WO2023010636A1 - 空调器的高低压阀状态检测方法、装置、空调器与介质 - Google Patents

空调器的高低压阀状态检测方法、装置、空调器与介质 Download PDF

Info

Publication number
WO2023010636A1
WO2023010636A1 PCT/CN2021/116025 CN2021116025W WO2023010636A1 WO 2023010636 A1 WO2023010636 A1 WO 2023010636A1 CN 2021116025 W CN2021116025 W CN 2021116025W WO 2023010636 A1 WO2023010636 A1 WO 2023010636A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
low pressure
compressor
ambient temperature
indoor ambient
Prior art date
Application number
PCT/CN2021/116025
Other languages
English (en)
French (fr)
Inventor
牛成珂
张亮亮
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2023010636A1 publication Critical patent/WO2023010636A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioning, in particular to a method and device for detecting the state of high and low pressure valves of an air conditioner, an air conditioner and a medium.
  • the high and low pressure valves need to be closed, and after the installation or maintenance is completed, the high and low pressure valves need to be opened.
  • the main purpose of this application is to provide a method and device for detecting the state of high and low pressure valves of an air conditioner, an air conditioner and a medium, aiming at detecting the state of the high and low pressure valves of an air conditioner.
  • the application provides a method for detecting the state of high and low pressure valves of an air conditioner, the method comprising:
  • the first indoor ambient temperature the first evaporator temperature, the second indoor ambient temperature, the second evaporator temperature and the first compressor current, it is judged whether the high and low pressure valves of the air conditioner are in an abnormal state.
  • the step of judging whether the high and low pressure valves of the air conditioner are in an abnormal state includes:
  • the step of detecting the indoor ambient temperature, the evaporator temperature and the compressor current to obtain the second indoor ambient temperature, the second evaporator temperature and the first compressor current includes:
  • the step of setting the threshold and whether the current of the first compressor is less than the preset current is established includes:
  • the method further includes:
  • the air conditioner is a fixed frequency air conditioner
  • the method further includes:
  • the air conditioner is controlled to shut down and an abnormal state reminder message is issued.
  • the method when the result of the second judgment is that the high and low pressure valves are in a normal state, after the compressor starts to run for a fifth preset period of time, it returns to perform multiple detections of the indoor ambient temperature, evaporator temperature and compressor current. After the step of obtaining the third judgment result of whether the high and low pressure valves are in an abnormal state, the method also includes:
  • the air conditioner is controlled to shut down for a fourth preset period of time and restart operation, and execute the first preset adjustment strategy and the user setting file of the indoor fan of the air conditioner Steps to adjust the actual operating gear of the indoor fan: to obtain the final judgment result of whether the high and low pressure valves are in an abnormal state.
  • the air conditioner is an inverter air conditioner
  • the method further includes:
  • the actual operating frequency of the compressor is adjusted according to the second preset adjustment strategy
  • the air conditioner is controlled to stop, and an abnormal state reminder message is issued.
  • the method when the result of the second judgment is that the high and low pressure valves are in a normal state, after the compressor starts to run for a fifth preset period of time, it returns to perform multiple detections of the indoor ambient temperature, evaporator temperature and compressor current. After the step of obtaining the third judgment result of whether the high and low pressure valves are in an abnormal state, the method also includes:
  • the air conditioner is controlled to shut down for a fourth preset period of time and then restart the operation, and perform the step of adjusting the actual operating frequency of the compressor according to the second preset adjustment strategy, so as to Obtain the final judgment result of whether the high and low pressure valves are in an abnormal state.
  • the indoor ambient temperature, the evaporator temperature, and the compressor current are detected within a first preset period of time after the compressor starts running, so as to obtain the second indoor ambient temperature, the second evaporator temperature, and the first compression electromechanical steps, including:
  • the indoor ambient temperature, the evaporator temperature and the compressor current are detected multiple times to obtain a plurality of second indoor ambient temperatures, a plurality of second evaporator temperatures and a plurality of first compressors Electromechanical current, wherein the second preset duration is shorter than the first preset duration.
  • the present application also provides a high and low pressure valve state detection device for an air conditioner, including:
  • the first acquisition module is configured to detect the indoor ambient temperature and the evaporator temperature of the air conditioner when receiving a start-up instruction for the air conditioner, so as to acquire the first indoor ambient temperature and the first evaporator temperature of the air conditioner;
  • a control module used to control the start-up of the compressor
  • the second acquisition module is used to detect the indoor ambient temperature, the evaporator temperature and the compressor current within the first preset time period after the compressor starts running, so as to obtain the second indoor ambient temperature, the second evaporator temperature and the first compressor current;
  • the state judging module is used to judge whether the high and low pressure valves of the air conditioner are in an abnormal state according to the first indoor ambient temperature, the first evaporator temperature, the second indoor ambient temperature, the second evaporator temperature and the first compressor current.
  • the present application also provides an air conditioner, including: a memory, a processor, and a high and low pressure valve state detection program of the air conditioner that is stored in the memory and can run on the processor, the air conditioner
  • the program for detecting the state of the high and low pressure valves of the air conditioner is configured as the steps for realizing the above method for detecting the state of the high and low pressure valves of the air conditioner.
  • the present application also provides a computer-readable storage medium, including a computer program, wherein, when the computer program is executed by a processor, the above method for detecting the state of the high and low pressure valves of the air conditioner is implemented.
  • the application proposes a method for detecting the state of the high and low pressure valves of an air conditioner.
  • the first indoor ambient temperature and the first evaporator temperature of the air conditioner are obtained by detecting the first indoor ambient temperature and the first evaporator temperature of the air conditioner before the compressor of the air conditioner starts running, that is, the air conditioner is at The operating parameters before starting operation, and after the compressor starts running, detect the second indoor ambient temperature, second evaporator temperature and compressor current of the air conditioner, that is, the operating parameters of the air conditioner after the compressor starts running, Therefore, according to the change of the relevant operating parameters after the compressor of the air conditioner starts to operate, it is determined whether the high and low pressure valves are in the normal state of opening or in the abnormal state of closing.
  • This application can detect whether the high and low pressure valves are opened when the air conditioner is started and operated through the change of the relevant operating parameters after the compressor of the air conditioner is started, so as to prevent the compressor from continuing to run when the high and low pressure valves are not opened, resulting in burning out A stuck cylinder occurs.
  • Fig. 1 is the structural representation of the air conditioner of the present application
  • Fig. 2 is the schematic flow chart of the first embodiment of the high and low pressure valve state detection method of the air conditioner of the present application;
  • Fig. 3 is a schematic flow chart of the second embodiment of the method for detecting the state of the high and low pressure valves of the air conditioner of the present application;
  • FIG. 4 is a schematic flow chart of the third embodiment of the method for detecting the state of the high and low pressure valves of the air conditioner of the present application;
  • Fig. 5 is a schematic diagram of the functional modules of the high and low pressure valve state detection device of the air conditioner of the present application.
  • the present application provides a method for detecting the state of the high and low pressure valves of an air conditioner, by detecting the relevant operating parameters of the air conditioner before the compressor of the air conditioner starts running, and after the compressor starts running, and then detecting it several times to obtain The value of the relevant operating parameters after the compressor is started, so as to determine whether the high and low pressure valves are in the normal state of opening or the abnormal state of closing according to the change of the relevant operating parameters after the compressor of the air conditioner is started.
  • FIG. 1 is a schematic structural diagram of the recommended equipment of the air conditioner involved in the solution of the embodiment of the present application.
  • the air conditioner includes: at least one processor 301, a memory 302, and a high and low pressure valve state detection program of the air conditioner stored on the memory and operable on the processor, the high and low pressure valve state detection program of the air conditioner
  • the program is configured to implement the steps of the method for detecting the state of the high and low pressure valves of the air conditioner as described in the following method embodiments.
  • the processor 301 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and the like.
  • Processor 301 can adopt at least one hardware form in DSP (Digital Signal Processing, digital signal processing), FPGA (Field-Programmable Gate Array, field programmable gate array), PLA (Programmable Logic Array, programmable logic array) accomplish.
  • Processor 301 can also include main processor and coprocessor, and main processor is the processor that is used for processing the data in wake-up state, also claims CPU (Central Processing Unit, central processing unit); Low-power processor for processing data in standby state.
  • the processor 301 may be integrated with a GPU (Graphics Processing Unit, image processor), and the GPU is used for rendering and drawing the content that needs to be displayed on the display screen.
  • GPU Graphics Processing Unit, image processor
  • Memory 302 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 302 may also include high-speed random access memory and non-volatile memory, such as one or more magnetic disk storage devices and flash memory storage devices.
  • the non-transitory computer-readable storage medium in the memory 302 is used to store at least one instruction, and the at least one instruction is used to be executed by the processor 301 to implement the air conditioner provided by the method embodiment of the present application High and low pressure valve state detection method.
  • the air conditioner also includes: a communication interface 303 and multiple peripheral devices.
  • the processor 301, the memory 302, and the communication interface 303 may be connected through a bus or a signal line.
  • Each peripheral device can be connected to the communication interface 303 through a bus, a signal line or a circuit board.
  • the peripheral equipment includes: at least one of an indoor environment temperature sensing package 304 , an evaporator temperature sensing package 305 and an ammeter 306 .
  • the communication interface 303 may be used to connect at least one peripheral device related to I/O (Input/Output, input/output) to the processor 301 and the memory 302 .
  • the processor 301, the memory 302 and the communication interface 303 are integrated on the same chip or circuit board; in some other embodiments, any one or both of the processor 301, the memory 302 and the communication interface 303 It can be implemented on a separate chip or circuit board, which is not limited in this embodiment.
  • the indoor environment temperature sensing package 304 is used to detect the indoor environment temperature of the room where the indoor unit is located.
  • the evaporator temperature sensing package 305 is used to detect the tube temperature of the evaporator, and the ammeter 306 is used to detect the current of the compressor.
  • Fig. 1 does not constitute a limitation to the air conditioner, and may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • FIG. 2 is a schematic flow chart of the first embodiment of the method for detecting the state of the high and low pressure valves of the air conditioner of the present application.
  • the method for detecting the state of the high and low pressure valves of the air conditioner includes:
  • Step S101 when receiving a power-on command for the air conditioner, detect the indoor ambient temperature and the evaporator temperature of the air conditioner, so as to obtain the first indoor ambient temperature and the first evaporator temperature of the air conditioner.
  • the start-up instruction for the air conditioner may be when the start-up instruction sent to the air conditioner by the remote controller is received after the air conditioner is powered on.
  • the start-up command for the air conditioner it may also be after the air-conditioner is powered on, and the start-up command input by the user through the human-computer interaction panel of the air-conditioner is received.
  • the start-up instruction of the air conditioner may also be sent to the air conditioner by the user through a mobile terminal connected to the air conditioner based on a smart home network, such as a start-up instruction issued by a smart home APP on a mobile phone.
  • the start-up instruction may be a cooling mode operation instruction, a heating operation instruction, or a dehumidification mode operation instruction, etc., which need to use the compressor to start operation, which is not limited in this embodiment.
  • the air conditioner when receiving the start-up command for the air conditioner, controls the indoor environment temperature sensing package to detect the indoor ambient temperature, and controls the evaporator temperature sensing package to detect the evaporator temperature, so as to obtain the first indoor temperature of the air conditioner.
  • Ambient temperature and first evaporator temperature are T1 initial
  • the temperature of the first evaporator is T2 initial .
  • Step S102 controlling the compressor to start running.
  • the compressor In response to the received start-up instruction of the air conditioner, the compressor is controlled to operate normally according to the operation mode set by the user. If the user sets it to the heating mode, the air conditioner is controlled to operate in the heating mode.
  • Step S103 within the first preset time period after the compressor starts running, detect the indoor ambient temperature, evaporator temperature and compressor current to obtain the second indoor ambient temperature, the second evaporator temperature and the first compressor current current.
  • the refrigerant in the air conditioner will flow in the system under normal circumstances, thereby producing corresponding heating and cooling effects.
  • the operating effect of the air conditioner can be reflected by the indoor ambient temperature, evaporator temperature and compressor current. That is, when the high and low pressure valves are normally opened, the refrigerant in the compressor enters the evaporator, which will cause the temperature of the evaporator to change, such as increase or decrease.
  • the heat transfer between the evaporator and the air in the indoor environment causes the temperature of the indoor environment to change.
  • the current of the compressor can reflect the operating state of the compressor itself. After the compressor is turned on, the current of the compressor increases, and the frequency of the compressor increases accordingly to increase to the maximum allowable operating frequency.
  • the air conditioner controls the indoor environment temperature sensing package to detect the indoor ambient temperature, controls the evaporator temperature sensing package to detect the temperature of the evaporator, such as the tube temperature of the indoor evaporator, and controls the ammeter to detect the current of the compressor, thereby obtaining the second indoor environment temperature, second evaporator temperature and first compressor current.
  • the second indoor air conditioner can be detected.
  • the first preset duration can be specifically determined according to the model of the air conditioner, for example, less than 8 minutes.
  • step S103 can be adaptively changed to:
  • the indoor ambient temperature, the evaporator temperature and the compressor current are detected to obtain the second indoor ambient temperature, the second evaporator temperature and the first compressor current.
  • the second preset duration is shorter than the first preset duration.
  • the second preset duration can be 3 minutes, that is, when the compressor is officially started for 3 minutes, the air conditioner starts to control the indoor environment temperature sensor to detect the indoor environment temperature, controls the evaporator temperature sensor to detect the evaporator temperature, and also controls the ammeter The current of the compressor is detected to obtain the second indoor ambient temperature, the second evaporator temperature and the first compressor current.
  • Step S104 according to the first indoor ambient temperature, the first evaporator temperature, the second indoor ambient temperature, the second evaporator temperature, and the first compressor current, determine the Whether the high and low pressure valves are in an abnormal state.
  • the first indoor ambient temperature and the first evaporator temperature are operating parameters before the compressor starts running, and the second indoor ambient temperature, the second evaporator temperature and the first compression
  • the electromechanical current is the operating parameter of the air conditioner after the compressor starts running, so it can be determined whether the high and low pressure valves are in an abnormal state based on the changes of the operating parameters before and after the compressor is started. When the high and low pressure valves are open, they are in a normal state, and when they are closed, they are in an abnormal state.
  • step S104 includes:
  • both the first preset threshold and the third preset threshold are 2 degrees.
  • the first preset threshold and the third preset threshold can be specifically set according to the model of the air conditioner, which is not limited here. Wherein, the ambient temperature of the second room is T1n, the temperature of the second evaporator is T2n, and the current of the first compressor is I1.
  • the first indoor ambient temperature and the first evaporator temperature are operating parameters before the compressor starts running, and the second indoor ambient temperature, the second evaporator temperature and the first compression
  • the electromechanical current is the operating parameter of the air conditioner after the compressor starts running, so it can be determined whether the high and low pressure valves are in an abnormal state based on the changes of the operating parameters before and after the compressor starts and the parameters of the compressor itself. When the high and low pressure valves are open, they are in a normal state, and when they are closed, they are in an abnormal state.
  • FIG. 2 is a schematic flowchart of a second embodiment of the method for detecting the state of the high and low pressure valves of the air conditioner of the present application.
  • the method includes the following steps:
  • Step S201 when receiving a power-on command for the air conditioner, detect the indoor ambient temperature and the evaporator temperature of the air conditioner, so as to obtain the first indoor ambient temperature and the first evaporator temperature of the air conditioner.
  • Step S202 controlling the compressor to start running.
  • Step S203 within the first preset time period after the compressor starts running, detect the indoor ambient temperature, evaporator temperature and compressor current multiple times to obtain multiple second indoor ambient temperatures, multiple second evaporator temperatures and Multiple first compressor currents.
  • Step S204 according to the first indoor ambient temperature, the first evaporator temperature, the second indoor ambient temperature, the second evaporator temperature, and the first compressor current, determine the Whether the high and low pressure valves are in an abnormal state.
  • the judgment of the state can be made by detecting the indoor ambient temperature, evaporator temperature and compressor current multiple times, and more data can be used to correctly reflect the operating state of the air conditioner, so as to improve the accuracy of judgment and reduce the error in the detection process.
  • the multiple detection of indoor ambient temperature, evaporator temperature and compressor current can be performed by detecting and recording the second indoor ambient temperature T1n and the second evaporator tube temperature T2n once every 10 seconds of the air conditioner, and continuously 6 times of detection, that is, the detection is completed in 1 minute. While detecting the indoor ambient temperature and the temperature of the evaporator, the air conditioner also needs to detect the current of the compressor.
  • the detection action is performed periodically within one minute, so as to obtain multiple second indoor ambient temperatures, multiple second evaporator temperatures, and multiple first compressor currents.
  • the ambient temperature of the second room is T1n
  • the temperature of the second evaporator is T2n
  • the current of the first compressor is I1.
  • n is the number of detections.
  • multiple detections of indoor ambient temperature, evaporator temperature, and compressor current within a period of time can also be further reflected by multiple second indoor ambient temperatures, multiple second evaporator temperatures, and multiple first compressor currents.
  • the state change of the air conditioner during the initial stage of compressor start-up operation In order to reduce the influence of the slow start of the air conditioner caused by factors such as the aging of the air conditioner on the judgment of the high and low pressure valves.
  • Step S104 judging that the absolute value of the difference between the second indoor ambient temperature and the first indoor ambient temperature is less than a first preset threshold, and the difference between any two of the plurality of second indoor ambient temperatures
  • the absolute value of the difference is smaller than a second preset threshold
  • the absolute value of the difference between the temperature of the second evaporator and the temperature of the first evaporator is smaller than a third preset threshold
  • a plurality of the second evaporators Whether the absolute value of the difference between any two of the temperatures is less than the fourth preset threshold and the current of the first compressor is less than the preset current is both true.
  • Step S206 when both are established, it is determined that the high and low pressure valves are in an abnormal state
  • Step S207 if not both are true, it is determined that the high and low pressure valves are in a normal state.
  • i and j are both integers, and 1 ⁇ i ⁇ n, 1 ⁇ j ⁇ n.
  • the state change between the evaporator temperature further determines whether the state of the air conditioner after starting is caused by the abnormal state of the high and low pressure valves, so that when it is judged that the high and low pressure valves are open, it is in a normal state, and when it is closed, it is in an abnormal state.
  • FIG. 4 is a schematic flowchart of a third embodiment of the method for detecting the state of the high and low pressure valves of the air conditioner of the present application.
  • Step S301 when receiving a power-on command for the air conditioner, detect the indoor ambient temperature and the evaporator temperature of the air conditioner, so as to obtain the first indoor ambient temperature and the first evaporator temperature of the air conditioner.
  • Step S302 controlling the compressor to start running.
  • the compressor In response to the received start-up instruction of the air conditioner, the compressor is controlled to operate normally according to the operation mode set by the user. If the user sets it to the heating mode, the air conditioner is controlled to operate in the heating mode.
  • Step S303 within the first preset time period after the compressor starts running, detect the indoor ambient temperature, evaporator temperature and compressor current multiple times to obtain multiple second indoor ambient temperatures, multiple second evaporator temperature and multiple first compressor currents.
  • Step S304 according to the first indoor ambient temperature, the first evaporator temperature, the second indoor ambient temperature, the second evaporator temperature, and the first compressor current, determine the Whether the high and low pressure valves are in an abnormal state.
  • Step S305 when the high and low pressure valves are in an abnormal state, control the air conditioner to stop for a fourth preset period of time and then restart the operation.
  • the fourth preset duration may be 3 minutes.
  • Step S306 after the compressor restarts, return to step S303 to step S304 to obtain a second judgment result of whether the high-low pressure valve is in an abnormal state.
  • Step S307 when the result of the second judgment is that the high and low pressure valves are in a normal state, after the compressor starts to run for the fifth preset time period, return to step S303 to step S304 to obtain whether the high and low pressure valves are The third judgment result in an abnormal state;
  • the air conditioner does not stop, and the compressor is controlled to continue to run. After the compressor runs to the fifth preset time, for example, after the 6th minute, the operating parameters of the air conditioner at this time are detected again to obtain whether the high and low pressure valves are The third judgment result in an abnormal state.
  • Step S308 when the result of the third judgment is that the high and low pressure valves are in a normal state, then determine that the high and low pressure valves are in a normal state.
  • the detection process ends, and the compressor is controlled to operate normally according to the mode set by the user.
  • Step S309 when the result of the second judgment is that the high and low pressure valves are in an abnormal state, adjust the actual operating gear of the indoor fan according to the first preset adjustment strategy and the gear set by the user of the indoor fan of the air conditioner bit.
  • step S309 is executed to automatically adjust the operating wind speed according to the first preset adjustment strategy, artificially changing the airflow distribution around the air conditioner, and eliminating the influence of external factors.
  • the first preset adjustment strategy may be that the user switches the power on to a high fan gear, and adjusts to a low fan gear. If the user starts the machine with a medium or low fan speed, adjust it to a high fan speed.
  • step S310 is executed.
  • the air conditioner is an inverter air conditioner.
  • the adaptability of step S309 is:
  • Step S309' when the result of the second judgment is that the high and low pressure valves are in an abnormal state, adjust the actual operating frequency of the compressor according to a second preset adjustment strategy.
  • the air conditioner automatically adjusts the frequency according to the second preset adjustment strategy after it is turned on.
  • the first is to artificially change the tube temperature detection conditions of the evaporator to eliminate the difference caused by the frequency change of the frequency conversion system. From the perspective of protecting the compressor, the side compressor is damaged.
  • the second preset adjustment strategy is to drop 10HZ from the last operating frequency. If the starting operating frequency is at the minimum frequency, it will remain unchanged. If the difference between the minimum frequency and the last operating frequency is less than 10HZ, it will also run at the minimum frequency. .
  • step S310 is executed.
  • Step S310 execute steps S303 to S304 to obtain the final judgment result of whether the high-low pressure valve is in an abnormal state.
  • Step S311 when the final judgment result is that the high and low pressure valves are in an abnormal state, control the air conditioner to shut down and issue an abnormal state reminder message.
  • the air conditioner is controlled to shut down, and an abnormal state reminder message is issued. For example, "GF" fault is reported, and the voice or warning symbol prompts the user to check whether the high and low pressure valves are closed.
  • Step S312 when the final judgment result is that the high and low pressure valves are in a normal state, then determine that the high and low pressure valves are in a normal state.
  • the detection process is ended, and the compressor is controlled to operate normally according to the user-set mode.
  • Step S313 when the result of the third judgment is that the high and low pressure valves are in an abnormal state, control the control to restart the operation after stopping the air conditioner for a fourth preset time, and execute steps S309 to S312 .
  • the states of the high and low pressure valves are judged multiple times, thereby improving the accuracy of state detection.
  • the present application also provides a high and low pressure valve state detection device for an air conditioner, including:
  • the first acquisition module 10 is configured to detect the indoor ambient temperature and the evaporator temperature of the air conditioner when receiving a start-up instruction for the air conditioner, so as to acquire the first indoor ambient temperature and the first evaporator temperature of the air conditioner temperature;
  • a control module 20 configured to control the start-up of the compressor
  • the second obtaining module 30 is used to detect the indoor ambient temperature, the evaporator temperature and the compressor current within the first preset period of time after the compressor starts running, so as to obtain the second indoor ambient temperature and the second evaporator temperature and the first compressor current;
  • a state judging module 40 configured to judge the first indoor ambient temperature, the first evaporator temperature, the second indoor ambient temperature, the second evaporator temperature, and the first compressor current, according to the first indoor ambient temperature, the first evaporator temperature, and the first compressor current. Check whether the high and low pressure valves of the air conditioner are abnormal.
  • the embodiment of the present application also proposes a computer-readable storage medium, the computer-readable storage medium stores the high and low pressure valve state detection program of the air conditioner, and the high and low pressure valve state detection of the air conditioner is executed by the processor Realize the steps of the method for detecting the state of the high and low pressure valves of the air conditioner as described above. Therefore, details will not be repeated here. In addition, the description of the beneficial effect of adopting the same method will not be repeated here. For the technical details not disclosed in the embodiments of the computer-readable storage medium involved in the present application, please refer to the description of the method embodiments of the present application. Certainly for example, program instructions can be deployed to be executed on one computing device, or on multiple computing devices located at one site, or alternatively, on multiple computing devices distributed across multiple sites and interconnected by a communication network to execute.
  • the above programs can be stored in a computer-readable storage medium. During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the above-mentioned storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be A physical unit can be located in one place, or it can be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the connection relationship between the modules indicates that they have communication connections, which can be specifically implemented as one or more communication buses or signal lines. It can be understood and implemented by those skilled in the art without creative effort.
  • the essence of the technical solution of this application or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a floppy disk of a computer , U disk, mobile hard disk, read-only memory (ROM, Read-OnlyMemory), random access memory (RAM, RandomAccessMemory), magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) executes the methods described in various embodiments of the present application.
  • a computer device which can be a personal computer, A server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器的高低压阀状态检测方法、装置、空调器与介质,所述方法包括:在接收到对空调器的开机指令时,检测室内环境温度与所述空调器的蒸发器温度,以获取所述空调器的第一室内环境温度和第一蒸发器温度;控制所述压缩机启动运行;在所述压缩机启动运行后的第一预设时长内,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流;根据所述第一室内环境温度、所述第一蒸发器温度与所述第二室内环境温度、所述第二蒸发器温度和所述第一压缩机电流,判断所述空调器的高低压阀是否处于异常状态,从而避免压缩机在高低压阀未打开的情况下继续运行导致烧坏卡缸的情况发生。

Description

空调器的高低压阀状态检测方法、装置、空调器与介质
本申请要求于2021年7月31日提交中国专利局、申请号为202110879562.8、申请名称为“空调器的高低压阀状态检测方法、装置、空调器与介质”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及空调技术领域,尤其涉及一种空调器的高低压阀状态检测方法、装置、空调器与介质。
背景技术
相关技术中,空调器在安装或者维修过程中,需要关闭高低压阀,并在完成安装或者维修后,打开高低压阀。
但是,空调器在启动运行后,如果高低压阀未打开,会出现压缩机烧坏,卡缸等现象。因此,需要提供一种检测方法,以在空调器启动运行时,检测出空调器的高低压阀状态。
申请内容
本申请的主要目的在于提供一种空调器的高低压阀状态检测方法、装置、空调器与介质,旨在检测出空调器的高低压阀的状态。
为实现上述目的,本申请提供一种空调器的高低压阀状态检测方法,方法包括:
在接收到对空调器的开机指令时,检测室内环境温度与空调器的蒸发器温度,以获取空调器的第一室内环境温度和第一蒸发器温度;
控制压缩机启动运行;
在压缩机启动运行后的第一预设时长内,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流;
根据第一室内环境温度、第一蒸发器温度与第二室内环境温度、第二蒸发器温度和第一压缩机电流,判断空调器的高低压阀是否处于异常状态。
在一实施例中,根据第一室内环境温度、第一蒸发器温度与第二室内环境温度、第二蒸发器温度和第一压缩机电流,判断空调器的高低压阀是否处于异常状态的步骤,包括:
判断第二室内环境温度与第一室内环境温度之间的差值的绝对值小于第一预设阈值,第二蒸发器温度与第一蒸发器温度之间的差值的绝对值小于第三预设阈值,且第一压缩机电流小于预设电流是否均成立;
在均成立时,则判定所述高低压阀处于异常状态;
在不是均成立时,则判定所述高低压阀处于正常状态。
在一实施例中,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流的步骤,包括:
多次检测室内环境温度、蒸发器温度和压缩机电流,以获得多个第二室内环境温度、多个第二蒸发器温度和多个第一压缩机电流;
判断第二室内环境温度与第一室内环境温度之间的差值的绝对值小于第一预设阈值,第二蒸发器温度与第一蒸发器温度之间的差值的绝对值小于第三预设阈值,且第一压缩机电流小于预设电流是否均成立的步骤,包括:
判断第二室内环境温度与第一室内环境温度之间的差值的绝对值小于第一预设阈值,多个第二室内环境温度中任意两者之间的差值的绝对值小于第二预设阈值,第二蒸发器温度与第一蒸发器温度之间的差值的绝对值小于第三预设阈值,多个第二蒸发器温度中任意两者之间的差值的绝对值小于第四预设阈值,且第一压缩机电流小于预设电流是否均成立。
在一实施例中,判定高低压阀处于异常状态的步骤之后,方法还包括:
控制空调器停机第四预设时长后重新启动运行;
在压缩机重新启动运行后,返回执行多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得高低压阀是否处于异常状态的二次判断结果;
在二次判断结果为高低压阀处于正常状态时,则在压缩机开始运行第五预设时长后,返回执行多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得高低压阀是否处于异常状态的第三次判断结果;
在第三次判断结果为高低压阀处于正常状态时,则确定高低压阀处于正常状态。
在一实施例中,空调器为定频空调器;
获得高低压阀是否处于异常状态的二次判断结果的步骤之后,方法还包括:
在二次判断结果为高低压阀处于异常状态时,根据第一预设调整策略和空调器的室内风机的用户设定档位,调整室内风机的实际运行档位;
在室内风机的实际运行档位调整后,返回执行多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得高低压阀是否处于异常状态的最终判断结果;
在最终判断结果为高低压阀处于异常状态时,则控制空调停机,并发出异常状态提醒信息。
在一实施例中,在二次判断结果为高低压阀处于正常状态时,则在压缩机开始运行第五预设时长后,返回执行多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得高低压阀是否处于异常状态的第三次判断结果的步骤之后,方法还包括:
在第三次判断结果为高低压阀处于异常状态时,则控制空调器停机第四预设时长后重新启动运行,并执行根据第一预设调整策略和空调器的室内风机的用户设定档位,调整室内风机的实际运行档位的步骤:以获得高低压阀是否处于异常状态的最终判断结果。
在一实施例中,空调器为变频空调器;
获得空调器的高低压阀是否处于异常状态的二次判断结果的步骤之后,方法还包括:
在二次判断结果为高低压阀处于异常状态时,根据第二预设调整策略调整压缩机的实际运行频率;
在压缩机的频率调整后,返回执行多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得高低压阀是否处于异常状态的最终判断结果;
在最终判断结果为高低压阀处于异常状态时,则控制空调器停机,并发出异常状态提醒信息。
在一实施例中,在二次判断结果为高低压阀处于正常状态时,则在压缩机开始运行第五预设时长后,返回执行多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得高低压阀是否处于异常状态的第三次判断结果的步骤之后,方法还包括:
在第三次判断结果为高低压阀处于异常状态时,则控制空调器停机第四预设时长后重新启动运行,并执行根据第二预设调整策略调整压缩机的实际运行频率的步骤,以获得高低压阀是否处于异常状态的最终判断结果。
在一实施例中,在压缩机启动运行后的第一预设时长内,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流的步骤,包括:
在压缩机启动运行第二预设时长时,多次检测室内环境温度、蒸发器温度和压缩机电流,以获得多个第二室内环境温度、多个第二蒸发器温度和多个第一压缩机电流,其中,第二预设时长小于第一预设时长。
第二方面,本申请还提供了一种空调器的高低压阀状态检测装置,包括:
第一获取模块,用于在接收到对空调器的开机指令时,检测室内环境温度与空调器的蒸发器温度,以获取空调器的第一室内环境温度和第一蒸发器温度;
控制模块,用于控制压缩机启动运行;
第二获取模块,用于在压缩机启动运行后的第一预设时长内,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流;
状态判断模块,用于根据第一室内环境温度、第一蒸发器温度与第二室内环境温度、第二蒸发器温度和第一压缩机电流,判断空调器的高低压阀是否处于异常状态。
第三方面,本申请还提供了一种空调器,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调器的高低压阀状态检测程序,所述空调器的高低压阀状态检测程序配置为实现上述的空调器的高低压阀状态检测方法的步骤。
第四方面,本申请还提供了一种计算机可读存储介质,包括计算机程序,其中,所述计算机程序在由处理器执行时执行如上的空调器的高低压阀状态 检测方法。
本申请提出的一种空调器的高低压阀状态检测方法,通过在空调器的压缩机启动运行前,检测得到空调器的第一室内环境温度和第一蒸发器温度,即空调器在压缩机启动运行前的运行参数,并在压缩机启动运行后,再检测得到空调器的第二室内环境温度、第二蒸发器温度和压缩机电流,即空调器在压缩机启动运行后的运行参数,从而根据空调器压缩机启动运行后相关运行参数的变化情况,确定高低压阀的处于打开的正常状态,还是处于关闭的异常状态。本申请通过空调器压缩机启动运行后相关运行参数的变化情况,可以在空调器启动运行时,检测高低压阀是否打开,从而避免压缩机在高低压阀未打开的情况下继续运行导致烧坏卡缸的情况发生。
附图说明
图1为本申请空调器的结构示意图;
图2为本申请空调器的高低压阀状态检测方法第一实施例的流程示意图;
图3为本申请空调器的高低压阀状态检测方法第二实施例的流程示意图;
图4为本申请空调器的高低压阀状态检测方法第三实施例的流程示意图;
图5为本申请空调器的高低压阀状态检测装置的功能模块示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
由于空调器在安装过程中,原则上必须让有资质的安装工人进行安装,在室内外机连接管连接到位后,经过抽真空、保压、放冷媒、试运行等环节,确认机器运行无问题后,整个安装过程方可完成。但是在部分区域,存在空调器在安装或者维修后,操作人员忘记将高低压阀打开,随后用户在不知情的情况下开机运行。在这种情况下,机器不能够吹冷风或者热风,影响用户体验。而用户未能及时发现高低压阀未打开而导致空调器在这种情况继续长时间运行,就可能出现压缩机烧坏卡缸的情况。
因此,本申请提供了一种空调器的高低压阀状态检测方法,通过在空调器的压缩机启动运行前,检测得到空调器相关运行参数,并在压缩机启动运行后,再多次检测得到相关运行参数在压缩机启动后的值,从而根据空调器压缩机启动运行后相关运行参数的变化,确定高低压阀的处于打开的正常状态,还是处于关闭的异常状态。
下面结合一些具体实施例进一步阐述本申请。
参照图1,图1为本申请实施例方案涉及的空调器的推荐设备结构示意图。
该空调器包括:至少一个处理器301、存储器302以及存储在所述存储器上并可在所述处理器上运行的空调器的高低压阀状态检测程序,所述空调器的高低压阀状态检测程序配置为实现如下文方法实施例所述的空调器的高低压阀状态检测方法的步骤。
处理器301可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器301可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器301也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central ProcessingUnit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器301可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。
存储器302可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器302还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器302中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器301所执行以实现本申请中方法实施例提供的空调器的高低压阀状态检测方法。
空调器还包括有:通信接口303和多个外围设备。处理器301、存储器302和通信接口303之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与通信接口303相连。外围设备包括:室内环境感温包304、蒸发器感温包305以及电流计306中至少一者。
通信接口303可被用于将I/O(Input/Output,输入/输出)相关的至少一个外围设备连接到处理器301和存储器302。在一些实施例中,处理器301、存储器302和通信接口303被集成在同一芯片或电路板上;在一些其他实施例中,处理器301、存储器302和通信接口303中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。
室内环境感温包304用于检测室内机所在房间的室内环境温度。蒸发器感温包305用于检测蒸发器的管温,电流计306用于检测压缩机的电流。
本领域技术人员可以理解,图1中示出的结构并不构成对空调器的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述硬件环境,提出本申请一种空调器的高低压阀状态检测方法第一实施例。参阅图2,图2为本申请空调器的高低压阀状态检测方法第一实施例的流程示意图。
本实施例中,空调器的高低压阀状态检测方法包括:
步骤S101、在接收到对空调器的开机指令时,检测室内环境温度与所述空调器的蒸发器温度,以获取所述空调器的第一室内环境温度和第一蒸发器温度。
在接收到对空调器的开机指令时,可以是在空调器上电后,接收到遥控器发送至空调器的开机指令时。或者,接收到对空调器的开机指令时,还可以是在空调器上电后,接收到用户通过空调器的人机交互面板输入的开机指 令。或者,空调器的开机指令还可以是用户通过与空调器基于智能家居网络连接的移动终端发送至空调器的,如通过手机上智能家居APP下达的开机指令。
其中,开机指令可以是制冷模式运行指令,制热运行指令或者抽湿模式运行指令等需要使用压缩机开机运行的指令,本实施例对此并不限制。
本步骤中,在接收到对空调器的开机指令时,空调器控制室内环境感温包检测室内环境温度,并控制蒸发器感温包检测蒸发器温度,以获取所述空调器的第一室内环境温度和第一蒸发器温度。其中,室内环境温度为T1 初始,以及第一蒸发器温度T2 初始
步骤S102、控制所述压缩机启动运行。
响应于接收到的空调器的开机指令,控制压缩机按照用户设定的运行模式正常运行。如用户设定为制热模式,则控制空调器按照制热模式运行。
步骤S103、在所述压缩机启动运行后的第一预设时长内,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流。
在压缩机正常启动运行后,正常情况下空调器内的冷媒会在系统中流动,从而产生相应的制热效果、制冷效果等。空调器的运行效果可通过室内环境温度、蒸发器温度和压缩机电流反应出。即高低压阀正常打开时,压缩机内的冷媒进入蒸发器,会导致蒸发器温度的温度发生变化,如升高或者降低。蒸发器与室内环境的空气发生热传递,进而导致室内环境温度发生变化。此外,压缩机的电流可反映出压缩机的自身运行状态,在压缩机开启运行后,压缩机电流上升,此时压缩机的频率随之上升以提升至最大允许运行频率。而在高低压阀关闭时,压缩机的冷媒未能正常进入蒸发器,蒸发器的温度波动不大,其与室内环境的空气未发生热传递,此时室内环境温度也难以发生变化,且由于压缩机内的冷媒未流通,压缩机的频率和电流也未能提升。因此,空调器控制室内环境感温包检测室内环境温度,控制蒸发器感温包检测蒸发器温度,如室内蒸发器的管温,还控制电流计检测压缩机的电流,从而获得第二室内环境温度、第二蒸发器温度和第一压缩机电流。
为了避免空调器在高低压阀处于异常状态即关闭时,长时间运行导致压缩机受损,此时,可在所述压缩机启动运行后的第一预设时长内,即检测得到第二室内环境温度、第二蒸发器温度和第一压缩机电流。第一预设时长可根据空调器的型号具体决定,如小于8min。
可以理解的,由于系统的高低压阀若只关了其中的一个时,即高低压阀未能全部打开时,此时的系统冷媒会有1-2分钟左右的时间是单方向流动的,该流动状态会造成室内蒸发器温度产生波动。为了避免该波动影响本实施例对高低压阀的判断的准确度,步骤S103可适应性变为:
在所述压缩机启动运行第二预设时长时,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流。其中,第二预设时长小于第一预设时长。
其中,第二预设时长可以是3分钟,即在压缩机正式启动3min时,空调器开始控制室内环境感温包检测室内环境温度,控制蒸发器感温包检测蒸发器温度,还控制电流计检测压缩机的电流,从而获得第二室内环境温度、第二蒸发器温度和第一压缩机电流。
步骤S104、根据所述第一室内环境温度、所述第一蒸发器温度与所述第二室内环境温度、所述第二蒸发器温度和所述第一压缩机电流,判断所述空调器的高低压阀是否处于异常状态。
本实施例中,第一室内环境温度和所述第一蒸发器温度为压缩机开始启动运行前的运行参数,所述第二室内环境温度、所述第二蒸发器温度和所述第一压缩机电流为压缩机启动运行后的空调器的运行参数,从而可基于运行参数在压缩机启动前后的变化,确定高低压阀是否处于异常状态。当高低压阀打开时,其处于正常状态,当其关闭时,处于异常状态。
具体而言,步骤S104包括:
(1)判断所述第二室内环境温度与所述第一室内环境温度之间的差值的绝对值小于第一预设阈值,所述第二蒸发器温度与所述第一蒸发器温度之间的差值的绝对值小于第三预设阈值,且所述第一压缩机电流小于预设电流是否均成立;
(2)在均成立时,则判定所述高低压阀处于异常状态;
(3)在不是均成立时,则判定所述高低压阀处于正常状态。
如当任意一个T1n的值与第一室内环境温度T1初始之间的差值的绝对值|T1n-T1 初始|<2度,同时第二蒸发器温度T2n与第一蒸发器温度T2 初始之间的差值绝对值|T2n-T2 初始|<2度,再者I1<I 设定,则可以判定高低压阀处于关闭状态。
此时,第一预设阈值和第三预设阈值均为2度。当上述条件成立时,蒸发器和室内环境温度均变化不大,且电流也小于设定值,则可判断高低压阀处于关闭状态。第一预设阈值和第三预设阈值可根据空调器的型号具体设定,此处并不限制。其中,第二室内环境温度为T1n,第二蒸发器温度为T2n,第一压缩机电流为I1。
本实施例中,第一室内环境温度和所述第一蒸发器温度为压缩机开始启动运行前的运行参数,所述第二室内环境温度、所述第二蒸发器温度和所述第一压缩机电流为压缩机启动运行后的空调器的运行参数,从而可基于运行参数在压缩机启动前后的变化以及压缩机自身参数情况,确定高低压阀是否处于异常状态。当高低压阀打开时,其处于正常状态,当其关闭时,处于异常状态。
基于本申请一种空调器的高低压阀状态检测方法第一实施例,提出本申请一种空调器的高低压阀状态检测方法第二实施例。参阅图2,图2为本申请空调器的高低压阀状态检测方法第二实施例的流程示意图。
本实施例中,方法包括以下步骤:
步骤S201、在接收到对空调器的开机指令时,检测室内环境温度与所述空调器的蒸发器温度,以获取所述空调器的第一室内环境温度和第一蒸发器 温度。
步骤S202、控制所述压缩机启动运行。
步骤S203、在压缩机启动运行后的第一预设时长内,多次检测室内环境温度、蒸发器温度和压缩机电流,以获得多个第二室内环境温度、多个第二蒸发器温度和多个第一压缩机电流。
步骤S204、根据所述第一室内环境温度、所述第一蒸发器温度与所述第二室内环境温度、所述第二蒸发器温度和所述第一压缩机电流,判断所述空调器的高低压阀是否处于异常状态。
该步骤中,为了更加准确地反映压缩机启动运行后运行状态的变化,特别是避免压缩机存在其他故障,空调器老化等情况下导致的空调器开机初期运行状态变化不大影响对高低压阀状态的判断,可通过多次检测室内环境温度、蒸发器温度和压缩机电流,通过更多的数据以正确反应空调器的运行状态,以提高判断的准确率,并降低检测过程中的误差。可以理解的,多次检测室内环境温度、蒸发器温度和压缩机电流可以是在空调器每间隔10S钟,检测并记录一次第二室内环境温度T1n,以及第二蒸发器管温T2n,并连续检测6次,也就是1分钟的时间检测完毕。在检测室内环境温度、蒸发器温度的同时,空调器还需检测压缩机的电流。
即在一分钟内周期性执行检测动作,从而获得多个第二室内环境温度、多个第二蒸发器温度和多个第一压缩机电流。
其中,第二室内环境温度为T1n,第二蒸发器温度为T2n,第一压缩机电流为I1。其中,n为检测的次数。
此外,在一段时间内多次检测室内环境温度、蒸发器温度和压缩机电流,还可以进一步通过多个第二室内环境温度、多个第二蒸发器温度和多个第一压缩机电流反映出空调器在压缩机启动运行初始阶段这一时间段内的状态变化。以降低由于空调器老化等因素导致的空调器启动慢等情况对高低压阀判断的影响。
步骤S104、判断所述第二室内环境温度与所述第一室内环境温度之间的差值的绝对值小于第一预设阈值,多个所述第二室内环境温度中任意两者之间的差值的绝对值小于第二预设阈值,所述第二蒸发器温度与所述第一蒸发器温度之间的差值的绝对值小于第三预设阈值,多个所述第二蒸发器温度中任意两者之间的差值的绝对值小于第四预设阈值,且所述第一压缩机电流小于预设电流是否均成立。
步骤S206、在均成立时,则判定所述高低压阀处于异常状态;
步骤S207、在不是均成立时,则判定所述高低压阀处于正常状态。
即当任意一个T1n的值与第一室内环境温度T1 初始之间的差值的绝对值|T1n-T1 初始|<2度,多个T1n中任意两个值之间的差值的绝对值|T1n i-T1n j|<2度;同时第二蒸发器温度T2n与第一蒸发器温度T2 初始之间的差值的绝对值|T2n-T2 初始|<2度,并且多个T2n中任意两个值的差值绝对值|T2n i-T2n j|<2度;再者I1<I 设定,则可以判定高低压阀处于关闭状态。
其中,i、j均为整数,且1≤i≤n,1≤j≤n。
本实施例中,不仅基于室内环境温度和蒸发器温度等运行参数在压缩机启动前后的变化,确定高低压阀是否处于异常状态,还结合多个第二室内环境温度之间以及多个第二蒸发器温度之间的状态变化,进一步判断空调器启动后的状态是否由高低压阀的异常状态导致,从而在判断高低压阀打开时,其处于正常状态,当其关闭时,处于异常状态。
在本申请空调器的高低压阀状态检测方法第一实施例和第二实施例的基础上,提出本申请空调器的高低压阀状态检测方法的第三实施例。参阅图4,图4为本申请空调器的高低压阀状态检测方法的第三实施例的流程示意图。
本实施例中,包括以下步骤:
步骤S301、在接收到对空调器的开机指令时,检测室内环境温度与所述空调器的蒸发器温度,以获取所述空调器的第一室内环境温度和第一蒸发器温度。
步骤S302、控制所述压缩机启动运行。
响应于接收到的空调器的开机指令,控制压缩机按照用户设定的运行模式正常运行。如用户设定为制热模式,则控制空调器按照制热模式运行。
步骤S303、在所述压缩机启动运行后的第一预设时长内,多次检测室内环境温度、蒸发器温度和压缩机电流,以获得多个第二室内环境温度、多个第二蒸发器温度和多个第一压缩机电流。
步骤S304、根据所述第一室内环境温度、所述第一蒸发器温度与所述第二室内环境温度、所述第二蒸发器温度和所述第一压缩机电流,判断所述空调器的高低压阀是否处于异常状态。
步骤S301至步骤S304参考上述实施例,此处不再赘述。
步骤S305、在高低压阀处于异常状态时,控制所述空调器停机第四预设时长后重新启动运行。
本实施例中,为确保检测判定的准确性,在判断在高低压阀处于异常状态后,需要进行更进一步的检测。即控制空调器停机一段时间后,重新启动运行,再次重复压缩机开机运行过程,从而再次对高低压阀的状态进行判断。其中,第四预设时长可以为3分钟。
步骤S306、在所述压缩机重新启动运行后,返回执行步骤S303至步骤S304,以获得所述高低压阀是否处于异常状态的二次判断结果。
步骤S307、在所述二次判断结果为高低压阀处于正常状态时,则在所述压缩机开始运行第五预设时长后,返回执行步骤S303至步骤S304,以获得所述高低压阀是否处于异常状态的第三次判断结果;
本实施例中,为确保检测判定的准确性,在两次判断结果不同情况下,需要再进行一次判断。此时,空调器不停机,控制压缩机继续运行,在压缩机运行至第五预设时长后,如第6min后,再次检测获得空调器此时的运行参数,以获得所述高低压阀是否处于异常状态的第三次判断结果。
步骤S308、在所述第三次判断结果为高低压阀处于正常状态时,则确定 所述高低压阀处于正常状态。
当两次后续判断步骤均判断高低压阀处于正常状态时,则可确定首次判断结果为误判断,结束检测流程,控制压缩机按照用户设定模式正常运行。
步骤S309、在所述二次判断结果为高低压阀处于异常状态时,根据第一预设调整策略和所述空调器的室内风机的用户设定档位,调整所述室内风机的实际运行档位。
在空调器为定频空调器时,执行步骤S309,可根据第一预设调整策略将运行风速自动调整,以人为改变空调器周边环境气流分布,排除外部因素影响。
如,第一预设调整策略可以是用户开机处于高风机档位的,调整为低风机档位。用户开机为中风机档位或者低风机档位的,调整为高风机档位。
在所述室内风机的实际运行档位调整后,执行步骤S310。
在另一些实施方式中,空调器为变频空调器。步骤S309适应性为:
步骤S309'、在所述二次判断结果为高低压阀处于异常状态时,根据第二预设调整策略调整所述压缩机的实际运行频率。
本步骤中,对于变频机,空调器在开机后根据第二预设调整策略自动调整频率。调整实际运行频率一是人为改变蒸发器的管温检测条件,排除变频系统频率变化带来的差异影响,二是已经连续两次监测异常,其确实存在故障的可能性很大,再次启动检测需要从保护压缩机的角度出发,边压缩机受损。
如,第二预设调整策略为在上次运行频率的基础上下降10HZ,若开机运行频率处于最小频率则保持不变,若最小频率与上次运行频率的差距不足10HZ则同样以最小频率运行。
在所述室内风机的实际运行频率调整后,执行步骤S310。
步骤S310、执行步骤S303至步骤S304,以获得所述高低压阀是否处于异常状态的最终判断结果。
步骤S311、在所述最终判断结果为高低压阀处于异常状态时,则控制所述空调停机,并发出异常状态提醒信息。
所述最终判断结果为高低压阀处于异常状态,则确定高低压阀的状态异常,控制所述空调器停机,并发出异常状态提醒信息。如上报“GF”故障,并语音或者警示符号提示用户检测是否高低压阀处于关闭状态。
步骤S312、在所述最终判断结果为高低压阀处于正常状态时,则确定高低压阀的处于正常状态。
确定高低压阀的处于正常状态后,结束检测流程,控制压缩机按照用户设定模式正常运行。
步骤S313、在所述第三次判断结果为高低压阀处于异常状态时,则控制所述控制所述空调器停机第四预设时长后重新启动运行,并执行步骤S309至步骤S312。
本实施例中,在所述第三次判断结果为高低压阀处于异常状态时,则说 明在三次检测中有两次判断为高低压阀存在异常,故系统停机,等候3分钟自动重启,进行步骤S309至步骤S312,再次进行检测判定。
本实施例中,通过上述步骤,多次判断高低压阀的状态,从而提高状态检测的准确率。
此外,参阅图5,本申请还提供了一种空调器的高低压阀状态检测装置,包括:
第一获取模块10,用于在接收到对空调器的开机指令时,检测室内环境温度与所述空调器的蒸发器温度,以获取所述空调器的第一室内环境温度和第一蒸发器温度;
控制模块20,用于控制所述压缩机启动运行;
第二获取模块30,用于在所述压缩机启动运行后的第一预设时长内,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流;
状态判断模块40,用于根据所述第一室内环境温度、所述第一蒸发器温度与所述第二室内环境温度、所述第二蒸发器温度和所述第一压缩机电流,判断所述空调器的高低压阀是否处于异常状态。
本申请空调器的高低压阀状态检测装置的其他实施例或具体实现方式可参照上述各方法实施例,此处不再赘述。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有空调器的高低压阀状态检测程序,所述空调器的高低压阀状态检测被处理器执行时实现如上文所述的空调器的高低压阀状态检测方法的步骤。因此,这里将不再进行赘述。另外,对采用相同方法的有益效果描述,也不再进行赘述。对于本申请所涉及的计算机可读存储介质实施例中未披露的技术细节,请参照本申请方法实施例的描述。确定为示例,程序指令可被部署为在一个计算设备上执行,或者在位于一个地点的多个计算设备上执行,又或者,在分布在多个地点且通过通信网络互连的多个计算设备上执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random AccessMemory,RAM)等。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即 可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,RandomAccessMemory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (12)

  1. 一种空调器的高低压阀状态检测方法,其中,所述方法包括:
    在接收到对空调器的开机指令时,检测室内环境温度与所述空调器的蒸发器温度,以获取所述空调器的第一室内环境温度和第一蒸发器温度;
    控制所述压缩机启动运行;
    在所述压缩机启动运行后的第一预设时长内,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流;
    根据所述第一室内环境温度、所述第一蒸发器温度与所述第二室内环境温度、所述第二蒸发器温度和所述第一压缩机电流,判断所述空调器的高低压阀是否处于异常状态。
  2. 根据权利要求1所述的空调器的高低压阀状态检测方法,其中,所述根据所述第一室内环境温度、所述第一蒸发器温度与所述第二室内环境温度、所述第二蒸发器温度和所述第一压缩机电流,判断所述空调器的高低压阀是否处于异常状态的步骤,包括:
    判断所述第二室内环境温度与所述第一室内环境温度之间的差值的绝对值小于第一预设阈值,所述第二蒸发器温度与所述第一蒸发器温度之间的差值的绝对值小于第三预设阈值,且所述第一压缩机电流小于预设电流是否均成立;
    在均成立时,则判定所述高低压阀处于异常状态;
    在不是均成立时,则判定所述高低压阀处于正常状态。
  3. 如权利要求2所述的空调器的高低压阀状态检测方法,其中,所述检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流的步骤,包括:
    多次检测室内环境温度、蒸发器温度和压缩机电流,以获得多个第二室内环境温度、多个第二蒸发器温度和多个第一压缩机电流;
    所述判断所述第二室内环境温度与所述第一室内环境温度之间的差值的绝对值小于第一预设阈值,所述第二蒸发器温度与所述第一蒸发器温度之间的差值的绝对值小于第三预设阈值,且所述第一压缩机电流小于预设电流是否均成立的步骤,包括:
    判断所述第二室内环境温度与所述第一室内环境温度之间的差值的绝对值小于第一预设阈值,多个所述第二室内环境温度中任意两者之间的差值的绝对值小于第二预设阈值,所述第二蒸发器温度与所述第一蒸发器温度之间的差值的绝对值小于第三预设阈值,多个所述第二蒸发器温度中任意两者之间的差值的绝对值小于第四预设阈值,且所述第一压缩机电流小于预设电流是否均成立。
  4. 根据权利要求3所述的空调器的高低压阀状态检测方法,其中,所述判定所述高低压阀处于异常状态的步骤之后,所述方法还包括:
    控制所述空调器停机第四预设时长后重新启动运行;
    在所述压缩机重新启动运行后,返回执行所述多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得所述高低压阀是否处于异常状态的二次判断结果;
    在所述二次判断结果为高低压阀处于正常状态时,则在所述压缩机开始运行第五预设时长后,返回执行多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得所述高低压阀是否处于异常状态的第三次判断结果;
    在所述第三次判断结果为高低压阀处于正常状态时,则确定所述高低压阀处于正常状态。
  5. 根据权利要求4所述的空调器的高低压阀状态检测方法,其中,所述空调器为定频空调器;
    所述获得所述高低压阀是否处于异常状态的二次判断结果的步骤之后,所述方法还包括:
    在所述二次判断结果为高低压阀处于异常状态时,根据第一预设调整策略和所述空调器的室内风机的用户设定档位,调整所述室内风机的实际运行档位;
    在所述室内风机的所述实际运行档位调整后,返回执行所述多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得所述高低压阀是否处于异常状态的最终判断结果;
    在所述最终判断结果为高低压阀处于异常状态时,则控制所述空调器停机,并发出异常状态提醒信息。
  6. 根据权利要求5所述的空调器的高低压阀状态检测方法,其中,在所述二次判断结果为高低压阀处于正常状态时,则在所述压缩机开始运行第五预设时长后,返回执行所述多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得所述高低压阀是否处于异常状态的第三次判断结果的步骤之后,所述方法还包括:
    在所述第三次判断结果为高低压阀处于异常状态时,则控制所述空调器停机第四预设时长后重新启动运行,并执行所述根据第一预设调整策略和所述空调器的室内风机的用户设定档位,调整所述室内风机的实际运行档位的步骤,以获得所述高低压阀是否处于异常状态的最终判断结果。
  7. 根据权利要求4所述的空调器的高低压阀状态检测方法,其中,所述空调器为变频空调器;
    所述获得所述高低压阀是否处于异常状态的二次判断结果的步骤之后,所述方法还包括:
    在所述二次判断结果为高低压阀处于异常状态时,根据第二预设调整策略调整所述压缩机的实际运行频率;
    在所述压缩机的实际运行频率调整后,返回执行所述多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得所述高低压阀是否处于异常状态的最终判断结果;
    在所述最终判断结果为高低压阀处于异常状态时,则控制所述空调停机,并发出异常状态提醒信息。
  8. 根据权利要求7所述的空调器的高低压阀状态检测方法,其中,在所述二次判断结果为高低压阀处于正常状态时,则在所述压缩机开始运行第五预设时长后,返回执行所述多次检测室内环境温度、蒸发器温度和压缩机电流的步骤,以获得所述高低压阀是否处于异常状态的第三次判断结果的步骤之后,所述方法还包括:
    在所述第三次判断结果为高低压阀处于异常状态时,则控制所述空调器停机第四预设时长后重新启动运行,并执行所述根据第二预设调整策略调整所述压缩机的实际运行频率的步骤,以获得所述高低压阀是否处于异常状态的最终判断结果的步骤。
  9. 根据权利要求1至8任一项所述的空调器的高低压阀状态检测方法,其中,在所述压缩机启动运行后的第一预设时长内,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流的步骤,包括:
    在所述压缩机启动运行第二预设时长时,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流,其中,所述第二预设时长小于所述第一预设时长。
  10. 一种空调器的高低压阀状态检测装置,其中,包括:
    第一获取模块,用于在接收到对空调器的开机指令时,检测室内环境温度与所述空调器的蒸发器温度,以获取所述空调器的第一室内环境温度和第一蒸发器温度;
    控制模块,用于控制所述压缩机启动运行;
    第二获取模块,用于在所述压缩机启动运行后的第一预设时长内,检测室内环境温度、蒸发器温度和压缩机电流,以获得第二室内环境温度、第二蒸发器温度和第一压缩机电流;
    状态判断模块,用于根据所述第一室内环境温度、所述第一蒸发器温度与所述第二室内环境温度、所述第二蒸发器温度和所述压缩机电流,判断所述空调器的高低压阀是否处于异常状态。
  11. 一种空调器,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调器的高低压阀状态检测程序,所述空调器的高低压阀状态检测程序配置为实现如权利要求1至9中任一项所述的空调器的高低压阀状态检测方法的步骤。
  12. 一种计算机可读存储介质,其中,包括计算机程序,其中,所述计算机程序在由处理器执行时执行如权利要求1至9任一项所述的空调器的高低压阀状态检测方法。
PCT/CN2021/116025 2021-07-31 2021-09-01 空调器的高低压阀状态检测方法、装置、空调器与介质 WO2023010636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110879562.8 2021-07-31
CN202110879562.8A CN113551371B (zh) 2021-07-31 2021-07-31 空调器的高低压阀状态检测方法、装置、空调器与介质

Publications (1)

Publication Number Publication Date
WO2023010636A1 true WO2023010636A1 (zh) 2023-02-09

Family

ID=78133510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116025 WO2023010636A1 (zh) 2021-07-31 2021-09-01 空调器的高低压阀状态检测方法、装置、空调器与介质

Country Status (2)

Country Link
CN (1) CN113551371B (zh)
WO (1) WO2023010636A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117928139A (zh) * 2024-03-19 2024-04-26 宁波惠康工业科技股份有限公司 制冰机运行状态实时监控系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114483562B (zh) * 2022-02-09 2023-03-21 宁波方太厨具有限公司 水泵的故障检测方法、系统、电子设备和存储介质
CN114754460B (zh) * 2022-04-11 2023-07-28 珠海格力电器股份有限公司 一种空调的控制方法、装置、空调和存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038061A (en) * 1975-12-29 1977-07-26 Heil-Quaker Corporation Air conditioner control
KR20060015862A (ko) * 2004-08-16 2006-02-21 삼성전자주식회사 멀티 에어컨 시스템 및 멀티 에어컨 시스템의 배관연결점검방법
CN108088051A (zh) * 2017-12-01 2018-05-29 芜湖美智空调设备有限公司 空调器压缩机的故障检测方法、空调器及存储介质
CN108800489A (zh) * 2018-06-20 2018-11-13 广东美的制冷设备有限公司 压缩机绕组加热的控制方法及装置
CN109520082A (zh) * 2018-11-08 2019-03-26 广东美的制冷设备有限公司 空调器控制方法、空调器及计算机可读存储介质
CN109990439A (zh) * 2019-04-04 2019-07-09 宁波奥克斯电气股份有限公司 一种空调四通阀换向异常的控制方法、控制装置及空调器
CN111322720A (zh) * 2018-12-14 2020-06-23 广东Tcl智能暖通设备有限公司 空调排气故障检测方法、装置和空调
CN111594979A (zh) * 2020-05-20 2020-08-28 中车青岛四方车辆研究所有限公司 用于空调运行数据处理的方法及装置
CN111720962A (zh) * 2020-06-09 2020-09-29 海信(山东)空调有限公司 变频空调器的制冷除湿控制方法以及空调系统
CN112943718A (zh) * 2021-03-22 2021-06-11 浙江志高机械股份有限公司 逻辑阀作为减压阀的多级调压系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038061A (en) * 1975-12-29 1977-07-26 Heil-Quaker Corporation Air conditioner control
KR20060015862A (ko) * 2004-08-16 2006-02-21 삼성전자주식회사 멀티 에어컨 시스템 및 멀티 에어컨 시스템의 배관연결점검방법
CN108088051A (zh) * 2017-12-01 2018-05-29 芜湖美智空调设备有限公司 空调器压缩机的故障检测方法、空调器及存储介质
CN108800489A (zh) * 2018-06-20 2018-11-13 广东美的制冷设备有限公司 压缩机绕组加热的控制方法及装置
CN109520082A (zh) * 2018-11-08 2019-03-26 广东美的制冷设备有限公司 空调器控制方法、空调器及计算机可读存储介质
CN111322720A (zh) * 2018-12-14 2020-06-23 广东Tcl智能暖通设备有限公司 空调排气故障检测方法、装置和空调
CN109990439A (zh) * 2019-04-04 2019-07-09 宁波奥克斯电气股份有限公司 一种空调四通阀换向异常的控制方法、控制装置及空调器
CN111594979A (zh) * 2020-05-20 2020-08-28 中车青岛四方车辆研究所有限公司 用于空调运行数据处理的方法及装置
CN111720962A (zh) * 2020-06-09 2020-09-29 海信(山东)空调有限公司 变频空调器的制冷除湿控制方法以及空调系统
CN112943718A (zh) * 2021-03-22 2021-06-11 浙江志高机械股份有限公司 逻辑阀作为减压阀的多级调压系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117928139A (zh) * 2024-03-19 2024-04-26 宁波惠康工业科技股份有限公司 制冰机运行状态实时监控系统及方法
CN117928139B (zh) * 2024-03-19 2024-06-04 宁波惠康工业科技股份有限公司 制冰机运行状态实时监控系统及方法

Also Published As

Publication number Publication date
CN113551371A (zh) 2021-10-26
CN113551371B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2023010636A1 (zh) 空调器的高低压阀状态检测方法、装置、空调器与介质
CN107401817B (zh) 一种变频空调控制方法及装置
CN104101051A (zh) 一种空调器及其冷媒循环异常检测控制方法和装置
CN110594992A (zh) 空调器预热控制方法、装置及空调器
CN110579010B (zh) 一种多联机内机电子膨胀阀控制方法、控制装置及空调器
CN109520099A (zh) 一种电子膨胀阀的初始开度控制方法、装置及空调器
CN112113310B (zh) 确认空调运行状态的方法、装置及存储介质
CN107676939B (zh) 一种定频空调的控制方法、控制系统及控制装置
CN113007857B (zh) 空调电加热器运行控制方法、装置、空调器和计算机可读存储介质
CN113446706B (zh) 空调器控制方法和空调器
US11639803B2 (en) System and method for identifying causes of HVAC system faults
CN106352489A (zh) 一种空调故障的检测方法及系统
CN110822664A (zh) 空调的冷媒回收方法、系统及空调
US11692726B2 (en) System and method for distinguishing HVAC system faults
US11788753B2 (en) HVAC system fault prognostics and diagnostics
CN111023472B (zh) 一种空调器的检测方法及装置
CN103982979A (zh) 空调机组开机控制方法和系统、以及空调机组
CN107869822B (zh) 一种多联机空调监控方法、监控系统及室外主机
CN112128867A (zh) 一种多系统除湿控制方法及装置
WO2020133915A1 (zh) 空调系统的阀体失效检测方法及空调系统
WO2021072954A1 (zh) 一种压缩机的润滑调节方法、装置、电子设备及存储介质
JP2011144951A (ja) 空気調和機
CN114935169A (zh) 空调器及其控制方法、计算机可读存储介质
CN208222776U (zh) 一种空调机组控制系统
CN107355951B (zh) 空调制冷模式控制方法、装置以及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE