 在这种场景下, 色散量调整模块 65整体上可以 通过 FPGA或 CPU实现。
图 7为本发明实施例提供的又一种导频信号接收装置的结构示意图。 在图 6的基础上, 所述导频信号接收装置还包括: 第一分束器 66 , 色散模 块 61和光电转换模块 62通过第一分束器 66连接;
当前色散获取单元 651与第一分束器 66连接,当前色散获取单元 651 具体用于, 从第一分束器 66下载一部分光信号, 对所述一部分光信号进 行色散量的检测, 获取所述当前累积色散量;
光电转换模块 62具体用于, 将从第一分束器 66下载另一部分光信号 转换成电信号。
具体地, 当前色散获取单元 651可以采用时钟功率监测法、 时钟相移 监测法、双边带导频相移监测法等方法进行色散量的检测。在这种场景下, 当前色散获取单元 651可以通过一个单独的硬件实现,色散量调整模块 65 的其他单元可以通过 FPGA或 CPU实现。
在本发明的又一个可选的实施例中, 色散模块 61为可调色散单元; 调整控制单元 654具体用于, 将所述可调色散单元的色散量调整为所 述可调色散单元的当前色散量与所述需调整的色散量之和。
通常, 初始状态时, 设置色散模块 61的色散量为 0。 具体地, 可调色 散单元包括依次连接的环形器和色散量可调光纤布拉格光栅 ( Fiber Bragg Grating, 简称 FBG ) 或其他高色散系数且色散量可调的器件等。 具体地, 环形器用来从色散模块的输入端口接收光信号, 将光信号送至色散量可调 FBG, 再将色散量可调 FBG反射回的增加了累积色散量的光信号送至色 散模块的输出端口。 色散量可调 FBG用来增加累积色散量, 使多波长信 道的光信号之间发生色散走离, 色散量可调 FBG的色散量可由色散调节 端口进行设置。
在本发明的又一个可选的实施例中, 色散模块 61包括 1*Y光开关和 Υ个固定色散单元, Υ为大于 1的自然数, 所 Υ多个固定色散单元的色散 量相异;
调整控制单元 654还与所述 1 *Υ光开关连接,所述调整控制单元具体 用于确定色散量与所述需调整的色散量最接近的固定色散单元, 并将所述 1*Υ光开关切换到所述最接近的固定色散单元。
通常, 在初始状态将设置色散模块 61的色散量为 0, 也就是在初始状 态将 1*Υ光开关切换到色散量为 0的固定色散单元。 具体地, 固定色散单 元包括色散补偿光纤 DCF, 高色散系数光纤, 环形谐振器, 依次连接的环 形器和固定色散量的 FBG, 或其他高色散系数的器件等。
图 8为本发明实施例提供的再一种导频信号接收装置的结构示意图。 在图 6的基础上, 所述导频信号接收装置还包括:
信道分析模块 67, 与频率检测模块 64连接, 用于根据所述至少两个 导频信号的频率和幅度值、 放大增益系数、 滤波衰减系数、 所述光电转换 模块的响应度以及各导频信号的调制深度, 计算所述至少两个导频信号对 应的波长信道的光功率, 并判断所述至少两个导频信号对应的波长信道的 信道状态。
根据导频信号的频率 fi和幅度值 P(fi), 其中 i为波长信道序号, 根据 公式 ( 11 ) 可以得到该导频信号对应的波长信道的光功率 Pi:
Pi= P(fi)/ k*m ( 11 ) 其中, k为导频信号接收装置的转化系数, m为导频信号的调制深度。 具体地, 各导频信号的调制深度是预先设置的, 转化系数可以根据放大与 滤波电路 63的放大增益系数、 滤波衰减系数和光电转换模块 62的响应度 得到, 而放大增益系数、 滤波衰减系数和响应度可以根据导频信号接收装 置的实际情况预先设置。
具体地, 波长信道的信道状态是指波长信道的光功率是否在预先设定 的范围内的判断结果, 若光功率是在预先设定的范围内, 则信道状态为正 常; 若光功率不在预先设定的范围内, 则信道状态为异常。 进一步地, 对 于信道状态为异常的波长信道的导频信号可以不进行检测, 对应地, 色散 目标确定单元 652在根据公式( 10 )确定目标累积色散量时不考虑该导频 信号。
可选地, 所述导频信号接收装置还包括:
通信与控制模块 68 , 分别与放大与滤波模块 63、 频率检测模块 64、 色散量调整模块 65、 信道分析模块 67连接, 用于设置放大与滤波模块 63 的放大增益系数; 根据控制平面的控制指令上报频率检测模块 64输出的 所述至少两个导频信号的频率和幅度值, 以及信道分析模块 67输出所述 至少两个导频信号对应的波长信道的光功率和信道状态; 从控制平面获取 链路配置信息。
进一步地, 通信与控制模块 68还可以告知信道分析模块 67所述至少 两个导频信号的频率分配, 以使信道分析模块 67知道频率和波长信道的 对应关系, 从而判断信道状态。 通信与控制模块 68还可以根据控制指令 对导频信号接收装置整体动作进行控制, 比如开始或停止工作等。
进一步地, 通信与控制模块 68还可以控制频率检测模块 64中模数转 换器的采样过程。 具体地, 频率检测模块 64包括模数转换器 641和 FFT 单元 642。 对应地, 通信与控制模块 68具体包括:
增益设置单元 681 , 与放大与滤波模块 63连接, 用于设置放大与滤波 模块 63的放大增益系数;
采样控制单元 682 ,与模数转换器 641连接,用于控制模数转换器 641 的采样过程;
控制交互单元 683 , 与 FFT单元 642、 目标色散确定单元 652、 信道 分析模块 67连接, 用于根据控制平面的控制指令上报频率检测模块 64输 出的所述至少两个导频信号的频率和幅度值, 以及信道分析模块 67输出 所述至少两个导频信号对应的波长信道的光功率和信道状态, 并从控制平 面获取链路配置信息。
应用中, 控制交互单元 683可以通过 CPU实现, 增益设置单元 681、 采样控制单元 682、 FFT单元 642和信道分析模块可以在一个 FPGA中实 现。
在本发明的又一个可选的实施例中, 所述导频信号接收装置还包括: 第二分束器, 与色散模块 61连接, 用于从 WDM光网络链路上下载 所述多波长信道的光信号, 并发述色散模块 61。
进一步地, 为了实现在 WDM光网络中多个监测点的 SRS串扰抑制, 还可以通过 1 *Z光开关切换多个监测点的分束器下载的光信号, 即多个监 测点共用一个导频信号接收装置。 具体地, 所述第二分束器为 Z个, Z为 大于 1的自然数, 各第二分束器设置在所述 WDM光网络链路上的不同监 测点;
所述装置还包括: 1 *Z光开关, 所述 Z个第二分束器均通过所述 1 *Z 光开关连接色散模块 61。
具体地, 通过依次切换 1 *Z光开关, 选择其中 1路的光信号送至色散 模块 61。
由于链路中的累积色散量难以改变, 本发明实施例在导频信号接收装 置中光电转换模块之前加入色散模块,将其色散量设置满足 SRS串扰的需 调整的色散量, 可以增加色散模块输出光信号的累积色散量, 使不同波长 信道的导频信号之间发生色散走离, 从而将导频信号的串扰抑制在所需的 程度。 并且由于色散模块在导频信号接收装置中, 而链路上的色散量并未 发生改变, 所以并不影响业务。 另外, 由于本发明实施例抑制 SRS串扰的 效果较好, 使得基于导频信号的监测技术能够应用于长距离、 密集波分、 高入纤功率的光网络场合。 还可以采用 1 x Z光开关实现多点监测, 进一 步降低成本。 实验验证: 975千米(km )光纤链路, 共 13跨段, 每跨段包括 75 km 普通单模光纤, 15 km 色散补偿光纤和光纤放大器, 链路累积色散量由色 散补偿光纤 DCF补偿后近似为零。 在导频信号接收装置中, 采用一个由 环行器和啁啾 FBG构成的色散模块,引入的累积色散量为 1360 皮秒每纳 米( ps/nm ) , 插入损耗为 4分贝 ( dB ) 。 对于间隔 2.9太赫兹( THz ) 的 两个波长信道, 单波入纤光功率均为 1分贝毫瓦 (dBm ) 。 相比不使用色 散模块的导频信号接收装置, 本发明实施例所提出的导频信号接收装置中, 导频信号的 SRS串扰降低了 4 dB。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种抑制导频信号串扰的方法, 其特征在于, 包括:
获取携带有导频信号的已下载的多波长信道的光信号的当前累积色 散量, 所述已下载的多波长信道的光信号携带有至少两个导频信号; 根据受激拉曼散射 SRS串扰目标值、链路配置信息、 所述至少两个导 频信号的频率和幅度值,确定满足所述 SRS串扰目标值所需的目标累积色 散量;
根据所述目标累积色散量和当前累积色散量确定需调整的色散量; 根据所述需调整的色散量, 控制对当前下载的多波长信道的光信号进 行色散累积。
2、 根据权利要求 1所述的方法, 其特征在于, 所述链路配置信息包 括光纤类型、 所述多波长信道的光信号的下载位置信息、 所述多波长信道 的光信号的入纤光功率;
所述根据 SRS串扰目标值、链路配置信息、 所述至少两个导频信号的 频率和幅度值,确定满足所述 SRS串扰目标值所需的目标累积色散量具体 包括:
根据所述光纤类型确定拉曼增益系数、 光纤有效模场面积和光纤的损 耗系数, 并根据所述下载位置信息确定所述已下载的多波长信道的光信号 的传输距离 ;
根据所述至少两个导频信号的频率和预先设置的导频信号的频率与 波长的对应关系, 确定所述至少两个导频信号中的一个导频信号相对各其 他导频信号的波长间隔;
根据以下公式确定满足所述 SRS串扰目标值所需的目标累积色散量
Figure imgf000020_0001
其中, 为所述导频信号的个数, ^为拉曼增益系数, 为光纤有 效模场面积, "为光纤的损耗系数, 为传输距离, P。为入纤光功率, ΔΑέ为 所述至少两个导频信号中的一个导频信号相对第 个其他导频信号的波长 间隔, 为所述一个导频信号的频率 )为所述一个导频信号的幅度值,
CSRS为 SRS串扰目标值。
3、 根据权利要求 2所述的方法, 其特征在于, 所述下载位置信息包 括所述已下载的多波长信道的光信号经过的光纤段数目、 各光纤段的长度、 各光纤段的色散系数以及所述已下载的多波长信道的光信号经过的色散 模块数目、 各色散模块的色散量, 所述经过的光纤段包括色散补偿光纤 DCF段;
所述获取所述已下载的多波长信道的光信号的当前累积色散量具体 包括:
根据如下公式获取当前累积色散量
N M
Figure imgf000021_0001
其中, N为经过的光纤段数目, Dt、 ^分别为第 i段光纤的色散系数 和长度, M为经过的色散模块数目, Z) 为第 i个色散模块的色散量。
4、 根据权利要求 1-3中任一项所述的方法, 其特征在于, 所述根据所 述需调整的色散量, 控制对当前下载的多波长信道的光信号进行色散累积 具体包括:
将用于对当前下载的多波长信道的光信号进行色散累积的可调色散 单元的色散量调整为所述可调色散单元的当前色散量与所述需调整的色 散量之和。
5、 根据权利要求 1-3中任一项所述的方法, 其特征在于, 所述根据所 述需调整的色散量, 控制对当前下载的多波长信道的光信号进行色散累积 具体包括:
确定色散量与当前固定色散单元的色散量和所述需调整的色散量之 和最接近的固定色散单元, 并接入所述最接近的固定色散单元。
6、 一种抑制导频信号串扰的装置, 其特征在于, 包括:
当前色散获取单元, 用于获取已下载的多波长信道的光信号的当前累 积色散量, 所述已下载的多波长信道的光信号携带有至少两个导频信号; 色散目标确定单元, 用于根据受激拉曼散射 SRS串扰目标值、链路配 置信息、 所述至少两个导频信号的频率和幅度值, 确定满足所述 SRS串扰 目标值所需的目标累积色散量;
调整量确定单元, 用于根据所述目标累积色散量和当前累积色散量确 定需调整的色散量;
调整控制单元, 用于根据所述需调整的色散量, 控制对当前下载的多 波长信道的光信号进行色散累积。
7、 根据权利要求 6所述的装置, 其特征在于, 所述链路配置信息包 括光纤类型、 所述多波长信道的光信号的下载位置信息、 所述多波长信道 的光信号的入纤光功率;
所述色散目标确定单元具体用于:
根据所述光纤类型确定拉曼增益系数、 光纤有效模场面积和光纤的损 耗系数, 并根据所述下载位置信息确定所述已下载的多波长信道的光信号 的传输距离;
根据所述至少两个导频信号的频率和预先设置的频率与波长的对应 关系, 确定所述至少两个导频信号中的一个导频信号相对各其他导频信号 的波长间隔;
根据以下 累积色散量 4 :
Figure imgf000022_0001
其中, 为导频信号的个数, ^为拉曼增益系数, A//为光纤有效模 场面积, "为光纤的损耗系数, 为传输距离, P。为入纤光功率, ΔΑέ为所 述至少两个导频信号中的一个导频信号相对第 个其他导频信号的波长间 隔, 为所述一个导频信号的频率, 为所述一个导频信号的幅度值, CSRS为 SRS串扰目标值。
8、 根据权利要求 7所述的装置, 其特征在于, 所述下载位置信息包 括所述已下载的多波长信道的光信号经过的光纤段数目、 各光纤段的长度、 各光纤段的色散系数以及所述已下载的多波长信道的光信号经过的色散 模块数目、 各色散模块的色散量, 所述经过的光纤段包括色散补偿光纤
DCF段;
所述当前色散获取单元具体用于, 根据如下公式获取当前累积色散量
Figure imgf000023_0001
其中, N为经过的光纤段数目, Dt、 ^分别为第 i段光纤的色散系数 和长度, M为经过的色散模块数目, Z) 为第 i个色散模块的色散量。
9、 根据权利要求 6-8中任一项所述的装置, 其特征在于, 所述调整控 制单元具体用于,
将用于对当前下载的多波长信道的光信号进行色散累积的可调色散 单元的色散量调整为所述可调色散单元的当前色散量与所述需调整的色 散量之和。
10、 根据权利要求 6-8中任一项所述的装置, 其特征在于, 所述调整 控制单元具体用于,
确定色散量与当前固定色散单元的色散量和所述需调整的色散量之 和最接近的固定色散单元, 并接入所述最接近的固定色散单元。
1 1、 一种导频信号接收装置, 其特征在于, 包括:
色散模块, 用于对从波分复用 WDM光网络链路上下载的多波长信道 的光信号进行色散累积, 所述多波长信道的光信号携带有至少两个导频信 号;
光电转换模块, 与所述色散模块连接, 用于将所述色散模块输出的光 信号转换成电信号;
放大与滤波电路, 与所述光电转换模块连接, 用于对所述光电转换模 块输出的电信号依次进行放大和带通滤波, 所述带通滤波的频带为所述至 少两个导频信号的频率范围;
频率检测模块, 与所述放大与滤波电路连接, 用于对所述放大与滤波 电路输出的电信号进行频率检测, 得到所述至少两个导频信号的频率和幅 度值;
色散量调整模块, 与所述频率检测模块和色散模块连接, 用于根据受 激拉曼散射 SRS串扰目标值、链路配置信息、 所述至少两个导频信号的频 率和幅度值, 确定满足所述 SRS串扰目标值所需的目标累积色散量,根据 所述目标累积色散量和当前累积色散量确定需调整的色散量, 并根据所述 需调整的色散量调整所述色散模块的色散量。
12、 根据权利要求 1 1所述的装置, 其特征在于, 所述色散量调整模 块具体包括:
当前色散获取单元, 用于获取所述多波长信道的光信号的当前累积色 散量;
色散目标确定单元, 与所述频率检测模块连接, 用于根据 SRS串扰目 标值、 链路配置信息、 所述至少两个导频信号的频率和幅度值, 确定满足 所述 SRS串扰目标值所需的目标累积色散量;
调整量确定单元, 与所述色散目标确定单元和当前色散获取单元连接 , 用于将所述目标累积色散量减去所述当前累积色散量, 得到所述需调整的 色散量;
调整控制单元, 与所述调整量确定单元和色散模块连接, 用于根据所 述需调整的色散量调整所述色散模块的色散量。
13、 根据权利要求 12所述的装置, 其特征在于, 所述链路配置信息 包括光纤类型、 所述多波长信道的光信号的下载位置信息、 所述多波长信 道的光信号的入纤光功率; 所述色散目标确定单元具体用于,
根据所述光纤类型确定拉曼增益系数、 光纤有效模场面积和光纤的损 耗系数, 并根据所述下载位置信息确定所述多波长信道的光信号的传输距 离;
根据所述至少两个导频信号的频率和预先设置的频率与波长的对应 关系, 确定所述至少两个导频信号中的一个导频信号相对各其他导频信号 的波长间隔;
根据以下 累积色散量
Figure imgf000024_0001
其中, 为导频信号的个数, ^为拉曼增益系数, A//为光纤有效模 场面积, "为光纤的损耗系数, 为传输距离, P。为入纤光功率, ΔΑέ为所 述至少两个导频信号中的一个导频信号相对第 个其他导频信号的波长间 隔, 为所述一个导频信号的频率, /ρ)为所述一个导频信号的幅度值, CSRS SRS串扰目标值。
14、 根据权利要求 13所述的装置, 其特征在于, 所述下载位置信息 包括所述光信号经过的光纤段数目、 各光纤段的长度、 各光纤段的色散系 数以及所述光信号经过的色散模块数目、 各色散模块的色散量, 所述经过 的光纤段包括色散补偿光纤 DCF段; 所述当前色散获取单元具体用于, 根据如下公式获取当前累积色散量
Figure imgf000025_0001
其中, N为经过的光纤段数目, Dt、 ^分别为第 i段光纤的色散系数 和长度, M为经过的色散模块数目, Z) 为第 i个色散模块的色散量。
15、 根据权利要求 13所述的装置, 其特征在于, 还包括: 第一分束 器, 所述色散模块和所述光电转换模块通过所述第一分束器连接;
所述当前色散获取单元与所述第一分束器连接, 所述当前色散获取单 元具体用于, 从所述第一分束器下载一部分光信号, 对所述一部分光信号 进行色散量的检测, 获取所述当前累积色散量;
所述光电转换模块具体用于, 将从所述第一分束器下载另一部分光信 号转换成电信号。
16、 根据权利要求 12- 15中任一项所述的装置, 其特征在于, 所述色 散模块为可调色散单元;
所述调整控制单元具体用于, 将所述可调色散单元的色散量调整为所 述可调色散单元的当前色散量与所述需调整的色散量之和。
17、 根据权利要求 12- 15中任一项所述的装置, 其特征在于, 所述色 散模块包括 1 *Y光开关和 Y个固定色散单元, Υ为大于 1的自然数, 所 Υ 多个固定色散单元的色散量相异;
所述调整控制单元还与所述 1 *Υ光开关连接,所述调整控制单元具体 用于确定色散量与当前固定色散单元的色散量和所述需调整的色散量之 和最接近的固定色散单元,并将所述 1 *Υ光开关切换到所述最接近的固定 色散单元。
18、 根据权利要求 1 -17中任一项所述的装置, 其特征在于, 还包括: 信道分析模块, 与所述频率检测模块连接, 用于根据所述至少两个导 频信号的频率和幅度值、 放大增益系数、 滤波衰减系数、 所述光电转换模 块的响应度以及各导频信号的调制深度, 计算所述至少两个导频信号对应 的波长信道的光功率, 并判断所述至少两个导频信号对应的波长信道的信 道状态。
19、 根据权利要求 18所述的装置, 其特征在于, 还包括:
通信与控制模块, 分别与所述放大与滤波模块、 频率检测模块、 色散 量调整模块、 信道分析模块连接, 用于设置所述放大与滤波模块的放大增 益系数; 根据控制平面的控制指令上报所述频率检测模块输出的至少两个 导频信号的频率和幅度值, 以及所述信道分析模块输出所述至少两个导频 信号对应的波长信道的光功率和信道状态; 从控制平面获取链路配置信息。
20、根据权利要求 11-19中任一项所述的装置,其特征在于,还包括: 第二分束器, 与所述色散模块连接, 用于从 WDM光网络链路上下载 所述多波长信道的光信号, 并发送给所述色散模块。
21、 根据权利要求 20所述的装置, 其特征在于, 所述第二分束器为 Z 个, Z为大于 1的自然数, 各第二分束器设置在所述 WDM光网络链路上 的不同监测点;
所述装置还包括: 1*Z光开关, 所述 Z个第二分束器均通过所述 1*Z 光开关连接所述色散模块。
PCT/CN2012/076991 2012-06-15 2012-06-15 抑制导频信号串扰的方法、装置及导频信号接收装置 WO2013185343A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280000697.1A CN102870351B (zh) 2012-06-15 2012-06-15 抑制导频信号串扰的方法、装置及导频信号接收装置
PCT/CN2012/076991 WO2013185343A1 (zh) 2012-06-15 2012-06-15 抑制导频信号串扰的方法、装置及导频信号接收装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/076991 WO2013185343A1 (zh) 2012-06-15 2012-06-15 抑制导频信号串扰的方法、装置及导频信号接收装置

Publications (1)

Publication Number Publication Date
WO2013185343A1 true WO2013185343A1 (zh) 2013-12-19

Family

ID=47447757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076991 WO2013185343A1 (zh) 2012-06-15 2012-06-15 抑制导频信号串扰的方法、装置及导频信号接收装置

Country Status (2)

Country Link
CN (1) CN102870351B (zh)
WO (1) WO2013185343A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115700385A (zh) * 2021-07-28 2023-02-07 合肥本源量子计算科技有限责任公司 量子比特之间直流串扰系数及直流串扰矩阵的获取方法
WO2024113350A1 (en) * 2022-12-02 2024-06-06 Huawei Technologies Co., Ltd. System and method for pilot tone detection

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3417552B1 (en) 2016-06-24 2021-09-01 Huawei Technologies Co., Ltd. Method and apparatus for providing a pilot tone
US9960849B1 (en) * 2016-12-22 2018-05-01 Intel Corporation Channelization for dispersion limited waveguide communication channels
WO2019061434A1 (zh) * 2017-09-30 2019-04-04 华为技术有限公司 检测波长偏差的方法和汇聚节点
US10574351B2 (en) 2017-10-23 2020-02-25 Huawei Technologies Co., Ltd. Monitoring performance of optical network equipment using pilot tones
CN109714100B (zh) * 2017-12-26 2021-08-06 电子科技大学 一种多波长信道的光纤非线性串扰计算方法
CN109379137A (zh) * 2018-09-19 2019-02-22 广西坤壹科技有限公司 一种兼容多种线路的光通信应急装置
CN111817782B (zh) * 2020-06-24 2021-10-12 武汉光迅科技股份有限公司 定标方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151145A (en) * 1997-02-13 2000-11-21 Lucent Technologies Inc. Two-wavelength WDM Analog CATV transmission with low crosstalk
JP2009198945A (ja) * 2008-02-25 2009-09-03 Fujikura Ltd シングルモード光ファイバ
CN102075241A (zh) * 2009-11-19 2011-05-25 华为技术有限公司 动态色散检测方法及装置
CN102255667A (zh) * 2011-07-21 2011-11-23 中兴通讯股份有限公司 一种进行色散补偿的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151145A (en) * 1997-02-13 2000-11-21 Lucent Technologies Inc. Two-wavelength WDM Analog CATV transmission with low crosstalk
JP2009198945A (ja) * 2008-02-25 2009-09-03 Fujikura Ltd シングルモード光ファイバ
CN102075241A (zh) * 2009-11-19 2011-05-25 华为技术有限公司 动态色散检测方法及装置
CN102255667A (zh) * 2011-07-21 2011-11-23 中兴通讯股份有限公司 一种进行色散补偿的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115700385A (zh) * 2021-07-28 2023-02-07 合肥本源量子计算科技有限责任公司 量子比特之间直流串扰系数及直流串扰矩阵的获取方法
WO2024113350A1 (en) * 2022-12-02 2024-06-06 Huawei Technologies Co., Ltd. System and method for pilot tone detection

Also Published As

Publication number Publication date
CN102870351A (zh) 2013-01-09
CN102870351B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2013185343A1 (zh) 抑制导频信号串扰的方法、装置及导频信号接收装置
JP2748908B2 (ja) 光伝送路特性測定方法とその装置および光波長多重伝送方法とその装置
US7359645B2 (en) Dispersion compensating method, optical transmission system, and optical transmission apparatus
JP5700050B2 (ja) コヒーレント光受信装置およびコヒーレント光受信方法
US10608775B2 (en) Optical transmission apparatus, optical transmission method, and optical transmission system
JP4665344B2 (ja) 波長間レベル偏差や光sn偏差を補償する光伝送装置
US7064888B2 (en) Optical transmission equipment for suppressing a four wave mixing and optical transmission system
KR20150143559A (ko) 광파워 등화 방법 및 장치
JPH11331127A (ja) 波長分割多重システム、及びその端局
US8494360B2 (en) In-service optical network testing
US6456409B2 (en) Method and apparatus for extending fiber transmission distance with multiple pre-emphases in optically amplified DWDM system
JP5516698B2 (ja) コヒーレント受信器
WO2022042378A1 (zh) 光信号控制方法及装置、光传输节点和光传输系统
US8879907B2 (en) Measurement apparatus, network design apparatus, transmission system, and network management apparatus
JP2012058252A (ja) ファイバスパンの損失および分散の測定
JP2008503886A (ja) 波長分割多重(wdm)光分波器
JP2004221968A (ja) 光伝送方式
US8891961B2 (en) Optical communication device, wavelength number measurement device, optical repeater, and wavelength number measurement method
CN112217561B (zh) C+l波段的光功率自动均衡方法及系统
JP6422799B2 (ja) 光伝送システム、光送信装置及びその制御方法
JP6519117B2 (ja) 光伝送装置、光伝送システム、及び、光伝送システムの制御装置
JP5703611B2 (ja) 信号光補正装置及び信号光補正方法
Hong et al. Modulation format identification and transmission quality monitoring for link establishment in optical network using machine learning techniques
Uchikata et al. A high accuracy channel power extraction method in optical filter-less coherent detection for flexible ROADM
JP3944404B2 (ja) 波長分散および分散スロープを補償可能な光伝送装置および分散補償方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000697.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878814

Country of ref document: EP

Kind code of ref document: A1