WO2021258450A1 - 负压隔离病房的控制方法、系统、设备和存储介质 - Google Patents

负压隔离病房的控制方法、系统、设备和存储介质 Download PDF

Info

Publication number
WO2021258450A1
WO2021258450A1 PCT/CN2020/102979 CN2020102979W WO2021258450A1 WO 2021258450 A1 WO2021258450 A1 WO 2021258450A1 CN 2020102979 W CN2020102979 W CN 2020102979W WO 2021258450 A1 WO2021258450 A1 WO 2021258450A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer
room
static pressure
pressure value
exhaust fan
Prior art date
Application number
PCT/CN2020/102979
Other languages
English (en)
French (fr)
Inventor
何伟
黄愉太
曾利飞
饶涛
朱国远
Original Assignee
深圳市巨鼎医疗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市巨鼎医疗股份有限公司 filed Critical 深圳市巨鼎医疗股份有限公司
Publication of WO2021258450A1 publication Critical patent/WO2021258450A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H3/00Buildings or groups of buildings for public or similar purposes; Institutions, e.g. infirmaries or prisons
    • E04H3/08Hospitals, infirmaries, or the like; Schools; Prisons
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/16Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against adverse conditions, e.g. extreme climate, pests
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of control technology, in particular to a control method, system, equipment and storage medium of a negative pressure isolation ward.
  • the negative pressure isolation ward can provide a safe working environment for medical staff.
  • the internal pressure of the ward is lower than the external pressure to ensure that the air contaminated with infectious disease bacteria will not leak to the outside world. , Provide physical protection for medical staff.
  • the air in the negative pressure isolation ward carries infectious disease bacteria, if the operation of the negative pressure isolation ward fails, the gas carrying the infectious disease bacteria may leak out, causing the bacteria to spread.
  • a control method for a negative pressure isolation ward which is applied to a negative pressure isolation ward
  • the negative pressure isolation ward includes a buffer room and a rescue room connected to each other, a buffer exhaust fan arranged in the buffer room, and The main exhaust fan and the intake fan in the rescue room;
  • the control method of the negative pressure isolation ward includes: obtaining the start instruction input by the user, obtaining the target static pressure value of the buffer room and the target static pressure value of the treatment room, and obtaining the buffer The first current static pressure value of the buffer room and the first current static pressure value of the rescue room; the first rotation speed matching the target static pressure value of the buffer room is obtained, and the buffer exhaust fan is driven to Operate at the first rotational speed, obtain a second rotational speed that matches the target static pressure value in the treatment room, and drive the main exhaust fan to operate at the second rotational speed; in the buffer exhaust fan and the main exhaust fan After the fan has been running for the first period of time, drive the intake fan to operate; obtain the second current static pressure value of the buffer room
  • a control system for a negative pressure isolation ward is applied to a negative pressure isolation ward.
  • the negative pressure isolation ward includes a buffer room and a rescue room that are connected to each other, and a buffer exhaust fan arranged in the buffer room.
  • the control method of the negative pressure isolation ward includes: a first acquisition module for acquiring the start instruction input by the user, obtaining the target static pressure value of the buffer room and the target static pressure of the rescue room Pressure value to obtain the first current static pressure value of the buffer room and the first current static pressure value of the treatment room in the treatment room;
  • the first driving module is used to obtain the target static pressure value matching the buffer room
  • the second drive module is used to drive the intake fan to operate after the buffer exhaust fan and the main exhaust fan have been operating for the first time period;
  • the second acquisition module
  • a control device for a negative pressure isolation ward comprising: a processor and a memory, the processor is coupled to the memory, the memory is stored with a computer program, and the processor executes the computer program to achieve the above Methods.
  • a storage medium that stores a computer program, and the computer program can be executed by a processor to implement the method described above.
  • the speed of the main exhaust fan is adjusted according to the second current static pressure value in the treatment room to make the treatment room
  • the second current static pressure value is adjusted to the target static pressure value in the treatment room, which can reduce the air pressure fluctuations in the buffer room and the treatment room, and ensure that the air pressure in the buffer room and the treatment room is always in a negative pressure state, and improve the comfort of the negative pressure isolation ward Degree and safety.
  • Figure 1 is a schematic structural diagram of an embodiment of a negative pressure isolation ward provided by the present invention
  • FIG. 2 is a schematic flowchart of a first embodiment of a method for controlling a negative pressure isolation ward provided by the present invention
  • Fig. 3 is a schematic diagram of the static pressure value versus the speed of the exhaust fan provided by the present invention
  • FIG. 4 is a schematic flowchart of a second embodiment of a method for controlling a negative pressure isolation ward provided by the present invention
  • FIG. 5 is a schematic flowchart of a third embodiment of a method for controlling a negative pressure isolation ward provided by the present invention.
  • FIG. 6 is a schematic flowchart of a fourth embodiment of the control method for a negative pressure isolation ward provided by the present invention.
  • Figure 7 is a schematic structural diagram of an embodiment of a control system for a negative pressure isolation ward provided by the present invention.
  • Fig. 8 is a schematic structural diagram of an embodiment of a control device for a negative pressure isolation ward provided by the present invention.
  • FIG. 9 is a schematic structural diagram of an embodiment of a storage medium provided by the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of a negative pressure isolation ward provided by the present invention.
  • the negative pressure isolation ward 10 includes a buffer room 11 and a treatment room 12 connected to each other, a buffer exhaust fan 13 arranged in the buffer room, a main exhaust fan 14 and an intake fan 15 arranged in the rescue room, and a negative pressure isolation ward 10 also includes two buffer pressure difference sensors 111 and 112 arranged in the buffer room 11 and two treatment pressure difference sensors 121 and 122 arranged in the treatment room 12.
  • the negative pressure isolation ward 10 also includes a spare exhaust fan 17 arranged in the rescue room 12.
  • the buffer exhaust fan 13 is used to exhaust the air in the buffer room 11, and the speed of the buffer exhaust fan 13 is adjustable, so that the air output of the buffer room 11 can be adjusted.
  • the main exhaust fan 14 is used to exhaust the air in the rescue room 12, and the rotation speed of the main exhaust fan 14 is adjustable, so that the air output of the rescue room 12 can be adjusted.
  • the air inlet fan 14 is used to provide air into the negative pressure isolation ward 10, and the rotational speed of the air inlet fan 14 is stable.
  • the buffer pressure difference sensors 111 and 112 are used to detect the air pressure in the buffer room 11, and the treatment pressure difference sensors 121 and 122 are used to detect the air pressure in the treatment room 12.
  • the speed of the buffer exhaust fan 13 can be adjusted according to the first air pressure measurement values measured by the buffer differential pressure sensors 111 and 112, and the speed of the main exhaust fan 14 can be adjusted according to the second air pressure measurement measured by the rescue differential pressure sensors 121 and 122. Value to be adjusted.
  • the backup exhaust fan 16 is driven to operate to ensure that the negative pressure isolation ward 10 can maintain normal operation.
  • two buffer differential pressure sensors 111 and 112 are provided. In other implementation scenarios, more buffer differential pressure sensors may be provided to obtain a more accurate air pressure value.
  • two rescue pressure difference sensors 121 and 122 are set. In other implementation scenarios, more rescue pressure difference sensors may be set to obtain a more accurate air pressure value.
  • a backup exhaust fan 16 is set. In other implementation scenarios, more backup exhaust fans can be set to further ensure that the negative pressure isolation ward can maintain normal operation.
  • FIG. 2 is a schematic flowchart of a first embodiment of a method for controlling a negative pressure isolation ward provided by the present invention.
  • the method for controlling a negative pressure isolation ward provided by the present invention includes the following steps:
  • S101 Acquire a start instruction input by the user, obtain the target static pressure value of the buffer room and the target static pressure value of the treatment room, and obtain the first current static pressure value of the buffer room and the first current static pressure value of the treatment room in the treatment room.
  • the user inputs a start instruction, for example, presses a start button or inputs a start instruction in a preset mobile terminal.
  • the user can preset the target static pressure value of the buffer room and the target static pressure value of the treatment room in advance, and can also include the target static pressure value of the buffer room and the target static pressure value of the treatment room in the start command, and can also enter the buffer room after inputting the start command.
  • the target static pressure value in the buffer room is slightly larger than the target static pressure value in the treatment room, for example, the target static pressure value in the buffer room is -5pa, and the target static pressure value in the treatment room is -10pa.
  • the static pressure value-exhaust fan speed curve can be preset. After the target static pressure value in the buffer room is obtained, the static pressure value-exhaust fan speed curve is combined with the first current in the buffer room in the buffer room. The static pressure value obtains the first rotation speed that matches the target static pressure value of the buffer room. Please refer to 3 in combination.
  • FIG. 3 is a schematic diagram of the static pressure value versus the speed of the exhaust fan provided by the present invention. Drive the buffer exhaust fan to run at the first speed to adjust the air pressure in the buffer room to the target static pressure value in the buffer room.
  • step S102 similar to step S102, according to the static pressure value-exhaust fan rotation speed curve, combined with the first current static pressure value of the rescue room in the rescue room, the second rotation speed that matches the target static pressure value of the rescue room is obtained.
  • the main exhaust fan to run at the second speed to adjust the air pressure in the treatment room to the target static pressure value in the treatment room.
  • the air pressure in the negative pressure isolation ward is in a continuous decline stage.
  • the intake fan is driven to operate ,
  • the air inlet fan inputs fresh air into the negative pressure isolation ward.
  • the first time length can be set according to user needs.
  • S105 Obtain the second current static pressure value of the buffer room, and adjust the speed of the buffer exhaust fan according to the second current static pressure value of the buffer room, so that the second current static pressure value of the buffer room is adjusted to the target static pressure value of the buffer room.
  • the buffer exhaust fan operates at the first speed for the first time, the air pressure in the buffer room of the negative pressure isolation ward will continue to drop. After the air intake fan is running, the air pressure in the negative pressure isolation ward will be somewhat different. Increase, because the speed of the inlet fan is fixed, the speed of the buffer exhaust fan can be adjusted to make the air pressure in the buffer room in the negative pressure isolation ward stable, and further make the air pressure in the buffer room stable.
  • the second current static pressure value of the buffer room can be obtained, and the speed of the buffer exhaust fan can be adjusted according to the second current static pressure value of the buffer room and the target static pressure value of the buffer room.
  • S106 Obtain the second current static pressure value of the treatment room, and adjust the rotation speed of the main exhaust fan according to the second current static pressure value of the treatment room, so that the second current static pressure value of the treatment room is adjusted to the target static pressure value of the treatment room.
  • the air pressure in the rescue room in the negative pressure isolation ward will continue to drop.
  • the air pressure will increase.
  • the speed of the intake fan is fixed, the speed of the main exhaust fan can be adjusted to make the air pressure in the treatment room of the negative pressure isolation ward in a stable state, which can further make the treatment room
  • the air pressure can be stabilized at the target static pressure value in the treatment room.
  • the second current static pressure value of the rescue room can be obtained, and the rotation speed of the main exhaust fan can be adjusted accordingly according to the second current static pressure value of the rescue room and the target pressure value of the rescue room.
  • the buffer exhaust fan is driven to run at the first speed according to the target static pressure value of the buffer room and the target static pressure value of the treatment room, and the main exhaust fan is driven to run at the second speed, and then the inlet is driven.
  • the air blower runs, and adjusts the speed of the buffer exhaust fan according to the second current static pressure value of the buffer room, so that the second current static pressure value of the buffer room is adjusted to the target static pressure value of the buffer room, and it is adjusted according to the second current static pressure value of the treatment room
  • the speed of the main exhaust fan adjusts the second current static pressure value of the treatment room to the target static pressure value of the treatment room, which can reduce the air pressure fluctuations in the buffer room and the treatment room, and ensure that the air pressure in the buffer room and the treatment room is always negative
  • the pressure state improves the comfort and safety of the negative pressure isolation ward.
  • FIG. 4 is a schematic flowchart of a second embodiment of a method for controlling a negative pressure isolation ward provided by the present invention.
  • the method for controlling a negative pressure isolation ward provided by the present invention includes the following steps:
  • S201 Acquire a start instruction input by the user, obtain the target static pressure value of the buffer room and the target static pressure value of the treatment room, obtain the first current static pressure value of the buffer room and the first current static pressure value of the treatment room in the treatment room.
  • S203 Obtain a second rotation speed that matches the target static pressure value in the treatment room, and drive the main exhaust fan to operate at the second rotation speed.
  • steps S201-S203 are basically the same as steps S101-S103 in the first embodiment of the negative pressure isolation ward control method provided by the present invention, and will not be repeated here.
  • step S204 Determine whether the main exhaust fan is in a normal working state. If not, execute step S205, if yes, execute step S208.
  • the air intake volume per unit time of the main exhaust fan can be detected. If the air intake volume per unit time belongs to the preset air volume threshold, the main exhaust fan is in a normal working state, and the main exhaust fan can also be detected. Whether the current or voltage of the exhaust fan is within a preset threshold, if so, the main exhaust fan is in a normal working state.
  • the operation is switched to the backup exhaust fan to discharge the gas in the rescue room and control the air pressure in the rescue room to the target static pressure value in the rescue room.
  • step S206 Determine whether the standby exhaust fan is in a normal working state. If not, execute step S207, if yes, execute step S208.
  • the method of judging whether the standby exhaust fan is in a normal working state is similar to the method of judging whether the main exhaust fan is in a normal working state in step S204, and will not be repeated here.
  • S207 Send a first alarm signal, the first alarm signal includes a first fault code, and the first fault code is used to indicate abnormal operation of the backup exhaust fan.
  • the standby exhaust fan is not in a normal working state, and a first alarm signal is issued, such as light, sound, or a prompt message to the user terminal, etc.
  • the first alarm signal includes the first fault code, the first fault The code is used to indicate that the spare exhaust fan is not in a normal working state, so that the user can timely obtain the fault of the spare exhaust fan, repair it in time, and maintain the use of the negative pressure isolation ward.
  • step S206 is basically the same as step S104 in the first embodiment of the negative pressure isolation ward control method provided by the present invention, and will not be repeated here.
  • the method of judging whether the intake fan is in a normal working state is similar to the method of judging whether the main exhaust fan is in a normal working state in step S204, and will not be repeated here.
  • S210 Send a second alarm signal, the second alarm signal includes a second fault code, and the second fault code is used to indicate an abnormal operation of the air intake fan.
  • the intake fan is not in a normal working state, and a second alarm signal is issued, such as light, sound, or prompt information to the user terminal, etc.
  • the second alarm signal includes the second fault Code, the second fault code is used to indicate that the intake fan is not in a normal working state, so that the user can obtain the fault of the intake fan in time, perform repairs in time, and maintain the use of the negative pressure isolation ward.
  • S211 Obtain the second current static pressure value of the buffer room, and adjust the speed of the buffer exhaust fan according to the second current static pressure value of the buffer room, so that the second current static pressure value of the buffer room is adjusted to the target static pressure value of the buffer room.
  • S212 Obtain the second current static pressure value of the treatment room in the treatment room, and adjust the speed of the main exhaust fan or the backup exhaust fan according to the second current static pressure value of the treatment room, so that the second current static pressure value of the treatment room is adjusted to the treatment room Target static pressure value.
  • steps S211-S212 are basically the same as steps S105-S106 in the first embodiment of the negative pressure isolation ward control method provided by the present invention, and will not be repeated here.
  • FIG. 5 is a schematic flowchart of a third embodiment of a method for controlling a negative pressure isolation ward provided by the present invention.
  • the method for controlling a negative pressure isolation ward provided by the present invention includes the following steps:
  • S301 Acquire a start instruction input by the user, obtain the target static pressure value of the buffer room and the target static pressure value of the treatment room, obtain the second current static pressure value of the buffer room and the second current static pressure value of the treatment room in the treatment room.
  • S302 Obtain a first rotation speed that matches the target static pressure value between the buffers, and drive the buffer exhaust fan to operate at the first rotation speed.
  • steps S301-S304 are basically the same as steps S101-S104 in the first embodiment of the negative pressure isolation ward control method provided by the present invention, and will not be repeated here.
  • step S305 Determine whether at least one of the at least two buffer differential pressure sensors is in a normal working state. If yes, execute step S306, if no, end.
  • it is determined whether at least one of the at least two buffer differential pressure sensors in the buffer room is in a normal working state for example, it is determined whether the air pressure measurement value sent by each buffer differential pressure sensor is received, if If it is not received, the buffer differential pressure sensor is not in the normal working state, and it can also be judged whether the buffer differential pressure sensor is in the normal working state according to the air pressure measurement value sent by each buffer differential pressure sensor, for example, whether the air pressure measurement value is in the expected state. Set the threshold, if it is not, the buffer differential pressure sensor is not in the normal working state.
  • S306 Acquire a first air pressure measurement value of at least one normally working buffer differential pressure sensor, and acquire a second current static pressure value in the buffer room according to the first air pressure measurement value.
  • the first air pressure measurement value measured by the normally working buffer differential pressure sensor is used as the second current static pressure value of the buffer room. If there are multiple For a normally working buffer differential pressure sensor, the average value of the first air pressure measurement values measured by the multiple normally working buffer differential pressure sensors is used as the second current static pressure value of the buffer room.
  • S307 Adjust the rotation speed of the buffer exhaust fan according to the second current static pressure value of the buffer room, so that the second current static pressure value of the buffer room is adjusted to the target static pressure value of the buffer room.
  • step S307 is basically the same as step S105 in the first embodiment of the negative pressure isolation ward control method provided by the present invention, and will not be repeated here.
  • step S308 Determine whether there is at least one of the at least two rescue pressure difference sensors in a normal working state. If yes, execute step S309, if no, end.
  • the method for judging whether there is at least one of the at least two treatment differential pressure sensors in a normal working state is the same as that in step S305 to determine whether there is at least one of the at least two buffer differential pressure sensors.
  • the methods in normal working state are basically the same, so I won't repeat them here.
  • S309 Acquire a second air pressure measurement value of at least one normally working treatment differential pressure sensor, and obtain a second current static pressure value in the treatment room according to the second air pressure measurement value.
  • the first air pressure measurement value measured by the normally working rescue pressure difference sensor is used as the second current static pressure value in the treatment room, if there are multiple The normal working rescue pressure difference sensor uses the average value of the first air pressure measurement values measured by the multiple normal working rescue pressure difference sensors as the second current static pressure value in the treatment room.
  • S310 Adjust the rotation speed of the main exhaust fan according to the second current static pressure value in the treatment room, so that the second current static pressure value in the treatment room is adjusted to the target static pressure value in the treatment room.
  • step S310 is basically the same as step S106 in the first embodiment of the method for controlling a negative pressure isolation ward provided by the present invention, and will not be repeated here.
  • the second current static pressure value of the buffer room is obtained according to the first air pressure measurement value of the at least one normally working buffer differential pressure sensor
  • the second current static pressure value of the at least one normally working rescue differential pressure sensor is obtained according to the second air pressure of the at least one normally working rescue differential pressure sensor.
  • the measured value obtains the second current static pressure value of the treatment room, which can effectively improve the accuracy of the second current static pressure value of the buffer room and the second current static pressure value of the treatment room, according to the second current static pressure of the buffer room with higher accuracy Adjust the speed of the buffer exhaust fan and the main exhaust fan with the second current static pressure value in the treatment room, which can effectively improve the safety and comfort of the negative pressure isolation ward.
  • FIG. 6 is a schematic flowchart of a fourth embodiment of a method for controlling a negative pressure isolation ward provided by the present invention.
  • the method for controlling a negative pressure isolation ward provided by the present invention includes the following steps:
  • S401 Acquire a start instruction input by a user, obtain a target static pressure value of the buffer room and a target static pressure value of the treatment room, and obtain a second current static pressure value of the buffer room and a second current static pressure value of the treatment room in the treatment room.
  • S402 Obtain a first rotation speed that matches the target static pressure value between the buffers, and drive the buffer exhaust fan to run at the first rotation speed.
  • S403 Obtain a second rotation speed that matches the target static pressure value in the treatment room, and drive the main exhaust fan to run at the second rotation speed.
  • S405 Drive the backup exhaust fan to run at the second speed.
  • step S406 Determine whether the standby exhaust fan is in a normal working state. If not, execute step S407, if yes, execute step S408.
  • S407 Send a first alarm signal, the first alarm signal includes a first fault code, and the first fault code is used to indicate abnormal operation of the backup exhaust fan.
  • S410 Send a second alarm signal, the second alarm signal includes a second fault code, and the second fault code is used to indicate abnormal operation of the air intake fan.
  • steps S401-S410 are basically the same as steps S201-S210 of the second embodiment of the method for controlling a negative pressure isolation ward provided by the present invention, and will not be repeated here.
  • step S414 Determine whether the standby exhaust fan is in a normal working state. If not, execute step S415, if yes, execute step S416.
  • S415 Send a first alarm signal, the first alarm signal includes a first fault code, and the first fault code is used to indicate abnormal operation of the backup exhaust fan.
  • steps S412-S415 are basically the same as steps S404-S407, and will not be repeated here.
  • S417 Obtain a first air pressure measurement value of at least one normally working buffer differential pressure sensor, and obtain a second current static pressure value in the buffer room according to the first air pressure measurement value.
  • steps S416-S417 are basically the same as steps S305-S306 of the third embodiment of the method for controlling a negative pressure isolation ward provided by the present invention, and will not be repeated here.
  • S418 Adjust the rotation speed of the buffer exhaust fan according to the second current static pressure value of the buffer room, so that the second current static pressure value of the buffer room is adjusted to the target static pressure value of the buffer room.
  • step S418 is basically the same as step S105 in the first embodiment of the method for controlling a negative pressure isolation ward provided by the present invention, and will not be repeated here.
  • S419 Send a fourth alarm signal, the fourth alarm signal includes a fourth fault code, and the fourth fault code is used to indicate that at least one buffer differential pressure sensor is not in a normal working state.
  • the fourth alarm signal includes a fourth fault code,
  • the fourth fault code is used to indicate that the at least one buffer differential pressure sensor is not in a normal working state, so that the user can timely obtain the fault problem of the at least one buffer differential pressure sensor, perform repairs in time, and maintain the use of the negative pressure isolation ward.
  • S420 Send a third alarm signal, the third alarm signal includes a third fault code, and the third fault code is used to indicate that at least two buffer differential pressure sensors are not in a normal working state.
  • At least two buffer differential pressure sensors are not in a normal working state, and a third alarm signal is issued, such as light, sound, or prompt information to the user terminal, etc.
  • the third alarm signal includes the third fault code .
  • the third fault code is used to indicate that at least two buffer differential pressure sensors are not in a normal working state, so that users can timely obtain the faults of at least two buffer differential pressure sensors, repair them in time, and maintain the use of the negative pressure isolation ward.
  • step S421 Determine whether at least one of the at least two rescue differential pressure sensors is in a normal working state. If yes, execute step S422, if not, execute step S425, if there is at least one buffer differential pressure sensor that is not in a normal working state, then execute step S424.
  • S422 Obtain a first air pressure measurement value of at least one normally working buffer differential pressure sensor, and obtain a second current static pressure value in the buffer room according to the first air pressure measurement value.
  • steps S421-S422 are basically the same as steps S307-S308 of the third embodiment of the method for controlling a negative pressure isolation ward provided by the present invention, and will not be repeated here.
  • S423 Obtain the second current static pressure value of the treatment room, and adjust the speed of the main exhaust fan according to the second current static pressure value of the treatment room, so that the second current static pressure value of the treatment room is adjusted to the target static pressure value of the treatment room.
  • step S423 is basically the same as step S106 in the first embodiment of the method for controlling a negative pressure isolation ward provided by the present invention, and will not be repeated here.
  • S424 Send a sixth alarm signal, the sixth alarm signal includes a sixth fault code, and the sixth fault code is used to indicate that at least one rescue differential pressure sensor is not in a normal working state.
  • the sixth alarm signal includes the sixth fault code
  • the sixth fault code is used to indicate that the at least one treatment differential pressure sensor is not in a normal working state, so that the user can obtain the fault problem of the at least one treatment differential pressure sensor in time, perform repairs in time, and maintain the use of the negative pressure isolation ward.
  • S425 Send a fifth alarm signal, the fifth alarm signal includes a fifth fault code, and the fifth fault code is used to indicate that at least two rescue differential pressure sensors are not in a normal working state.
  • At least two treatment differential pressure sensors are not in a normal working state, and a fifth alarm signal is issued, such as light, sound, or prompt information to the user terminal, etc.
  • the fifth alarm signal includes the fifth fault code .
  • the fifth fault code is used to indicate that at least two treatment differential pressure sensors are not in a normal working state, so that the user can obtain the faults of at least two treatment differential pressure sensors in time, repair them in time, and maintain the use of the negative pressure isolation ward.
  • S426 Receive the shutdown instruction input by the user, control the intake fan to stop operating according to the shutdown instruction, and control the main exhaust fan or the backup exhaust fan to stop operating after the second time when the intake fan stops operating.
  • the user can input a shutdown instruction. After receiving the shutdown instruction input by the user, first control the intake fan to stop operation. After the intake fan stops operating for the second time, control the main exhaust fan or the backup exhaust fan to stop operation, which can make the air pressure in the negative pressure isolation ward lower than the outdoor air pressure, maintain the negative pressure state, and improve the safety of the negative pressure isolation ward sex.
  • FIG. 7 is a schematic structural diagram of an embodiment of a control system for a negative pressure isolation ward provided by the present invention.
  • the control system 20 of the negative pressure isolation ward is applied to the negative pressure isolation ward shown in FIG. 1, and includes: a first acquisition module 21, a first drive module 22, a second drive module 23, a second acquisition module 24, and a third acquisition module 25.
  • the first obtaining module 21 is used to obtain the start instruction input by the user, obtain the target static pressure value of the buffer room and the target static pressure value of the treatment room, and obtain the first current static pressure value of the buffer room and the first current treatment room of the treatment room. Static pressure value.
  • the first driving module 22 is used to obtain a first speed matching the target static pressure value of the buffer room, drive the buffer exhaust fan to run at the first speed, obtain a second speed matching the target static pressure value of the treatment room, and drive the main exhaust air The fan runs at the second speed.
  • the second driving module 23 is used to drive the intake fan to operate after the buffer exhaust fan and the main exhaust fan have been operated for a first period of time.
  • the second acquisition module 24 is configured to acquire the second current static pressure value of the buffer room, and adjust the speed of the buffer exhaust fan according to the second current static pressure value of the buffer room, so that the second current static pressure value of the buffer room is adjusted to the buffer room Target static pressure value.
  • the third obtaining module 25 is used to obtain the second current static pressure value of the treatment room in the treatment room, and adjust the speed of the main exhaust fan according to the second current static pressure value of the treatment room, so that the second current static pressure value of the treatment room is adjusted to the treatment room Target static pressure value.
  • the control system 20 of the negative pressure isolation ward also includes a judgment module 26.
  • the judgment module 26 is used to judge whether the main exhaust fan is in a normal working state. If the main exhaust fan is not in a normal working state, the standby exhaust fan is driven to the second Speed running.
  • the judging module 26 is also used to judge whether the standby exhaust fan is in a normal working state. If the standby exhaust fan is not in a normal working state, a first alarm signal is issued.
  • the first alarm signal includes the first fault code, and the first fault code is used for It indicates abnormal operation of the backup exhaust fan.
  • the judging module 26 is also used to judge whether the intake fan is in a normal working state. If the intake fan is not in a normal working state, a second alarm signal is issued.
  • the second alarm signal includes a second fault code, and the second fault code is used to indicate The intake fan is operating abnormally.
  • the second acquisition module 24 is also used to determine whether at least one of the at least two buffer differential pressure sensors is in a normal working state; if there is at least one buffer differential pressure sensor in a normal working state, acquire at least one normally working state
  • the first air pressure measurement value of the buffer differential pressure sensor obtains the second current static pressure value of the buffer room according to the first air pressure measurement value.
  • the third acquisition module 25 is also used to determine whether at least one of the at least two rescue pressure difference sensors is in a normal working state; if there is at least one rescue pressure difference sensor that is in a normal working state, acquire at least one normal working state.
  • the second air pressure measurement value of the rescue differential pressure sensor obtains the second current static pressure value in the rescue room according to the second air pressure measurement value.
  • the second acquisition module 24 is further configured to send a third alarm signal if none of the at least two buffer differential pressure sensors are in a normal working state, the third alarm signal includes a third fault code, and the third fault code is used to indicate at least two The buffer differential pressure sensors are not in normal working condition. If there is at least one buffer differential pressure sensor that is not in a normal working state, a fourth alarm signal is issued, the fourth alarm signal includes a fourth fault code, and the fourth fault code is used to indicate that at least one buffer differential pressure sensor is not in a normal working state.
  • the third acquisition module 25 is also configured to send a fifth alarm signal if none of the at least two rescue differential pressure sensors are in a normal working state, the fifth alarm signal includes a fifth fault code, and the fifth fault code is used to indicate at least two The rescue differential pressure sensor is not in the normal working state; if there is at least one rescue differential pressure sensor that is not in the normal working state, the sixth alarm signal is issued, the sixth alarm signal includes the sixth fault code, and the sixth fault code is used to indicate at least A rescue differential pressure sensor is not in normal working condition.
  • the control system 20 of the negative pressure isolation ward also includes a shutdown module 27.
  • the shutdown module 27 is used to receive the shutdown instruction input by the user, and control the intake fan to stop operation according to the shutdown instruction; after the second time when the intake fan stops operating, control the buffer The exhaust fan and the main exhaust fan stop running.
  • the control system of the negative pressure isolation ward in this embodiment first drives the buffer exhaust fan to run at the first speed according to the target static pressure value of the buffer room and the target static pressure value of the treatment room, and drives the main exhaust fan to run at the first speed. Operate at two speeds, then drive the intake fan to run, and adjust the speed of the buffer exhaust fan according to the second current static pressure value of the buffer room, so that the second current static pressure value of the buffer room is adjusted to the target static pressure value of the buffer room, according to the treatment room
  • the second current static pressure value adjusts the speed of the main exhaust fan so that the second current static pressure value in the treatment room is adjusted to the target static pressure value in the treatment room.
  • the air pressure in the negative pressure isolation ward is lower than the outdoor air pressure, maintaining the negative pressure state, and improving the safety of the negative pressure isolation ward.
  • FIG. 8 is a schematic structural diagram of an embodiment of a control device for a negative pressure isolation ward provided by the present invention.
  • the control device 30 of the negative pressure isolation ward includes a processor 31 and a memory 32.
  • the processor 31 is coupled to the memory 32.
  • a computer program is stored in the memory 32, and the processor 31 executes the computer program when it is working to implement the methods shown in FIGS. 2 and 4 to 6. The detailed method can be referred to the above, and will not be repeated here.
  • the control device of the negative pressure isolation ward in this embodiment drives the buffer exhaust fan to run at the first speed according to the target static pressure value of the buffer room and the target static pressure value of the treatment room, and drives the main exhaust fan to run at the second speed.
  • Rotation speed then drive the air inlet fan to run, and adjust the buffer exhaust fan speed according to the second current static pressure value of the buffer room, so that the second current static pressure value of the buffer room is adjusted to the target static pressure value of the buffer room, according to the second current static pressure value of the buffer room.
  • the current static pressure value adjusts the speed of the main exhaust fan so that the second current static pressure value in the treatment room is adjusted to the target static pressure value in the treatment room.
  • the air pressure in the pressure isolation ward is lower than the outdoor air pressure, maintaining a negative pressure state, and improving the safety of the negative pressure isolation ward.
  • FIG. 9 is a schematic structural diagram of an embodiment of a storage medium provided by the present invention.
  • At least one computer program 41 is stored in the computer-readable storage medium 40, and the computer program 41 is used to be executed by the processor to implement the methods shown in FIGS. Repeat it again.
  • the computer-readable storage medium 40 may be a storage chip in a terminal, a hard disk, or a mobile hard disk, or other readable and writable storage tools such as a USB flash drive, or an optical disk, or a server or the like.
  • the computer program in the storage medium in this embodiment can be used to drive the buffer exhaust fan to run at the first speed according to the target static pressure value of the buffer room and the target static pressure value of the rescue room, and drive the main exhaust fan to run at the first speed. Operate at the second speed, and then drive the air inlet fan to run, and adjust the speed of the buffer exhaust fan according to the second current static pressure value of the buffer room, so that the second current static pressure value of the buffer room is adjusted to the target static pressure value of the buffer room, according to the treatment
  • the second current static pressure value adjusts the speed of the main exhaust fan so that the second current static pressure value in the treatment room is adjusted to the target static pressure value in the treatment room.
  • the air pressure in the negative pressure isolation ward is lower than the outdoor air pressure, the negative pressure state is maintained, and the safety of the negative pressure isolation ward is improved.
  • the present invention drives the buffer exhaust fan to run at the first speed, drives the main exhaust fan to run at the second speed, and then drives the intake fan to run according to the target static pressure value of the buffer room and the target static pressure value of the rescue room. , First control the intake fan to stop running, and then control the exhaust fan to stop running, which can make the air pressure in the negative pressure isolation ward be lower than the outdoor air pressure, maintain the negative pressure state, and improve the safety of the negative pressure isolation ward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Pest Control & Pesticides (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

本发明公开了一种负压隔离病房的控制方法,包括:获取用户输入的启动指令、缓冲间目标静压值和救治间目标静压值、缓冲间的缓冲间第一当前静压值和救治间的救治间第一当前静压值;驱动缓冲排风风机以缓冲间目标静压值匹配的第一转速运转,驱动主排风风机以救治间目标静压值匹配的第二转速运转;在缓冲排风风机和主排风风机运转第一时长后,驱动进风风机运转;获取缓冲间的缓冲间第二当前静压值,根据缓冲间第二当前静压值调整缓冲排风风机的转速;获取救治间的救治间第二当前静压值,根据救治间第二当前静压值调整主排风风机的转速。本发明还公开了负压隔离病房的控制系统、设备和存储介质。本发明可以有效提升负压隔离病房的安全性和舒适度。

Description

负压隔离病房的控制方法、系统、设备和存储介质 技术领域
本发明涉及控制技术领域,尤其涉及负压隔离病房的控制方法、系统、设备和存储介质。
背景技术
为了应对突发传染病疫情,负压隔离病房可以给医护工作人员提供安全的工作环境,通过配置特定装置,使得病房内部压力低于外界压力,保证污染了传染病病菌的空气不会向外界泄露,为医护人员提供物理保护。
技术问题
由于负压隔离病房中的空气携带有传染病病菌,因此如果负压隔离病房的运转出现故障,则可能使得携带有传染病病菌的气体外泄,造成病菌扩散。另一方面负压隔离病房中需要维持气压的稳定,避免气压波动导致病房中患者不适,以及由于气压波动导致携带有传染病病菌的气体外泄。
技术解决方案
基于此,有必要针对上述问题,提出了负压隔离病房的控制方法、系统、设备和存储介质。
一种负压隔离病房的控制方法,应用于负压隔离病房,所述负压隔离病房包括相互连通的缓冲间和救治间、设置于所述缓冲间中的缓冲排风风机、设置于所述救治间中的主排风风机和进风风机;所述负压隔离病房的控制方法包括:获取用户输入的启动指令,获取缓冲间目标静压值和救治间目标静压值,获取所述缓冲间的缓冲间第一当前静压值和所述救治间的救治间第一当前静压值;获取与所述缓冲间目标静压值匹配的第一转速,驱动所述缓冲排风风机以所述第一转速运转,获取与所述救治间目标静压值匹配的第二转速,驱动所述主排风风机以所述第二转速运转;在所述缓冲排风风机和所述主排风风机运转第一时长后,驱动所述进风风机运转;获取所述缓冲间的缓冲间第二当前静压值,根据所述缓冲间第二当前静压值调整所述缓冲排风风机的转速,使得所述缓冲间第二当前静压值调整为所述缓冲间目标静压值;获取所述救治间的救治间第二当前静压值,根据所述救治间第二当前静压值调整所述主排风风机的转速,使得所述救治间第二当前静压值调整为所述救治间目标静压值。
一种负压隔离病房的控制系统,应用于负压隔离病房,所述负压隔离病房包括相互连通的缓冲间和救治间、设置于所述缓冲间中的缓冲排风风机,设置于所述救治间中的主排风风机、进风风机;所述负压隔离病房的控制方法包括:第一获取模块,用于获取用户输入的启动指令,获取缓冲间目标静压值和救治间目标静压值,获取所述缓冲间的缓冲间第一当前静压值和所述救治间的救治间第一当前静压值;第一驱动模块,用于获取与所述缓冲间目标静压值匹配的第一转速,驱动所述缓冲排风风机以所述第一转速运转,获取与所述救治间目标静压值匹配的第二转速,驱动所述主排风风机以所述第二转速运转;第二驱动模块,用于在所述缓冲排风风机和所述主排风风机运转第一时长后,驱动所述进风风机运转;第二获取模块,用于获取所述缓冲间的缓冲间第二当前静压值,根据所述缓冲间第二当前静压值调整所述缓冲排风风机的转速,使得所述缓冲间第二当前静压值调整为所述缓冲间目标静压值;第三获取模块,用于获取所述救治间的救治间第二当前静压值,根据所述救治间第二当前静压值调整所述主排风风机的转速,使得所述救治间第二当前静压值调整为所述救治间目标静压值。
一种负压隔离病房的控制设备,包括:处理器和存储器,所述处理器耦接所述存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现如上所述的方法。
一种存储介质,存储有计算机程序,所述计算机程序能够被处理器执行以实现如上所述的方法。
有益效果
采用本发明实施例,具有如下有益效果:
先根据缓冲间目标静压值和救治间目标静压值驱动缓冲排风风机以第一转速运转,驱动主排风风机以第二转速运转,再驱动进风风机运转,并根据缓冲间第二当前静压值调整缓冲排风风机的转速,使得缓冲间第二当前静压值调整为缓冲间目标静压值,根据救治间第二当前静压值调整主排风风机的转速,使得救治间第二当前静压值调整为救治间目标静压值,可以降低缓冲间和救治间内的气压波动,且确保缓冲间和救治间内的气压一直处于负压状态,提升负压隔离病房的舒适度和安全性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1是本发明提供的负压隔离病房的一实施例结构示意图;
图2是本发明提供的负压隔离病房的控制方法的第一实施例的流程示意图;
图3是本发明提供的静压值-排风风机转速曲线示意图;
图4是本发明提供的负压隔离病房的控制方法的第二实施例的流程示意图;
图5是本发明提供的负压隔离病房的控制方法的第三实施例的流程示意图;
图6是本发明提供的负压隔离病房的控制方法的第四实施例的流程示意图;
图7是本发明提供的负压隔离病房的控制系统的一实施例的结构示意图;
图8是本发明提供的负压隔离病房的控制设备的一实施例的结构示意图;
图9是本发明提供的存储介质的一实施例的结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1是本发明提供的负压隔离病房的一实施例结构示意图。负压隔离病房10包括相互连通的缓冲间11和救治间12、设置于缓冲间中的缓冲排风风机13、设置于救治间中的主排风风机14和进风风机15,负压隔离病房10还包括设置于缓冲间11的两个缓冲压差传感器111和112和设置于救治间12的两个救治压差传感器121和122。负压隔离病房10还包括设置于救治间12中的备用排风风机17。
缓冲排风风机13用于将缓冲间11中的气体排出,缓冲排风风机13的转速可调,从而可以调整缓冲间11的出风量。主排风风机14用于将救治间12中的气体排出,主排风风机14的转速可调,从而可以调整救治间12的出风量。进风风机14用于向负压隔离病房10内提供空气,进风风机14的转速稳定。缓冲压差传感器111和112用于检测缓冲间11中的气压,救治压差传感器121和122用于检测救治间12的气压。缓冲排风风机13的转速可以根据缓冲压差传感器111和112测出的第一气压测量值进行调整,主排风风机14的转速可以根据救治压差传感器121和122测量出的第二气压测量值进行调整。当主排风风机14运转异常时,驱动备用排风风机16运转,以确保负压隔离病房10可以维持正常运转。
在本实施场景中,设置了两个缓冲压差传感器111和112,在其他实施场景中,可以设置更多个缓冲压差传感器,以获取更加准确的气压值。在本实施场景中,设置了两个救治压差传感器121和122,在其他实施场景中,可以设置更多个救治压差传感器,以获取更加准确的气压值。在本实施场景中,设置了一个备用排风风机16,在其他实施场景中,可以设置更多个备用排风风机,以进一步确保负压隔离病房可以维持正常运转。
请参阅图2,图2是本发明提供的负压隔离病房的控制方法的第一实施例的流程示意图。本发明提供的负压隔离病房的控制方法包括如下步骤:
S101:获取用户输入的启动指令,获取缓冲间目标静压值和救治间目标静压值,获取缓冲间的缓冲间第一当前静压值和救治间的救治间第一当前静压值。
在一个具体的实施场景中,用户输入启动指令,例如,按下启动按钮或者在预设的移动终端输入启动指令。用户可以提前预设缓冲间目标静压值和救治间目标静压值,也可以在启动指令中包括缓冲间目标静压值和救治间目标静压值,还可以在输入启动指令后输入缓冲间目标静压值和救治间目标静压值。缓冲间目标静压值略大于救治间目标静压值,例如缓冲间目标静压值为-5pa,救治间目标静压值-10pa。通过微压传感器等设备获取缓冲间的缓冲间第一当前静压值和救治间的救治间第一当前静压值。
S102:获取与缓冲间目标静压值匹配的第一转速,驱动缓冲排风风机以第一转速运转。
在本实施场景中,可以预设静压值-排风风机转速曲线,在获取到缓冲间目标静压值后,根据静压值-排风风机转速曲线,结合缓冲间的缓冲间第一当前静压值获取到与缓冲间目标静压值匹配的第一转速。请结合参阅3,图3是本发明提供的静压值-排风风机转速曲线示意图。驱动缓冲排风风机以第一转速运转,将缓冲间的气压调整为缓冲间目标静压值。
S103:获取与救治间目标静压值匹配的第二转速,驱动主排风风机以第二转速运转。
在本实施场景中,与步骤S102相似,根据静压值-排风风机转速曲线,结合救治间的救治间第一当前静压值获取到与救治间目标静压值匹配的第二转速。驱动主排风风机以第二转速运转,将救治间的气压调整为救治间目标静压值。
S104:在缓冲排风风机和主排风风机运转第一时长后,驱动进风风机运转。
在本实施场景中,在缓冲排风风机和主排风风机运转第一时长后,负压隔离病房内的气压处于持续下降阶段,为了维持负压隔离病房内病人正常生活,驱动进风风机运转,进风风机向负压隔离病房内输入新鲜空气。第一时长可根据用户使用需求设定。
S105:获取缓冲间的缓冲间第二当前静压值,根据缓冲间第二当前静压值调整缓冲排风风机的转速,使得缓冲间第二当前静压值调整为缓冲间目标静压值。
在本实施场景中,由于缓冲排风风机以第一转速运转第一时长,负压隔离病房的缓冲间内的气压将持续下降,进风风机运转后,负压隔离病房内的气压会有所升高,由于进风风机的转速是固定的,因此可以通过调整缓冲排风风机的转速,使得负压隔离病房内的缓冲间的气压处于稳定状态,进一步地可以使得缓冲间的气压可以稳定处于缓冲间目标静压值。在本实施场景中可以获取缓冲间的缓冲间第二当前静压值,根据缓冲间第二当前静压值与缓冲间目标静压值,相应调整缓冲排风风机的转速。
S106:获取救治间的救治间第二当前静压值,根据救治间第二当前静压值调整主排风风机的转速,使得救治间第二当前静压值调整为救治间目标静压值。
在本实施场景中,由于主排风风机以第二转速运转第一时长,负压隔离病房内的救治间内的气压将持续下降,进风风机运转后,负压隔离病房的救治间内的气压会有所升高,由于进风风机的转速是固定的,因此可以通过调整主排风风机的转速,使得负压隔离病房的救治间内的气压处于稳定状态,进一步地可以使得救治间的气压可以稳定处于救治间目标静压值。在本实施场景中可以获取救治间的救治间第二当前静压值,根据救治间第二当前静压值与救治间目标气压值,相应调整主排风风机的转速。
通过上述描述可知,在本实施场景中先根据缓冲间目标静压值和救治间目标静压值驱动缓冲排风风机以第一转速运转,驱动主排风风机以第二转速运转,再驱动进风风机运转,并根据缓冲间第二当前静压值调整缓冲排风风机的转速,使得缓冲间第二当前静压值调整为缓冲间目标静压值,根据救治间第二当前静压值调整主排风风机的转速,使得救治间第二当前静压值调整为救治间目标静压值,可以降低缓冲间和救治间内的气压波动,且确保缓冲间和救治间内的气压一直处于负压状态,提升负压隔离病房的舒适度和安全性。
请参阅图4,图4是本发明提供的负压隔离病房的控制方法的第二实施例的流程示意图。本发明提供的负压隔离病房的控制方法包括如下步骤:
S201:获取用户输入的启动指令,获取缓冲间目标静压值和救治间目标静压值,获取缓冲间的缓冲间第一当前静压值和救治间的救治间第一当前静压值。
S202:获取与缓冲间目标静压值匹配的第一转速,驱动缓冲排风风机以第一转速运转。
S203:获取与救治间目标静压值匹配的第二转速,驱动主排风风机以第二转速运转。
在一个具体的实施场景中,步骤S201-S203与本发明提供的负压隔离病房的控制方法第一实施例中的步骤S101-S103基本一致,此处不再进行赘述。
S204:判断主排风风机是否处于正常工作状态。若否,执行步骤S205,若是,执行步骤S208。
在本实施场景中,可以通过检测主排风风机的单位时间的内的进风量,若单位时间的内的进风量属于预设风量阈值,则主排风风机处于正常工作状态,还可以检测主排风风机的电流或者电压是否在预设阈值内,若处于,则主排风风机处于正常工作状态。
S205:驱动备用排风风机以第二转速运转。
在本实施场景中,主排风风机故障,则切换至备用排风风机运转,以实现将救治间内的气体排出,并将救治间内的气压控制在救治间目标静压值。
S206:判断备用排风风机是否处于正常工作状态。若否,执行步骤S207,若是,执行步骤S208。
在本实施场景中,判断备用排风风机是否处于正常工作状态的方法与与步骤S204中判断主排风风机是否处于正常工作状态的方法类似,此处不再进行赘述。
S207:发出第一报警信号,第一报警信号包括第一故障代码,第一故障代码用于指示备用排风风机运转异常。
在本实施场景中,备用排风风机未处于正常工作状态,发出第一报警信号,例如灯光、声音或者向用户终端发送提示信息等等,第一报警信号中包括第一故障代码,第一故障代码用于指示备用排风风机未处于正常工作状态,使得用户可以及时获取备用排风风机的故障问题,及时进行维修,维持负压隔离病房的使用。
S208:在缓冲排风风机和主排风风机或备用排风风机运转第一时长后,驱动进风风机运转。
在本实施场景中,步骤S206与本发明提供的负压隔离病房的控制方法第一实施例中的步骤S104基本一致,此处不再进行赘述。
S209:判断进风风机是否处于正常工作状态,若否,执行步骤S210,若是,执行步骤S211和S212。
在本实施场景中,判断进风风机是否处于正常工作状态的方法与与步骤S204中判断主排风风机是否处于正常工作状态的方法类似,此处不再进行赘述。
S210:发出第二报警信号,第二报警信号包括第二故障代码,第二故障代码用于指示进风风机运转异常。
在本实施场景中,在本实施场景中,进风风机未处于正常工作状态,发出第二报警信号,例如灯光、声音或者向用户终端发送提示信息等等,第二报警信号中包括第二故障代码,第二故障代码用于指示进风风机未处于正常工作状态,使得用户可以及时获取进风风机的故障问题,及时进行维修,维持负压隔离病房的使用。
S211:获取缓冲间的缓冲间第二当前静压值,根据缓冲间第二当前静压值调整缓冲排风风机的转速,使得缓冲间第二当前静压值调整为缓冲间目标静压值。
S212:获取救治间的救治间第二当前静压值,根据救治间第二当前静压值调整主排风风机或备用排风风机的转速,使得救治间第二当前静压值调整为救治间目标静压值。
在本实施场景中,步骤S211-S212与本发明提供的负压隔离病房的控制方法第一实施例中的步骤S105-S106基本一致,此处不再进行赘述。
通过上述描述可知,在本实施例中档主排风风机出现运转故障时,驱动备用排风风机运转,可以有效维持负压隔离病房的运转,对备用排风风机和进风风机的运转进行监测,并在发生故障时及时报警,使得用户可以及时维修,维护负压隔离病房的正常使用。
请参阅图5,图5是本发明提供的负压隔离病房的控制方法的第三实施例的流程示意图。本发明提供的负压隔离病房的控制方法包括如下步骤:
S301:获取用户输入的启动指令,获取缓冲间目标静压值和救治间目标静压值,获取缓冲间的缓冲间第二当前静压值和救治间的救治间第二当前静压值。
S302:获取与缓冲间目标静压值匹配的第一转速,驱动缓冲排风风机以第一转速运转。
S303:获取与救治间目标静压值匹配的第二转速,驱动主排风风机以第二转速运转。
S304:在缓冲排风风机和主排风风机运转第一时长后,驱动进风风机运转。
在一个具体的实施场景中,步骤S301-S304与本发明提供的负压隔离病房的控制方法第一实施例中的步骤S101-S104基本一致,此处不再进行赘述。
S305:判断至少两个缓冲压差传感器中是否存在至少一个缓冲压差传感器处于正常工作状态。若是,执行步骤S306,若否,结束。
在本实施场景中,判断缓冲间内至少两个缓冲压差传感器中是否存在至少一个缓冲压差传感器处于正常工作状态,例如,判断是否接收到每个缓冲压差传感器发送的气压测量值,若未收到,则该缓冲压差传感器不处于正常工作状态,还可以根据每个缓冲压差传感器发送的气压测量值判断该缓冲压差传感器是否处于正常工作状态,例如判断气压测量值是否处于预设阈值,若不处于则该缓冲压差传感器不处于正常工作状态。
S306:获取至少一个正常工作的缓冲压差传感器的第一气压测量值,根据第一气压测量值获取缓冲间第二当前静压值。
在本实施场景中,若仅存在一个正常工作的缓冲压差传感器,则将该正常工作的缓冲压差传感器测量到的第一气压测量值作为缓冲间第二当前静压值,若存在多个正常工作的缓冲压差传感器,则将这多个正常工作的缓冲压差传感器测量到的第一气压测量值的平均值作为缓冲间第二当前静压值。
S307:根据缓冲间第二当前静压值调整缓冲排风风机的转速,使得缓冲间第二当前静压值调整为缓冲间目标静压值。
在本实施场景中,步骤S307与本发明提供的负压隔离病房的控制方法第一实施例中的步骤S105基本一致,此处不再进行赘述。
S308:判断至少两个救治压差传感器中是否存在至少一个救治压差传感器处于正常工作状态。若是,则执行步骤S309,若否,则结束。
在本实施场景中,判断至少两个救治压差传感器中是否存在至少一个救治压差传感器处于正常工作状态的方法与步骤S305中判断至少两个缓冲压差传感器中是否存在至少一个缓冲压差传感器处于正常工作状态的方法基本一致,此处不再进行赘述。
S309:获取至少一个正常工作的救治压差传感器的第二气压测量值,根据第二气压测量值获取救治间第二当前静压值。
在本实施场景中,若仅存在一个正常工作的救治压差传感器,则将该正常工作的救治压差传感器测量到的第一气压测量值作为救治间第二当前静压值,若存在多个正常工作的救治压差传感器,则将这多个正常工作的救治压差传感器测量到的第一气压测量值的平均值作为救治间第二当前静压值。
S310:根据救治间第二当前静压值调整主排风风机的转速,使得救治间第二当前静压值调整为救治间目标静压值。
在本实施场景中,步骤S310与本发明提供的负压隔离病房的控制方法第一实施例中的步骤S106基本一致,此处不再进行赘述。
通过上述描述可知,在本实施例中根据至少一个正常工作的缓冲压差传感器的第一气压测量值获取缓冲间第二当前静压值,根据至少一个正常工作的救治压差传感器的第二气压测量值获取救治间第二当前静压值,可以有效提升缓冲间第二当前静压值和救治间第二当前静压值的准确率,根据具有较高准确率的缓冲间第二当前静压值和救治间第二当前静压值调整缓冲排风风机和主排风风机的转速,可以有效提升负压隔离病房的安全性和舒适度。
请参阅图6,图6是本发明提供的负压隔离病房的控制方法的第四实施例的流程示意图。本发明提供的负压隔离病房的控制方法包括如下步骤:
S401:获取用户输入的启动指令,获取缓冲间目标静压值和救治间目标静压值,获取缓冲间的缓冲间第二当前静压值和救治间的救治间第二当前静压值。
S402:获取与缓冲间目标静压值匹配的第一转速,驱动缓冲排风风机以第一转速运转。
S403:获取与救治间目标静压值匹配的第二转速,驱动主排风风机以第二转速运转。
S404:判断主排风风机是否处于正常工作状态。若否,执行步骤S405,若是,执行步骤S409。
S405:驱动备用排风风机以第二转速运转。
S406:判断备用排风风机是否处于正常工作状态。若否,执行步骤S407,若是,执行步骤S408。
S407:发出第一报警信号,第一报警信号包括第一故障代码,第一故障代码用于指示备用排风风机运转异常。
S408:在缓冲排风风机和主排风风机或备用排风风机运转第一时长后,驱动进风风机运转。
S409:判断进风风机是否处于正常工作状态,若否,执行步骤S410,若是,执行步骤S411。
S410:发出第二报警信号,第二报警信号包括第二故障代码,第二故障代码用于指示进风风机运转异常。
在一个具体的实施场景中,步骤S401-S410与本发明提供的负压隔离病房的控制方法的第二实施例的步骤S201-S210基本一致,此处不再进行赘述。
S411:判断当前救治间的运行的排风风机是否为主排风风机。若是,执行步骤S412,若否,执行步骤S414。
在本实施场景中,当主排风风机运转发生故障时,将切换至备用排风风机运转,因此当负压隔离病房正常运转时,检测当前救治间的运行的排风风机是否为主排风风机。
S412:判断主排风风机是否处于正常工作状态。若否,执行步骤S413,若是,执行步骤S416。
S413:驱动备用排风风机运转。
S414:判断备用排风风机是否处于正常工作状态。若否,执行步骤S415,若是,执行步骤S416。
S415:发出第一报警信号,第一报警信号包括第一故障代码,第一故障代码用于指示备用排风风机运转异常。
在本实施场景中,步骤S412-S415与步骤S404-S407基本一致,此处不再进行赘述。
S416:判断至少两个缓冲压差传感器中是否存在至少一个缓冲压差传感器处于正常工作状态。若是,执行步骤S417,若否,执行步骤S418,若存在至少一个缓冲压差传感器不处于正常工作状态,则执行步骤S419。
S417:获取至少一个正常工作的缓冲压差传感器的第一气压测量值,根据第一气压测量值获取缓冲间第二当前静压值。
在一个具体的实施场景中,步骤S416-S417与本发明提供的负压隔离病房的控制方法的第三实施例的步骤S305-S306基本一致,此处不再进行赘述。
S418:根据缓冲间第二当前静压值调整缓冲排风风机的转速,使得缓冲间第二当前静压值调整为缓冲间目标静压值。
在本实施场景中,步骤S418与本发明提供的负压隔离病房的控制方法第一实施例中的步骤S105基本一致,此处不再进行赘述。
S419:发出第四报警信号,第四报警信号包括第四故障代码,第四故障代码用于指示至少一个缓冲压差传感器不处于正常工作状态。
在本实施场景中,存在至少一个缓冲压差传感器不处于正常工作状态,发出第四报警信号,例如灯光、声音或者向用户终端发送提示信息等等,第四报警信号中包括第四故障代码,第四故障代码用于指示至少一个缓冲压差传感器不处于正常工作状态,使得用户可以及时获取至少一个缓冲压差传感器的故障问题,及时进行维修,维持负压隔离病房的使用。
S420:发出第三报警信号,第三报警信号包括第三故障代码,第三故障代码用于指示至少两个缓冲压差传感器均不处于正常工作状态。
在本实施场景中,至少两个缓冲压差传感器均不处于正常工作状态,发出第三报警信号,例如灯光、声音或者向用户终端发送提示信息等等,第三报警信号中包括第三故障代码,第三故障代码用于指示至少两个缓冲压差传感器均不处于正常工作状态,使得用户可以及时获取至少两个缓冲压差传感器的故障问题,及时进行维修,维持负压隔离病房的使用。
S421:判断至少两个救治压差传感器中是否存在至少一个救治压差传感器处于正常工作状态。若是,执行步骤S422,若否,执行步骤S425,若存在至少一个缓冲压差传感器不处于正常工作状态,则执行步骤S424。
S422:获取至少一个正常工作的缓冲压差传感器的第一气压测量值,根据第一气压测量值获取缓冲间第二当前静压值。
在一个具体的实施场景中,步骤S421-S422与本发明提供的负压隔离病房的控制方法的第三实施例的步骤S307-S308基本一致,此处不再进行赘述。
S423:获取救治间的救治间第二当前静压值,根据救治间第二当前静压值调整主排风风机的转速,使得救治间第二当前静压值调整为救治间目标静压值。
在本实施场景中,步骤S423与本发明提供的负压隔离病房的控制方法第一实施例中的步骤S106基本一致,此处不再进行赘述。
S424:发出第六报警信号,第六报警信号包括第六故障代码,第六故障代码用于指示至少一个救治压差传感器不处于正常工作状态。
在本实施场景中,存在至少一个救治压差传感器不处于正常工作状态,发出第六报警信号,例如灯光、声音或者向用户终端发送提示信息等等,第六报警信号中包括第六故障代码,第六故障代码用于指示至少一个救治压差传感器不处于正常工作状态,使得用户可以及时获取至少一个救治压差传感器的故障问题,及时进行维修,维持负压隔离病房的使用。
S425:发出第五报警信号,第五报警信号包括第五故障代码,第五故障代码用于指示至少两个救治压差传感器均不处于正常工作状态。
在本实施场景中,至少两个救治压差传感器均不处于正常工作状态,发出第五报警信号,例如灯光、声音或者向用户终端发送提示信息等等,第五报警信号中包括第五故障代码,第五故障代码用于指示至少两个救治压差传感器均不处于正常工作状态,使得用户可以及时获取至少两个救治压差传感器的故障问题,及时进行维修,维持负压隔离病房的使用。
S426:接收用户输入的关机指令,根据关机指令控制进风风机停止运转,在进风风机停止运转的第二时间后,控制主排风风机或备用排风风机停止运转。
在本实施场景中,当进风风机和排风风机稳定运转后,若负压隔离病房需要关闭,则用户可以输入关机指令,接收到用户输入的关机指令后,首先控制进风风机停止运转。在进风风机停止运转的第二时间后,控制主排风风机或者备用排风风机停止运转,可以使得负压隔离病房内的气压小于室外气压,维持负压状态,提升负压隔离病房的安全性。
通过上述描述可知,在本实施例中接收用户输入的关机指令后,先控制进风风机停止运转,再控制排风风机停止运转,可以使得负压隔离病房内的气压小于室外气压,维持负压状态,提升负压隔离病房的安全性。
请参阅图7,图7是本发明提供的负压隔离病房的控制系统的一实施例的结构示意图。负压隔离病房的控制系统20应用于图1所示的负压隔离病房,包括:第一获取模块21、第一驱动模块22、第二驱动模块23、第二获取模块24、第三获取模块25。
第一获取模块21用于获取用户输入的启动指令,获取缓冲间目标静压值和救治间目标静压值,获取缓冲间的缓冲间第一当前静压值和救治间的救治间第一当前静压值。第一驱动模块22用于获取与缓冲间目标静压值匹配的第一转速,驱动缓冲排风风机以第一转速运转,获取与救治间目标静压值匹配的第二转速,驱动主排风风机以第二转速运转。第二驱动模块23用于在缓冲排风风机和主排风风机运转第一时长后,驱动进风风机运转。第二获取模块24用于获取缓冲间的缓冲间第二当前静压值,根据缓冲间第二当前静压值调整缓冲排风风机的转速,使得缓冲间第二当前静压值调整为缓冲间目标静压值。第三获取模块25用于获取救治间的救治间第二当前静压值,根据救治间第二当前静压值调整主排风风机的转速,使得救治间第二当前静压值调整为救治间目标静压值。
负压隔离病房的控制系统20还包括判断模块26,判断模块26用于判断主排风风机是否处于正常工作状态,若主排风风机不处于正常工作状态,则驱动备用排风风机以第二转速运转。
判断模块26还用于判断备用排风风机是否处于正常工作状态,若备用排风风机不处于正常工作状态,则发出第一报警信号,第一报警信号包括第一故障代码,第一故障代码用于指示备用排风风机运转异常。
判断模块26还用于判断进风风机是否处于正常工作状态,若进风风机不处于正常工作状态,则发出第二报警信号,第二报警信号包括第二故障代码,第二故障代码用于指示进风风机运转异常。
第二获取模块24还用于判断至少两个缓冲压差传感器中是否存在至少一个缓冲压差传感器处于正常工作状态;若存在至少一个缓冲压差传感器处于正常工作状态,则获取至少一个正常工作的缓冲压差传感器的第一气压测量值,根据第一气压测量值获取缓冲间第二当前静压值。
第三获取模块25还用于判断至少两个救治压差传感器中是否存在至少一个救治压差传感器处于正常工作状态;若存在至少一个救治压差传感器处于正常工作状态,则获取至少一个正常工作的救治压差传感器的第二气压测量值,根据第二气压测量值获取救治间第二当前静压值。
第二获取模块24还用于若至少两个缓冲压差传感器均不处于正常工作状态,则发出第三报警信号,第三报警信号包括第三故障代码,第三故障代码用于指示至少两个缓冲压差传感器均不处于正常工作状态。若存在至少一个缓冲压差传感器不处于正常工作状态,则发出第四报警信号,第四报警信号包括第四故障代码,第四故障代码用于指示至少一个缓冲压差传感器不处于正常工作状态。
第三获取模块25还用于若至少两个救治压差传感器均不处于正常工作状态,则发出第五报警信号,第五报警信号包括第五故障代码,第五故障代码用于指示至少两个救治压差传感器均不处于正常工作状态;若存在至少一个救治压差传感器不处于正常工作状态,则发出第六报警信号,第六报警信号包括第六故障代码,第六故障代码用于指示至少一个救治压差传感器不处于正常工作状态。
负压隔离病房的控制系统20还包括关机模块27,关机模块27用于接收用户输入的关机指令,根据关机指令控制进风风机停止运转;在进风风机停止运转的第二时间后,控制缓冲排风风机和主排风风机停止运转。
通过上述描述可知,在本实施例中负压隔离病房的控制系统先根据缓冲间目标静压值和救治间目标静压值驱动缓冲排风风机以第一转速运转,驱动主排风风机以第二转速运转,再驱动进风风机运转,并根据缓冲间第二当前静压值调整缓冲排风风机的转速,使得缓冲间第二当前静压值调整为缓冲间目标静压值,根据救治间第二当前静压值调整主排风风机的转速,使得救治间第二当前静压值调整为救治间目标静压值,先控制进风风机停止运转,再控制排风风机停止运转,可以使得负压隔离病房内的气压小于室外气压,维持负压状态,提升负压隔离病房的安全性。
请参阅图8,图8是本发明提供的负压隔离病房的控制设备的一实施例的结构示意图。负压隔离病房的控制设备30包括处理器31、存储器32。处理器31耦接存储器32。存储器32中存储有计算机程序,处理器31在工作时执行该计算机程序以实现如图2、图4-图6所示的方法。详细的方法可参见上述,在此不再赘述。
通过上述描述可知,在本实施例中负压隔离病房的控制设备根据缓冲间目标静压值和救治间目标静压值驱动缓冲排风风机以第一转速运转,驱动主排风风机以第二转速运转,再驱动进风风机运转,并根据缓冲间第二当前静压值调整缓冲排风风机的转速,使得缓冲间第二当前静压值调整为缓冲间目标静压值,根据救治间第二当前静压值调整主排风风机的转速,使得救治间第二当前静压值调整为救治间目标静压值,先控制进风风机停止运转,再控制排风风机停止运转,可以使得负压隔离病房内的气压小于室外气压,维持负压状态,提升负压隔离病房的安全性。
请参阅图9,图9是本发明提供的存储介质的一实施例的结构示意图。计算机可读存储介质40中存储有至少一个计算机程序41,计算机程序41用于被处理器执行以实现如图2、图4-图6所示的方法,详细的方法可参见上述,在此不再赘述。在一个实施例中,计算机可读存储介质40可以是终端中的存储芯片、硬盘或者是移动硬盘或者优盘、光盘等其他可读写存储的工具,还可以是服务器等等。
通过上述描述可知,在本实施例中存储介质中的计算机程序可以用于根据缓冲间目标静压值和救治间目标静压值驱动缓冲排风风机以第一转速运转,驱动主排风风机以第二转速运转,再驱动进风风机运转,并根据缓冲间第二当前静压值调整缓冲排风风机的转速,使得缓冲间第二当前静压值调整为缓冲间目标静压值,根据救治间第二当前静压值调整主排风风机的转速,使得救治间第二当前静压值调整为救治间目标静压值,先控制进风风机停止运转,再控制排风风机停止运转,可以使得负压隔离病房内的气压小于室外气压,维持负压状态,提升负压隔离病房的安全性。
区别于现有技术,本发明根据缓冲间目标静压值和救治间目标静压值驱动缓冲排风风机以第一转速运转,驱动主排风风机以第二转速运转,再驱动进风风机运转,先控制进风风机停止运转,再控制排风风机停止运转,可以使得负压隔离病房内的气压小于室外气压,维持负压状态,提升负压隔离病房的安全性。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种负压隔离病房的控制方法,其特征在于,应用于负压隔离病房,所述负压隔离病房包括相互连通的缓冲间和救治间、设置于所述缓冲间中的缓冲排风风机、设置于所述救治间中的主排风风机和进风风机;所述负压隔离病房的控制方法包括:
    获取用户输入的启动指令,获取缓冲间目标静压值和救治间目标静压值,获取所述缓冲间的缓冲间第一当前静压值和所述救治间的救治间第一当前静压值;
    获取与所述缓冲间目标静压值匹配的第一转速,驱动所述缓冲排风风机以所述第一转速运转,获取与所述救治间目标静压值匹配的第二转速,驱动所述主排风风机以所述第二转速运转;
    在所述缓冲排风风机和所述主排风风机运转第一时长后,驱动所述进风风机运转;
    获取所述缓冲间的缓冲间第二当前静压值,根据所述缓冲间第二当前静压值调整所述缓冲排风风机的转速,使得所述缓冲间第二当前静压值调整为所述缓冲间目标静压值;
    获取所述救治间的救治间第二当前静压值,根据所述救治间第二当前静压值调整所述主排风风机的转速,使得所述救治间第二当前静压值调整为所述救治间目标静压值。
  2. 根据权利要求1的负压隔离病房的控制方法,其特征在于,所述负压隔离病房还包括设置于所述救治间中的备用排风风机;
    所述驱动所述主排风风机以所述第二转速运转的步骤之后,包括:
    判断所述主排风风机是否处于正常工作状态,若所述主排风风机不处于正常工作状态,则驱动所述备用排风风机以所述第二转速运转。
  3. 根据权利要求2的负压隔离病房的控制方法,其特征在于,所述驱动所述备用排风风机以所述第二转速运转的步骤之后,还包括:
    判断所述备用排风风机是否处于正常工作状态,若所述备用排风风机不处于正常工作状态,则发出第一报警信号,所述第一报警信号包括第一故障代码,所述第一故障代码用于指示所述备用排风风机运转异常。
  4. 根据权利要求1的负压隔离病房的控制方法,其特征在于,所述驱动所述进风风机运转的步骤之后,包括:
    判断所述进风风机是否处于正常工作状态,若所述进风风机不处于正常工作状态,则发出第二报警信号,所述第二报警信号包括第二故障代码,所述第二故障代码用于指示所述进风风机运转异常。
  5. 根据权利要求1的负压隔离病房的控制方法,其特征在于,所述负压隔离病房还包括设置于所述缓冲间的至少两个缓冲压差传感器和设置于所述救治间的至少两个救治压差传感器;
    所述获取所述缓冲间的缓冲间第二当前静压值的步骤,包括:
    判断所述至少两个缓冲压差传感器中是否存在至少一个所述缓冲压差传感器处于正常工作状态;
    若存在至少一个所述缓冲压差传感器处于正常工作状态,则获取所述至少一个正常工作的缓冲压差传感器的第一气压测量值,根据所述第一气压测量值获取所述缓冲间第二当前静压值;
    所述获取所述救治间的救治间第二当前静压值的步骤,包括:
    判断所述至少两个救治压差传感器中是否存在至少一个所述救治压差传感器处于正常工作状态;
    若存在至少一个所述救治压差传感器处于正常工作状态,则获取所述至少一个正常工作的救治压差传感器的第二气压测量值,根据所述第二气压测量值获取所述救治间第二当前静压值。
  6. 根据权利要求5的负压隔离病房的控制方法,其特征在于,所述判断所述至少两个缓冲压差传感器中是否存在至少一个所述缓冲压差传感器处于正常工作状态的步骤之后,包括:
    若所述至少两个缓冲压差传感器均不处于正常工作状态,则发出第三报警信号,所述第三报警信号包括第三故障代码,所述第三故障代码用于指示所述至少两个缓冲压差传感器均不处于正常工作状态;
    若存在至少一个所述缓冲压差传感器不处于正常工作状态,则发出第四报警信号,所述第四报警信号包括第四故障代码,所述第四故障代码用于指示所述至少一个缓冲压差传感器不处于正常工作状态;
    所述判断所述至少两个救治压差传感器中是否存在至少一个所述救治压差传感器处于正常工作状态的步骤之后,包括:
    若所述至少两个救治压差传感器均不处于正常工作状态,则发出第五报警信号,所述第五报警信号包括第五故障代码,所述第五故障代码用于指示所述至少两个救治压差传感器均不处于正常工作状态;
    若存在至少一个所述救治压差传感器不处于正常工作状态,则发出第六报警信号,所述第六报警信号包括第六故障代码,所述第六故障代码用于指示所述至少一个救治压差传感器不处于正常工作状态。
  7. 根据权利要求2的负压隔离病房的控制方法,其特征在于,所述根据所述救治间第二当前静压值调整所述主排风风机的转速的步骤之后,包括:
    接收用户输入的关机指令,根据所述关机指令控制所述进风风机停止运转;
    在所述进风风机停止运转的第二时间后,控制所述缓冲排风风机和所述主排风风机或所述备用排风风机停止运转。
  8. 一种负压隔离病房的控制系统,其特征在于,应用于负压隔离病房,所述负压隔离病房包括相互连通的缓冲间和救治间、设置于所述缓冲间中的缓冲排风风机,设置于所述救治间中的主排风风机、进风风机;所述负压隔离病房的控制方法包括:
    第一获取模块,用于获取用户输入的启动指令,获取缓冲间目标静压值和救治间目标静压值,获取所述缓冲间的缓冲间第一当前静压值和所述救治间的救治间第一当前静压值;
    第一驱动模块,用于获取与所述缓冲间目标静压值匹配的第一转速,驱动所述缓冲排风风机以所述第一转速运转,获取与所述救治间目标静压值匹配的第二转速,驱动所述主排风风机以所述第二转速运转;
    第二驱动模块,用于在所述缓冲排风风机和所述主排风风机运转第一时长后,驱动所述进风风机运转;
    第二获取模块,用于获取所述缓冲间的缓冲间第二当前静压值,根据所述缓冲间第二当前静压值调整所述缓冲排风风机的转速,使得所述缓冲间第二当前静压值调整为所述缓冲间目标静压值;
    第三获取模块,用于获取所述救治间的救治间第二当前静压值,根据所述救治间第二当前静压值调整所述主排风风机的转速,使得所述救治间第二当前静压值调整为所述救治间目标静压值。
  9. 一种负压隔离病房的控制设备,其特征在于,包括:处理器和存储器,所述处理器耦接所述存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现如权利要求1-7任一项所述的方法。
  10. 一种存储介质,其特征在于,存储有计算机程序,所述计算机程序能够被处理器执行以实现如权利要求1-7任一项所述的方法。
PCT/CN2020/102979 2020-06-24 2020-07-20 负压隔离病房的控制方法、系统、设备和存储介质 WO2021258450A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010591318.7A CN111765578A (zh) 2020-06-24 2020-06-24 负压隔离病房的控制方法、系统、设备和存储介质
CN202010591318.7 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021258450A1 true WO2021258450A1 (zh) 2021-12-30

Family

ID=72722074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102979 WO2021258450A1 (zh) 2020-06-24 2020-07-20 负压隔离病房的控制方法、系统、设备和存储介质

Country Status (2)

Country Link
CN (1) CN111765578A (zh)
WO (1) WO2021258450A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112212439A (zh) * 2020-10-30 2021-01-12 深圳市巨鼎医疗设备有限公司 一种移动病房用新型排风装置
CN112959875A (zh) * 2021-03-16 2021-06-15 成都格力新晖医疗装备有限公司 一种生物医疗检测车负压调节方法及生物医疗检测车
CN113983658B (zh) * 2021-10-18 2022-12-27 珠海格力电器股份有限公司 一种室内负压环境下主备用排风机切换系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304221A (ja) * 2001-04-05 2002-10-18 Shibuya Kogyo Co Ltd 室内の圧力制御装置
CN101732143A (zh) * 2008-11-20 2010-06-16 王学东 移动式负压隔离舱
JP2010264076A (ja) * 2009-05-14 2010-11-25 Ihi Shibaura Machinery Corp 隔離室形成装置、及び、隔離室清浄燻蒸方法
CN110186172A (zh) * 2019-06-03 2019-08-30 西安锦威电子科技有限公司 三级及以上生物安全实验室环境控制系统
CN111271789A (zh) * 2020-03-20 2020-06-12 海润新风(重庆)智能技术有限公司 平疫结合使用的负压病房以及通风控制方法
CN111305608A (zh) * 2020-03-30 2020-06-19 上海市肺科医院 一种应急集装箱式负压病房

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587842A (zh) * 2004-08-30 2005-03-02 梁桂秋 正负压切换净化病房系统
JP5695342B2 (ja) * 2010-05-11 2015-04-01 近藤工業株式会社 屋内簡易設置型陰圧方式隔離室
CN202136988U (zh) * 2011-06-10 2012-02-08 北京世安科兴科技开发有限责任公司 一种ⅲ级生物安全柜
CN103241232A (zh) * 2013-04-23 2013-08-14 扬州奥凯新能源科技有限公司 电动汽车刹车助力真空度控制装置
CN105235671B (zh) * 2015-10-13 2018-06-22 南车株洲电力机车有限公司 一种制动缸的压力控制冗余装置及控制方法
CN205862197U (zh) * 2016-06-28 2017-01-04 山东新华医疗器械股份有限公司 隔离器用舱内外压差调控系统
KR20190021618A (ko) * 2017-08-23 2019-03-06 이태경 각 공간의 효율성과 동선 및 작업순서를 고려한 최적화된 치과 병원의 인테리어 배치 구조
CN111322680A (zh) * 2020-03-31 2020-06-23 重庆海润绿色科技集团有限公司 平疫双用的移动应急隔离方舱通风空调控制系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304221A (ja) * 2001-04-05 2002-10-18 Shibuya Kogyo Co Ltd 室内の圧力制御装置
CN101732143A (zh) * 2008-11-20 2010-06-16 王学东 移动式负压隔离舱
JP2010264076A (ja) * 2009-05-14 2010-11-25 Ihi Shibaura Machinery Corp 隔離室形成装置、及び、隔離室清浄燻蒸方法
CN110186172A (zh) * 2019-06-03 2019-08-30 西安锦威电子科技有限公司 三级及以上生物安全实验室环境控制系统
CN111271789A (zh) * 2020-03-20 2020-06-12 海润新风(重庆)智能技术有限公司 平疫结合使用的负压病房以及通风控制方法
CN111305608A (zh) * 2020-03-30 2020-06-19 上海市肺科医院 一种应急集装箱式负压病房

Also Published As

Publication number Publication date
CN111765578A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2021258450A1 (zh) 负压隔离病房的控制方法、系统、设备和存储介质
US20070273216A1 (en) Systems and Methods for Reducing Power Losses in a Medical Device
CN111750475A (zh) 负压隔离病房的控制方法、系统、设备和存储介质
CN104101051A (zh) 一种空调器及其冷媒循环异常检测控制方法和装置
WO2020134404A1 (zh) 空调器及其控制方法
JP5507275B2 (ja) 空調制御装置
WO2022105469A1 (zh) 一种空调系统的回油控制方法、装置和空调系统
TW201312966A (zh) 具保護功能的網路喚醒系統
CN110145837A (zh) 空调器及其控制方法
WO2022068958A1 (zh) 用于空调器的控制方法及空调器
WO2023010636A1 (zh) 空调器的高低压阀状态检测方法、装置、空调器与介质
JP6620048B2 (ja) 空気調和機および空気調和機の制御方法
CN104296327A (zh) 空调器的控制方法及控制装置、空调器
CN107388491B (zh) 空调器的变频控制方法、空调器及计算机可读存储介质
US20090289803A1 (en) Method for protecting data in non-volatile storage device and computer thereof
TWI531133B (zh) 充電方法與電子裝置
CN108006891A (zh) 空调器故障提示方法及装置
CN113834180B (zh) 一种多联机长连管输出自适应方法、装置及系统
WO2017076230A1 (zh) 头盔式虚拟现实设备及头盔式虚拟现实设备的节电方法
CN110513826A (zh) 一种空调器及其控制方法
CN110145843B (zh) 空调器及其控制方法
JP2011158156A (ja) 空調制御装置
CN111637617A (zh) 负压隔离病房的控制方法、系统、设备和存储介质
TW201619740A (zh) 供電系統
JP6027377B2 (ja) 室圧制御システムおよび一斉シャットオフ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20941598

Country of ref document: EP

Kind code of ref document: A1