WO2018133122A1 - 控制方法、无人机及遥控设备 - Google Patents

控制方法、无人机及遥控设备 Download PDF

Info

Publication number
WO2018133122A1
WO2018133122A1 PCT/CN2017/072265 CN2017072265W WO2018133122A1 WO 2018133122 A1 WO2018133122 A1 WO 2018133122A1 CN 2017072265 W CN2017072265 W CN 2017072265W WO 2018133122 A1 WO2018133122 A1 WO 2018133122A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote control
drone
control device
distance
noise ratio
Prior art date
Application number
PCT/CN2017/072265
Other languages
English (en)
French (fr)
Inventor
李栋
邓任钦
魏建平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201910043428.7A priority Critical patent/CN109544894B/zh
Priority to CN201780000097.8A priority patent/CN107004345B/zh
Priority to PCT/CN2017/072265 priority patent/WO2018133122A1/zh
Publication of WO2018133122A1 publication Critical patent/WO2018133122A1/zh
Priority to US16/518,955 priority patent/US10903897B2/en
Priority to US17/148,086 priority patent/US20210167848A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/90Additional features
    • G08C2201/91Remote control based on location and proximity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to a consumer electronic technology, in particular to a control method, a drone and a remote control device.
  • the radio frequency signals of the drone and the remote control device always maintain the maximum power transmission, so that the image signal and the control signal can be well transmitted at a long distance, but it is a waste of energy when flying at a close distance, and always keeps the maximum for a long time.
  • Power transmission will have a large electromagnetic radiation effect on the human body near the remote control device, and it will also have a great interference effect on the surrounding electromagnetic environment.
  • Embodiments of the present invention provide a control method, a control device, and an electronic device.
  • the invention provides a control method for controlling signal transmission power of a drone or a remote control device, and the control method comprises the following steps:
  • the signal transmission power of the drone or/and the remote control device is reduced or maintained when the remote control distance is reduced.
  • a processor configured to determine whether a remote control distance between the drone and the remote control device is increased or decreased
  • the signal transmission power of the drone or/and the remote control device is reduced or maintained when the remote control distance is reduced.
  • a processor configured to determine whether a remote control distance between the remote control device and the drone is increased or decreased
  • the signal transmission power of the drone or/and the remote control device is reduced or maintained when the remote control distance is reduced.
  • the control method, the drone and the remote control device of the embodiment of the present invention when the remote control between the drone and the remote control device When the distance increases, the drone or/and the remote control device are controlled to increase or maintain the transmit power of the signal; when the remote control distance between the drone and the remote control device is small, the drone or/and the remote control device are respectively reduced. Small or maintain the transmit power of the signal.
  • the transmission power of the drone and the remote control device can be reduced, and on the one hand, the energy of the drone and the remote control device can be saved, and waste is avoided; On the one hand, it is avoided to always maintain the maximum power to transmit signals, reduce the influence of the transmitting power on the electromagnetic radiation of the human body near the remote control device, and also reduce the interference to the surrounding electromagnetic environment.
  • FIG. 1 is a schematic flow chart of a control method according to some embodiments of the present invention.
  • FIG. 2 is a schematic diagram of functional modules of a drone and a remote controller according to some embodiments of the present invention
  • FIG. 3 is a schematic flow chart of a control method according to some embodiments of the present invention.
  • FIG. 4 is a schematic diagram of functional modules of a drone and a remote controller according to some embodiments of the present invention.
  • FIG. 5 is a schematic flow chart of a control method according to some embodiments of the present invention.
  • FIG. 6 is a schematic diagram of functional modules of a drone according to some embodiments of the present invention.
  • FIG. 7 is a schematic diagram of functional modules of a remote control device according to some embodiments of the present invention.
  • FIG. 8 is a schematic diagram of functional modules of a drone and a remote controller according to some embodiments of the present invention.
  • FIG. 9 is a schematic flow chart of a control method according to some embodiments of the present invention.
  • FIG. 10 is a schematic flow chart of a control method according to some embodiments of the present invention.
  • FIG. 11 is a schematic diagram of functional modules of a drone and a remote controller according to some embodiments of the present invention.
  • FIG. 12 is a schematic flow chart of a control method according to some embodiments of the present invention.
  • FIG. 13 is a schematic flow chart of a control method according to some embodiments of the present invention.
  • FIG. 14 is a flow diagram of a control method of some embodiments of the present invention.
  • the drone 100 The drone 100, the first processor 10, the first transmitter 12, the first distance detector 14, the global positioning system 142, the barometer 144, the first calculator 146, the first memory 16, and the first signal receiver 18
  • the remote control device 200 the second processor 20, the second transmitter 22, the distance detector 24, the horizontal distance acquisition module 242, the height acquisition module 244, the second calculator 246, the second memory 26, and the second signal receiver 28 .
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a control method is used to control signal transmission power of the drone 100 or/and the remote control device 200.
  • the control method includes the following steps:
  • determining whether the remote control distance D between the drone 100 and the remote control device 200 is increasing or decreasing can be directly determined according to the distance change between the drone 100 and the remote control device 200, for example, according to the distance.
  • the components such as the detector directly calculate the distance between the drone 100 and the remote control device 200. It is also possible to indirectly reflect the drone 100 and the remote control device 200 according to whether the remote control distance D between the drone 100 and the remote control device 200 is increased or decreased.
  • the parameter determination of the distance change between for example, when the distance between the drone 100 and the remote control device 200 increases, the signal-to-noise ratio of the signal transmitted between the drone 100 and the remote control device 200 decreases;
  • the signal-to-noise ratio of the signal transmitted between the drone 100 and the remote control device 200 increases. Therefore, the signal-to-noise ratio of the signal received by the drone 100 and the remote control device 200 can be used as a parameter capable of reflecting whether the distance between the drone 100 and the remote control device 200 is increased or decreased.
  • the foregoing control method may be performed by the drone 100.
  • the drone 100 may include a first processor 10 and a first transmitter 12, and the first processor 10
  • the first transmitter 12 is configured to perform steps S2 and S3.
  • the first processor 10 is electrically coupled to the first transmitter 12, and the first processor 10 is capable of controlling the first transmitter 12 to change the transmit power. That is, the first processor 10 is for determining whether the remote control distance D between the drone 100 and the remote control device 200 is increasing or decreasing.
  • the first transmitter 12 is configured to increase or maintain the signal transmission power of the drone 100 or/and the remote control device 200 when the remote control distance D increases, and the first transmitter 12 is further configured to reduce the remote control distance D when the remote control distance D decreases.
  • the signal transmission power of the drone 100 or/and the remote control device 200 is kept small.
  • the remote control device 200 may include a second processor 20 and a second transmitter 22, and the second processor 20 In step S1, the second transmitter 22 is configured to perform steps S2 and S3.
  • the second processor 20 is electrically coupled to the second transmitter 22, and the second processor 20 is capable of controlling the second transmitter 22 to change the transmit power. That is, the second processor 20 is configured to determine whether the remote control distance D between the drone 100 and the remote control device 200 is increasing or decreasing.
  • the second transmitter 22 is configured to increase or maintain the signal transmission power of the drone 100 or/and the remote control device 200 when the remote control distance D is increased, and the second transmitter 22 is further configured to reduce the remote control distance D when the remote control distance D decreases.
  • the signal transmission power of the drone 100 or/and the remote control device 200 is kept small.
  • the remote control device 200 includes any one of a terminal having a control function such as a mobile phone, a remote controller, a smart watch, smart glasses, a smart helmet, and the like.
  • the control method, the drone 100 and the remote control device 200 of the embodiment of the present invention are used to: when the remote control distance D between the drone 100 and the remote control device 200 increases, the drone 100 or/and the remote control device 200 are controlled respectively.
  • the transmission power of the signal is increased or maintained; when the remote control distance D between the drone 100 and the remote control device 200 is small, the drone 100 or/and the remote control device 200 are controlled to reduce or maintain the transmission power of the signal, respectively.
  • the transmission power of the drone 100 and the remote control device 200 is reduced, and on the one hand, the drone 100 and the remote control device 200 can be saved. Energy, avoiding waste; on the other hand, avoiding always maintaining maximum power to transmit signals, reducing the influence of the transmitting power on the electromagnetic radiation of the human body near the remote control device 200, and also reducing the interference to the surrounding electromagnetic environment.
  • control method further includes the following steps:
  • the remote control distance between the drone 100 and the remote control device 200 is a spatial straight line distance between the drone 100 and the remote control device 200.
  • the control method first performs step S4 and then performs step S1 and step S2 or S3.
  • the above control method may also be performed by the drone 100.
  • the drone 100 may further include a first distance detector 14 for the first distance detector 14 Step S4 is performed. That is, the first distance detector 14 is for detecting the remote control distance D between the drone 100 and the remote control device 200.
  • the first distance detector 14 is electrically connected to the first processor 10, and the remote control distance D between the drone 100 and the remote control device 200 acquired by the first distance detector 14 can be transmitted to the first processor 10.
  • the above control method may also be performed by the remote control device 200.
  • the remote control device 200 may further include a second distance detector 24 for performing step S4. That is, the second distance detector 24 is for detecting the remote control distance D between the drone 100 and the remote control device 200.
  • the second distance detector 24 is electrically connected to the second processor 20, and the remote control distance D between the drone 100 and the remote control device 200 acquired by the second distance detector 24 can be transmitted to the second processor 20.
  • the first distance detector 14 and the second distance detector 24 are both distance sensors. In some embodiments, the first distance detector 14 and the second distance detector 24 are each a single component, such as an infrared distance sensor, an ultrasonic distance sensor, a TOF sensor, etc., between the drone 100 and the remote control device 200.
  • the remote control distance D can be directly detected by the above distance sensor. In other embodiments, the first distance detector 14 and the second distance detector 24 may also be composed of a plurality of components, such as a global positioning system, a barometer, and a processor, between the drone 100 and the remote control device 200.
  • the remote control distance D can be obtained by a plurality of components. Of course, the remote control distance D can also be obtained by other means.
  • the drone 100 transmits a time signal to the remote control device 200, for example, 9:00, and the second distance detector 24 receives the time signal and acquires the time signal.
  • the time for example, 9:05, and by calculating the difference between the two times (5 minutes) and calculating the remote control distance D between the drone 100 and the remote control device 200 according to the signal transmission speed.
  • the first distance detector 14 can also be obtained by the same method.
  • the drone 100 and the remote control device 200 can directly detect the distance between the drone 100 and the remote control device 200 through the first distance detector 14 and the second distance detector 24, respectively.
  • the drone 100 and the remote control device 200 respectively detect the distance between the two by the first distance detector 14 and the second distance detector 24, so that the drone 100 and the remote control device 200 can respectively detect the distance according to the two.
  • the transmission power of the drone 100 and the remote control device 200 is changed.
  • the step S4 that is, detecting the remote control distance D between the drone 100 and the remote control device 200, includes:
  • step S41 and S42 may be performed synchronously; or: step S41 is performed before or after step S42, and step S41 and step S42 are both performed after step S43 is performed. .
  • the above control method may also be performed by the drone 100.
  • the first distance detector 14 of the drone 100 includes a global positioning system 142, a barometer 144, and a A calculator 146.
  • the global positioning system 142, the barometer 144, and the first calculator 146 are respectively configured to perform step S41, step S42, and step S43. That is, the global positioning system 142 is used to acquire the horizontal distance of the drone 100 relative to the remote control device 200.
  • the barometer 144 acquires the height of the drone 100 relative to the remote control device 200.
  • the first calculator 146 is for calculating the remote control distance D based on the horizontal distance and the height.
  • both the global positioning system 142 and the barometer 144 are electrically coupled to the first calculator 146, and the data obtained by the global positioning system 142 and the barometer 144 are passed to the first calculator 146 for processing.
  • the global positioning system 142 includes, but is not limited to, the Global Positioning System (GPS) in the United States, the Globle Naviga2tion Satellite System (GLONASS) in Russia, the Big Dipper in China, and Galileo in Europe. Any of them.
  • the second distance detector 24 of the remote control device 200 includes a horizontal distance acquisition module 242, a height acquisition module 244, and a Two calculators 246.
  • the horizontal distance obtaining module 242, the height obtaining module 244, and the second calculator 246 are respectively configured to perform step S41, step S42, and step S43. That is, the horizontal distance acquisition module 242 is configured to acquire the horizontal distance of the drone 100 relative to the remote control device 200.
  • the height acquisition module 244 acquires the height of the drone 100 relative to the remote control device 200.
  • the second calculator 246 is for calculating the remote control distance D based on the horizontal distance and the height.
  • the horizontal distance acquisition module 242 and the height acquisition module 244 are both electrically connected to the second calculator 246, and the data obtained by the horizontal distance acquisition module 242 and the height acquisition module 244 are both transmitted to the second calculator 246 for processing.
  • the horizontal distance acquisition module 242 includes, but is not limited to, any one of GPS, GLONASS, China Big Dipper, and Europe Galileo.
  • Height acquisition module 244 includes, but is not limited to, a barometer.
  • the remote control distance D between the drone 100 and the remote control device 200 can be calculated from the horizontal distance of the drone 100 relative to the remote control device 200 and the height of the drone 100 relative to the remote control device 200.
  • the drone 100 and the remote control device 200 respectively include a first memory 16 and a second memory 26, and the first memory 16 and the second memory 26 each store a preset truth table.
  • Table 1 the truth table includes a distance range and a set transmission power corresponding to the distance range, and the step of increasing or maintaining the signal transmission power of the drone or/and the remote control device (step S2) is based on Remote control distance D and distance range to control drone 100 or/and remote control device 200 to perform set transmit power; or/and
  • step S3 The step of reducing or maintaining the signal transmission power of the drone 100 or/and the remote control device 200 (step S3) is to control the drone 100 or/and the remote control device 200 to perform the set transmission power according to the remote control distance and distance range. .
  • the remote control distance D is increased from one distance range in the truth table to another distance range, for example, the remote control distance D is increased from (1, 2] km range to (2)
  • the range of 3]km increases the transmission power of the drone 100 and the remote control device 200.
  • the transmission power of the drone 100 increases from 19 dBm to 22 dBm
  • the transmission power of the remote control device 200 increases from 19 dBm to 22 dBm.
  • the remote control distance D is reduced from one distance range in the truth table to another distance range, for example, the remote control distance D is reduced from (1, 2] km range to the remote control distance D from (0, 1] km range, minus
  • the transmission power of the small drone 100 and the remote control device 200 for example, the drone 100
  • the transmit power is reduced from 19dBm to 16dBm
  • the transmit power of the remote control device 200 is reduced from 19dBm to 16dBm.
  • the range of distance and the set transmit power in the truth table 1 are obtained through actual field test.
  • the truth table needs to be tested on a plurality of different field environments.
  • the external environment includes: urban environment, marine environment, mountain environment, high altitude environment, etc.
  • the transmission power of the device 200 is relatively accurate.
  • the first memory 16 is electrically coupled to the first processor 10 of the drone 100, and the first processor 10 obtains a remote control distance D between the drone 100 and the remote control device 200 and according to the first memory.
  • the truth table in 16 controls the first transmitter 12 to maintain or change the transmit power;
  • the second memory 26 is electrically coupled to the second processor 20 of the remote control device 200, and the second processor 20 obtains the drone 100 and the remote control device 200.
  • the distance between the two transmitters 22 is controlled to maintain or change the transmit power based on the truth table in the second memory 26.
  • the transmission power of the drone 100 and the remote control device 200 is reduced, and on the one hand, the drone 100 and the remote control device 200 can be saved.
  • Energy avoiding waste; on the other hand, avoiding always maintaining maximum power to transmit signals, reducing the influence of the transmitting power on the electromagnetic radiation of the human body near the remote control device 200, and also reducing the interference to the surrounding electromagnetic environment.
  • step S4, step S1, step S2 or step S3 may be performed once every first predetermined time interval T1. That is, detecting the distance between the drone 100 and the remote control device 200, determining whether the remote control distance D between the drone 100 and the remote control device 200 is increasing or decreasing, increasing or maintaining the unmanned The signal transmission power of the machine 100 or/and the remote control device 200, or the three steps of reducing or maintaining the signal transmission power of the drone 100 or/and the remote control device 200 are performed once every first predetermined time interval T1.
  • step S4 performed by the first distance detector 14 of the drone 100 (
  • step S4 includes step S41, step S42 and step S43), step S1 performed by the first processor 10, and step S2 or step S3 performed by the first transmitter 12 every first predetermined time.
  • Interval T1 is performed once.
  • step S4 performed by the second distance detector 24 of the remote control device 200 (in some embodiments, step S4 includes step S41, step S42 and step S43), step S1 performed by the second processor 20, and step S2 or step S3 performed by the second transmitter 22 every first predetermined time interval T1. Execute once.
  • the drone 100 and the remote control device 200 respectively detect the remote control distance D between the drone 100 and the remote control device 200 every first predetermined time interval T1, thereby enabling the drone 100 to be changed in real time according to the remote control distance D and the truth table.
  • the transmission power with the remote control device 200 is performed to perform real-time changes in the transmission power of the drone 100 and the remote control device 200 and to ensure the quality of signal transmission between the drone 100 and the remote control device 200.
  • the first predetermined time interval T1 in the control method, the drone 100, and the remote control device 200 is any value in the range of (0.001-1) seconds.
  • the first predetermined time interval T1 may be 0.001 second, 0.005 second, 0.01 second, 0.05 second, 0.1 second, 0.15 second, 0.2 second, 0.25 second, 0.3 second, 0.35 second, 0.4 second, 0.45 second, 0.5 second, 0.55 second, 0.6 second, 0.65 second, 0.7 second , 0.75 seconds, 0.8 seconds, 0.85 seconds, 0.9 seconds, 0.95 seconds, 1 second.
  • the specific value of the first predetermined time interval T1 may be selected according to the flight speed of the drone 100.
  • the step S1 that is, determining whether the remote control distance D between the drone 100 and the remote control device 200 is increasing or decreasing, includes the following steps:
  • Step S11, step S12, and step S13 or step S14 are sequentially performed.
  • the reference signal-to-noise ratio S 0 is determined by the actual external field test drone 100.
  • the current signal-to-noise ratio S t is the reference signal-to-noise ratio S 0
  • the reference signal-to-noise ratio S 0 ranges from (-4 to -2) dB.
  • the reference signal-to-noise ratio S 0 includes -4db, -3.9db, -3.8db, -3.75db, -3.7db.
  • the value of the reference signal-to-noise ratio S 0 can be selected according to the flight speed of the drone 100.
  • the current signal-to-noise ratio S t of the drone 100 and the remote control device 200 is equal to the reference signal-to-noise ratio S 0 , it is ensured that the signal between the drone 100 and the remote control device 200 can be normally transmitted. If the current signal-to-noise ratio S t is smaller than the reference signal-to-noise ratio S 0 and the transmission power of the drone 100 and the remote control device 200 does not change, the signal transmission quality between the drone 100 and the remote control device 200 is degraded. The remote control distance D is increased.
  • the drone 100 and the remote control device 200 are illustrated.
  • the quality of the signal transmission increases and the remote control distance D decreases.
  • the above control method may also be performed by the drone 100.
  • the drone 100 further includes a first signal receiver 18 electrically coupled to the first processor 10.
  • the first processor 10 is further configured to perform step S11, step S12, step S13, and step S14.
  • the first processor 10 is further configured to detect the current signal to noise ratio S t of the first signal receiver 18 of the drone 100; compare the current signal to noise ratio S t with a reference signal to noise ratio S 0 ; If the current signal to noise ratio S t is smaller than the reference signal to noise ratio S 0 , it is confirmed that the remote control distance D is increased; if the current signal to noise ratio S t is greater than the reference signal to noise ratio S 0 , it is confirmed that the remote control distance D is decreased.
  • the remote control device 200 further includes a second signal receiver 28 electrically coupled to the second processor 20, the second processor 20 also Step S11, step S12, step S13, and step S14 are performed.
  • the second processor 20 is further configured to detect the current signal to noise ratio S t of the second signal receiver 28 of the remote control device 200; compare the current signal to noise ratio S t with a reference signal to noise ratio S 0 ; If the signal to noise ratio S t is smaller than the reference signal to noise ratio S 0 , it is confirmed that the remote control distance D is increased; if the current signal to noise ratio S t is greater than the reference signal to noise ratio S 0 , it is confirmed that the remote control distance D is decreased.
  • step S2 that is, the remote control distance D is increased (in some embodiments, the current signal to noise ratio S t is less than the reference signal to noise ratio S).
  • the steps of increasing or maintaining the signal transmission power of the drone 100 or/and the remote control device 200 include:
  • S21 Add a preset change value Pstep based on the current signal transmission power of the drone 100 or/and the remote control device 200 to obtain an updated signal transmission power, and keep the updated current signal to noise ratio S t as a reference.
  • Signal to noise ratio S 0 When the current signal to noise ratio S t is the reference signal to noise ratio S 0 , the picture transmission and control signals can be transmitted well, such that when the current signal to noise ratio S t of the drone 100 and the remote control device 200 is equal to the reference signal to noise ratio S 0 , the remote control distance D of the drone 100 and the remote control device 200 can normally transmit signals.
  • the above control method may also be performed by the drone 100.
  • the first transmitter 12 of the drone 100 is further configured to perform step S21, that is, in none. adding a predetermined variation value P step based signal transmission power of the current panel 100 to obtain a signal transmission power update, and maintain the updated current reference signal to noise ratio SNR S t S 0.
  • the above control method can also be performed by the remote control device 200.
  • the second transmitter 22 of the remote control device 200 is further configured to perform step S21, that is, the current signal transmission power of the remote control device 200.
  • a preset change value P step is added to obtain an updated signal transmission power, and the updated current signal-to-noise ratio S t is kept as the reference signal-to-noise ratio S 0 .
  • step S3 that is, when the remote distance D is reduced (in some embodiments, the current signal to noise ratio S t is greater than the reference signal to noise ratio S 0 ) is reduced.
  • the steps of small or maintaining the signal transmission power of the drone 100 or/and the remote control device 200 include:
  • the preset difference ⁇ S is greater than zero ( ⁇ S>0); if the current difference is less than the preset difference ⁇ S, that is, the current signal to noise ratio S t is greater than the reference signal to noise ratio S 0 and less than or equal to the reference signal to noise ratio
  • the sum of S 0 and the preset difference ⁇ S keeps the current signal transmission power of the drone 100 or/and the remote control device 200 unchanged;
  • the difference S is greater than the preset difference ⁇ S, that is, the current signal-to-noise ratio S t is greater than the sum of the reference signal-to-noise ratio S 0 and the preset difference ⁇ S (that is, S t >(S 0 + ⁇ S)), then Based on the current signal transmission power of the human machine 100 or/and the remote control device 200, a preset variation value Pstep is reduced to obtain an updated signal transmission power. In this way, by setting the preset difference value
  • the above control method may also be performed by the drone 100.
  • the first transmitter 12 of the drone 100 is further configured to perform step 31, step S32, and step S33.
  • step S34 that is, the first transmitter 12 is further configured to:
  • the drone 100 is controlled to keep the current signal transmission power of the drone 100 unchanged;
  • the drone 100 is controlled to reduce a preset change value P step based on the current signal transmission power of the drone 100 to obtain an updated signal transmission power, and to maintain
  • the updated current signal to noise ratio S t is the reference signal to noise ratio S 0 .
  • the foregoing control method may also be performed by the remote control device 200.
  • the second transmitter 22 of the remote control device 200 is further configured to perform step 31, step S32, step S33, and steps. S34, That is, the second transmitter 22 is also used to:
  • control remote control device 200 keeps the current signal transmission power of the remote control device 200 unchanged;
  • the control remote control device 200 reduces a preset change value P step based on the current signal transmission power of the remote control device 200 to obtain the updated signal transmission power, and keeps the updated signal.
  • the current signal to noise ratio S t is the reference signal to noise ratio S 0 .
  • step S1 (in some embodiments, step S1 includes step S11, step S12, and step S13) is performed after step S21 or step 31, step S32, and step S33 or step S34.
  • the unmanned person is reduced.
  • the drone 100 and the remote control device 200 can save the energy of the drone 100 and the remote control device 200, avoiding waste; on the other hand, avoiding always maintaining the maximum power to transmit signals, reducing the influence of the transmitting power on the electromagnetic radiation of the human body near the remote control device 200, and also reducing Interference with the surrounding electromagnetic environment.
  • the reference signal to noise ratio S 0 in the control method, drone 100, and remote control device 200 is obtained by actual field testing.
  • the reference signal to noise ratio S 0 need for field testing of a plurality of different environments.
  • the reference signal to noise ratio S 0 needs to be tested for a plurality of different field environments.
  • the external environment includes: urban environment, marine environment, mountain environment, and plateau environment.
  • the reference signal-to-noise ratio S 0 can accurately reflect the relationship between the remote control distance D and the transmission power between the drone 100 and the remote control device 200.
  • the preset difference ⁇ S in the control method, the drone 100, and the remote control device 200 is any value in the range of (2 ⁇ 3) dB, and the preset difference value ⁇ S includes: 2db 2.1db, 2.2db, 2.25db, 2.3db, 2.4db, 2.5db, 2.6db, 2.7db, 2.75db, 2.8db, 2.9db, 3db.
  • the value of the preset difference ⁇ S can be selected according to the flight speed of the drone 100.
  • the preset difference value ⁇ S is an arbitrary value in the range of (2 to 3) dB, it is possible to prevent the drone of the preset signal from being reduced by the current signal transmission power of the drone 100 or/and the remote control device 200.
  • the transmission power is unstable.
  • the preset change value P step in the control method, the drone 100, and the remote control device 200 is any value in the range of (0.5-1) dB, and the preset change value P step includes: 0.5db. , 0.55db, 0.6db, 0.65db, 0.7db, 0.75db, 0.8db, 0.85db, 0.9db, 0.95db, 1db.
  • the preset change value P step can be selected according to the flight speed of the drone 100.
  • the step of detecting the current signal to noise ratio S t of the signal receiver of the drone 100 or/and the remote control device 200 (including step S11) to obtaining updated signal transmission power is performed every second predetermined time interval T2.
  • the above control method may also be performed by the drone 100.
  • the first signal of the unmanned aerial vehicle 100 performed by the first processor 10 of the drone 100 is detected.
  • the step of the current signal transmission power of the remote control device 200 is performed every second predetermined time interval T2.
  • the above control method may also be performed by the remote control device 200, in particular, in some embodiments, the current signal to noise ratio of the second signal receiver 28 of the remote control device 200 performed by the second processor 20 of the remote control device 200 Steps of S t (including step S11) to the step of obtaining updated signal transmission power performed by the second transmitter 22 (step S21 or step S33) or to maintaining the current signal transmission power of the drone 100 or/and the remote control device 200
  • the invariant step (step S34) is performed every second predetermined time interval T2.
  • the drone 100 and the remote control device 200 can obtain the latest current signal to noise ratio every second predetermined time interval T2, so that the drone 100 and the remote control device 200 can refer to the current signal to noise ratio S t , reference signal noise
  • the updated signal transmission power is obtained by the ratio S 0 , the preset difference ⁇ S, and the preset change value P step to realize the change of the transmission power of the remote control device 200 and the drone 100 in real time.
  • the second predetermined time interval T2 in the control method, the drone 100, and the remote control device 200 is any value in the range of (0.001-1) seconds
  • the value of the second predetermined time interval T2 includes : 0.001 second, 0.005 second, 0.01 second, 0.05 second, 0.1 second, 0.15 second, 0.2 second, 0.25 second, 0.3 second, 0.35 second, 0.4 second, 0.45 second, 0.5 second, 0.55 second, 0.6 second, 0.65 second, 0.7 Seconds, 0.75 seconds, 0.8 seconds, 0.85 seconds, 0.9 seconds, 0.95 seconds, 1 second.
  • the value of the second predetermined time interval T2 can be selected according to the flight speed of the drone 100.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be performed by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if executed in hardware, as in another embodiment, it can be performed by any one of the following techniques or combinations thereof known in the art: having logic gates for performing logic functions on data signals Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be executed in the form of hardware or in the form of software functional modules.
  • the integrated modules, if executed in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Astronomy & Astrophysics (AREA)
  • Signal Processing (AREA)
  • Selective Calling Equipment (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种控制方法,用于控制无人机(100)或遥控设备(200)的信号发射功率,该控制方法包括:S1:判断无人机(100)与遥控设备(200)之间的遥控距离(D)是增大还是减小;S2:当遥控距离(D)增大时,增大或保持无人机(100)或/和遥控设备(200)的信号发射功率;以及当遥控距离(D)减少时,减小或保持无人机(100)或/和遥控设备(200)的信号发射功率。

Description

控制方法、无人机及遥控设备 技术领域
本发明涉及消费性电子技术,特别涉及一种控制方法、无人机及遥控设备。
背景技术
无人机和遥控设备的射频信号始终保持最大功率发射,这样在远距离时可以保证图像信号和控制信号良好的传递,但是在近距离飞行时完全是一种能量浪费,同时长时间始终保持最大功率发射对遥控设备附近人体会有较大电磁辐射影响,另外对周围电磁环境都也会有很大干扰影响。
发明内容
本发明的实施例提供一种控制方法、控制装置及电子装置。
本发明提供一种控制方法用于控制无人机或遥控设备的信号发射功率,所述控制方法包括以下步骤:
判断所述无人机与所述遥控设备之间的遥控距离是增大还是减少;
在所述遥控距离增大时,增大或保持所述无人机或/和所述遥控设备的信号发射功率;及
在所述遥控距离减少时,减小或保持所述无人机或/和所述遥控设备的信号发射功率。
本发明实施方式的无人机包括:
处理器,用于判断所述无人机与所述遥控设备之间的遥控距离是增大还是减少;以及
发射机,用于:
在所述遥控距离增大时,增大或保持所述无人机或/和所述遥控设备的信号发射功率;或
在所述遥控距离减少时,减小或保持所述无人机或/和所述遥控设备的信号发射功率。
本发明实施方式的遥控设备包括:
处理器,用于判断所述遥控设备与无人机之间的遥控距离是增大还是减少;以及
发射机,用于:
在所述遥控距离增大时,增大或保持所述无人机或/和所述遥控设备的信号发射功率;或
在所述遥控距离减少时,减小或保持所述无人机或/和所述遥控设备的信号发射功率。
本发明实施方式的控制方法、无人机和遥控设备,当无人机及遥控设备之间的遥控 距离增大时,控制无人机或/和遥控设备分别增大或保持信号的发射功率;当无人机及遥控设备之间的遥控距离较小时,控制无人机或/和遥控设备分别减小或保持信号的发射功率。如此,在确保无人机和遥控设备之间的信号能够正常传递的前提下,减小无人机和遥控设备的发射功率,一方面能够节省无人机和遥控设备的能量,避免浪费;另一方面,避免始终保持最大功率来发射信号,减小发射功率对遥控设备附近人体的电磁辐射影响,同时也减少对周围电磁环境的干扰。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明某些实施方式的控制方法的流程示意图;
图2是本发明某些实施方式的无人机与遥控器的功能模块示意图;
图3是本发明某些实施方式的控制方法的流程示意图;
图4是本发明某些实施方式的无人机与遥控器的功能模块示意图;
图5是本发明某些实施方式的控制方法的流程示意图;
图6是本发明某些实施方式的无人机的功能模块示意图;
图7是本发明某些实施方式的遥控设备的功能模块示意图;
图8是本发明某些实施方式的无人机与遥控器的功能模块示意图;
图9是本发明某些实施方式的控制方法的流程示意图;
图10是本发明某些实施方式的控制方法的流程示意图;
图11是本发明某些实施方式的无人机与遥控器的功能模块示意图;
图12是本发明某些实施方式的控制方法的流程示意图;
图13是本发明某些实施方式的控制方法的流程示意图;
图14是本发明某些实施方式的控制方法的流程示意图。
主要元件符号附图说明:
无人机100、第一处理器10、第一发射机12、第一距离检测器14、全球定位系统142、气压计144、第一计算器146、第一存储器16、第一信号接收机18、遥控设备200、第二处理器20、第二发射机22、距离检测器24、水平距离获取模块242、高度获取模块244、第二计算器246、第二存储器26、第二信号接收机28。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请参阅图1及图2,本发明实施方式的控制方法,用于控制无人机100或/和遥控设备200的信号发射功率。控制方法包括以下步骤:
S1,判断无人机100与遥控设备200之间的遥控距离D是增大还是减小;
S2,在遥控距离D增大时,增大或保持无人机100或/和遥控设备200的信号发射功率;及
S3,在遥控距离D减少时,减小或保持无人机100或/和遥控设备200的信号发射功率。
在某些实施方式中,判断无人机100与遥控设备200之间的遥控距离D是增大还是减小可以直接根据无人机100与遥控设备200之间的距离变化判断,例如,根据距离检测器等元件直接计算无人机100与遥控设备200之间的距离。判断无人机100与遥控设备200之间的遥控距离D是增大还是减小也可以根据能够间接反映无人机100与遥控设备200之 间的距离变化的参数判断,例如,由于当无人机100与遥控设备200之间距离增大时,无人机100与遥控设备200之间传递的信号的信噪比减小;当无人机100与遥控设备200之间距离减小时,无人机100与遥控设备200之间传递的信号的信噪比增大。因此,可以使用无人机100与遥控设备200接收的信号的信噪比作为能够反映无人机100与遥控设备200之间距离是增大还是减小的参数使用。
请参阅图2,上述控制方法可以由无人机100来执行,具体地,本发明一实施方式的无人机100可包括第一处理器10及第一发射机12,第一处理器10用于执行步骤S1,第一发射机12用于执行步骤S2及S3。第一处理器10与第一发射机12电连接,第一处理器10能够控制第一发射机12改变发射功率。也就是说,第一处理器10用于判断无人机100与遥控设备200之间的遥控距离D是增大还是减小。第一发射机12用于在遥控距离D增大时,增大或保持无人机100或/和遥控设备200的信号发射功率,第一发射机12还用于在遥控距离D减少时,减小或保持无人机100或/和遥控设备200的信号发射功率。
请接着参阅图2,上述控制方法还可以由遥控设备200来执行,具体地,本发明一实施方式的遥控设备200可包括第二处理器20及第二发射机22,第二处理器20用于执行步骤S1,第二发射机22用于执行步骤S2及S3。第二处理器20与第二发射机22电连接,第二处理器20能够控制第二发射机22改变发射功率。也就是说,第二处理器20用于判断无人机100与遥控设备200之间的遥控距离D是增大还是减小。第二发射机22用于在遥控距离D增大时,增大或保持无人机100或/和遥控设备200的信号发射功率,第二发射机22还用于在遥控距离D减少时,减小或保持无人机100或/和遥控设备200的信号发射功率。在某些实施方式中,遥控设备200包括手机、遥控器、智能手表、智能眼镜、智能头盔等具有控制功能的终端中的任意一种。
本发明实施方式的控制方法、无人机100及遥控设备200用于:当无人机100及遥控设备200之间的遥控距离D增大时,控制无人机100或/和遥控设备200分别增大或保持信号的发射功率;当无人机100及遥控设备200之间的遥控距离D较小时,控制无人机100或/和遥控设备200分别减小或保持信号的发射功率。如此,在确保无人机100和遥控设备200之间的信号能够正常传递的前提下,减小无人机100和遥控设备200的发射功率,一方面能够节省无人机100和遥控设备200的能量,避免浪费;另一方面,避免始终保持最大功率来发射信号,减小发射功率对遥控设备200附近人体的电磁辐射影响,同时也减少对周围电磁环境的干扰。
请参阅图3,在某些实施方式中,控制方法还包括以下步骤:
S4,检测无人机100与遥控设备200之间的遥控距离D。具体地,无人机100与遥控设备200之间的遥控距离为无人机100与遥控设备200之间的空间直线距离。一 般地,控制方法首先执行步骤S4再执行步骤S1及步骤S2或S3。
请参阅图4,上述控制方法还可以由无人机100来执行,具体地,在某些实施方式中,无人机100可还包括第一距离检测器14,第一距离检测器14用于执行步骤S4。也就是说,第一距离检测器14用于检测无人机100与遥控设备200之间的遥控距离D。第一距离检测器14与第一处理器10电连接,第一距离检测器14获取的无人机100与遥控设备200之间的遥控距离D能够传递到第一处理器10。
在某些实施方式中,上述控制方法还可以由遥控设备200来执行,具体地,遥控设备200可还包括第二距离检测器24,第二距离检测器24用于执行步骤S4。也就是说,第二距离检测器24用于检测无人机100与遥控设备200之间的遥控距离D。第二距离检测器24与第二处理器20电连接,第二距离检测器24获取的无人机100与遥控设备200之间的遥控距离D能够传递到第二处理器20。
在某些实施方式中,第一距离检测器14与第二距离检测器24均为距离传感器。在某些实施方式中,第一距离检测器14与第二距离检测器24均为单个元件,如红外线距离传感器、超声波距离传感器、TOF传感器等等,无人机100与遥控设备200之间的遥控距离D可以通过上述距离传感器直接检测得到。在其他实施方式中,第一距离检测器14与第二距离检测器24还可以由多个元件组成,如,全球定位系统、气压计及处理器组成,无人机100与遥控设备200之间的遥控距离D可以通过多个元件共同获得。当然遥控距离D还可以通过其他方式得到,例如,无人机100向遥控设备200发射一个时间信号,例如9:00,第二距离检测器24通过接收该时间信号、获取接收到该时间信号时的时间,例如9:05、及通过计算两个时间的差值(5分钟)并根据信号传输速度计算得到无人机100与遥控设备200之间遥控距离D。当然第一距离检测器14也可以通过相同的方法获得。
如此,无人机100与遥控设备200可以分别通过第一距离检测器14与第二距离检测器24直接检测无人机100与遥控设备200之间的距离。
无人机100与遥控设备200分别通过第一距离检测器14与第二距离检测器24分别检测两者之间的距离,便于无人机100与遥控设备200根据两者检测到的距离分别及时地改变无人机100与遥控设备200的发射功率。
请参阅图5,在某些实施方式中,步骤S4,也就是检测无人机100与遥控设备200之间的遥控距离D的步骤包括:
S41,获取无人机100相对遥控设备200的水平距离;
S42,获取无人机100相对遥控设备200的高度;及
S43,根据水平距离与高度计算遥控距离D。
其中步骤S41与步骤S42执行的先后顺序不限定,例如,步骤S41与步骤S42可以同步执行;或者是:步骤S41在步骤S42之前或之后执行,步骤S41与步骤S42都执行完成后才执行步骤S43。
请参阅图6,上述控制方法还可以由无人机100来执行,具体地,在某些实施方式中,无人机100的第一距离检测器14包括全球定位系统142、气压计144及第一计算器146。全球定位系统142、气压计144及第一计算器146分别用于执行步骤S41、步骤S42及步骤S43。也就是说,全球定位系统142用于获取无人机100相对遥控设备200的水平距离。气压计144获取无人机100相对遥控设备200的高度。第一计算器146用于根据水平距离与高度计算遥控距离D。全球定位系统142与气压计144均与第一计算器146电连接,全球定位系统142与气压计144获得的数据均传递到第一计算器146中处理。在某些实施方式中,全球定位系统142包括但不限于美国的全球卫星定位系统(Global Positioning System,GPS)、俄罗斯的全球卫星定位系统(Globle Naviga2tion Satellite System,GLONASS)、中国北斗星及欧洲伽利略中的任意一种。
请参阅图7,上述控制方法还可以由遥控设备200来执行,具体地,在某些实施方式中,遥控设备200的第二距离检测器24包括水平距离获取模块242、高度获取模块244及第二计算器246。水平距离获取模块242、高度获取模块244、第二计算器246分别用于执行步骤S41、步骤S42及步骤S43。也就是说,水平距离获取模块242用于获取无人机100相对遥控设备200的水平距离。高度获取模块244获取无人机100相对遥控设备200的高度。第二计算器246用于根据水平距离与高度计算遥控距离D。水平距离获取模块242与高度获取模块244均与第二计算器246电连接,水平距离获取模块242与高度获取模块244获得的数据均传输到第二计算器246中处理。其中,水平距离获取模块242包括但不限于GPS、GLONASS、中国北斗星及欧洲伽利略中的任意一种。高度获取模块244包括但不限于气压计。
如此,可以通过无人机100相对遥控设备200的水平距离与无人机100相对遥控设备200的高度计算得到无人机100与遥控设备200之间的遥控距离D。
请参阅图8,在某些实施方式中,无人机100和遥控设备200分别包括第一存储器16与第二存储器26,第一存储器16与第二存储器26均存储有预设的真值表(如下表1),真值表包括距离范围及与距离范围对应的设定发射功率,则所述增大或保持无人机或/和遥控设备的信号发射功率的步骤(步骤S2)是根据遥控距离D与距离范围来控制无人机100或/和遥控设备200执行设定发射功率;或/和
所述减小或保持无人机100或/和遥控设备200的信号发射功率的步骤(步骤S3)是根据遥控距离与距离范围来控制无人机100或/和遥控设备200执行设定发射功率。
以下是详细介绍根据遥控距离D与距离范围来控制无人机100或/和遥控设备200执行设定发射功率:当遥控距离D在真值表中的一个距离范围内变化时,无人机100和遥控设备200的发射功率保持不变,例如,遥控距离D虽然在变化,但一直保持在(1,2]km范围内,则无人机100的发射功率保持为19dBm(分贝毫瓦),遥控设备200的发射功率保持为19dBm。当遥控距离D从真值表中的一个距离范围增大到另一个距离范围时,例如,遥控距离D从(1,2]km范围增大到(2,3]km范围,增大无人机100和遥控设备200的发射功率,例如,无人机100的发射功率从19dBm增大到22dBm,遥控设备200的发射功率从19dBm增大到22dBm。当遥控距离D从真值表中的一个距离范围减小到另一个距离范围时,例如,遥控距离D从(1,2]km范围减小到遥控距离D从(0,1]km范围,减小无人机100和遥控设备200的发射功率,例如,无人机100的发射功率从19dBm减小到16dBm,遥控设备200的发射功率从19dBm减小到16dBm。另外,真值表1中的距离范围及设定发射功率是通过实际外场测试获得的。在某些实施方式中,真值表需要对多个不同的外场环境测试得到。例如,外场环境包括:城市环境、海上环境、山区环境、高原环境等。如此,真值表中获得的无人机100和遥控设备200的发射功率比较准确。
表1
距离范围D(km) 遥控器设定发射功率(dBm) 无人机设定发射功率(dBm)
≤1 16 16
1<D≤2 19 19
2<D≤3 22 22
3<D≤4 25 25
4<D 28 28
在某些实施方式中,第一存储器16与无人机100的第一处理器10电连接,第一处理器10获得无人机100与遥控设备200之间的遥控距离D并根据第一存储器16中的真值表控制第一发射机12保持或改变发射功率;第二存储器26与遥控设备200的第二处理器20电连接,第二处理器20获得无人机100与遥控设备200之间的距离并根据第二存储器26中的真值表控制第二发射机22保持或改变发射功率。如此,在确保无人机100和遥控设备200之间的信号能够正常传递的前提下,减小无人机100和遥控设备200的发射功率,一方面能够节省无人机100和遥控设备200的能量,避免浪费;另一方面,避免始终保持最大功率来发射信号,减小发射功率对遥控设备200附近人体的电磁辐射影响,同时也减少对周围电磁环境的干扰。
请参阅图9,在某些实施方式中,步骤S4、步骤S1、及步骤S2或步骤S3三个步骤可每隔第一预定时间间隔T1执行一次。也就是说,检测无人机100与遥控设备200之间的距离、判断无人机100与遥控设备200之间的遥控距离D是增大还是减少、增大或保持无人 机100或/和遥控设备200的信号发射功率,或者减小或保持无人机100或/和遥控设备200的信号发射功率的三个步骤每隔第一预定时间间隔T1执行一次。
请一并参阅图6及图8,上述控制方法还可以由无人机100来执行,具体地,在某些实施方式中,无人机100的第一距离检测器14所执行的步骤S4(在某些实施方式中,步骤S4包括步骤S41、步骤S42及步骤S43)、第一处理器10所执行的步骤S1及第一发射机12所执行的步骤S2或步骤S3每隔第一预定时间间隔T1执行一次。
请一并参阅图7及图8,上述控制方法还可以由遥控器200来执行,具体地,在某些实施方式中,遥控设备200的第二距离检测器24所执行的步骤S4(在某些实施方式中,步骤S4包括步骤S41、步骤S42及步骤S43)、第二处理器20所执行的步骤S1及第二发射机22所执行的步骤S2或步骤S3每隔第一预定时间间隔T1执行一次。
如此,每隔第一预定时间间隔T1无人机100与遥控设备200分别检测无人机100与遥控设备200之间遥控距离D,进而能够根据遥控距离D及真值表实时改变无人机100与遥控设备200的发射功率以执行实时改变无人机100与遥控设备200的发射功率并确保无人机100与遥控设备200之间的信号传递的质量。
在某些实施方式中,控制方法、无人机100及遥控设备200中的第一预定时间间隔T1为(0.001-1)秒范围内的任意取值,例如,第一预定时间间隔T1可以为0.001秒、0.005秒、0.01秒、0.05秒、0.1秒、0.15秒、0.2秒、0.25秒、0.3秒、0.35秒、0.4秒、0.45秒、0.5秒、0.55秒、0.6秒、0.65秒、0.7秒、0.75秒、0.8秒、0.85秒、0.9秒、0.95秒、1秒。具体地,第一预定时间间隔T1的具体取值可以根据无人机100的飞行速度选择。
请参阅图10,在某些实施方式中,步骤S1,也就是判断无人机100与遥控设备200之间的遥控距离D是增大还是减少的步骤包括以下步骤:
S11,检测无人机100或/和遥控设备200的信号接收机的当前信噪比St
S12,比较当前信噪比St与一参考信噪比S0
S13,若当前信噪比St小于参考信噪比S0,则确认遥控距离D增大;
S14,若当前信噪比St大于参考信噪比S0,则确认遥控距离D减小。
其中步骤S11、步骤S12和步骤S13或步骤S14顺序执行。其中,参考信噪比S0是通过实际外场测试无人机100而确定的,在当前信噪比St为参考信噪比S0时,图传和控制信号可以很好传输,无卡顿或失联风险。参考信噪比S0的取值范围为(-4至-2)dB,例如,参考信噪比S0的取值包括-4db、-3.9db、-3.8db、-3.75db、-3.7db、-3.6db、-3.5db、-3.4db、-3.3db、-3.25db、-3.2db、-3.1db、-3db、-2.9db、-2.8db、-2.75db、-2.7db、-2.6db、-2.5db、-2.4db、-2.3db、-2.25db、-2.2db、-2.1db、-2db。参考信噪比S0的取值可以根据无人机100的飞行速度选择。具体地,若无人机100及遥控设备200的当前信噪比St等于参考信噪比S0,则 确保无人机100和遥控设备200之间的信号能够正常传递。若当前信噪比St小于参考信噪比S0,无人机100和遥控设备200的发射功率不变的情况下,则说明无人机100和遥控设备200之间的信号传递质量下降并说明遥控距离D增大;若当前信噪比St大于参考信噪比S0,无人机100和遥控设备200的发射功率不变的情况下,则说明无人机100和遥控设备200之间的信号传递质量上升并说明遥控距离D减小。
请参阅图11,上述控制方法还可以由无人机100来执行,具体地,在某些实施方式中,无人机100还包括与第一处理器10电连接的第一信号接收机18,第一处理器10还用于执行步骤S11、步骤S12、步骤S13及步骤S14。也就是说,第一处理器10还用于检测无人机100的第一信号接收机18的当前信噪比St;比较当前信噪比St与一参考信噪比S0;及若当前信噪比St小于参考信噪比S0,则确认遥控距离D增大;若当前信噪比St大于参考信噪比S0,则确认遥控距离D减小。
上述控制方法还可以由遥控设备200来执行,具体地,在某些实施方式中,遥控设备200还包括与第二处理器20电连接的第二信号接收机28,第二处理器20还用于执行步骤S11、步骤S12、步骤S13及步骤S14。也就是说,第二处理器20还用于检测遥控设备200的第二信号接收机28的当前信噪比St;比较当前信噪比St与一参考信噪比S0;及若当前信噪比St小于参考信噪比S0,则确认遥控距离D增大;若当前信噪比St大于参考信噪比S0,则确认遥控距离D减小。
请参阅图12及图14,在某些实施方式中,步骤S2,也就是在遥控距离D增大(在某些实施方式中,指的是:当前信噪比St小于参考信噪比S0)时增大或保持无人机100或/和遥控设备200的信号发射功率的步骤包括:
S21,在无人机100或/和遥控设备200的当前信号发射功率的基础上增加一个预设变化值Pstep以获得更新的信号发射功率,并保持更新后的当前信噪比St为参考信噪比S0。在当前信噪比St为参考信噪比S0时,图传和控制信号可以很好传输,如此,当无人机100和遥控设备200的当前信噪比St等于参考信噪比S0时,无人机100和遥控设备200的遥控距离D能够正常传递信号
请参阅图11,上述控制方法还可以由无人机100来执行,具体地,在某些实施方式中,无人机100的第一发射机12还用于执行步骤S21,也就是说在无人机100的当前信号发射功率的基础上增加一个预设变化值Pstep以获得更新的信号发射功率,并保持更新后的当前信噪比St为参考信噪比S0
上述控制方法还可以由遥控设备200来执行,具体地,在某些实施方式中,遥控设备200的第二发射机22还用于执行步骤S21,也就是说在遥控设备200的当前信号发射功率的基础上增加一个预设变化值Pstep以获得更新的信号发射功率,并保持更新后的当前信噪 比St为参考信噪比S0
请参阅图13,在某些实施方式中,步骤S3,也就是在遥控距离D减少(在某些实施方式中,指的是:当前信噪比St大于参考信噪比S0)时减小或保持无人机100或/和遥控设备200的信号发射功率的步骤包括:
S31,计算无人机100或/和遥控设备200的当前信噪比St与一参考信噪比S0的当前差值S;
S32,比较当前差值S与一预设差值δS;
S33,若当前差值S小于或等于预设差值δS,则保持无人机100或/和遥控设备200的当前信号发射功率不变;
S34,若当前差值S大于预设差值δS,则在无人机100或/和遥控设备200的当前信号发射功率的基础上减小一个预设变化值Pstep以获得更新的信号发射功率,并保持更新后的当前信噪比St为参考信噪比S0
一般地,预设差值δS大于零(δS>0);若当前差值小于预设差值δS,也就是当前信噪比St大于参考信噪比S0且小于或等于参考信噪比S0与预设差值δS之和(也就是,S0<St≤(S0+δS)),则保持无人机100或/和遥控设备200的当前信号发射功率不变;若当前差值S大于预设差值δS,也就是当前信噪比St大于参考信噪比S0与预设差值δS之和(也就是St>(S0+δS)),则在无人机100或/和遥控设备200的当前信号发射功率的基础上减小一个预设变化值Pstep以获得更新的信号发射功率。如此,通过设置预设差值δS能够避免无人机100或/和遥控设备200的当前信号发射功率的基础上减小一个预设变化值Pstep而产生发射功率不稳定现象。
请参阅图11,上述控制方法还可以由无人机100来执行,具体地,在某些实施方式中,无人机100的第一发射机12还用于执行步骤31、步骤S32、步骤S33及步骤S34,也就是说,第一发射机12还用于:
计算无人机100的当前信噪比St与一参考信噪比S0的当前差值S;
比较当前差值S与一预设差值δS;
若当前差值S小于或等于预设差值δS,则控制无人机100保持无人机100的当前信号发射功率不变;
若当前差值S大于预设差值δS,则控制无人机100在无人机100的当前信号发射功率的基础上减小一个预设变化值Pstep以获得更新的信号发射功率,并保持更新后的当前信噪比St为参考信噪比S0
请参阅图11,上述控制方法还可以由遥控设备200来执行,具体地,在某些实施方式中,遥控设备200的第二发射机22还用于执行步骤31、步骤S32、步骤S33及步骤S34, 也就是说,第二发射机22还用于:
计算遥控设备200的当前信噪比St与一参考信噪比S0的当前差值S;
比较当前差值S与一预设差值δS;
若当前差值S小于或等于预设差值δS,则控制遥控设备200保持遥控设备200的当前信号发射功率不变;
若当前差值S大于预设差值δS,则控制遥控设备200在遥控设备200的当前信号发射功率的基础上减小一个预设变化值Pstep以获得更新的信号发射功率,并保持更新后的当前信噪比St为参考信噪比S0
一般地,步骤S1(在某些实施方式中,步骤S1包括步骤S11、步骤S12及步骤S13)执行完成后再执行步骤S21或步骤31、步骤S32和步骤S33或者步骤S34。
如此,当无人机100和遥控设备200接收到信噪比St大于参考信噪比S0,也就是说无人机100与遥控设备200之间的遥控距离D减小时,减小无人机100和遥控设备200的发射功率、或控制无人机100和遥控设备200的发射功率保持不变,有助于在确保无人机100和遥控设备200之间的信号能够正常传递的前提下,一方面能够节省无人机100和遥控设备200的能量,避免浪费;另一方面,避免始终保持最大功率来发射信号,减小发射功率对遥控设备200附近人体的电磁辐射影响,同时也减少对周围电磁环境的干扰。
在某些实施方式中,控制方法、无人机100及遥控设备200中的参考信噪比S0通过实际外场测试获得。在某些实施方式中,参考信噪比S0需要对多个不同环境的外场测试得到。在某些实施方式中,参考信噪比S0需要对多个不同的外场环境测试得到。例如,外场环境包括:城市环境、海上环境、山区环境、高原环境等。如此,参考信噪比S0能够准确的反应无人机100和遥控设备200之间的遥控距离D与发射功率关系。
在某些实施方式中,控制方法、无人机100及遥控设备200中的预设差值δS为(2~3)dB范围内的任意取值,预设差值δS的取值包括:2db、2.1db、2.2db、2.25db、2.3db、2.4db、2.5db、2.6db、2.7db、2.75db、2.8db、2.9db、3db。预设差值δS的取值可以根据无人机100的飞行速度选择。如此,预设差值δS为(2~3)dB范围内的任意取值时,能够避免无人机100或/和遥控设备200的当前信号发射功率的基础上减小一个预设变化值而产生发射功率不稳定现象。
在某些实施方式中,控制方法、无人机100及遥控设备200中的预设变化值Pstep为(0.5~1)dB范围内的任意取值,预设变化值Pstep包括:0.5db、0.55db、0.6db、0.65db、0.7db、0.75db、0.8db、0.85db、0.9db、0.95db、1db。预设变化值Pstep可以根据无人机100的飞行速度选择。
请参阅图14,在某些实施方式中,所述检测无人机100或/和遥控设备200的信号接收机的当前信噪比St的步骤(包括步骤S11)至获得更新的信号发射功率的步骤(步骤S21或步骤S33)或至保持无人机100或/和遥控设备200的当前信号发射功率不变的步骤(步骤S34)是每隔第二预定时间间隔T2执行一次。
请参阅图11,上述控制方法还可以由无人机100来执行,具体地,在某些实施方式中,无人机100的第一处理器10所执行的检测无人机100的第一信号接收机18的当前信噪比St的步骤(包括步骤S11)至第一发射机12所执行的获得更新的信号发射功率步骤(步骤S21或步骤S33)或至保持无人机100或/和遥控设备200的当前信号发射功率不变的步骤(步骤S34)每隔第二预定时间间隔T2执行一次。
上述控制方法还可以由遥控设备200来执行,具体地,在某些实施方式中,遥控设备200的第二处理器20所执行的检测遥控设备200的第二信号接收机28的当前信噪比St的步骤(包括步骤S11)至第二发射机22所执行的获得更新的信号发射功率步骤(步骤S21或步骤S33)或至保持无人机100或/和遥控设备200的当前信号发射功率不变的步骤(步骤S34)每隔第二预定时间间隔T2执行一次。
如此,每个第二预定时间间隔T2无人机100和遥控设备200就能够获得最新的当前信噪比,以便于无人机100和遥控设备200能够根据当前信噪比St、参考信噪比S0、预设差值δS及预设变化值Pstep获得更新的信号发射功率,以实现实时改变遥控设备200及无人机100的发射功率。
在某些实施方式中,控制方法、无人机100及遥控设备200中的第二预定时间间隔T2为(0.001-1)秒范围内的任意取值,第二预定时间间隔T2的取值包括:0.001秒、0.005秒、0.01秒、0.05秒、0.1秒、0.15秒、0.2秒、0.25秒、0.3秒、0.35秒、0.4秒、0.45秒、0.5秒、0.55秒、0.6秒、0.65秒、0.7秒、0.75秒、0.8秒、0.85秒、0.9秒、0.95秒、1秒。第二预定时间间隔T2的取值可以根据无人机100的飞行速度选择。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的 实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (48)

  1. 一种控制方法,用于控制无人机或遥控设备的信号发射功率,其特征在于,所述控制方法包括以下步骤:
    判断所述无人机与所述遥控设备之间的遥控距离是增大还是减少;
    在所述遥控距离增大时,增大或保持所述无人机或/和所述遥控设备的信号发射功率;及
    在所述遥控距离减少时,减小或保持所述无人机或/和所述遥控设备的信号发射功率。
  2. 如权利要求1所述的控制方法,其特征在于,所述控制方法还包括以下步骤:
    检测所述无人机与所述遥控设备之间的遥控距离。
  3. 如权利要求2所述的控制方法,其特征在于,所述检测所述无人机与所述遥控设备之间的距离的步骤包括:
    获取所述无人机相对所述遥控设备的水平距离;
    获取所述无人机相对所述遥控设备的高度;及
    根据所述水平距离与所述高度计算所述遥控距离。
  4. 如权利要求2所述的控制方法,其特征在于,所述无人机或/和所述遥控设备包括存储器,所述存储器存储有预设的真值表,所述真值表包括距离范围及与所述距离范围对应的设定发射功率,所述增大或保持所述无人机或/和所述遥控设备的信号发射功率的步骤是根据所述遥控距离与所述距离范围来控制所述无人机或/和所述遥控设备执行所述设定发射功率;或/和
    所述减小或保持所述无人机或/和所述遥控设备的信号发射功率的步骤是根据所述遥控距离与所述距离范围来控制所述无人机或/和所述遥控设备执行所述设定发射功率。
  5. 如权利要求4所述的控制方法,其特征在于,所述真值表中的所述距离范围及所述设定发射功率通过实际外场测试获得。
  6. 如权利要求2所述的控制方法,其特征在于,所述检测所述无人机与所述遥控设备之间的距离、所述判断所述无人机与所述遥控设备之间的遥控距离是增大还是减少、所述增大或保持所述无人机或/和所述遥控设备的信号发射功率或所述减小或保持所述无人机或/和所述遥控设备的信号发射功率的三个步骤每隔第一预定时间间隔执行一次。
  7. 如权利要求6所述的控制方法,其特征在于,所述第一预定时间间隔为(0.001-1)秒范围内的任意取值。
  8. 如权利要求1所述的控制方法,其特征在于,所述判断所述无人机与所述遥控设备之间的所述遥控距离是增大还是减少的步骤包括以下步骤:
    检测所述无人机或/和所述遥控设备的信号接收机的当前信噪比;
    比较所述当前信噪比与一参考信噪比;
    若所述当前信噪比小于所述参考信噪比,则确认所述遥控距离增大;及
    若所述当前信噪比大于所述参考信噪比,则确认所述遥控距离减小。
  9. 如权利要求8所述的控制方法,其特征在于,所述在所述遥控距离增大时增大或保持所述无人机或/和所述遥控设备的信号发射功率的步骤包括:
    在所述无人机或/和所述遥控设备的当前信号发射功率的基础上增加一个预设变化值以获得更新的信号发射功率,并保持更新后的当前信噪比为所述参考信噪比。
  10. 如权利要求8所述的控制方法,其特征在于,所述在所述遥控距离减少时减小或保持所述无人机或/和所述遥控设备的信号发射功率的步骤包括:
    计算所述当前信噪比与一参考信噪比的当前差值;
    比较所述当前差值与一预设差值;
    若所述当前差值小于或等于所述预设差值,则保持所述无人机或/和所述遥控设备的当前信号发射功率不变;
    若所述当前差值大于所述预设差值,则在所述无人机或/和所述遥控设备的当前信号发射功率的基础上减小一个预设变化值以获得更新的信号发射功率,并保持更新后的当前信噪比为所述参考信噪比。
  11. 如权利要求9所述的控制方法,其特征在于,所述参考信噪比为(-4至-2)dB。
  12. 如权利要求9所述的控制方法,其特征在于,所述参考信噪比通过实际外场测试获得。
  13. 如权利要求10所述的控制方法,其特征在于,所述预设差值为(2~3)dB范围内的任意取值。
  14. 如权利要求10所述的控制方法,其特征在于,所述预设变化值为(0.5~1)dB范围内的任意取值。
  15. 如权利要求9或10所述的控制方法,其特征在于,所述检测所述无人机或/和所述遥控设备的信号接收机的当前信噪比的步骤至获得所述更新的信号发射功率的步骤或至保持所述无人机或/和所述遥控设备的当前信号发射功率不变的步骤是每隔第二预定时间间隔执行一次。
  16. 如权利要求15所述的控制方法,其特征在于,所述第二预定时间间隔为(0.001-1)秒范围内的任意取值。
  17. 一种无人机,其特征在于,所述无人机包括:
    处理器,用于判断所述无人机与所述遥控设备之间的遥控距离是增大还是减少;以及
    发射机,用于:
    在所述遥控距离增大时,增大或保持所述无人机或/和所述遥控设备的信号发射功率;或
    在所述遥控距离减少时,减小或保持所述无人机或/和所述遥控设备的信号发射功率。
  18. 如权利要求17所述的无人机,其特征在于,所述无人机还包括:
    距离检测器,用于检测所述无人机与所述遥控设备之间的遥控距离。
  19. 如权利要求18所述的无人机,其特征在于,所述距离检测器包括:
    全球定位系统,用于获取所述无人机相对所述遥控设备的水平距离;
    气压计,用于获取所述无人机相对所述遥控设备的高度;及
    计算器,用于根据所述水平距离与所述高度计算所述遥控距离。
  20. 如权利要求18所述的无人机,其特征在于,所述无人机包括存储器,所述存储器存储有预设的真值表,所述真值表包括距离范围及与所述距离范围对应的设定发射功率,所述发射机是根据所述遥控距离与所述距离范围来控制所述无人机执行所述设定发射功率。
  21. 如权利要求20所述的无人机,其特征在于,所述真值表中的所述距离范围及所述设定发射功率通过实际外场测试获得。
  22. 如权利要求18所述的无人机,其特征在于,所述距离检测器所执行的步骤、所述处理器所执行的步骤及所述发射机所执行的步骤每隔第一预定时间间隔执行一次。
  23. 如权利要求22所述的无人机,其特征在于,所述第一预定时间间隔为(0.001-1)秒范围内的任意取值。
  24. 如权利要求17所述的无人机,其特征在于,所述处理器还用于:
    检测所述无人机的信号接收机的当前信噪比;
    比较所述当前信噪比与一参考信噪比;
    若所述当前信噪比小于所述参考信噪比,则确认所述遥控距离增大;及
    若所述当前信噪比大于所述参考信噪比,则确认所述遥控距离减小。
  25. 如权利要求24所述的无人机,其特征在于,所述发射机还用于在所述无人机的当前信号发射功率的基础上增加一个预设变化值以获得更新的信号发射功率,并保持更新后的当前信噪比为所述参考信噪比。
  26. 如权利要求24所述的无人机,其特征在于,所述发射机还用于:
    计算所述当前信噪比与一参考信噪比的当前差值;
    比较所述当前差值与一预设差值;
    若所述当前差值小于或等于所述预设差值,则控制所述无人机保持所述无人机的当前信号发射功率不变;
    若所述当前差值大于所述预设差值,则控制所述无人机在所述无人机的当前信号发射功率的基础上减小一个预设变化值以获得更新的信号发射功率,并保持更新后的当前信噪比为所述参考信噪比。
  27. 如权利要求25所述的无人机,其特征在于,所述参考信噪比为(-4至-2)dB。
  28. 如权利要求25所述的无人机,其特征在于,所述参考信噪比通过实际外场测试获得。
  29. 如权利要求26所述的无人机,其特征在于,所述预设差值为(2~3)dB范围内的任意取值。
  30. 如权利要求26所述的无人机,其特征在于,所述预设变化值为(0.5~1)dB范围内的任意取值。
  31. 如权利要求25或26所述的无人机,其特征在于,所述处理器所执行的所述检测所述无人机的信号接收机的当前信噪比的步骤至所述发射机所执行的获得更新的信号发射功率步骤或至保持所述无人机的当前信号发射功率不变的步骤每隔第二预定时间间隔执行一次。
  32. 如权利要求31所述的无人机,其特征在于,所述第二预定时间间隔为(0.001-1)秒范围内的任意取值。
  33. 一种遥控设备,其特征在于,所述遥控设备包括:
    处理器,用于判断所述遥控设备与无人机之间的遥控距离是增大还是减少;以及
    发射机,用于:
    在所述遥控距离增大时,增大或保持所述无人机或/和所述遥控设备的信号发射功率;或
    在所述遥控距离减少时,减小或保持所述无人机或/和所述遥控设备的信号发射功率。
  34. 如权利要求33所述的遥控设备,其特征在于,所述遥控设备还包括:
    距离检测器,用于检测所述无人机与所述遥控设备之间的遥控距离。
  35. 如权利要求34所述的遥控设备,其特征在于,所述距离检测器包括:
    水平距离获取模块,用于获取所述无人机相对所述遥控设备的水平距离;
    高度获取模块,用于获取所述无人机相对所述遥控设备的高度;及
    计算器,用于根据所述水平距离与所述高度计算所述遥控距离。
  36. 如权利要求34所述的遥控设备,其特征在于,所述遥控设备包括存储器,所述存储器存储有预设的真值表,所述真值表包括距离范围及与所述距离范围对应的设定发射功率,所述发射机是根据所述遥控距离与所述距离范围来控制所述遥控设备执行所述设定发射功率。
  37. 如权利要求36所述的遥控设备,其特征在于,所述真值表中的所述距离范围及所述设定发射功率通过实际外场测试获得。
  38. 如权利要求34所述的遥控设备,其特征在于,所述距离检测器所执行的步骤、所述处理器所执行的步骤及所述发射机所执行的步骤每隔第一预定时间间隔执行一次。
  39. 如权利要求38所述的遥控设备,其特征在于,所述第一预定时间间隔为(0.001-1)秒范围内的任意取值。
  40. 如权利要求33所述的遥控设备,其特征在于,所述处理器还用于:
    检测所述遥控设备的信号接收机的当前信噪比;
    比较所述当前信噪比与一参考信噪比;
    若所述当前信噪比小于所述参考信噪比,则确认所述遥控距离增大;及
    若所述当前信噪比大于所述参考信噪比,则确认所述遥控距离减小。
  41. 如权利要求40所述的遥控设备,其特征在于,所述发射机还用于在所述遥控设备的当前信号发射功率的基础上增加一个预设变化值以获得更新的信号发射功率,并保持更新后的当前信噪比为所述参考信噪比。
  42. 如权利要求40所述的遥控设备,其特征在于,所述发射机还用于:
    计算所述当前信噪比与一参考信噪比的当前差值;
    比较所述当前差值与一预设差值;
    若所述当前差值小于或等于所述预设差值,则控制所述遥控设备保持所述遥控设备的当前信号发射功率不变;
    若所述当前差值大于所述预设差值,则控制所述遥控设备在所述遥控设备的当前信号发射功率的基础上减小一个预设变化值以获得更新的信号发射功率,并保持更新后的当前信噪比为所述参考信噪比。
  43. 如权利要求41所述的遥控设备,其特征在于,所述参考信噪比为(-4至-2)dB。
  44. 如权利要求41所述的遥控设备,其特征在于,所述参考信噪比通过实际外场测试获得。
  45. 如权利要求42所述的遥控设备,其特征在于,所述预设差值为(2~3)dB范围内的任意取值。
  46. 如权利要求42所述的遥控设备,其特征在于,所述预设变化值为(0.5~1)dB范围内的任意取值。
  47. 如权利要求41或42所述的遥控设备,其特征在于,所述处理器所执行的所述检测所述遥控设备的信号接收机的当前信噪比的步骤至所述发射机所执行的获得更新的信号发射功率的步骤或至保持所述遥控设备的当前信号发射功率不变的步骤每隔第二预定时间 间隔执行一次。
  48. 如权利要求47所述的遥控设备,其特征在于,所述第二预定时间间隔为(0.001-1)秒范围内的任意取值。
PCT/CN2017/072265 2017-01-23 2017-01-23 控制方法、无人机及遥控设备 WO2018133122A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910043428.7A CN109544894B (zh) 2017-01-23 2017-01-23 控制方法、无人机及遥控设备
CN201780000097.8A CN107004345B (zh) 2017-01-23 2017-01-23 控制方法、无人机及遥控设备
PCT/CN2017/072265 WO2018133122A1 (zh) 2017-01-23 2017-01-23 控制方法、无人机及遥控设备
US16/518,955 US10903897B2 (en) 2017-01-23 2019-07-22 Control method, unmanned aerial vehicle, and remote control device
US17/148,086 US20210167848A1 (en) 2017-01-23 2021-01-13 Control method, unmanned aerial vehicle, and remote control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072265 WO2018133122A1 (zh) 2017-01-23 2017-01-23 控制方法、无人机及遥控设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/518,955 Continuation US10903897B2 (en) 2017-01-23 2019-07-22 Control method, unmanned aerial vehicle, and remote control device

Publications (1)

Publication Number Publication Date
WO2018133122A1 true WO2018133122A1 (zh) 2018-07-26

Family

ID=59436535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072265 WO2018133122A1 (zh) 2017-01-23 2017-01-23 控制方法、无人机及遥控设备

Country Status (3)

Country Link
US (2) US10903897B2 (zh)
CN (2) CN109544894B (zh)
WO (1) WO2018133122A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565845B (zh) 2017-07-24 2023-05-23 北京小米移动软件有限公司 一种控制可操控设备干扰的方法及装置
US11737126B2 (en) 2017-08-10 2023-08-22 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for controlling interference
CN207302311U (zh) * 2017-08-24 2018-05-01 深圳市大疆创新科技有限公司 遥控辅助装置、遥控器以及遥控系统
CN108011659B (zh) * 2017-10-30 2024-02-09 歌尔股份有限公司 一种无人机通信方法、装置及无人机
US11048273B2 (en) * 2018-06-08 2021-06-29 Textron Innovations Inc. System and method for rotorcraft height control
CN108922154A (zh) * 2018-10-15 2018-11-30 无锡比特信息科技有限公司 无人机用遥控器
CN109741593A (zh) * 2018-11-30 2019-05-10 与德科技有限公司 一种家电的遥控方法、移动终端和家电的遥控系统
CN110786054A (zh) * 2018-12-28 2020-02-11 深圳市大疆创新科技有限公司 功率控制方法、装置及电子设备
CN110266394B (zh) * 2019-06-10 2021-08-31 Oppo广东移动通信有限公司 调节方法、终端及计算机可读存储介质
CN110139262B (zh) * 2019-06-10 2022-06-14 Oppo广东移动通信有限公司 蓝牙通信控制方法及相关产品
WO2021031126A1 (zh) * 2019-08-20 2021-02-25 深圳市大疆创新科技有限公司 无人机定位方法、装置、无人机和计算机可读介质
WO2022140965A1 (zh) * 2020-12-28 2022-07-07 深圳市大疆创新科技有限公司 遥控设备及其控制方法、遥控通信系统、存储介质
CN113541763A (zh) * 2021-06-04 2021-10-22 常州希米智能科技有限公司 一种烟囱内无人机视频拍摄传输控制方法和装置
CN113377129B (zh) * 2021-08-13 2021-11-16 四川腾盾科技有限公司 一种两个地面站协同控制一架无人机的方法
CN117677913A (zh) * 2021-11-15 2024-03-08 深圳市大疆创新科技有限公司 无人飞行器的控制方法、无人飞行器及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024889A (zh) * 2012-12-28 2013-04-03 东南大学 一种应用于无线通信系统的自动增益控制方法
CN105657809A (zh) * 2016-02-01 2016-06-08 深圳市至高通信技术发展有限公司 Wlan传输系统及wlan系统的信号传输方法
US9415869B1 (en) * 2015-03-26 2016-08-16 Amazon Technologies, Inc. Mobile antenna array

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232927A (ja) * 2010-04-27 2011-11-17 Sony Corp 通信装置および通信方法
CN104978839B (zh) * 2014-04-02 2018-09-04 深圳Tcl新技术有限公司 一种提高遥控装置灵敏度的方法及应用该方法的遥控装置
CN105430731A (zh) * 2014-09-03 2016-03-23 联想(北京)有限公司 控制设备、无线路由器和控制方法
CN104469920A (zh) * 2014-11-06 2015-03-25 深圳市广和通无线通信软件有限公司 无线模块的bodysar控制方法和系统
CN204190887U (zh) * 2014-12-04 2015-03-04 青岛歌尔声学科技有限公司 防误操作电视遥控装置
CN105139591A (zh) * 2015-09-22 2015-12-09 深圳市富斯遥控模型技术有限公司 一种基于信噪比检测的遥控报警方法和系统
CN105843246A (zh) * 2015-11-27 2016-08-10 深圳市星图智控科技有限公司 无人机跟踪方法、系统及无人机
CN105607841A (zh) * 2015-12-16 2016-05-25 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置
CN105549402A (zh) * 2015-12-18 2016-05-04 东莞酷派软件技术有限公司 一种智能家居控制方法及其装置
US9740200B2 (en) * 2015-12-30 2017-08-22 Unmanned Innovation, Inc. Unmanned aerial vehicle inspection system
CN105843254A (zh) * 2016-04-29 2016-08-10 乐视控股(北京)有限公司 一种无人机飞行控制方式切换方法、装置及其无人机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024889A (zh) * 2012-12-28 2013-04-03 东南大学 一种应用于无线通信系统的自动增益控制方法
US9415869B1 (en) * 2015-03-26 2016-08-16 Amazon Technologies, Inc. Mobile antenna array
CN105657809A (zh) * 2016-02-01 2016-06-08 深圳市至高通信技术发展有限公司 Wlan传输系统及wlan系统的信号传输方法

Also Published As

Publication number Publication date
CN109544894B (zh) 2021-07-09
CN107004345A (zh) 2017-08-01
CN109544894A (zh) 2019-03-29
US20190349076A1 (en) 2019-11-14
US10903897B2 (en) 2021-01-26
CN107004345B (zh) 2019-02-26
US20210167848A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2018133122A1 (zh) 控制方法、无人机及遥控设备
US10852445B2 (en) Unmanned aerial vehicle communication method and device and unmanned aerial vehicle
US9560622B2 (en) Indoor positioning in the presence of dynamic transmission power control access points
CN109462448B (zh) 一种射频测试方法、移动终端及存储介质
US20170111129A1 (en) Shielding attenuation measurement
WO2021175344A2 (zh) 一种无线信道冲激响应动态测量重构方法及装置
US10601678B2 (en) Localized sensor quality analysis and control
US10222454B2 (en) Combining Reflected Signals
WO2018228483A1 (zh) 一种机动车辆自动驾驶方法及终端设备
CN105118524A (zh) 一种音频播放方法及装置
US9008588B2 (en) System and method for the calibration and verification of wireless networks with control network
US20120166129A1 (en) Calibration method using a vector network analyzer and delay time measurement using the same
CN109714117A (zh) 一种在通视情况下计算无线传输距离的测试方法方法及系统
CN111490833B (zh) 天线的发射信号的调整方法、装置、系统及介质
EP3623841A1 (en) Object detection device
KR101472390B1 (ko) 무인비행체시스템의 지상중계장비의 통신채널 이상유무 측정장치 및 그 측정방법
CN210780735U (zh) 一种信号发生器
CN110212998B (zh) 用于测试和确定测控应答机的转发噪声的方法和装置
CN116133114A (zh) 定位方法、装置、设备及可读存储介质
US20180324616A1 (en) Generating location data while conserving resources
WO2018152987A1 (zh) 无线测温系统及其信号处理方法
KR102532621B1 (ko) 감쇠 정보를 설정하는 전자 장치의 동작 방법 및 이를 지원하는 전자 장치
CN116209061B (zh) 超宽带定位中信号传输功率的确定方法及装置
KR101461491B1 (ko) 무인비행체시스템의 발사통제장비의 통신채널 이상유무 측정장치 및 그 측정방법
US20180027203A1 (en) Directional remote control based on ranging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892857

Country of ref document: EP

Kind code of ref document: A1