WO2021258442A1 - 一种体声波谐振装置、一种滤波装置及一种射频前端装置 - Google Patents

一种体声波谐振装置、一种滤波装置及一种射频前端装置 Download PDF

Info

Publication number
WO2021258442A1
WO2021258442A1 PCT/CN2020/102913 CN2020102913W WO2021258442A1 WO 2021258442 A1 WO2021258442 A1 WO 2021258442A1 CN 2020102913 W CN2020102913 W CN 2020102913W WO 2021258442 A1 WO2021258442 A1 WO 2021258442A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
electrode layer
axis
acoustic wave
Prior art date
Application number
PCT/CN2020/102913
Other languages
English (en)
French (fr)
Inventor
虞成城
曹艳杰
王伟
Original Assignee
深圳市信维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市信维通信股份有限公司 filed Critical 深圳市信维通信股份有限公司
Priority to US17/018,686 priority Critical patent/US11528006B2/en
Publication of WO2021258442A1 publication Critical patent/WO2021258442A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02023Characteristics of piezoelectric layers, e.g. cutting angles consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material

Definitions

  • the present invention relates to the field of semiconductor technology. Specifically, the present invention relates to a bulk acoustic wave resonance device, a filter device and a radio frequency front-end device.
  • the radio frequency (RF) front-end chips of wireless communication equipment include power amplifiers, antenna switches, radio frequency filters, multiplexers, and low noise amplifiers.
  • the radio frequency filter includes piezoelectric surface acoustic wave (Surface Acoustic Wave, SAW) filter, piezoelectric bulk acoustic wave (Bulk Acoustic Wave, BAW) filter, micro-electro-mechanical system (Micro-Electro-Mechanical System, MEMS) filter , Integrated Passive Devices (IPD) filters, etc.
  • SAW resonators and BAW resonators have higher quality factor values (Q values).
  • the SAW resonators and BAW resonators are made into radio frequency filters with low insertion loss and high out-of-band suppression, namely SAW filters and BAW filters. It is currently the mainstream radio frequency filter used in wireless communication equipment such as mobile phones and base stations.
  • the Q value is the value of the quality factor of the resonator, defined as the center frequency divided by the 3dB bandwidth of the resonator.
  • the frequency of use of SAW filters is generally 0.4GHz to 2.7GHz
  • the frequency of use of BAW filters is generally 0.7GHz to 7GHz.
  • the BAW resonator Compared with the SAW resonator, the BAW resonator has better performance, but due to the complicated process steps, the manufacturing cost of the BAW resonator is higher than that of the SAW resonator.
  • wireless communication technologies gradually evolve, more and more frequency bands are used.
  • overlapping frequency band technologies such as carrier aggregation, mutual interference between wireless frequency bands becomes more and more serious.
  • the high-performance BAW technology can solve the problem of mutual interference between frequency bands.
  • wireless mobile networks have introduced higher communication frequency bands.
  • BAW technology can solve the filtering problem of high frequency bands.
  • Fig. 1 shows a BAW filter circuit 100, which includes a ladder circuit composed of a plurality of BAW resonators, where f1, f2, f3, and f4 represent 4 different frequencies, respectively.
  • the metal on both sides of the piezoelectric layer of the resonator generates alternating positive and negative voltages.
  • the piezoelectric layer generates sound waves through the alternating positive and negative voltages, and the sound waves in the resonator propagate vertically.
  • the acoustic wave needs to be totally reflected on the upper surface of the upper metal electrode and the lower surface of the lower metal electrode to form a standing acoustic wave.
  • the condition of acoustic wave reflection is that the acoustic impedance of the contact area with the upper surface of the upper metal electrode and the lower surface of the lower metal electrode is quite different from the acoustic impedance of the metal electrode.
  • the Film Bulk Acoustic Wave Resonator is a BAW resonator that can confine the sound wave energy within the device.
  • the resonant region of the resonator is above the air, and there is a cavity below it, because of the air acoustic impedance
  • the acoustic impedance is quite different from that of the metal electrode.
  • the sound wave can be totally reflected on the upper surface of the upper metal electrode and the lower surface of the lower metal electrode to form a standing wave.
  • FIG. 2 shows a schematic structural diagram of a cross-section A of an FBAR 200.
  • the FBAR 200 includes: a substrate 201 including a cavity 203 on the upper surface side of the substrate 201; an electrode 205 (ie, a lower electrode) located on the cavity 203; and a piezoelectric layer 207 located on the electrode 205; And the electrode 209 (that is, the upper electrode) is located on the piezoelectric layer 207.
  • the electrode thickness needs to be thinner than before, but reducing the thickness of the electrode will increase the resistance of the electrode, thereby introducing higher electrical losses and lowering the Q value.
  • the problem solved by the present invention is to provide a bulk acoustic wave resonance device, a filter device and a radio frequency front-end device, which can reduce electrical loss.
  • an embodiment of the present invention provides a bulk acoustic wave resonator device, including: a first layer, the first layer including a first cavity on a first side; a first electrode, a second electrode of the first electrode One end is located in the first cavity, and the second end of the first electrode contacts the first layer; the second layer is located on the first side and is located on the first electrode; and the second electrode , Located on the second layer, the first electrode and the second electrode are located on both sides of the second layer; wherein, the first part of the first electrode overlapping the second electrode is located in the In the first cavity; wherein, the first electrode includes a first electrode layer and a second electrode layer, the second electrode layer and the second layer are located on both sides of the first electrode layer; wherein, the The second electrode includes a third electrode layer and a fourth electrode layer, and the second layer and the fourth electrode layer are located on both sides of the third electrode layer.
  • the first layer further includes: an intermediate layer, and the intermediate layer includes the first cavity.
  • the material of the intermediate layer includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the thickness of the intermediate layer includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the first layer further includes a substrate layer, and the substrate layer includes the first cavity.
  • the material of the substrate layer includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the thickness of the substrate layer includes but is not limited to: 20 micrometers to 100 micrometers.
  • the first layer further includes: a first substrate, and the first substrate includes the first cavity.
  • the first layer further includes a first groove located on the first side, and the first groove is located on one side of the first cavity in the horizontal direction and is connected to the first cavity.
  • the cavities communicate with each other, and the second end is located in the first groove.
  • the second layer includes a piezoelectric layer, the piezoelectric layer includes a plurality of crystal grains, the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain A crystal grain and the second crystal grain are any two crystal grains of the plurality of crystal grains; the first coordinate axis along the first direction corresponds to the height of the first crystal grain, and the second crystal grain along the second direction The two coordinate axis corresponds to the height of the second crystal grain, wherein the first direction and the second direction are the same or opposite.
  • the first crystal grain corresponds to a first coordinate system
  • the first coordinate system includes the first coordinate axis and a third coordinate axis along a third direction
  • the second crystal grain corresponds to the first coordinate system.
  • a two-coordinate system, the second coordinate system including the second coordinate axis and a fourth coordinate axis along a fourth direction.
  • the first coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the third direction and the fourth direction are the same or opposite.
  • the second layer includes a piezoelectric layer
  • the piezoelectric layer includes a plurality of crystal grains
  • the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • the material of the piezoelectric layer includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the acoustic impedance of the first electrode layer is greater than the acoustic impedance of the second electrode layer; the conductivity of the first electrode layer is lower than the conductivity of the second electrode layer; The acoustic impedance of the three electrode layer is greater than the acoustic impedance of the fourth electrode layer; the conductivity of the third electrode layer is lower than the conductivity of the fourth electrode layer.
  • the material of the first electrode layer includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium;
  • the material of the second electrode layer includes but is not limited to at least one of the following: Aluminum and beryllium;
  • the material of the third electrode layer includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium;
  • the material of the fourth electrode layer includes but is not limited to at least one of the following: aluminum, beryllium.
  • the acoustic impedance of the first electrode layer is less than the acoustic impedance of the second electrode layer; the conductivity of the first electrode layer is higher than the conductivity of the second electrode layer; The acoustic impedance of the three electrode layer is smaller than the acoustic impedance of the fourth electrode layer; the conductivity of the third electrode layer is higher than the conductivity of the fourth electrode layer.
  • the material of the first electrode layer includes but is not limited to at least one of the following: aluminum and beryllium;
  • the material of the second electrode layer includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, Platinum and iridium;
  • the material of the third electrode layer includes but is not limited to at least one of the following: aluminum and beryllium;
  • the material of the fourth electrode layer includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, iridium.
  • the bulk acoustic wave resonance device further includes: a first diaphragm, the first electrode layer and the second layer are located on both sides of the first diaphragm, and the acoustic impedance of the first diaphragm is greater than that of the first diaphragm.
  • the material of the first diaphragm includes but is not limited to at least one of the following: tungsten, tungsten nitride, titanium nitride, cobalt, ruthenium, tantalum, tantalum nitride, and indium oxide.
  • the bulk acoustic wave resonance device further includes: a second diaphragm, the second layer and the third electrode layer are located on both sides of the second diaphragm, and the acoustic impedance of the second diaphragm is greater than that of the second diaphragm.
  • the acoustic impedance of the third electrode layer includes but is not limited to at least one of the following: tungsten, tungsten nitride, titanium nitride, cobalt, ruthenium, tantalum, tantalum nitride, and indium oxide.
  • the first electrode further includes a first dielectric layer, the second electrode layer and the first electrode layer are on both sides of the first dielectric layer, and the acoustic impedance of the first dielectric layer It is smaller than the acoustic impedance of the first electrode layer, and the acoustic impedance of the first dielectric layer is smaller than the acoustic impedance of the second electrode layer.
  • the material of the first dielectric layer includes but is not limited to at least one of the following: silicon dioxide, silicon oxycarbide, silicon nitride, aluminum nitride, titanium oxide, hafnium oxide, and aluminum oxide.
  • the first dielectric layer includes at least one second groove, and the second electrode layer is embedded in the at least one second groove to cover the first dielectric layer.
  • the second electrode further includes a second dielectric layer, two sides of the second dielectric layer are the third electrode layer and the fourth electrode layer, and the acoustic impedance of the second dielectric layer It is smaller than the acoustic impedance of the third electrode layer, and the acoustic impedance of the second dielectric layer is smaller than the acoustic impedance of the fourth electrode layer.
  • the material of the second dielectric layer includes but is not limited to at least one of the following: silicon dioxide, silicon oxycarbide, silicon nitride, aluminum nitride, titanium oxide, hafnium oxide, and aluminum oxide.
  • the second dielectric layer includes at least one third groove, and the fourth electrode layer is embedded in the at least one third groove to cover the second dielectric layer.
  • the bulk acoustic wave resonator device further includes: a second substrate located on a second side of the first layer, and the second side is opposite to the first side.
  • the bulk acoustic wave resonance device further includes: a thin film located between the first layer and the second substrate.
  • the thin film includes, but is not limited to, a polycrystalline thin film.
  • An embodiment of the present invention also provides a filtering device, including but not limited to: at least one bulk acoustic wave resonance device provided in one of the foregoing embodiments.
  • An embodiment of the present invention also provides a radio frequency front-end device, including but not limited to: a power amplifying device and at least one filter device provided in the foregoing embodiments; the power amplifying device is connected to the filter device.
  • An embodiment of the present invention also provides a radio frequency front-end device, including but not limited to: a low-noise amplifying device and at least one of the filtering devices provided in the foregoing embodiments; the low-noise amplifying device is connected to the filtering device.
  • An embodiment of the present invention also provides a radio frequency front-end device, including but not limited to: a multiplexing device, and the multiplexing device includes at least one filtering device provided in the foregoing embodiment.
  • the present invention provides a bulk acoustic wave resonator device, a filter device, and a radio frequency front-end device.
  • the bulk acoustic wave resonator device includes a first electrode (ie, a lower electrode) and a second electrode (ie, an upper electrode). ), wherein the first electrode includes a first electrode layer and a second electrode layer, the second electrode includes a third electrode layer and a fourth electrode layer, and the conductivity of the second electrode layer is higher than that of the first electrode layer.
  • the electrode layer is higher, and the conductivity of the fourth electrode layer is higher than that of the third electrode layer, so that the resistance of the first electrode and the second electrode can be reduced, and the electrical loss can be reduced.
  • FIG. 1 is a schematic diagram of a circuit 100 of a BAW filter
  • Fig. 2 is a schematic structural diagram of a cross-section A of an FBAR 200
  • FIG. 3 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 300 according to an embodiment of the present invention
  • FIG. 4a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 400 according to an embodiment of the present invention
  • Figure 4b is a schematic diagram of the structure of a hexagonal crystal grain
  • Figure 4c(i) is a schematic diagram of the structure of an orthorhombic crystal grain
  • Figure 4c(ii) is a schematic diagram of the structure of a tetragonal crystal grain
  • Figure 4c(iii) is a schematic diagram of the structure of a cubic crystal grain
  • FIG. 5 is a schematic structural diagram of cross-section A of a bulk acoustic wave resonator device 500 according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 600 according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 700 according to an embodiment of the present invention.
  • FIG. 8a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 800 according to an embodiment of the present invention
  • Fig. 8b is a schematic diagram of an insertion loss curve of an embodiment of the present invention.
  • Fig. 8c is a schematic diagram of an insertion loss curve of an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 900 according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1000 according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1100 according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1200 according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1300 according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1400 according to an embodiment of the present invention.
  • the electrode thickness needs to be thinner than before, but reducing the electrode thickness will increase the resistance of the electrode, thereby introducing higher electrical losses and reducing Q value.
  • the resonance device includes a first electrode (ie, a lower electrode) and a second electrode (ie, an upper electrode), wherein the first electrode includes a first electrode layer and a second electrode layer, and the first electrode includes a first electrode layer and a second electrode layer.
  • the two electrodes include a third electrode layer and a fourth electrode layer, the conductivity of the second electrode layer is higher than that of the first electrode layer, and the conductivity of the fourth electrode layer is higher than that of the third electrode layer Therefore, the resistance of the first electrode and the second electrode can be reduced, and the electrical loss can be reduced.
  • An embodiment of the present invention provides a bulk acoustic wave resonance device, including: a first layer, the first layer includes a first cavity on a first side; a first electrode, the first end of the first electrode is located on the In the first cavity, the second end of the first electrode contacts the first layer; the second layer is located on the first side and is located on the first electrode; and the second electrode is located on the first electrode.
  • the first electrode and the second electrode are respectively located on both sides of the second layer; wherein, the first part of the first electrode that overlaps the second electrode is located in the first cavity In; wherein, the first electrode includes a first electrode layer and a second electrode layer, the second electrode layer and the second layer are located on both sides of the first electrode layer; wherein, the second electrode layer
  • the electrode includes a third electrode layer and a fourth electrode layer, and the second layer and the fourth electrode layer are respectively located on both sides of the third electrode layer.
  • the acoustic impedance of the first electrode layer is greater than the acoustic impedance of the second electrode layer; the conductivity of the first electrode layer is lower than the conductivity of the second electrode layer; The acoustic impedance of the three electrode layer is greater than the acoustic impedance of the fourth electrode layer; the conductivity of the third electrode layer is lower than the conductivity of the fourth electrode layer.
  • the conductivity of the second electrode layer is higher than that of the first electrode layer, and the conductivity of the fourth electrode layer is higher than that of the third electrode layer, so that the first electrode layer can be reduced.
  • the resistance between one electrode and the second electrode reduces electrical loss.
  • the material of the first electrode layer includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium;
  • the material of the second electrode layer includes but is not limited to at least one of the following: Aluminum and beryllium;
  • the material of the third electrode layer includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium;
  • the material of the fourth electrode layer includes but is not limited to at least one of the following: aluminum, beryllium.
  • the first layer further includes: a first substrate, and the first substrate includes the first cavity.
  • the first layer further includes a substrate layer, and the substrate layer includes the first cavity.
  • the material of the substrate layer includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the thickness of the substrate layer includes but is not limited to: 20 micrometers to 100 micrometers.
  • the first layer further includes: an intermediate layer, and the intermediate layer includes the first cavity.
  • the material of the intermediate layer includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the thickness of the intermediate layer includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the first layer further includes a first groove located on the first side, and the first groove is located on one side of the first cavity in the horizontal direction and is connected to the first cavity.
  • the cavities communicate with each other, and the second end is located in the first groove.
  • the second layer includes a piezoelectric layer, the piezoelectric layer includes a plurality of crystal grains, the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain A crystal grain and the second crystal grain are any two crystal grains of the plurality of crystal grains; the first coordinate axis along the first direction corresponds to the height of the first crystal grain, and the second crystal grain along the second direction The two coordinate axis corresponds to the height of the second crystal grain, wherein the first direction and the second direction are the same or opposite.
  • the first crystal grain corresponds to a first coordinate system
  • the first coordinate system includes the first coordinate axis and a third coordinate axis along a third direction
  • the second crystal grain corresponds to the first coordinate system.
  • a two-coordinate system, the second coordinate system including the second coordinate axis and a fourth coordinate axis along a fourth direction.
  • the first coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the third direction and the fourth direction are the same or opposite.
  • the material of the piezoelectric layer includes at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, niobium magnesium acid Lead-lead titanate.
  • the second layer includes a piezoelectric layer
  • the piezoelectric layer includes a plurality of crystal grains
  • the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by the plane coordinate system, where the abscissa is the difference between the crystal plane and the sample plane.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle
  • the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the function value is equal to half of the peak value in a peak of a function.
  • the first electrode further includes a first dielectric layer, two sides of the first dielectric layer are the second electrode layer and the first electrode layer, and the acoustic of the first dielectric layer The impedance is smaller than the acoustic impedance of the first electrode layer, and the acoustic impedance of the first dielectric layer is smaller than the acoustic impedance of the second electrode layer.
  • the material of the first dielectric layer includes at least one of the following: silicon dioxide, silicon oxycarbide, silicon nitride, aluminum nitride, titanium oxide, hafnium oxide, and aluminum oxide.
  • the second electrode further includes a second dielectric layer. Two sides of the second dielectric layer are the third electrode layer and the fourth electrode layer. The impedance is smaller than the acoustic impedance of the third electrode layer, and the acoustic impedance of the second dielectric layer is smaller than the acoustic impedance of the fourth electrode layer.
  • the material of the second dielectric layer includes at least one of the following: silicon dioxide, silicon oxycarbide, silicon nitride, aluminum nitride, titanium oxide, hafnium oxide, and aluminum oxide.
  • the acoustic impedance of the first dielectric layer is smaller than the acoustic impedance of the first electrode layer and the second electrode layer
  • the acoustic impedance of the second dielectric layer is smaller than the acoustic impedance of the third electrode layer and the third electrode layer.
  • the acoustic impedance of the fourth electrode layer can block leakage waves.
  • the first dielectric layer includes at least one second groove, and the second electrode layer is embedded in the at least one second groove to cover the first dielectric layer.
  • the second dielectric layer includes at least one third groove, and the fourth electrode layer is embedded in the at least one third groove to cover the second dielectric layer.
  • the bulk acoustic wave resonator device further includes: a second substrate located on a second side of the first layer, and the second side is opposite to the first side.
  • the bulk acoustic wave resonance device further includes: a thin film located between the first layer and the second substrate.
  • the thin film includes: a polycrystalline thin film. It should be noted that the thin film can prevent the formation of a free electron layer on the surface of the second substrate and reduce the radio frequency loss of the second substrate.
  • An embodiment of the present invention provides a bulk acoustic wave resonance device, including: a first layer, the first layer includes a first cavity on a first side; a first electrode, the first end of the first electrode is located on the In the first cavity, the second end of the first electrode contacts the first layer; the second layer is located on the first side and is located on the first electrode; and the second electrode is located on the first electrode.
  • the first electrode and the second electrode are respectively located on both sides of the second layer; wherein, the first part of the first electrode that overlaps the second electrode is located in the first cavity In; wherein, the first electrode includes a first electrode layer and a second electrode layer, the second electrode layer and the second layer are located on both sides of the first electrode layer; wherein, the second electrode layer
  • the electrode includes a third electrode layer and a fourth electrode layer, and the second layer and the fourth electrode layer are respectively located on both sides of the third electrode layer.
  • the acoustic impedance of the first electrode layer is less than the acoustic impedance of the second electrode layer; the conductivity of the first electrode layer is higher than the conductivity of the second electrode layer; The acoustic impedance of the three electrode layer is smaller than the acoustic impedance of the fourth electrode layer; the conductivity of the third electrode layer is higher than the conductivity of the fourth electrode layer.
  • the conductivity of the first electrode layer is higher than that of the second electrode layer, and the conductivity of the third electrode layer is higher than that of the fourth electrode layer, thereby reducing the first electrode layer.
  • the resistance of the electrode and the second electrode reduces electrical loss.
  • the material of the first electrode layer includes but is not limited to at least one of the following: aluminum and beryllium;
  • the material of the second electrode layer includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, Platinum and iridium;
  • the material of the third electrode layer includes but is not limited to at least one of the following: aluminum and beryllium;
  • the material of the fourth electrode layer includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, iridium.
  • the first layer further includes: a first substrate, and the first substrate includes the first cavity.
  • the first layer further includes a substrate layer, and the substrate layer includes the first cavity.
  • the material of the substrate layer includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the thickness of the intermediate layer includes but is not limited to: 20 micrometers to 100 micrometers.
  • the first layer further includes: an intermediate layer, and the intermediate layer includes the first cavity.
  • the material of the intermediate layer includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the thickness of the intermediate layer includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the first layer further includes a first groove located on the first side, and the first groove is located on one side of the first cavity in the horizontal direction and is connected to the first cavity.
  • the cavities communicate with each other, and the second end is located in the first groove.
  • the second layer includes a piezoelectric layer, the piezoelectric layer includes a plurality of crystal grains, the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain A crystal grain and the second crystal grain are any two crystal grains of the plurality of crystal grains; the first coordinate axis along the first direction corresponds to the height of the first crystal grain, and the second crystal grain along the second direction The two coordinate axis corresponds to the height of the second crystal grain, wherein the first direction and the second direction are the same or opposite.
  • the first crystal grain corresponds to a first coordinate system
  • the first coordinate system includes the first coordinate axis and a third coordinate axis along a third direction
  • the second crystal grain corresponds to the first coordinate system.
  • a two-coordinate system, the second coordinate system including the second coordinate axis and a fourth coordinate axis along a fourth direction.
  • the first coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the third direction and the fourth direction are the same or opposite.
  • the material of the piezoelectric layer includes at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, niobium magnesium acid Lead-lead titanate.
  • the second layer includes a piezoelectric layer
  • the piezoelectric layer includes a plurality of crystal grains
  • the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • the bulk acoustic wave resonator device further includes a first diaphragm, the first electrode layer and the second layer are respectively located on both sides of the first diaphragm, and the first diaphragm is used to separate the For the first electrode layer and the second layer, the acoustic impedance of the first diaphragm is greater than the acoustic impedance of the first electrode layer.
  • the bulk acoustic wave resonance device further includes a second diaphragm, the second layer and the third electrode layer are respectively located on both sides of the second diaphragm, and the second diaphragm is used to separate For the third electrode layer and the second layer, the acoustic impedance of the second diaphragm is greater than the acoustic impedance of the third electrode layer.
  • the first diaphragm and the second diaphragm are used to prevent a chemical reaction between the electrode material and the piezoelectric material, which affects the electrical performance of the resonant device.
  • the material of the first diaphragm includes but is not limited to at least one of the following: tungsten, tungsten nitride, titanium nitride, cobalt, ruthenium, tantalum, tantalum nitride, and indium oxide.
  • the material of the second diaphragm includes but is not limited to at least one of the following: tungsten, tungsten nitride, titanium nitride, cobalt, ruthenium, tantalum, tantalum nitride, and indium oxide.
  • the bulk acoustic wave resonator device further includes: a second substrate located on a second side of the first layer, and the second side is opposite to the first side.
  • the bulk acoustic wave resonance device further includes: a thin film located between the first layer and the second substrate.
  • the thin film includes: a polycrystalline thin film. It should be noted that the thin film can prevent a free electron layer from forming on the surface of the second substrate, so as to reduce the radio frequency loss of the second substrate.
  • An embodiment of the present invention also provides a filtering device, including but not limited to: at least one bulk acoustic wave resonance device provided in one of the foregoing embodiments.
  • An embodiment of the present invention also provides a radio frequency front-end device, including but not limited to: a power amplifying device and at least one filter device provided in the foregoing embodiments; the power amplifying device is connected to the filter device.
  • An embodiment of the present invention also provides a radio frequency front-end device, including but not limited to: a low-noise amplifying device and at least one of the filtering devices provided in the foregoing embodiments; the low-noise amplifying device is connected to the filtering device.
  • An embodiment of the present invention also provides a radio frequency front-end device, including but not limited to: a multiplexing device, and the multiplexing device includes at least one filtering device provided in the foregoing embodiment.
  • Figures 3 to 13 show multiple specific embodiments of the present invention.
  • the multiple specific embodiments use resonant devices with different structures, but the present invention can also be implemented in other ways different from those described here. Therefore, The present invention is not limited by the specific embodiments disclosed below.
  • FIG. 3 is a schematic diagram of a cross-sectional structure A of a bulk acoustic wave resonator device 300 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 300 including: a substrate 310, the upper surface side of the substrate 310 includes a cavity 330; an electrode 350, the first end 350a of the electrode 350 is located In the cavity 330, the second end 350b of the electrode 350 contacts the side wall of the cavity 330; the piezoelectric layer 370 is located on the electrode 350 and covers the cavity 330, wherein the piezoelectric
  • the layer 370 includes a first side 370a and a second side 370b opposite to the first side 370a.
  • the electrode 350 is located on the first side 370a; the electrode 390 is located on the second side 370b and is located on the piezoelectric layer. 370 on.
  • the resonance region ie, the overlapping area of the electrode 350 and the electrode 390
  • the electrode 350 includes: an electrode layer 351 located on the first side 370a and contacting the piezoelectric layer 370; an electrode layer 353 located on the first side 370a and contacting the electrode layer 351, the electrode The layer 353 and the piezoelectric layer 370 are located on both sides of the electrode layer 351 respectively.
  • the electrode 390 includes: an electrode layer 391 located on the second side 370b and contacting the piezoelectric layer 370; an electrode layer 393 located on the second side 370b and contacting the electrode layer 391, the pressure
  • the electrical layer 370 and the electrode layer 393 are located on both sides of the electrode layer 391 respectively.
  • the material of the substrate 310 includes but is not limited to at least one of the following: silicon, silicon carbide, glass, sapphire, spinel, gallium arsenide, and gallium nitride.
  • the acoustic impedance of the material of the electrode layer 351 is greater than the acoustic impedance of the material of the electrode layer 353.
  • the conductivity of the material of the electrode layer 353 is higher than the conductivity of the material of the electrode layer 351.
  • the material of the electrode layer 351 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 353 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 370 is a flat layer, and also covers the upper surface side of the base 310.
  • the material of the piezoelectric layer 370 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the acoustic impedance of the material of the electrode layer 391 is greater than the acoustic impedance of the material of the electrode layer 393.
  • the conductivity of the material of the electrode layer 393 is higher than the conductivity of the material of the electrode layer 391.
  • the material of the electrode layer 391 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 393 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 350 that overlaps the electrode 390 is located in the cavity 330; the portion of the electrode 390 that overlaps the electrode 350 is located above the cavity 330.
  • the conductivity of the electrode layer 353 and the electrode layer 393 is relatively high, thereby reducing the resistance of the electrode 350 and the electrode 390 and reducing electrical loss.
  • the electrode layer 351 and the electrode layer 353 have an acoustic impedance difference
  • the electrode layer 391 and the electrode layer 393 have an acoustic impedance difference, which can block leakage waves.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 300 including: a substrate 310, the upper surface side of the substrate 310 includes a cavity 330; an electrode 350, the first end 350a of the electrode 350 is located at the In the cavity 330, the second end 350b of the electrode 350 contacts the side wall of the cavity 330; the piezoelectric layer 370 is located on the electrode 350 and covers the cavity 330, wherein the piezoelectric
  • the layer 370 includes a first side 370a and a second side 370b opposite to the first side 370a.
  • the electrode 350 is located on the first side 370a; the electrode 390 is located on the second side 370b and is located on the piezoelectric layer. 370 on.
  • the resonance region ie, the overlapping area of the electrode 350 and the electrode 390
  • the electrode 350 includes: an electrode layer 351 located on the first side 370a and contacting the piezoelectric layer 370; an electrode layer 352 located on the first side 370a and contacting the electrode layer 351, the electrode The layer 352 and the piezoelectric layer 370 are respectively located on both sides of the electrode layer 351.
  • the electrode 390 includes: an electrode layer 391 located on the second side 370b and contacting the piezoelectric layer 370; an electrode layer 392 located on the second side 370b and contacting the electrode layer 391, the pressure
  • the electrical layer 370 and the electrode layer 392 are located on both sides of the electrode layer 391 respectively.
  • the acoustic impedance of the material of the electrode layer 353 is greater than the acoustic impedance of the material of the electrode layer 351.
  • the conductivity of the material of the electrode layer 351 is higher than the conductivity of the material of the electrode layer 353.
  • the material of the electrode layer 353 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 351 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 370 is a flat layer, and also covers the upper surface side of the base 310.
  • the material of the piezoelectric layer 370 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • a rare earth element is doped into the material of the piezoelectric layer 370, where the rare earth element includes but is not limited to at least one of the following: scandium, lanthanum, and yttrium.
  • the rare earth element includes but is not limited to at least one of the following: scandium, lanthanum, and yttrium.
  • scandium, lanthanum, and yttrium when rare earth elements are added to piezoelectric materials, rare earth element atoms will replace a certain proportion of one element atom in piezoelectric materials to form longer chemical bonds, thereby generating pressure.
  • scandium is added to aluminum nitride
  • scandium atoms will replace a certain proportion of aluminum atoms, and the number of nitrogen atoms will remain unchanged.
  • the scandium-nitrogen bond formed is longer than the aluminum-nitrogen bond, which generates pressure and obtains a higher piezoelectric constant.
  • the electromechanical coupling coefficient wherein the certain ratio refers to the ratio of the number of
  • the acoustic impedance of the material of the electrode layer 393 is greater than the acoustic impedance of the material of the electrode layer 391.
  • the conductivity of the material of the electrode layer 391 is higher than the conductivity of the material of the electrode layer 393.
  • the material of the electrode layer 393 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 391 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the electrical conductivity of the electrode layer 351 and the electrode layer 391 is relatively high, thereby reducing the resistance of the electrode 350 and the electrode 390 and reducing electrical loss.
  • the electrode layer 351 and the electrode layer 353 have an acoustic impedance difference
  • the electrode layer 391 and the electrode layer 393 have an acoustic impedance difference, which can block leakage waves.
  • the electrode layer 351 and the electrode layer 391 have lower acoustic attenuation, and thus have lower acoustic loss.
  • the electrode layer 351 and the electrode layer 391 have higher thermal conductivity, thereby improving the heat dissipation capability of the resonant device.
  • FIG. 4a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 400 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 400 including: a substrate 410; an intermediate layer 420 located on the substrate 410 for blocking leakage waves, and the upper surface side of the intermediate layer 420 includes The cavity 430; the electrode 440, the first end 440a of the electrode 440 is located in the cavity 430, the second end 440b of the electrode 440 is in contact with the sidewall of the cavity 430; the piezoelectric layer 450 is located in the cavity 430
  • the electrode 440 covers the cavity 430, the piezoelectric layer 450 includes a first side 450a and a second side 450b opposite to the first side 450a, and the intermediate layer 420 is located on the first side 450a,
  • the electrode 440 is located on the first side 450 a; the electrode 460 is located on the second side 450 b and is located on the piezoelectric layer 450.
  • the resonance region ie, the overlapping area of the electrode 440 and the electrode 460
  • the electrode 440 includes: an electrode layer 441 located on the first side 450a and contacting the piezoelectric layer 450; an electrode layer 442 located on the first side 450a and contacting the electrode layer 441, the electrode The layer 442 and the piezoelectric layer 450 are located on both sides of the electrode layer 441 respectively.
  • the electrode 460 includes: an electrode layer 461 located on the second side 450b and contacting the piezoelectric layer 450; an electrode layer 462 located on the second side 450b and contacting the electrode layer 461, the pressure
  • the electrical layer 450 and the electrode layer 462 are located on both sides of the electrode layer 461 respectively.
  • the material of the substrate 410 includes but is not limited to at least one of the following: silicon, silicon carbide, glass, sapphire, spinel, gallium arsenide, and gallium nitride.
  • the material of the intermediate layer 420 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 420 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the acoustic impedance of the material of the electrode layer 441 is greater than the acoustic impedance of the material of the electrode layer 442.
  • the conductivity of the material of the electrode layer 442 is higher than the conductivity of the material of the electrode layer 441.
  • the material of the electrode layer 441 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 442 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 450 is a flat layer, and also covers the upper surface side of the intermediate layer 420.
  • the material of the piezoelectric layer 450 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 450 includes a plurality of crystal grains, and the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain and the second crystal grain are Any two of the plurality of crystal grains.
  • the crystal orientation, crystal plane, etc. of crystal grains can be expressed based on a coordinate system. As shown in FIG. 4b, for the crystal grains of the hexagonal crystal system, such as aluminum nitride crystal grains, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used.
  • crystal grains are expressed in an xyz three-dimensional coordinate system (including x-axis, y-axis and z-axis). In addition to the above two examples, the crystal grains can also be expressed based on coordinate systems known to those skilled in the art, so the present invention is not limited by the above two examples.
  • the first crystal grain may be expressed based on a first three-dimensional coordinate system
  • the second crystal grain may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes The first coordinate axis and the third coordinate axis along the third direction
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction
  • the first The coordinate axis corresponds to the height of the first crystal grain
  • the second coordinate axis corresponds to the height of the second crystal grain.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 450 includes a plurality of crystal grains, and the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a specific crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by the plane coordinate system, where the abscissa is the difference between the crystal plane and the sample plane.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle, and the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the function value is equal to half of the peak value in a peak of a function.
  • forming the piezoelectric layer 450 on a plane can prevent the piezoelectric layer 450 from including crystal grains that are clearly turned, thereby improving the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the acoustic impedance of the material of the electrode layer 461 is greater than the acoustic impedance of the material of the electrode layer 462.
  • the conductivity of the material of the electrode layer 462 is higher than the conductivity of the material of the electrode layer 461.
  • the material of the electrode layer 461 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 462 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 440 that overlaps the electrode 460 is located in the cavity 430; the portion of the electrode 460 that overlaps the electrode 440 is located above the cavity 430.
  • the electrical conductivity of the electrode layer 442 and the electrode layer 462 is relatively high, thereby reducing the resistance of the electrode 440 and the electrode 460, and reducing electrical loss.
  • the electrode layer 441 and the electrode layer 442 have an acoustic impedance difference
  • the electrode layer 461 and the electrode layer 462 have an acoustic impedance difference, which can block leakage waves.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 400 including: a substrate 410; an intermediate layer 420 located on the substrate 410 for blocking leakage waves, and the upper surface side of the intermediate layer 420 includes The cavity 430; the electrode 440, the first end 440a of the electrode 440 is located in the cavity 430, the second end 440b of the electrode 440 is in contact with the sidewall of the cavity 430; the piezoelectric layer 450 is located in the cavity 430
  • the electrode 440 covers the cavity 430, the piezoelectric layer 450 includes a first side 450a and a second side 450b opposite to the first side 450a, and the intermediate layer 420 is located on the first side 450a,
  • the electrode 440 is located on the first side 450 a; the electrode 460 is located on the second side 450 b and is located on the piezoelectric layer 450.
  • the resonance region ie, the overlapping area of the electrode 440 and the electrode 460
  • the electrode 440 includes: an electrode layer 441 located on the first side 450a and contacting the piezoelectric layer 450; an electrode layer 442 located on the first side 450a and contacting the electrode layer 441, the electrode The layer 442 and the piezoelectric layer 450 are located on both sides of the electrode layer 441 respectively.
  • the electrode 460 includes: an electrode layer 461 located on the second side 450b and contacting the piezoelectric layer 450; an electrode layer 462 located on the second side 450b and contacting the electrode layer 461, the pressure
  • the electrical layer 450 and the electrode layer 462 are located on both sides of the electrode layer 461 respectively.
  • the acoustic impedance of the material of the electrode layer 442 is greater than the acoustic impedance of the material of the electrode layer 441.
  • the conductivity of the material of the electrode layer 441 is higher than the conductivity of the material of the electrode layer 442.
  • the material of the electrode layer 442 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 441 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 450 is a flat layer, and also covers the upper surface side of the intermediate layer 420.
  • the material of the piezoelectric layer 450 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • a rare earth element is doped into the material of the piezoelectric layer 450, where the rare earth element includes but is not limited to at least one of the following: scandium, lanthanum, and yttrium.
  • the rare earth element includes but is not limited to at least one of the following: scandium, lanthanum, and yttrium.
  • scandium, lanthanum, and yttrium when rare earth elements are added to piezoelectric materials, rare earth element atoms will replace a certain proportion of one element atom in piezoelectric materials to form longer chemical bonds, thereby generating pressure.
  • scandium is added to aluminum nitride
  • scandium atoms will replace a certain proportion of aluminum atoms, and the number of nitrogen atoms will remain unchanged.
  • the scandium-nitrogen bond formed is longer than the aluminum-nitrogen bond, which generates pressure and obtains a higher piezoelectric constant.
  • the electromechanical coupling coefficient wherein the certain ratio refers to the ratio of the number of
  • the acoustic impedance of the material of the electrode layer 462 is greater than the acoustic impedance of the material of the electrode layer 461.
  • the conductivity of the material of the electrode layer 461 is higher than the conductivity of the material of the electrode layer 462.
  • the material of the electrode layer 462 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 461 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the electrical conductivity of the electrode layer 441 and the electrode layer 461 is relatively high, thereby reducing the resistance of the electrode 440 and the electrode 460, and reducing electrical loss.
  • the electrode layer 441 and the electrode layer 442 have an acoustic impedance difference
  • the electrode layer 461 and the electrode layer 462 have an acoustic impedance difference, which can block leakage waves.
  • the electrode layer 441 and the electrode layer 461 have lower acoustic attenuation, and thus have lower acoustic loss.
  • the electrode layer 441 and the electrode layer 461 have higher thermal conductivity, thereby improving the heat dissipation capability of the resonant device.
  • FIG. 5 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 500 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 500 including: a substrate 510; a thin film 520 on the substrate 510; an intermediate layer 530 on the thin film 520 for blocking leakage waves,
  • the upper surface side of the intermediate layer 530 includes a cavity 540; an electrode 550, the first end 550a of the electrode 550 is located in the cavity 540, and the second end 550b of the electrode 550 is in contact with the cavity 540 Side wall; piezoelectric layer 560, located on the electrode 550, covering the cavity 540, the piezoelectric layer 560 includes a first side 560a and a second side 560b opposite to the first side 560a, the middle
  • the layer 530 is located on the first side 560a, and the electrode 550 is located on the first side 560a; the electrode 570 is located on the second side 560b and is located on the piezoelectric layer 560.
  • the resonance region ie, the overlapping area of the electrode 550 and the electrode 570
  • the electrode 550 includes: an electrode layer 551 located on the first side 560a and contacting the piezoelectric layer 560; an electrode layer 552 located on the first side 560a and contacting the electrode layer 551, the electrode The layer 552 and the piezoelectric layer 560 are respectively located on both sides of the electrode layer 551.
  • the electrode 570 includes: an electrode layer 571 located on the second side 560b and contacting the piezoelectric layer 560; an electrode layer 572 located on the second side 560b and contacting the electrode layer 571, the pressure
  • the electrical layer 560 and the electrode layer 572 are located on both sides of the electrode layer 571 respectively.
  • the material of the substrate 510 includes but is not limited to at least one of the following: silicon, silicon carbide, glass, sapphire, spinel, gallium arsenide, and gallium nitride.
  • the thin film 520 includes but is not limited to a polycrystalline thin film.
  • the material of the polycrystalline film includes but is not limited to at least one of the following: polycrystalline silicon, polycrystalline silicon nitride, and polycrystalline silicon carbide. It should be noted that the thin film 520 can prevent a free electron layer from forming on the surface of the substrate 510, so as to reduce the radio frequency loss of the substrate 510.
  • the material of the intermediate layer 530 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 530 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the acoustic impedance of the material of the electrode layer 551 is greater than the acoustic impedance of the material of the electrode layer 552.
  • the conductivity of the material of the electrode layer 552 is higher than the conductivity of the material of the electrode layer 551.
  • the material of the electrode layer 551 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 552 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 560 is a flat layer, and also covers the upper surface side of the intermediate layer 530.
  • the material of the piezoelectric layer 560 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 560 includes a plurality of crystal grains, and the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain and the second crystal grain are Any two of the plurality of crystal grains.
  • the crystal orientation, crystal plane, etc. of crystal grains can be expressed based on a coordinate system.
  • the first crystal grain may be expressed based on a first three-dimensional coordinate system
  • the second crystal grain may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes The first coordinate axis and the third coordinate axis along the third direction
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction
  • the first The coordinate axis corresponds to the height of the first crystal grain
  • the second coordinate axis corresponds to the height of the second crystal grain.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 560 includes a plurality of crystal grains, and the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • forming the piezoelectric layer 560 on a plane can prevent the piezoelectric layer 560 from including crystal grains that are significantly turned, thereby improving the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the acoustic impedance of the material of the electrode layer 571 is greater than the acoustic impedance of the material of the electrode layer 572.
  • the conductivity of the material of the electrode layer 572 is higher than the conductivity of the material of the electrode layer 571.
  • the material of the electrode layer 571 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 572 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 550 that overlaps the electrode 570 is located in the cavity 540; the portion of the electrode 570 that overlaps the electrode 550 is located above the cavity 540.
  • the conductivity of the electrode layer 552 and the electrode layer 572 is relatively high, thereby reducing the resistance of the electrode 550 and the electrode 570 and reducing electrical loss.
  • the electrode layer 551 and the electrode layer 552 have an acoustic impedance difference
  • the electrode layer 571 and the electrode layer 572 have an acoustic impedance difference, which can block leakage waves.
  • FIG. 6 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 600 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 600 including: a substrate layer 610, the upper surface of the substrate layer 610 includes a cavity 630; an electrode 650, the first end 650a of the electrode 650 Located in the cavity 630, the second end 650b of the electrode 650 contacts the side wall of the cavity 630; the piezoelectric layer 670 is located on the electrode 650 and covers the cavity 630, wherein the The piezoelectric layer 670 includes a first side 670a and a second side 670b opposite to the first side 670a, the substrate layer 610 is located on the first side 670a, the electrode 650 is located on the first side 670a; the electrode 690 , Located on the second side 670b, on the piezoelectric layer 670.
  • the resonance region ie, the overlapping area of the electrode 650 and the electrode 690
  • the electrode 650 includes: an electrode layer 651 located on the first side 670a and contacting the piezoelectric layer 670; an electrode layer 652 located on the first side 670a and contacting the electrode layer 651, the electrode The layer 652 and the piezoelectric layer 670 are located on both sides of the electrode layer 651 respectively.
  • the electrode 690 includes: an electrode layer 691, located on the second side 670b, contacting the piezoelectric layer 670; electrode layer 692, located on the second side 670b, contacting the electrode layer 691, the pressure
  • the electrical layer 670 and the electrode layer 692 are located on both sides of the electrode layer 691, respectively.
  • the material of the substrate layer 610 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the substrate layer 610 includes but is not limited to: 20 micrometers to 100 micrometers.
  • the acoustic impedance of the material of the electrode layer 651 is greater than the acoustic impedance of the material of the electrode layer 652.
  • the conductivity of the material of the electrode layer 652 is higher than the conductivity of the material of the electrode layer 651.
  • the material of the electrode layer 651 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 652 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 670 is a flat layer and also covers the upper surface side of the substrate layer 610.
  • the material of the piezoelectric layer 670 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 670 includes a plurality of crystal grains, and the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain and the second crystal grain are Any two of the plurality of crystal grains.
  • the crystal orientation, crystal plane, etc. of crystal grains can be expressed based on a coordinate system.
  • the first crystal grain may be expressed based on a first three-dimensional coordinate system
  • the second crystal grain may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes The first coordinate axis and the third coordinate axis along the third direction
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction
  • the first The coordinate axis corresponds to the height of the first crystal grain
  • the second coordinate axis corresponds to the height of the second crystal grain.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 670 includes a plurality of crystal grains, and the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • forming the piezoelectric layer 670 on a plane can prevent the piezoelectric layer 670 from including crystal grains that are significantly turned, thereby improving the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the acoustic impedance of the material of the electrode layer 691 is greater than the acoustic impedance of the material of the electrode layer 692.
  • the conductivity of the material of the electrode layer 692 is higher than the conductivity of the material of the electrode layer 691.
  • the material of the electrode layer 691 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 692 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 650 that overlaps the electrode 690 is located in the cavity 630; the portion of the electrode 690 that overlaps the electrode 650 is located above the cavity 630.
  • the electrical conductivity of the electrode layer 652 and the electrode layer 692 is relatively high, thereby reducing the resistance of the electrode 650 and the electrode 690 and reducing electrical loss.
  • the electrode layer 651 and the electrode layer 652 have an acoustic impedance difference
  • the electrode layer 691 and the electrode layer 692 have an acoustic impedance difference, which can block leakage waves.
  • FIG. 7 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 700 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 700 that includes a substrate 710.
  • the upper surface of the substrate 710 includes a cavity 720 and a groove 730, wherein the groove 730 is located in the One of the left and right sides of the cavity 720 (ie, one of the two sides in the horizontal direction) communicates with the cavity 720, and the depth of the groove 730 is less than the depth of the cavity 720;
  • the electrode 740 The first end 740a of the electrode 740 is located in the cavity 720, and the second end 740b of the electrode 740 is located in the groove 730, wherein the depth of the groove 730 is equal to that of the electrode 740 Thickness; piezoelectric layer 750, located on the electrode 740, covering the cavity 720, the piezoelectric layer 750 includes a first side 750a and a second side 750b opposite to the first side 750a, the electrode 740 It is located on the first side 750a; the electrode 760 is
  • the resonance region (that is, the overlapping area of the electrode 740 and the electrode 760) is suspended relative to the cavity 720 and has no overlapping portion with the substrate 710.
  • the electrode 740 includes: an electrode layer 741 located on the first side 750a and contacting the piezoelectric layer 750; an electrode layer 742 located on the first side 750a and contacting the electrode layer 741, the electrode The layer 742 and the piezoelectric layer 750 are located on both sides of the electrode layer 741 respectively.
  • the electrode 760 includes: an electrode layer 761 located on the second side 750b and contacting the piezoelectric layer 750; an electrode layer 762 located on the second side 750b and contacting the electrode layer 761, the pressure
  • the electrical layer 750 and the electrode layer 762 are located on both sides of the electrode layer 761 respectively.
  • the material of the substrate 710 includes but is not limited to at least one of the following: silicon, silicon carbide, glass, sapphire, spinel, gallium arsenide, and gallium nitride.
  • the acoustic impedance of the material of the electrode layer 741 is greater than the acoustic impedance of the material of the electrode layer 742.
  • the conductivity of the material of the electrode layer 742 is higher than the conductivity of the material of the electrode layer 741.
  • the material of the electrode layer 741 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 742 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 750 is a flat layer, and also covers the upper surface side of the base 710.
  • the material of the piezoelectric layer 750 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the acoustic impedance of the material of the electrode layer 761 is greater than the acoustic impedance of the material of the electrode layer 762.
  • the conductivity of the material of the electrode layer 762 is higher than the conductivity of the material of the electrode layer 761.
  • the material of the electrode layer 761 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 762 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 740 that overlaps the electrode 760 is located in the cavity 720; the portion of the electrode 760 that overlaps the electrode 740 is located above the cavity 720.
  • the conductivity of the electrode layer 742 and the electrode layer 762 is relatively high, thereby reducing the resistance of the electrode 740 and the electrode 760 and reducing electrical loss.
  • the electrode layer 741 and the electrode layer 742 have an acoustic impedance difference
  • the electrode layer 761 and the electrode layer 762 have an acoustic impedance difference, which can block leakage waves.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 700 that includes a substrate 710.
  • the upper surface of the substrate 710 includes a cavity 720 and a groove 730, wherein the groove 730 is located in the One of the left and right sides of the cavity 720 (ie, one of the two sides in the horizontal direction) communicates with the cavity 720, and the depth of the groove 730 is less than the depth of the cavity 720;
  • the electrode 740 The first end 740a of the electrode 740 is located in the cavity 720, and the second end 740b of the electrode 740 is located in the groove 730, wherein the depth of the groove 730 is equal to that of the electrode 740 Thickness; piezoelectric layer 750, located on the electrode 740, covering the cavity 720, the piezoelectric layer 750 includes a first side 750a and a second side 750b opposite to the first side 750a, the electrode 740 It is located on the first side 750a; the electrode 760 is
  • the resonance region (that is, the overlapping area of the electrode 740 and the electrode 760) is suspended relative to the cavity 720 and has no overlapping portion with the substrate 710.
  • the electrode 740 includes: an electrode layer 741 located on the first side 750a and contacting the piezoelectric layer 750; an electrode layer 742 located on the first side 750a and contacting the electrode layer 741, the electrode The layer 742 and the piezoelectric layer 750 are located on both sides of the electrode layer 741 respectively.
  • the electrode 760 includes: an electrode layer 761 located on the second side 750b and contacting the piezoelectric layer 750; an electrode layer 762 located on the second side 750b and contacting the electrode layer 761, the pressure
  • the electrical layer 750 and the electrode layer 762 are located on both sides of the electrode layer 761 respectively.
  • the acoustic impedance of the material of the electrode layer 742 is greater than the acoustic impedance of the material of the electrode layer 741.
  • the conductivity of the material of the electrode layer 741 is higher than the conductivity of the material of the electrode layer 742.
  • the material of the electrode layer 742 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 741 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 750 is a flat layer, and also covers the upper surface side of the base 710.
  • the material of the piezoelectric layer 750 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • a rare earth element is doped into the material of the piezoelectric layer 750, where the rare earth element includes but is not limited to at least one of the following: scandium, lanthanum, and yttrium.
  • the rare earth element includes but is not limited to at least one of the following: scandium, lanthanum, and yttrium.
  • scandium, lanthanum, and yttrium when rare earth elements are added to piezoelectric materials, rare earth element atoms will replace a certain proportion of one element atom in piezoelectric materials to form longer chemical bonds, thereby generating pressure.
  • scandium is added to aluminum nitride
  • scandium atoms will replace a certain proportion of aluminum atoms, and the number of nitrogen atoms will remain unchanged.
  • the scandium-nitrogen bond formed is longer than the aluminum-nitrogen bond, which generates pressure and obtains a higher piezoelectric constant.
  • the electromechanical coupling coefficient wherein the certain ratio refers to the ratio of the number of
  • the acoustic impedance of the material of the electrode layer 762 is greater than the acoustic impedance of the material of the electrode layer 761.
  • the conductivity of the material of the electrode layer 761 is higher than the conductivity of the material of the electrode layer 762.
  • the material of the electrode layer 762 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 761 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the conductivity of the electrode layer 741 and the electrode layer 761 is relatively high, thereby reducing the resistance of the electrode 740 and the electrode 760, and reducing electrical loss.
  • the electrode layer 741 and the electrode layer 742 have an acoustic impedance difference
  • the electrode layer 761 and the electrode layer 762 have an acoustic impedance difference, which can block leakage waves.
  • the electrode layer 741 and the electrode layer 761 have lower acoustic attenuation, and thus have lower acoustic loss.
  • the electrode layer 741 and the electrode layer 761 have higher thermal conductivity, thereby improving the heat dissipation capability of the resonant device.
  • FIG. 8a is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 800 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 800 including: a substrate 810; an intermediate layer 820 located on the substrate 810 for blocking leakage waves, and the upper surface side of the intermediate layer 820 includes A cavity 830 and a groove 840, wherein the groove 840 is located on one of the left and right sides of the cavity 830 and communicates with the cavity 830, and the depth of the groove 840 is smaller than that of the cavity 830
  • the electrode 850, the first end 850a of the electrode 850 is located in the cavity 830, the second end 850b of the electrode 850 is located in the groove 840, wherein the depth of the groove 840 is equal to The thickness of the electrode 850; the piezoelectric layer 860 is located on the electrode 850 and covers the cavity 830.
  • the piezoelectric layer 860 includes a first side 860a and a second side 860b opposite to the first side 860a
  • the intermediate layer 820 is located on the first side 860a, and the electrode 850 is located on the first side 860a; the electrode 870 is located on the second side 860b and is located on the piezoelectric layer 860. It can be seen from FIG. 8 a that the resonance region (ie, the overlapping area of the electrode 850 and the electrode 870) is suspended relative to the cavity 830 and has no overlapping portion with the intermediate layer 820.
  • the electrode 850 includes: an electrode layer 851 located on the first side 860a and contacting the piezoelectric layer 860; an electrode layer 852 located on the first side 860a and contacting the electrode layer 851, the electrode The layer 852 and the piezoelectric layer 860 are located on both sides of the electrode layer 851 respectively.
  • the electrode 870 includes: an electrode layer 871, located on the second side 860b, contacting the piezoelectric layer 860; electrode layer 872, located on the second side 860b, contacting the electrode layer 871, the pressure The electrical layer 860 and the electrode layer 872 are located on both sides of the electrode layer 871 respectively.
  • the material of the substrate 810 includes but is not limited to at least one of the following: silicon, silicon carbide, glass, sapphire, spinel, gallium arsenide, and gallium nitride.
  • the material of the intermediate layer 820 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 820 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the acoustic impedance of the material of the electrode layer 851 is greater than the acoustic impedance of the material of the electrode layer 852.
  • the conductivity of the material of the electrode layer 852 is higher than the conductivity of the material of the electrode layer 851.
  • the material of the electrode layer 851 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 852 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 860 is a flat layer and also covers the upper surface side of the intermediate layer 820.
  • the material of the piezoelectric layer 860 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 860 includes a plurality of crystal grains, and the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain and the second crystal grain are Any two of the plurality of crystal grains.
  • the crystal orientation, crystal plane, etc. of crystal grains can be expressed based on a coordinate system.
  • the first crystal grain may be expressed based on a first three-dimensional coordinate system
  • the second crystal grain may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes The first coordinate axis and the third coordinate axis along the third direction
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction
  • the first The coordinate axis corresponds to the height of the first crystal grain
  • the second coordinate axis corresponds to the height of the second crystal grain.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 860 includes a plurality of crystal grains, and the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • forming the piezoelectric layer 860 on a plane can prevent the piezoelectric layer 860 from including significantly turned crystal grains, thereby improving the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the acoustic impedance of the material of the electrode layer 871 is greater than the acoustic impedance of the material of the electrode layer 872.
  • the conductivity of the material of the electrode layer 872 is higher than the conductivity of the material of the electrode layer 871.
  • the material of the electrode layer 871 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 872 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 850 that overlaps the electrode 870 is located in the cavity 830; the portion of the electrode 870 that overlaps the electrode 850 is located above the cavity 830.
  • Figure 8b the vertical axis of Figure 8b represents the normalized Q value
  • the horizontal axis of Figure 8b represents the frequency (unit is GHz)
  • Figure 8b includes insertion loss (insertion loss) curve 1 and insertion loss curve 2
  • the insertion Loss curve 1 corresponds to a resonant device with a single electrode layer electrode (that is, the lower electrode of the resonant device includes one electrode layer, and the upper electrode of the resonant device includes one electrode layer)
  • the insertion loss curve 2 corresponds to the embodiment of the present invention
  • the Q value of the insertion loss curve 2 is higher than the Q value of the insertion loss curve 1 in the frequency band from 1.85 GHz to 2 GHz.
  • the conductivity of the electrode layer 852 and the electrode layer 872 is relatively high, thereby reducing the resistance of the electrode 850 and the electrode 870, reducing electrical losses, and improving the Q value.
  • the electrode layer 851 and the electrode layer 852 have an acoustic impedance difference
  • the electrode layer 871 and the electrode layer 872 have an acoustic impedance difference, which can block leakage waves.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 800 including: a substrate 810; an intermediate layer 820 located on the substrate 810 for blocking leakage waves, and the upper surface side of the intermediate layer 820 includes A cavity 830 and a groove 840, wherein the groove 840 is located on one of the left and right sides of the cavity 830 and communicates with the cavity 830, and the depth of the groove 840 is smaller than that of the cavity 830
  • the electrode 850, the first end 850a of the electrode 850 is located in the cavity 830, the second end 850b of the electrode 850 is located in the groove 840, wherein the depth of the groove 840 is equal to The thickness of the electrode 850; the piezoelectric layer 860 is located on the electrode 850 and covers the cavity 830.
  • the piezoelectric layer 860 includes a first side 860a and a second side 860b opposite to the first side 860a
  • the intermediate layer 820 is located on the first side 860a, and the electrode 850 is located on the first side 860a; the electrode 870 is located on the second side 860b and is located on the piezoelectric layer 860. It can be seen from FIG. 8 a that the resonance region (ie, the overlapping area of the electrode 850 and the electrode 870) is suspended relative to the cavity 830 and has no overlapping portion with the intermediate layer 820.
  • the electrode 850 includes: an electrode layer 851 located on the first side 860a and contacting the piezoelectric layer 860; an electrode layer 852 located on the first side 860a and contacting the electrode layer 851, the electrode The layer 852 and the piezoelectric layer 860 are located on both sides of the electrode layer 851 respectively.
  • the electrode 870 includes: an electrode layer 871, located on the second side 860b, contacting the piezoelectric layer 860; electrode layer 872, located on the second side 860b, contacting the electrode layer 871, the pressure The electrical layer 860 and the electrode layer 872 are located on both sides of the electrode layer 871 respectively.
  • the acoustic impedance of the material of the electrode layer 852 is greater than the acoustic impedance of the material of the electrode layer 851.
  • the conductivity of the material of the electrode layer 851 is higher than the conductivity of the material of the electrode layer 852.
  • the material of the electrode layer 852 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 851 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 860 is a flat layer and also covers the upper surface side of the intermediate layer 820.
  • the material of the piezoelectric layer 860 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • a rare earth element is doped into the material of the piezoelectric layer 860, where the rare earth element includes but is not limited to at least one of the following: scandium, lanthanum, and yttrium.
  • the rare earth element includes but is not limited to at least one of the following: scandium, lanthanum, and yttrium.
  • scandium, lanthanum, and yttrium when rare earth elements are added to piezoelectric materials, rare earth element atoms will replace a certain proportion of one element atom in piezoelectric materials to form longer chemical bonds, thereby generating pressure.
  • scandium is added to aluminum nitride
  • scandium atoms will replace a certain proportion of aluminum atoms, and the number of nitrogen atoms will remain unchanged.
  • the scandium-nitrogen bond formed is longer than the aluminum-nitrogen bond, which generates pressure and obtains a higher piezoelectric constant.
  • the electromechanical coupling coefficient wherein the certain ratio refers to the ratio of the number of
  • the acoustic impedance of the material of the electrode layer 872 is greater than the acoustic impedance of the material of the electrode layer 871.
  • the conductivity of the material of the electrode layer 871 is higher than the conductivity of the material of the electrode layer 872.
  • the material of the electrode layer 872 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 871 includes but is not limited to at least one of the following: aluminum and beryllium.
  • Figure 8c the vertical axis of Figure 8c represents the normalized Q value
  • the horizontal axis of Figure 8c represents the frequency (unit is GHz)
  • Figure 8c includes insertion loss curve 1 and insertion loss curve 2
  • the insertion loss curve 1 corresponds to
  • the insertion loss curve 2 corresponds to the In the resonance device 800, in the frequency band 1.85 GHz to 2.05 GHz
  • the Q value of the insertion loss curve 2 is higher than the Q value of the insertion loss curve 1.
  • the conductivity of the electrode layer 851 and the electrode layer 871 is relatively high, thereby reducing the resistance of the electrode 850 and the electrode 870, reducing electrical losses, and improving the Q value.
  • the electrode layer 851 and the electrode layer 852 have an acoustic impedance difference
  • the electrode layer 871 and the electrode layer 872 have an acoustic impedance difference, which can block leakage waves.
  • the electrode layer 851 and the electrode layer 871 have lower acoustic attenuation, and thus have lower acoustic loss, which can increase the Q value.
  • the electrode layer 851 and the electrode layer 871 have high thermal conductivity, thereby improving the heat dissipation capability of the resonant device.
  • FIG. 9 is a schematic diagram of a cross-sectional structure A of a bulk acoustic wave resonator device 900 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 900 including: a substrate 910; a thin film 920 on the substrate 910; an intermediate layer 930 on the thin film 920 for blocking leakage waves,
  • the upper surface side of the intermediate layer 930 includes a cavity 940 and a groove 950.
  • the groove 950 is located on one of the left and right sides of the cavity 940 and communicates with the cavity 940.
  • the depth of the groove 950 is less than the depth of the cavity 940; the electrode 960, the first end 960a of the electrode 960 is located in the cavity 940, and the second end 960b of the electrode 960 is located in the groove 950, Wherein, the depth of the groove 950 is equal to the thickness of the electrode 960; the piezoelectric layer 970 is located on the electrode 960 and covers the cavity 940.
  • the piezoelectric layer 970 includes a first side 970a and the The first side 970a is opposite to the second side 970b, the intermediate layer 930 is located on the first side 970a, the electrode 960 is located on the first side 970a; the electrode 980, located on the second side 970b, is located on the On the piezoelectric layer 970. It can be seen from FIG. 9 that the resonance region (ie, the overlapping area of the electrode 960 and the electrode 980) is suspended relative to the cavity 940 and has no overlapping portion with the intermediate layer 930.
  • the electrode 960 includes: an electrode layer 961 located on the first side 970a and contacting the piezoelectric layer 970; an electrode layer 962 located on the first side 970a and contacting the electrode layer 961, the electrode The layer 962 and the piezoelectric layer 970 are located on both sides of the electrode layer 961 respectively.
  • the electrode 980 includes: an electrode layer 981, located on the second side 970b, contacting the piezoelectric layer 970; electrode layer 982, located on the second side 970b, contacting the electrode layer 981, the pressure The electrical layer 970 and the electrode layer 982 are located on both sides of the electrode layer 981, respectively.
  • the material of the substrate 910 includes but is not limited to at least one of the following: silicon, silicon carbide, glass, sapphire, spinel, gallium arsenide, and gallium nitride.
  • the thin film 920 includes, but is not limited to, a polycrystalline thin film.
  • the material of the polycrystalline film includes but is not limited to at least one of the following: polycrystalline silicon, polycrystalline silicon nitride, and polycrystalline silicon carbide. It should be noted that the thin film 920 can prevent a free electron layer from forming on the surface of the substrate 910, so as to reduce the radio frequency loss of the substrate 910.
  • the material of the intermediate layer 930 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 930 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the acoustic impedance of the material of the electrode layer 961 is greater than the acoustic impedance of the material of the electrode layer 962.
  • the conductivity of the material of the electrode layer 962 is higher than the conductivity of the material of the electrode layer 961.
  • the material of the electrode layer 961 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 962 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 970 is a flat layer and also covers the upper surface side of the intermediate layer 930.
  • the material of the piezoelectric layer 970 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 970 includes a plurality of crystal grains, and the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain and the second crystal grain are Any two of the plurality of crystal grains.
  • the crystal orientation, crystal plane, etc. of crystal grains can be expressed based on a coordinate system.
  • the first crystal grain may be expressed based on a first three-dimensional coordinate system
  • the second crystal grain may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes The first coordinate axis and the third coordinate axis along the third direction
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction
  • the first The coordinate axis corresponds to the height of the first crystal grain
  • the second coordinate axis corresponds to the height of the second crystal grain.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 970 includes a plurality of crystal grains, and the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • forming the piezoelectric layer 970 on a plane can prevent the piezoelectric layer 970 from including crystal grains that are significantly turned, thereby improving the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the acoustic impedance of the material of the electrode layer 981 is greater than the acoustic impedance of the material of the electrode layer 982.
  • the conductivity of the material of the electrode layer 982 is higher than the conductivity of the material of the electrode layer 981.
  • the material of the electrode layer 981 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 982 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 960 that overlaps the electrode 980 is located in the cavity 940; the portion of the electrode 980 that overlaps the electrode 960 is located above the cavity 940.
  • the conductivity of the electrode layer 962 and the electrode layer 982 is relatively high, thereby reducing the resistance of the electrode 960 and the electrode 980 and reducing electrical loss.
  • the electrode layer 961 and the electrode layer 962 have an acoustic impedance difference
  • the electrode layer 981 and the electrode layer 982 have an acoustic impedance difference, which can block leakage waves.
  • FIG. 10 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1000 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonator device 1000 including: a substrate layer 1010, the upper surface side of the substrate layer 1010 includes a cavity 1020 and a groove 1030, wherein the groove 1030 is located One of the left and right sides of the cavity 1020 communicates with the cavity 1020, and the depth of the groove 1030 is less than the depth of the cavity 1020; the electrode 1040, the first end 1040a of the electrode 1040 is located In the cavity 1020, the second end 1040b of the electrode 1040 is located in the groove 1030, wherein the depth of the groove 1030 is equal to the thickness of the electrode 1040; the piezoelectric layer 1050 is located in the electrode 1040, covering the cavity 1020, the piezoelectric layer 1050 includes a first side 1050a and a second side 1050b opposite to the first side 1050a, the electrode 1040 is located on the first side 1050a; the electrode 1060, Located on the second side 1050b, on
  • the resonance region ie, the overlapping area of the electrode 1040 and the electrode 1060
  • the electrode 1040 includes: an electrode layer 1041, located on the first side 1050a, contacting the piezoelectric layer 1050; electrode layer 1042, located on the first side 1050a, contacting the electrode layer 1041, the electrode The layer 1042 and the piezoelectric layer 1050 are located on both sides of the electrode layer 1041 respectively.
  • the electrode 1060 includes: an electrode layer 1061, located on the second side 1050b, contacting the piezoelectric layer 1050; electrode layer 1062, located on the second side 1050b, contacting the electrode layer 1061, the pressure
  • the electrical layer 1050 and the electrode layer 1062 are located on both sides of the electrode layer 1061 respectively.
  • the material of the substrate layer 1010 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the substrate layer 1010 includes but is not limited to: 20 micrometers to 100 micrometers.
  • the acoustic impedance of the material of the electrode layer 1041 is greater than the acoustic impedance of the material of the electrode layer 1042.
  • the conductivity of the material of the electrode layer 1042 is higher than the conductivity of the material of the electrode layer 1041.
  • the material of the electrode layer 1041 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 1042 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 1050 is a flat layer and also covers the upper surface side of the substrate layer 1010.
  • the material of the piezoelectric layer 1050 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 1050 includes a plurality of crystal grains, and the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain and the second crystal grain are Any two of the plurality of crystal grains.
  • the crystal orientation, crystal plane, etc. of crystal grains can be expressed based on a coordinate system.
  • the first crystal grain may be expressed based on a first three-dimensional coordinate system
  • the second crystal grain may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes The first coordinate axis and the third coordinate axis along the third direction
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction
  • the first The coordinate axis corresponds to the height of the first crystal grain
  • the second coordinate axis corresponds to the height of the second crystal grain.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 1050 includes a plurality of crystal grains, and the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • forming the piezoelectric layer 1050 on a plane can prevent the piezoelectric layer 1050 from including crystal grains that are significantly turned, thereby improving the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the acoustic impedance of the material of the electrode layer 1061 is greater than the acoustic impedance of the material of the electrode layer 1062.
  • the conductivity of the material of the electrode layer 1062 is higher than the conductivity of the material of the electrode layer 1061.
  • the material of the electrode layer 1061 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 1062 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 1040 that overlaps the electrode 1060 is located in the cavity 1020; the portion of the electrode 1060 that overlaps the electrode 1040 is located above the cavity 1020.
  • the conductivity of the electrode layer 1042 and the electrode layer 1062 is relatively high, thereby reducing the resistance of the electrode 1040 and the electrode 1060, and reducing electrical loss.
  • the electrode layer 1041 and the electrode layer 1042 have an acoustic impedance difference
  • the electrode layer 1061 and the electrode layer 1062 have an acoustic impedance difference, which can block leakage waves.
  • FIG. 11 is a schematic diagram of a cross-sectional structure A of a bulk acoustic wave resonator device 1100 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonator device 1100 including: a substrate 1110; an intermediate layer 1120 located on the substrate 1110 for blocking leakage waves, and the upper surface side of the intermediate layer 1120 includes The cavity 1130 and the groove 1140, wherein the groove 1140 is located on one of the left and right sides of the cavity 1130 and communicates with the cavity 1130, and the depth of the groove 1140 is smaller than that of the cavity 1130
  • the electrode 1150, the first end 1150a of the electrode 1150 is located in the cavity 1130, and the second end 1150b of the electrode 1150 is located in the groove 1140; the diaphragm 1160 is located on the electrode 1150, Wherein, the depth of the groove 1140 is equal to the sum of the thickness of the electrode 1150 and the diaphragm 1160; the piezoelectric layer 1170 is located on the diaphragm 1160 and covers the cavity 1130, and the piezoelectric layer 1170 includes The first side
  • the resonance region ie, the overlapping area of the electrode 1150 and the electrode 1190
  • the electrode 1150 includes: an electrode layer 1151 located on the first side 1170a and contacting the diaphragm 1160; an electrode layer 1152 located on the first side 1170a and contacting the electrode layer 1151, the electrode layer 1152
  • the diaphragm 1160 and the diaphragm 1160 are respectively located on both sides of the electrode layer 1151.
  • the electrode 1190 includes: an electrode layer 1191 located on the second side 1170b and contacting the diaphragm 1180; an electrode layer 1192 located on the second side 1170b and contacting the electrode layer 1191, the diaphragm 1180 and The electrode layer 1192 is located on both sides of the electrode layer 1191 respectively.
  • the material of the substrate 1110 includes but is not limited to at least one of the following: silicon, silicon carbide, glass, sapphire, spinel, gallium arsenide, and gallium nitride.
  • the material of the intermediate layer 1120 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 1120 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the acoustic impedance of the material of the electrode layer 1152 is greater than the acoustic impedance of the material of the electrode layer 1151.
  • the conductivity of the material of the electrode layer 1151 is higher than the conductivity of the material of the electrode layer 1152.
  • the material of the electrode layer 1152 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 1151 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the material of the diaphragm 1160 includes but is not limited to at least one of the following: tungsten, tungsten nitride, titanium nitride, cobalt, ruthenium, tantalum, tantalum nitride, and indium oxide.
  • the thickness of the diaphragm 1160 includes but is not limited to: 30 nanometers to 50 nanometers. It should be noted that the diaphragm 1160 is used to prevent a chemical reaction between the electrode material and the piezoelectric material, which affects electrical properties; other diffusion barrier materials known to those skilled in the art can also be used in the implementation of the present invention example.
  • the thickness of the anti-diffusion membrane is thinner than that of the electrode.
  • the acoustic impedance of the diaphragm 1160 is greater than the acoustic impedance of the electrode layer 1151.
  • the piezoelectric layer 1170 is a flat layer and also covers the upper surface side of the intermediate layer 1120.
  • the material of the piezoelectric layer 1170 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • a rare earth element is doped into the material of the piezoelectric layer 1170, where the rare earth element includes but is not limited to at least one of the following: scandium, lanthanum, and yttrium.
  • the rare earth element includes but is not limited to at least one of the following: scandium, lanthanum, and yttrium.
  • scandium, lanthanum, and yttrium when rare earth elements are added to piezoelectric materials, rare earth element atoms will replace a certain proportion of one element atom in piezoelectric materials to form longer chemical bonds, thereby generating pressure.
  • scandium is added to aluminum nitride
  • scandium atoms will replace a certain proportion of aluminum atoms, and the number of nitrogen atoms will remain unchanged.
  • the scandium-nitrogen bond formed is longer than the aluminum-nitrogen bond, which generates pressure and obtains a higher piezoelectric constant.
  • the electromechanical coupling coefficient wherein the certain ratio refers to the ratio of the number of
  • the piezoelectric layer 1170 includes a plurality of crystal grains, and the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain and the second crystal grain are Any two of the plurality of crystal grains.
  • the crystal orientation, crystal plane, etc. of crystal grains can be expressed based on a coordinate system.
  • the first crystal grain may be expressed based on a first three-dimensional coordinate system
  • the second crystal grain may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes The first coordinate axis and the third coordinate axis along the third direction
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction
  • the first The coordinate axis corresponds to the height of the first crystal grain
  • the second coordinate axis corresponds to the height of the second crystal grain.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 1170 includes a plurality of crystal grains, and the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • forming the piezoelectric layer 1170 on a plane can prevent the piezoelectric layer 1170 from including crystal grains that are significantly turned, thereby improving the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the material of the diaphragm 1180 includes but is not limited to at least one of the following: tungsten, tungsten nitride, titanium nitride, cobalt, ruthenium, tantalum, tantalum nitride, and indium oxide.
  • the thickness of the diaphragm 1180 ranges from 30 nanometers to 50 nanometers. It should be noted that other anti-diffusion membrane materials known to those skilled in the art can also be used in the embodiments of the present invention.
  • the acoustic impedance of the diaphragm 1180 is greater than the acoustic impedance of the electrode layer 1191.
  • the acoustic impedance of the material of the electrode layer 1192 is greater than the acoustic impedance of the material of the electrode layer 1191.
  • the conductivity of the material of the electrode layer 1191 is higher than the conductivity of the material of the electrode layer 1192.
  • the material of the electrode layer 1192 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the electrode layer 1191 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 1150 that overlaps the electrode 1190 is located in the cavity 1130; the portion of the electrode 1190 that overlaps the electrode 1150 is located above the cavity 1130.
  • the conductivity of the electrode layer 1151 and the electrode layer 1191 is relatively high, thereby reducing the resistance of the electrode 1150 and the electrode 1190, and reducing electrical loss.
  • the electrode layer 1151 and the electrode layer 1152 have an acoustic impedance difference
  • the electrode layer 1191 and the electrode layer 1192 have an acoustic impedance difference, which can block leakage waves.
  • the electrode layer 1151 and the electrode layer 1191 have lower acoustic attenuation, and thus have lower acoustic loss.
  • the electrode layer 1151 and the electrode layer 1191 have higher thermal conductivity, thereby improving the heat dissipation capability of the resonant device.
  • FIG. 12 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1200 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 1200 including: a substrate 1210; an intermediate layer 1220 located on the substrate 1210 for blocking leakage waves, and the upper surface side of the intermediate layer 1220 includes The cavity 1230 and the groove 1240, wherein the groove 1240 is located on one of the left and right sides of the cavity 1230 and communicates with the cavity 1230, and the depth of the groove 1240 is smaller than that of the cavity 1230
  • the electrode 1250, the first end 1250a of the electrode 1250 is located in the cavity 1230, the second end 1250b of the electrode 1250 is located in the groove 1240, wherein the depth of the groove 1240 is equal to The thickness of the electrode 1250; the piezoelectric layer 1260 is located on the electrode 1250 and covers the cavity 1230.
  • the piezoelectric layer 1260 includes a first side 1260a and a second side 1260b opposite to the first side 1260a
  • the intermediate layer 1220 is located on the first side 1260a, and the electrode 1250 is located on the first side 1260a; the electrode 1270 is located on the second side 1260b and is located on the piezoelectric layer 1260.
  • the resonance region that is, the overlapping area of the electrode 1250 and the electrode 1270
  • the electrode 1250 includes: an electrode layer 1251 located on the first side 1260a and contacting the piezoelectric layer 1260; a dielectric layer 1252 located on the first side 1260a and contacting the electrode layer 1251; an electrode layer 1253 , Located on the first side 1260a, contacting the dielectric layer 1252, and the electrode layer 1253 and the electrode layer 1251 are located on both sides of the dielectric layer 1252, respectively.
  • the electrode 1270 includes: an electrode layer 1271 located on the second side 1260b and contacting the piezoelectric layer 1260; a dielectric layer 1272 located on the second side 1260b and contacting the electrode layer 1271; and an electrode layer 1273 , Located on the second side 1260b, contacting the dielectric layer 1272, the electrode layer 1271 and the electrode layer 1273 are located on both sides of the dielectric layer 1272, respectively.
  • the material of the substrate 1210 includes but is not limited to at least one of the following: silicon, silicon carbide, glass, sapphire, spinel, gallium arsenide, and gallium nitride.
  • the material of the intermediate layer 1220 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 1220 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the acoustic impedance of the material of the electrode layer 1251 is greater than the acoustic impedance of the material of the electrode layer 1253.
  • the conductivity of the material of the electrode layer 1253 is higher than the conductivity of the material of the electrode layer 1251.
  • the acoustic impedance of the dielectric layer 1252 is smaller than the acoustic impedance of the electrode layer 1253.
  • the material of the electrode layer 1251 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the dielectric layer 1252 includes but is not limited to at least one of the following: silicon dioxide, silicon oxycarbide, silicon nitride, aluminum nitride, titanium oxide, hafnium oxide, and aluminum oxide.
  • the material of the electrode layer 1253 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 1260 is a flat layer and also covers the upper surface side of the intermediate layer 1220.
  • the material of the piezoelectric layer 1260 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 1260 includes a plurality of crystal grains, and the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain and the second crystal grain are Any two of the plurality of crystal grains.
  • the crystal orientation, crystal plane, etc. of crystal grains can be expressed based on a coordinate system.
  • the first crystal grain may be expressed based on a first three-dimensional coordinate system
  • the second crystal grain may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes The first coordinate axis and the third coordinate axis along the third direction
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction
  • the first The coordinate axis corresponds to the height of the first crystal grain
  • the second coordinate axis corresponds to the height of the second crystal grain.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 1260 includes a plurality of crystal grains, and the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • forming the piezoelectric layer 1260 on a plane can prevent the piezoelectric layer 1260 from including crystal grains that are significantly turned, thereby improving the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the acoustic impedance of the material of the electrode layer 1271 is greater than the acoustic impedance of the material of the electrode layer 1273.
  • the conductivity of the material of the electrode layer 1273 is higher than the conductivity of the material of the electrode layer 1271.
  • the acoustic impedance of the dielectric layer 1272 is smaller than the acoustic impedance of the electrode layer 1273.
  • the material of the electrode layer 1271 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the dielectric layer 1272 includes but is not limited to at least one of the following: silicon dioxide, silicon oxycarbide, silicon nitride, aluminum nitride, titanium oxide, hafnium oxide, and aluminum oxide.
  • the material of the electrode layer 1273 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 1250 that overlaps the electrode 1270 is located in the cavity 1230; the portion of the electrode 1270 that overlaps the electrode 1250 is located above the cavity 1230.
  • the conductivity of the electrode layer 1253 and the electrode layer 1273 is relatively high, thereby reducing the resistance of the electrode 1250 and the electrode 1270, and reducing electrical loss.
  • the acoustic impedance of the dielectric layer 1252 is smaller than the acoustic impedance of the electrode layer 1251 and the electrode layer 1253
  • the acoustic impedance of the dielectric layer 1272 is smaller than the acoustic impedance of the electrode layer 1271 and the electrode layer 1273, Can block leaky waves.
  • FIG. 13 is a schematic diagram of a cross-sectional structure A of a bulk acoustic wave resonator device 1300 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonator device 1300 including: a substrate 1310; an intermediate layer 1320 located on the substrate 1310 for blocking leakage waves, and the upper surface side of the intermediate layer 1320 includes The cavity 1330 and the groove 1340, wherein the groove 1340 is located on one of the left and right sides of the cavity 1330 and communicates with the cavity 1330, and the depth of the groove 1340 is smaller than that of the cavity 1330
  • the electrode 1350, the first end 1350a of the electrode 1350 is located in the cavity 1330, the second end 1350b of the electrode 1350 is located in the groove 1340, wherein the depth of the groove 1340 is equal to The thickness of the electrode 1350; the piezoelectric layer 1360 is located on the electrode 1350 and covers the cavity 1330.
  • the piezoelectric layer 1360 includes a first side 1360a and a second side 1360b opposite to the first side 1360a
  • the intermediate layer 1320 is located on the first side 1360a, and the electrode 1350 is located on the first side 1360a; the electrode 1370 is located on the second side 1360b and is located on the piezoelectric layer 1360.
  • the resonance region ie, the overlapping area of the electrode 1350 and the electrode 1370
  • the electrode 1350 includes: an electrode layer 1351, located on the first side 1360a, contacting the piezoelectric layer 1360; a dielectric layer 1352, located on the first side 1360a, contacting the electrode layer 1351, the dielectric
  • the layer 1352 includes at least one through hole 1353; an electrode layer 1354, located on the first side 1360a, embedded in the at least one through hole 1353, covering the dielectric layer 1352; two sides of the dielectric layer 1352 are the electrode layers, respectively 1351 and the electrode layer 1354, and the electrode layer 1354 contacts the electrode layer 1351 through the at least one through hole 1353.
  • the electrode 1370 includes: an electrode layer 1371, located on the second side 1360b, contacting the piezoelectric layer 1360; a dielectric layer 1372, located on the second side 1360b, contacting the electrode layer 1371, the dielectric
  • the layer 1372 includes at least one through hole 1373; an electrode layer 1374, located on the second side 1360b, embedded in the at least one through hole 1373, covering the dielectric layer 1372; two sides of the dielectric layer 1372 are the electrode layers, respectively 1371 and the electrode layer 1374, and the electrode layer 1374 contacts the electrode layer 1371 through the at least one through hole 1373.
  • the material of the substrate 1310 includes but is not limited to at least one of the following: silicon, silicon carbide, glass, sapphire, spinel, gallium arsenide, and gallium nitride.
  • the material of the intermediate layer 1320 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 1320 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the acoustic impedance of the material of the electrode layer 1351 is greater than the acoustic impedance of the material of the electrode layer 1353.
  • the conductivity of the material of the electrode layer 1353 is higher than the conductivity of the material of the electrode layer 1351.
  • the acoustic impedance of the dielectric layer 1352 is smaller than the acoustic impedance of the electrode layer 1353.
  • the material of the electrode layer 1351 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the dielectric layer 1352 includes but is not limited to at least one of the following: silicon dioxide, silicon oxycarbide, silicon nitride, aluminum nitride, titanium oxide, hafnium oxide, and aluminum oxide.
  • the material of the electrode layer 1353 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the piezoelectric layer 1360 is a flat layer, which also covers the upper surface side of the intermediate layer 1320.
  • the material of the piezoelectric layer 1360 includes, but is not limited to, at least one of the following: nitriding Aluminum, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, lead magnesium niobate-lead titanate.
  • the piezoelectric layer 1360 includes a plurality of crystal grains, and the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain and the second crystal grain are Any two of the plurality of crystal grains.
  • the crystal orientation, crystal plane, etc. of crystal grains can be expressed based on a coordinate system.
  • the first crystal grain may be expressed based on a first three-dimensional coordinate system
  • the second crystal grain may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes The first coordinate axis and the third coordinate axis along the third direction
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction
  • the first The coordinate axis corresponds to the height of the first crystal grain
  • the second coordinate axis corresponds to the height of the second crystal grain.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 1360 includes a plurality of crystal grains, and the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • forming the piezoelectric layer 1360 on a plane can prevent the piezoelectric layer 1360 from including crystal grains that are clearly turned, thereby improving the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the acoustic impedance of the material of the electrode layer 1371 is greater than the acoustic impedance of the material of the electrode layer 1373.
  • the conductivity of the material of the electrode layer 1373 is higher than the conductivity of the material of the electrode layer 1371.
  • the acoustic impedance of the dielectric layer 1372 is smaller than the acoustic impedance of the electrode layer 1373.
  • the material of the electrode layer 1371 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the dielectric layer 1372 includes but is not limited to at least one of the following: silicon dioxide, silicon oxycarbide, silicon nitride, aluminum nitride, titanium oxide, hafnium oxide, and aluminum oxide.
  • the material of the electrode layer 1373 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 1350 that overlaps the electrode 1370 is located in the cavity 1330; the portion of the electrode 1370 that overlaps the electrode 1350 is located above the cavity 1330.
  • the conductivity of the electrode layer 1353 and the electrode layer 1373 is relatively high, thereby reducing the resistance of the electrode 1350 and the electrode 1370, and reducing electrical loss.
  • the acoustic impedance of the dielectric layer 1352 is smaller than the acoustic impedance of the electrode layer 1351 and the electrode layer 1353
  • the acoustic impedance of the dielectric layer 1372 is smaller than the acoustic impedance of the electrode layer 1371 and the electrode layer 1373, Can block leaky waves.
  • FIG. 14 is a schematic structural diagram of a cross-section A of a bulk acoustic wave resonator device 1400 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a bulk acoustic wave resonance device 1400 including: a substrate 1410; an intermediate layer 1420 located on the substrate 1410 for blocking leakage waves, and the upper surface side of the intermediate layer 1420 includes The cavity 1430 and the groove 1440, wherein the groove 1440 is located on one of the left and right sides of the cavity 1430 and communicates with the cavity 1430, and the depth of the groove 1440 is smaller than that of the cavity 1430
  • the electrode 1450, the first end 1450a of the electrode 1450 is located in the cavity 1430, the second end 1450b of the electrode 1450 is located in the groove 1440; the diaphragm 1460 is located on the electrode 1450, Wherein, the depth of the groove 1440 is equal to the sum of the thickness of the electrode 1450 and the diaphragm 1460; the piezoelectric layer 1470 is located on the diaphragm 1460 and covers the cavity 1430, and the piezoelectric layer 1470 includes The first side 1470a and
  • the resonance region (that is, the overlapping area of the electrode 1450 and the electrode 1490) is suspended relative to the cavity 1430 and has no overlapping portion with the intermediate layer 1420.
  • the electrode 1450 includes: an electrode layer 1451, located on the first side 1470a, contacting the isolation layer 1460; a dielectric layer 1452, located on the first side 1470a, contacting the electrode layer 1451, the dielectric layer 1452 includes at least one through hole 1453; an electrode layer 1454, located on the first side 1470a, embedded in the at least one through hole 1453, covering the dielectric layer 1452; two sides of the dielectric layer 1452 are the electrode layer 1451 respectively With the electrode layer 1454, the electrode layer 1454 contacts the electrode layer 1451 through the at least one through hole 1453.
  • the electrode 1490 includes: an electrode layer 1491, located on the second side 1470b, contacting the isolation layer 1480; a dielectric layer 1492, located on the second side 1470b, contacting the electrode layer 1491, the dielectric layer 1492 includes at least one through hole 1493; an electrode layer 1494, located on the second side 1470b, embedded in the at least one through hole 1493, covering the dielectric layer 1492; two sides of the dielectric layer 1492 are the electrode layer 1491 respectively With the electrode layer 1494, the electrode layer 1494 contacts the electrode layer 1491 through the at least one through hole 1493.
  • the material of the substrate 1410 includes but is not limited to at least one of the following: silicon, silicon carbide, glass, sapphire, spinel, gallium arsenide, and gallium nitride.
  • the material of the intermediate layer 1420 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the thickness of the intermediate layer 1320 includes, but is not limited to, 0.1 ⁇ m to 10 ⁇ m.
  • the acoustic impedance of the material of the electrode layer 1451 is greater than the acoustic impedance of the material of the electrode layer 1453.
  • the conductivity of the material of the electrode layer 1453 is higher than the conductivity of the material of the electrode layer 1451.
  • the acoustic impedance of the dielectric layer 1452 is smaller than the acoustic impedance of the electrode layer 1453.
  • the material of the electrode layer 1451 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the dielectric layer 1452 includes but is not limited to at least one of the following: silicon dioxide, silicon oxycarbide, silicon nitride, aluminum nitride, titanium oxide, hafnium oxide, and aluminum oxide.
  • the material of the electrode layer 1453 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the material of the diaphragm 1460 includes but is not limited to at least one of the following: tungsten, tungsten nitride, titanium nitride, cobalt, ruthenium, tantalum, tantalum nitride, and indium oxide.
  • the thickness of the diaphragm 1460 ranges from 30 nanometers to 50 nanometers. It should be noted that the diaphragm 1460 is used to prevent a chemical reaction between the electrode material and the piezoelectric material, which affects electrical properties; other anti-diffusion diaphragm materials known to those skilled in the art can also be used in the embodiments of the present invention.
  • the thickness of the anti-diffusion membrane is thinner than that of the electrode.
  • the acoustic impedance of the diaphragm 1460 is greater than the acoustic impedance of the electrode layer 1451.
  • the piezoelectric layer 1470 is a flat layer, which also covers the upper surface side of the intermediate layer 1470.
  • the material of the piezoelectric layer 1470 includes but is not limited to at least one of the following: nitriding Aluminum, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, lead magnesium niobate-lead titanate.
  • the piezoelectric layer 1470 includes a plurality of crystal grains, and the plurality of crystal grains includes a first crystal grain and a second crystal grain, wherein the first crystal grain and the second crystal grain are Any two of the plurality of crystal grains.
  • the crystal orientation, crystal plane, etc. of crystal grains can be expressed based on a coordinate system.
  • the first crystal grain may be expressed based on a first three-dimensional coordinate system
  • the second crystal grain may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes The first coordinate axis and the third coordinate axis along the third direction
  • the second three-dimensional coordinate system includes at least a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction
  • the first The coordinate axis corresponds to the height of the first crystal grain
  • the second coordinate axis corresponds to the height of the second crystal grain.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 1470 includes a plurality of crystal grains, and the half width of the rocking curve of the crystal composed of the plurality of crystal grains is less than 2.5 degrees.
  • forming the piezoelectric layer 1470 on a plane can prevent the piezoelectric layer 1470 from including significantly turned crystal grains, thereby improving the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the material of the diaphragm 1480 includes but is not limited to at least one of the following: tungsten, tungsten nitride, titanium nitride, cobalt, ruthenium, tantalum, tantalum nitride, and indium oxide.
  • the thickness of the diaphragm 1480 ranges from 30 nanometers to 50 nanometers. It should be noted that the diaphragm 1480 is used to prevent a chemical reaction between the electrode material and the piezoelectric material, which affects electrical properties; other anti-diffusion diaphragm materials known to those skilled in the art can also be used in the embodiments of the present invention.
  • the thickness of the anti-diffusion membrane is thinner than that of the electrode.
  • the acoustic impedance of the diaphragm 1480 is greater than the acoustic impedance of the electrode layer 1491.
  • the acoustic impedance of the material of the electrode layer 1491 is greater than the acoustic impedance of the material of the electrode layer 1493.
  • the conductivity of the material of the electrode layer 1493 is higher than the conductivity of the material of the electrode layer 1491.
  • the acoustic impedance of the dielectric layer 1492 is smaller than the acoustic impedance of the electrode layer 1493.
  • the material of the electrode layer 1491 includes but is not limited to at least one of the following: ruthenium, molybdenum, tungsten, platinum, and iridium.
  • the material of the dielectric layer 1492 includes but is not limited to at least one of the following: silicon dioxide, silicon oxycarbide, silicon nitride, aluminum nitride, titanium oxide, hafnium oxide, and aluminum oxide.
  • the material of the electrode layer 1493 includes but is not limited to at least one of the following: aluminum and beryllium.
  • the portion of the electrode 1450 that overlaps the electrode 1490 is located in the cavity 1430; the portion of the electrode 1490 that overlaps the electrode 1450 is located above the cavity 1330.
  • the conductivity of the electrode layer 1453 and the electrode layer 1493 is relatively high, thereby reducing the resistance of the electrode 1450 and the electrode 1490, and reducing electrical loss.
  • the acoustic impedance of the dielectric layer 1452 is smaller than the acoustic impedance of the electrode layer 1451 and the electrode layer 1453, and the acoustic impedance of the dielectric layer 1492 is smaller than the acoustic impedance of the electrode layer 1491 and the electrode layer 1493. Can block leaky waves.
  • the bulk acoustic wave resonance device includes a first electrode (ie, a lower electrode) and a second electrode (ie, an upper electrode), wherein the first electrode includes a first electrode layer and a second electrode
  • the second electrode includes a third electrode layer and a fourth electrode layer, the conductivity of the second electrode layer is higher than that of the first electrode layer, and the conductivity of the fourth electrode layer is higher than that of the first electrode layer.
  • the three-electrode layer is higher, so that the resistance of the first electrode and the second electrode can be reduced, electrical loss can be reduced, and the Q value can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种体声波谐振装置、一种滤波装置及一种射频前端装置,体声波谐振装置(300)包括:第一层(310),包括位于第一侧的第一空腔(330);第一电极(350),第一电极(350)的第一端位于第一空腔(330)内,第二端接触第一层(310);第二层(370),位于第一侧,位于第一电极(350)上;以及第二电极(390),位于第二层(370)上,第一电极(350)和第二电极(390)位于第二层(370)两侧;第一电极(350)上与第二电极(390)重合的第一部分位于第一空腔(330)内;第一电极(350)包括第一电极层(351)和第二电极层(353),第二电极层(353)和第二层(370)位于第一电极层(351)的两侧;第二电极(390)包括第三电极层(391)和第四电极层(393),第二层(370)和第四电极层(393)位于第三电极层(391)的两侧。第二电极层(353)导电性高于第一电极层(351),第四电极层(393)导电性高于第三电极层(391),从而减小第一电极(350)和第二电极(390)的电阻,降低电学损耗。

Description

一种体声波谐振装置、一种滤波装置及一种射频前端装置 技术领域
本发明涉及半导体技术领域,具体而言,本发明涉及一种体声波谐振装置、一种滤波装置及一种射频前端装置。
背景技术
无线通信设备的射频(Radio Frequency,RF)前端芯片包括功率放大器、天线开关、射频滤波器、多工器和低噪声放大器等。其中,射频滤波器包括压电声表面波(Surface Acoustic Wave,SAW)滤波器、压电体声波(Bulk Acoustic Wave,BAW)滤波器、微机电系统(Micro-Electro-Mechanical System,MEMS)滤波器、集成无源装置(Integrated Passive Devices,IPD)滤波器等。
SAW谐振器和BAW谐振器的品质因数值(Q值)较高,由SAW谐振器和BAW谐振器制作成低插入损耗、高带外抑制的射频滤波器,即SAW滤波器和BAW滤波器,是目前手机、基站等无线通信设备使用的主流射频滤波器。其中,Q值是谐振器的品质因数值,定义为中心频率除以谐振器3dB带宽。SAW滤波器的使用频率一般为0.4GHz至2.7GHz,BAW滤波器的使用频率一般为0.7GHz至7GHz。
与 SAW谐振器相比,BAW谐振器的性能更好,但是由于工艺步骤复杂,BAW谐振器的制造成本比SAW谐振器高。然而,当无线通信技术逐步演进,所使用的频段越来越多,同时随着载波聚合等频段叠加使用技术的应用,无线频段之间的相互干扰变得愈发严重。高性能的BAW技术可以解决频段间的相互干扰问题。随着5G时代的到来,无线移动网络引入了更高的通信频段,当前只有BAW技术可以解决高频段的滤波问题。
图1示出了一种BAW滤波器的电路100,包括由多个BAW谐振器组成的梯形电路,其中,f1、f2、f3、f4分别表示4种不同的频率。每个BAW谐振器内,谐振器压电层两侧的金属产生交替正负电压,压电层通过交替正负电压产生声波,该谐振器内的声波垂直传播。为了形成谐振,声波需要在上金属电极的上表面和下金属电极的下表面产生全反射,以形成驻声波。声波反射的条件是与上金属电极的上表面和下金属电极的下表面接触区域的声阻抗与金属电极的声阻抗有较大差别。
薄膜体声波谐振器(Film Bulk Acoustic Wave Resonator,FBAR)是一种可以把声波能量局限在器件内的BAW谐振器,该谐振器的谐振区上方是空气,下方存在一个空腔,因为空气声阻抗与金属电极声阻抗差别较大,声波可以在上金属电极的上表面和下金属电极的下表面全反射,形成驻波。
图2示出了一种FBAR 200的剖面A结构示意图。所述FBAR 200包括:基底201,所述基底201上表面侧包括空腔203;电极205(即,下电极),位于所述空腔203上;压电层207,位于所述电极205上;以及电极209(即,上电极),位于所述压电层207上。随着无线移动网络引入了更高的通信频段,电极厚度需要较之前更薄,但是减少电极的厚度会导致电极的电阻升高,从而引入更高的电学损耗,降低Q值。
技术问题
本发明解决的问题是提供一种体声波谐振装置、一种滤波装置及一种射频前端装置,能够降低电学损耗。
技术解决方案
为解决上述问题,本发明实施例提供一种体声波谐振装置,包括:第一层,所述第一层包括位于第一侧的第一空腔;第一电极,所述第一电极的第一端位于所述第一空腔内,所述第一电极的第二端接触所述第一层;第二层,位于所述第一侧,位于所述第一电极上;以及第二电极,位于所述第二层上,所述第一电极和所述第二电极位于所述第二层两侧;其中,所述第一电极上与所述第二电极重合的第一部分位于所述第一空腔内;其中,所述第一电极包括第一电极层和第二电极层,所述第二电极层和所述第二层位于所述第一电极层的两侧;其中,所述第二电极包括第三电极层和第四电极层,所述第二层和所述第四电极层位于所述第三电极层的两侧。
在一些实施例中,所述第一层还包括:中间层,所述中间层包括所述第一空腔。在一些实施例中,所述中间层的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。在一些实施例中,所述中间层的厚度包括但不限于:0.1微米至10微米。
在一些实施例中,所述第一层还包括:衬底层,所述衬底层包括所述第一空腔。在一些实施例中,所述衬底层的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。在一些实施例中,所述衬底层的厚度包括但不限于:20微米至100微米。
在一些实施例中,所述第一层还包括:第一基底,所述第一基底包括所述第一空腔。
在一些实施例中,所述第一层还包括位于所述第一侧的第一凹槽,所述第一凹槽位于所述第一空腔水平方向上的一侧并与所述第一空腔相通,所述第二端位于所述第一凹槽内。
在一些实施例中,所述第二层包括:压电层,所述压电层包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒;沿第一方向的第一坐标轴对应所述第一晶粒的高,沿第二方向的第二坐标轴对应所述第二晶粒的高,其中,所述第一方向和所述第二方向相同或相反。
在一些实施例中,所述第一晶粒对应第一坐标系,所述第一坐标系包括所述第一坐标轴和沿第三方向的第三坐标轴;所述第二晶粒对应第二坐标系,所述第二坐标系包括所述第二坐标轴和沿第四方向的第四坐标轴。在一些实施例中,所述第一坐标系还包括沿第五方向的第五坐标轴,所述第二坐标系还包括沿第六方向的第六坐标轴。在一些实施例中,所述第三方向和所述第四方向相同或相反。
在一些实施例中,所述第二层包括:压电层,所述压电层包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
在一些实施例中,所述压电层的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
在一些实施例中,所述第一电极层的声阻抗大于所述第二电极层的声阻抗;所述第一电极层的导电性低于所述第二电极层的导电性;所述第三电极层的声阻抗大于所述第四电极层的声阻抗;所述第三电极层的导电性低于所述第四电极层的导电性。在一些实施例中,所述第一电极层的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱;所述第二电极层的材料包括但不限于以下至少之一:铝、铍;所述第三电极层的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱;所述第四电极层的材料包括但不限于以下至少之一:铝、铍。
在一些实施例中,所述第一电极层的声阻抗小于所述第二电极层的声阻抗;所述第一电极层的导电性高于所述第二电极层的导电性;所述第三电极层的声阻抗小于所述第四电极层的声阻抗;所述第三电极层的导电性高于所述第四电极层的导电性。在一些实施例中,所述第一电极层的材料包括但不限于以下至少之一:铝、铍;所述第二电极层的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱;所述第三电极层的材料包括但不限于以下至少之一:铝、铍;所述第四电极层的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。
在一些实施例中,所述体声波谐振装置还包括:第一隔膜,所述第一电极层和所述第二层位于所述第一隔膜两侧,所述第一隔膜的声阻抗大于所述第一电极层的声阻抗。在一些实施例中,所述第一隔膜的材料包括但不限于以下至少之一:钨、氮化钨、氮化钛、钴、钌、钽、氮化钽、氧化铟。在一些实施例中,所述体声波谐振装置还包括:第二隔膜,所述第二层和所述第三电极层位于所述第二隔膜两侧,所述第二隔膜的声阻抗大于所述第三电极层的声阻抗。在一些实施例中,所述第二隔膜的材料包括但不限于以下至少之一:钨、氮化钨、氮化钛、钴、钌、钽、氮化钽、氧化铟。
在一些实施例中,所述第一电极还包括第一介质层,所述第一介质层两侧为所述第二电极层和所述第一电极层,所述第一介质层的声阻抗小于所述第一电极层的声阻抗,所述第一介质层的声阻抗小于所述第二电极层的声阻抗。在一些实施例中,所述第一介质层的材料包括但不限于以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。在一些实施例中,所述第一介质层包括至少一个第二凹槽,所述第二电极层嵌入所述至少一个第二凹槽内,覆盖所述第一介质层。在一些实施例中,所述第二电极还包括第二介质层,所述第二介质层两侧为所述第三电极层和所述第四电极层,所述第二介质层的声阻抗小于所述第三电极层的声阻抗,所述第二介质层的声阻抗小于所述第四电极层的声阻抗。在一些实施例中,所述第二介质层的材料包括但不限于以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。在一些实施例中,所述第二介质层包括至少一个第三凹槽,所述第四电极层嵌入所述至少一个第三凹槽内,覆盖所述第二介质层。
在一些实施例中,所述体声波谐振装置还包括:第二基底,位于所述第一层的第二侧,所述第二侧与所述第一侧相对。在一些实施例中,所述体声波谐振装置还包括:薄膜,位于所述第一层和所述第二基底之间。在一些实施例中,所述薄膜包括但不限于:多晶薄膜。
本发明实施例还提供一种滤波装置,包括但不限于:至少一个上述实施例其中之一提供的体声波谐振装置。
本发明实施例还提供一种射频前端装置,包括但不限于:功率放大装置与至少一个上述实施例提供的滤波装置;所述功率放大装置与所述滤波装置连接。
本发明实施例还提供一种射频前端装置,包括但不限于:低噪声放大装置与至少一个上述实施例提供的滤波装置;所述低噪声放大装置与所述滤波装置连接。
本发明实施例还提供一种射频前端装置,包括但不限于:多工装置,所述多工装置包括至少一个上述实施例提供的滤波装置。
有益效果
由上述描述可知,本发明提供的一种体声波谐振装置、一种滤波装置及一种射频前端装置,体声波谐振装置包括第一电极(即,下电极)和第二电极(即,上电极),其中,所述第一电极包括第一电极层和第二电极层,所述第二电极包括第三电极层和第四电极层,所述第二电极层的导电性较所述第一电极层更高,所述第四电极层的导电性较所述第三电极层更高,从而可以减小所述第一电极和所述第二电极的电阻,降低电学损耗。
附图说明
图1是一种BAW滤波器的电路100的示意图;
图2是一种FBAR 200的剖面A结构示意图;
图3是本发明实施例的一种体声波谐振装置300的剖面A结构示意图;
图4a是本发明实施例的一种体声波谐振装置400的剖面A结构示意图;
图4b是一种六方晶系晶粒的结构示意图;
图4c(i)是一种正交晶系晶粒的结构示意图;
图4c(ii)是一种四方晶系晶粒的结构示意图;
图4c(iii)是一种立方晶系晶粒的结构示意图
图5是本发明实施例的一种体声波谐振装置500的剖面A结构示意图;
图6是本发明实施例的一种体声波谐振装置600的剖面A结构示意图;
图7是本发明实施例的一种体声波谐振装置700的剖面A结构示意图;
图8a是本发明实施例的一种体声波谐振装置800的剖面A结构示意图;
图8b是本发明实施例的插入损耗曲线示意图;
图8c是本发明实施例的插入损耗曲线示意图;
图9是本发明实施例的一种体声波谐振装置900的剖面A结构示意图;
图10是本发明实施例的一种体声波谐振装置1000的剖面A结构示意图;
图11是本发明实施例的一种体声波谐振装置1100的剖面A结构示意图;
图12是本发明实施例的一种体声波谐振装置1200的剖面A结构示意图;
图13是本发明实施例的一种体声波谐振装置1300的剖面A结构示意图;
图14是本发明实施例的一种体声波谐振装置1400的剖面A结构示意图。
本发明的实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
如背景技术部分所述,随着无线移动网络引入了更高的通信频段,电极厚度需要较之前更薄,但是减少电极的厚度会导致电极的电阻提高,从而引入更高的电学损耗,降低Q值。
本发明的发明人发现谐振装置包括第一电极(即,下电极)和第二电极(即,上电极),其中,所述第一电极包括第一电极层和第二电极层,所述第二电极包括第三电极层和第四电极层,所述第二电极层的导电性较所述第一电极层更高,所述第四电极层的导电性较所述第三电极层更高,从而可以减小所述第一电极和所述第二电极的电阻,降低电学损耗。
本发明实施例提供一种体声波谐振装置,包括:第一层,所述第一层包括位于第一侧的第一空腔;第一电极,所述第一电极的第一端位于所述第一空腔内,所述第一电极的第二端接触所述第一层;第二层,位于所述第一侧,位于所述第一电极上;以及第二电极,位于所述第二层上,所述第一电极和所述第二电极分别位于所述第二层两侧;其中,所述第一电极上与所述第二电极重合的第一部分位于所述第一空腔内;其中,所述第一电极包括第一电极层和第二电极层,所述第二电极层和所述第二层分别位于所述第一电极层的两侧;其中,所述第二电极包括第三电极层和第四电极层,所述第二层和所述第四电极层分别位于所述第三电极层的两侧。
在一些实施例中,所述第一电极层的声阻抗大于所述第二电极层的声阻抗;所述第一电极层的导电性低于所述第二电极层的导电性;所述第三电极层的声阻抗大于所述第四电极层的声阻抗;所述第三电极层的导电性低于所述第四电极层的导电性。
需要说明的是,所述第二电极层的导电性较所述第一电极层更高,所述第四电极层的导电性较所述第三电极层更高,从而可以减小所述第一电极和所述第二电极的电阻,降低电学损耗。
在一些实施例中,所述第一电极层的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱;所述第二电极层的材料包括但不限于以下至少之一:铝、铍;所述第三电极层的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱;所述第四电极层的材料包括但不限于以下至少之一:铝、铍。
在一些实施例中,所述第一层还包括:第一基底,所述第一基底包括所述第一空腔。
在一些实施例中,所述第一层还包括:衬底层,所述衬底层包括所述第一空腔。在一些实施例中,所述衬底层的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。在一些实施例中,所述衬底层的厚度包括但不限于:20微米至100微米。
在一些实施例中,所述第一层还包括:中间层,所述中间层包括所述第一空腔。在一些实施例中,所述中间层的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。在一些实施例中,所述中间层的厚度包括但不限于:0.1微米至10微米。
在一些实施例中,所述第一层还包括位于所述第一侧的第一凹槽,所述第一凹槽位于所述第一空腔水平方向上的一侧并与所述第一空腔相通,所述第二端位于所述第一凹槽内。
在一些实施例中,所述第二层包括:压电层,所述压电层包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒;沿第一方向的第一坐标轴对应所述第一晶粒的高,沿第二方向的第二坐标轴对应所述第二晶粒的高,其中,所述第一方向和所述第二方向相同或相反。
在一些实施例中,所述第一晶粒对应第一坐标系,所述第一坐标系包括所述第一坐标轴和沿第三方向的第三坐标轴;所述第二晶粒对应第二坐标系,所述第二坐标系包括所述第二坐标轴和沿第四方向的第四坐标轴。在一些实施例中,所述第一坐标系还包括沿第五方向的第五坐标轴,所述第二坐标系还包括沿第六方向的第六坐标轴。在一些实施例中,所述第三方向和所述第四方向相同或相反。
在一些实施例中,所述压电层的材料包括以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
在一些实施例中,所述第二层包括:压电层,所述压电层包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
在一些实施例中,所述第一电极还包括第一介质层,所述第一介质层两侧分别为所述第二电极层和所述第一电极层,所述第一介质层的声阻抗小于所述第一电极层的声阻抗,所述第一介质层的声阻抗小于所述第二电极层的声阻抗。在一些实施例中,所述第一介质层的材料包括以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。
在一些实施例中,所述第二电极还包括第二介质层,所述第二介质层两侧分别为所述第三电极层和所述第四电极层,所述第二介质层的声阻抗小于所述第三电极层的声阻抗,所述第二介质层的声阻抗小于所述第四电极层的声阻抗。在一些实施例中,所述第二介质层的材料包括以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。
需要说明的是,所述第一介质层的声阻抗小于所述第一电极层和所述第二电极层的声阻抗,所述第二介质层的声阻抗小于所述第三电极层和所述第四电极层的声阻抗,可以阻隔漏波。
在一些实施例中,所述第一介质层包括至少一个第二凹槽,所述第二电极层嵌入所述至少一个第二凹槽内,覆盖所述第一介质层。在一些实施例中,所述第二介质层包括至少一个第三凹槽,所述第四电极层嵌入所述至少一个第三凹槽内,覆盖所述第二介质层。
在一些实施例中,所述体声波谐振装置还包括:第二基底,位于所述第一层的第二侧,所述第二侧与所述第一侧相对。
在一些实施例中,所述体声波谐振装置还包括:薄膜,位于所述第一层和所述第二基底之间。在一些实施例中,所述薄膜包括:多晶薄膜。需要说明的是,所述薄膜可以防止所述第二基底表面形成自由电子层,减少所述第二基底的射频损耗。
本发明实施例提供一种体声波谐振装置,包括:第一层,所述第一层包括位于第一侧的第一空腔;第一电极,所述第一电极的第一端位于所述第一空腔内,所述第一电极的第二端接触所述第一层;第二层,位于所述第一侧,位于所述第一电极上;以及第二电极,位于所述第二层上,所述第一电极和所述第二电极分别位于所述第二层两侧;其中,所述第一电极上与所述第二电极重合的第一部分位于所述第一空腔内;其中,所述第一电极包括第一电极层和第二电极层,所述第二电极层和所述第二层分别位于所述第一电极层的两侧;其中,所述第二电极包括第三电极层和第四电极层,所述第二层和所述第四电极层分别位于所述第三电极层的两侧。
在一些实施例中,所述第一电极层的声阻抗小于所述第二电极层的声阻抗;所述第一电极层的导电性高于所述第二电极层的导电性;所述第三电极层的声阻抗小于所述第四电极层的声阻抗;所述第三电极层的导电性高于所述第四电极层的导电性。
需要说明的是,所述第一电极层的导电性较所述第二电极层更高,所述第三电极层的导电性较所述第四电极层更高,从而减小所述第一电极和所述第二电极的电阻,降低电学损耗。
在一些实施例中,所述第一电极层的材料包括但不限于以下至少之一:铝、铍;所述第二电极层的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱;所述第三电极层的材料包括但不限于以下至少之一:铝、铍;所述第四电极层的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。
在一些实施例中,所述第一层还包括:第一基底,所述第一基底包括所述第一空腔。
在一些实施例中,所述第一层还包括:衬底层,所述衬底层包括所述第一空腔。在一些实施例中,所述衬底层的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。在一些实施例中,所述中间层的厚度包括但不限于:20微米至100微米。
在一些实施例中,所述第一层还包括:中间层,所述中间层包括所述第一空腔。在一些实施例中,所述中间层的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。在一些实施例中,所述中间层的厚度包括但不限于:0.1微米至10微米。
在一些实施例中,所述第一层还包括位于所述第一侧的第一凹槽,所述第一凹槽位于所述第一空腔水平方向上的一侧并与所述第一空腔相通,所述第二端位于所述第一凹槽内。
在一些实施例中,所述第二层包括:压电层,所述压电层包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒;沿第一方向的第一坐标轴对应所述第一晶粒的高,沿第二方向的第二坐标轴对应所述第二晶粒的高,其中,所述第一方向和所述第二方向相同或相反。
在一些实施例中,所述第一晶粒对应第一坐标系,所述第一坐标系包括所述第一坐标轴和沿第三方向的第三坐标轴;所述第二晶粒对应第二坐标系,所述第二坐标系包括所述第二坐标轴和沿第四方向的第四坐标轴。在一些实施例中,所述第一坐标系还包括沿第五方向的第五坐标轴,所述第二坐标系还包括沿第六方向的第六坐标轴。在一些实施例中,所述第三方向和所述第四方向相同或相反。
在一些实施例中,所述压电层的材料包括以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
在一些实施例中,所述第二层包括:压电层,所述压电层包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
在一些实施例中,所述体声波谐振装置还包括第一隔膜,所述第一电极层和所述第二层分别位于所述第一隔膜两侧,所述第一隔膜用于隔开所述第一电极层和所述第二层,所述第一隔膜的声阻抗大于所述第一电极层的声阻抗。在一些实施例中,所述体声波谐振装置还包括第二隔膜,所述第二层和所述第三电极层分别位于所述第二隔膜两侧,所述第二隔膜用于隔开所述第三电极层和所述第二层,所述第二隔膜的声阻抗大于所述第三电极层的声阻抗。需要说明的是,所述第一隔膜和所述第二隔膜用于防止电极材料与压电材料发生化学反应,影响谐振装置的电学性能。
在一些实施例中,所述第一隔膜的材料包括但不限于以下至少之一:钨、氮化钨、氮化钛、钴、钌、钽、氮化钽、氧化铟。在一些实施例中,所述第二隔膜的材料包括但不限于以下至少之一:钨、氮化钨、氮化钛、钴、钌、钽、氮化钽、氧化铟。
在一些实施例中,所述体声波谐振装置还包括:第二基底,位于所述第一层的第二侧,所述第二侧与所述第一侧相对。
在一些实施例中,所述体声波谐振装置还包括:薄膜,位于所述第一层和所述第二基底之间。在一些实施例中,所述薄膜包括:多晶薄膜。需要说明的是,所述薄膜可以防止所述第二基底表面形成自由电子层,以减少所述第二基底的射频损耗。
本发明实施例还提供一种滤波装置,包括但不限于:至少一个上述实施例其中之一提供的体声波谐振装置。
本发明实施例还提供一种射频前端装置,包括但不限于:功率放大装置与至少一个上述实施例提供的滤波装置;所述功率放大装置与所述滤波装置连接。
本发明实施例还提供一种射频前端装置,包括但不限于:低噪声放大装置与至少一个上述实施例提供的滤波装置;所述低噪声放大装置与所述滤波装置连接。
本发明实施例还提供一种射频前端装置,包括但不限于:多工装置,所述多工装置包括至少一个上述实施例提供的滤波装置。
图3至图13示出了本发明的多个具体实施例,所述多个具体实施例采用不同结构的谐振装置,但是本发明还可以采用其他不同于在此描述的其他方式来实施,因此本发明不受下面公开的具体实施例的限制。
图3是本发明实施例的一种体声波谐振装置300的剖面A结构示意图。
如图3所示,本发明实施例提供一种体声波谐振装置300包括:基底310,所述基底310的上表面侧包括空腔330;电极350,所述电极350的第一端350a位于所述空腔330内,所述电极350的第二端350b接触所述空腔330的侧壁;压电层370,位于所述电极350上,覆盖所述空腔330,其中,所述压电层370包括第一侧370a及所述第一侧370a相对的第二侧370b,所述电极350位于所述第一侧370a;电极390,位于所述第二侧370b,位于所述压电层370上。由图3可见,谐振区(即,所述电极350和所述电极390的重合区域)相对于所述空腔330悬空,与所述基底310没有重合部。其中,所述电极350包括:电极层351,位于所述第一侧370a,接触所述压电层370;电极层353,位于所述第一侧370a,接触所述电极层351,所述电极层353与所述压电层370分别位于所述电极层351两侧。其中,所述电极390包括:电极层391,位于所述第二侧370b,接触所述压电层370;电极层393,位于所述第二侧370b,接触所述电极层391,所述压电层370与所述电极层393分别位于所述电极层391两侧。
本实施例中,所述基底310的材料包括但不限于以下至少之一:硅、碳化硅、玻璃、蓝宝石、尖晶石、砷化镓、氮化镓。
本实施例中,所述电极层351的材料的声阻抗大于所述电极层353的材料的声阻抗。本实施例中,所述电极层353的材料的导电性高于所述电极层351的材料的导电性。本实施例中,所述电极层351的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层353的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层370为平层,还覆盖所述基底310的上表面侧。本实施例中,所述压电层370的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述电极层391的材料的声阻抗大于所述电极层393的材料的声阻抗。本实施例中,所述电极层393的材料的导电性高于所述电极层391的材料的导电性。本实施例中,所述电极层391的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层393的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极350上与所述电极390重合的部分位于所述空腔330内;所述电极390上与所述电极350重合的部分位于所述空腔330上方。
需要说明的是,所述电极层353与所述电极层393的导电性较高,从而降低了所述电极350和所述电极390的电阻,减少了电学损耗。此外,所述电极层351与所述电极层353具有声阻抗差,所述电极层391与所述电极层393具有声阻抗差,可以阻隔漏波。
需要说明的是,交换电极中两个电极层的材料,可以带来额外的技术效果,也会对谐振装置的压电常数及机电耦合系数(electro-mechanical coupling factor)产生影响。请参阅以下具体实施例做详细说明。
如图3所示,本发明实施例提供一种体声波谐振装置300包括:基底310,所述基底310的上表面侧包括空腔330;电极350,所述电极350的第一端350a位于所述空腔330内,所述电极350的第二端350b接触所述空腔330的侧壁;压电层370,位于所述电极350上,覆盖所述空腔330,其中,所述压电层370包括第一侧370a及所述第一侧370a相对的第二侧370b,所述电极350位于所述第一侧370a;电极390,位于所述第二侧370b,位于所述压电层370上。由图3可见,谐振区(即,所述电极350和所述电极390的重合区域)相对于所述空腔330悬空,与所述基底310没有重合部。其中,所述电极350包括:电极层351,位于所述第一侧370a,接触所述压电层370;电极层352,位于所述第一侧370a,接触所述电极层351,所述电极层352与所述压电层370分别位于所述电极层351两侧。其中,所述电极390包括:电极层391,位于所述第二侧370b,接触所述压电层370;电极层392,位于所述第二侧370b,接触所述电极层391,所述压电层370与所述电极层392分别位于所述电极层391两侧。
本实施例中,所述电极层353的材料的声阻抗大于所述电极层351的材料的声阻抗。本实施例中,所述电极层351的材料的导电性高于所述电极层353的材料的导电性。本实施例中,所述电极层353的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层351的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层370为平层,还覆盖所述基底310的上表面侧。本实施例中,所述压电层370的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,在所述压电层370的材料中掺入稀土元素,其中,所述稀土元素包括但不限于以下至少之一:钪、镧、钇。需要说明的是,在压电材料中掺入稀土元素,稀土元素原子会替代一定比例的压电材料中的一种元素原子,形成更长的化学键,从而产生压力。例如,在氮化铝中掺入钪,钪原子会替代一定比例的铝原子,氮原子数保持不变,形成的钪氮键比铝氮键长,从而产生压力,获得更高的压电常数及机电耦合系数,其中,所述一定比例指钪原子数占钪原子数加铝原子数之和的比例,其范围包括3%到40%。
本实施例中,所述电极层393的材料的声阻抗大于所述电极层391的材料的声阻抗。本实施例中,所述电极层391的材料的导电性高于所述电极层393的材料的导电性。本实施例中,所述电极层393的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层391的材料包括但不限于以下至少之一:铝、铍。
需要说明的是,所述电极层351与所述电极层391的导电性较高,从而降低了所述电极350和所述电极390的电阻,减少了电学损耗。此外,所述电极层351与所述电极层353具有声阻抗差,所述电极层391与所述电极层393具有声阻抗差,可以阻隔漏波。此外,所述电极层351与所述电极层391具有较低的声学衰弱,从而具有较低的声学损耗。此外,所述电极层351与所述电极层391具有较高导热性,从而提升谐振装置的散热能力。
图4a是本发明实施例的一种体声波谐振装置400的剖面A结构示意图。
如图4a所示,本发明实施例提供一种体声波谐振装置400包括:基底410;中间层420,位于所述基底410上,用于阻隔漏波,所述中间层420的上表面侧包括空腔430;电极440,所述电极440的第一端440a位于所述空腔430内,所述电极440的第二端440b接触所述空腔430的侧壁;压电层450,位于所述电极440上,覆盖所述空腔430,所述压电层450包括第一侧450a及所述第一侧450a相对的第二侧450b,所述中间层420位于所述第一侧450a,所述电极440位于所述第一侧450a;电极460,位于所述第二侧450b,位于所述压电层450上。由图4a可见,谐振区(即,所述电极440和所述电极460的重合区域)相对于所述空腔430悬空,与所述中间层420没有重合部。其中,所述电极440包括:电极层441,位于所述第一侧450a,接触所述压电层450;电极层442,位于所述第一侧450a,接触所述电极层441,所述电极层442与所述压电层450分别位于所述电极层441两侧。其中,所述电极460包括:电极层461,位于所述第二侧450b,接触所述压电层450;电极层462,位于所述第二侧450b,接触所述电极层461,所述压电层450与所述电极层462分别位于所述电极层461两侧。
本实施例中,所述基底410的材料包括但不限于以下至少之一:硅、碳化硅、玻璃、蓝宝石、尖晶石、砷化镓、氮化镓。
本实施例中,所述中间层420的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。本实施例中,所述中间层420的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述电极层441的材料的声阻抗大于所述电极层442的材料的声阻抗。本实施例中,所述电极层442的材料的导电性高于所述电极层441的材料的导电性。本实施例中,所述电极层441的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层442的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层450为平层,还覆盖所述中间层420的上表面侧。本实施例中,所述压电层450的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层450包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒。所属技术领域的技术人员知晓晶粒的晶向、晶面等可以基于坐标系表示。如图4b所示,对于六方晶系的晶粒,例如氮化铝晶粒,采用ac立体坐标系(包括a轴及c轴)表示。如图4c所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶粒,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶粒还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶粒可以基于第一立体坐标系表示,所述第二晶粒可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶粒的高,所述第二坐标轴对应所述第二晶粒的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层450包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层450可以使所述压电层450不包括明显转向的晶粒,从而可以提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层461的材料的声阻抗大于所述电极层462的材料的声阻抗。本实施例中,所述电极层462的材料的导电性高于所述电极层461的材料的导电性。本实施例中,所述电极层461的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层462的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极440上与所述电极460重合的部分位于所述空腔430内;所述电极460上与所述电极440重合的部分位于所述空腔430上方。
需要说明的是,所述电极层442与所述电极层462的导电性较高,从而降低了所述电极440和所述电极460的电阻,减少了电学损耗。此外,所述电极层441与所述电极层442具有声阻抗差,所述电极层461与所述电极层462具有声阻抗差,可以阻隔漏波。
需要说明的是,交换电极中两个电极层的材料,可以带来额外的技术效果,也会对压电常数及机电耦合系数产生影响。请参阅以下具体实施例做详细说明。
如图4a所示,本发明实施例提供一种体声波谐振装置400包括:基底410;中间层420,位于所述基底410上,用于阻隔漏波,所述中间层420的上表面侧包括空腔430;电极440,所述电极440的第一端440a位于所述空腔430内,所述电极440的第二端440b接触所述空腔430的侧壁;压电层450,位于所述电极440上,覆盖所述空腔430,所述压电层450包括第一侧450a及所述第一侧450a相对的第二侧450b,所述中间层420位于所述第一侧450a,所述电极440位于所述第一侧450a;电极460,位于所述第二侧450b,位于所述压电层450上。由图4a可见,谐振区(即,所述电极440和所述电极460的重合区域)相对于所述空腔430悬空,与所述中间层420没有重合部。其中,所述电极440包括:电极层441,位于所述第一侧450a,接触所述压电层450;电极层442,位于所述第一侧450a,接触所述电极层441,所述电极层442与所述压电层450分别位于所述电极层441两侧。其中,所述电极460包括:电极层461,位于所述第二侧450b,接触所述压电层450;电极层462,位于所述第二侧450b,接触所述电极层461,所述压电层450与所述电极层462分别位于所述电极层461两侧。
本实施例中,所述电极层442的材料的声阻抗大于所述电极层441的材料的声阻抗。本实施例中,所述电极层441的材料的导电性高于所述电极层442的材料的导电性。本实施例中,所述电极层442的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层441的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层450为平层,还覆盖所述中间层420的上表面侧。本实施例中,所述压电层450的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,在所述压电层450的材料中掺入稀土元素,其中,所述稀土元素包括但不限于以下至少之一:钪、镧、钇。需要说明的是,在压电材料中掺入稀土元素,稀土元素原子会替代一定比例的压电材料中的一种元素原子,形成更长的化学键,从而产生压力。例如,在氮化铝中掺入钪,钪原子会替代一定比例的铝原子,氮原子数保持不变,形成的钪氮键比铝氮键长,从而产生压力,获得更高的压电常数及机电耦合系数,其中,所述一定比例指钪原子数占钪原子数加铝原子数之和的比例,其范围包括3%到40%。
本实施例中,所述电极层462的材料的声阻抗大于所述电极层461的材料的声阻抗。本实施例中,所述电极层461的材料的导电性高于所述电极层462的材料的导电性。本实施例中,所述电极层462的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层461的材料包括但不限于以下至少之一:铝、铍。
需要说明的是,所述电极层441与所述电极层461的导电性较高,从而降低了所述电极440和所述电极460的电阻,减少了电学损耗。此外,所述电极层441与所述电极层442具有声阻抗差,所述电极层461与所述电极层462具有声阻抗差,可以阻隔漏波。此外,所述电极层441与所述电极层461具有较低的声学衰弱,从而具有较低的声学损耗。此外,所述电极层441与所述电极层461具有较高导热性,从而提升谐振装置的散热能力。
图5是本发明实施例的一种体声波谐振装置500的剖面A结构示意图。
如图5所示,本发明实施例提供一种体声波谐振装置500包括:基底510;薄膜520,位于所述基底510上;中间层530,位于所述薄膜520上,用于阻隔漏波,所述中间层530的上表面侧包括空腔540;电极550,所述电极550的第一端550a位于所述空腔540内,所述电极550的第二端550b接触所述空腔540的侧壁;压电层560,位于所述电极550上,覆盖所述空腔540,所述压电层560包括第一侧560a及所述第一侧560a相对的第二侧560b,所述中间层530位于所述第一侧560a,所述电极550位于所述第一侧560a;电极570,位于所述第二侧560b,位于所述压电层560上。由图5可见,谐振区(即,所述电极550和所述电极570的重合区域)相对于所述空腔540悬空,与所述中间层530没有重合部。其中,所述电极550包括:电极层551,位于所述第一侧560a,接触所述压电层560;电极层552,位于所述第一侧560a,接触所述电极层551,所述电极层552与所述压电层560分别位于所述电极层551两侧。其中,所述电极570包括:电极层571,位于所述第二侧560b,接触所述压电层560;电极层572,位于所述第二侧560b,接触所述电极层571,所述压电层560与所述电极层572分别位于所述电极层571两侧。
本实施例中,所述基底510的材料包括但不限于以下至少之一:硅、碳化硅、玻璃、蓝宝石、尖晶石、砷化镓、氮化镓。
本实施例中,所述薄膜520包括但不限于多晶薄膜。本实施例中,所述多晶薄膜的材料包括但不限于以下至少之一:多晶硅、多晶氮化硅、多晶碳化硅。需要说明的是,所述薄膜520可以防止所述基底510表面形成自由电子层,以减少所述基底510的射频损耗。
本实施例中,所述中间层530的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。本实施例中,所述中间层530的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述电极层551的材料的声阻抗大于所述电极层552的材料的声阻抗。本实施例中,所述电极层552的材料的导电性高于所述电极层551的材料的导电性。本实施例中,所述电极层551的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层552的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层560为平层,还覆盖所述中间层530的上表面侧。本实施例中,所述压电层560的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层560包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒。所属技术领域的技术人员知晓晶粒的晶向、晶面等可以基于坐标系表示。
本实施例中,所述第一晶粒可以基于第一立体坐标系表示,所述第二晶粒可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶粒的高,所述第二坐标轴对应所述第二晶粒的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层560包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
需要说明的是,在平面上形成所述压电层560可以使所述压电层560不包括明显转向的晶粒,从而可以提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层571的材料的声阻抗大于所述电极层572的材料的声阻抗。本实施例中,所述电极层572的材料的导电性高于所述电极层571的材料的导电性。本实施例中,所述电极层571的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层572的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极550上与所述电极570重合的部分位于所述空腔540内;所述电极570上与所述电极550重合的部分位于所述空腔540上方。
需要说明的是,所述电极层552与所述电极层572的导电性较高,从而降低了所述电极550和所述电极570的电阻,减少了电学损耗。此外,所述电极层551与所述电极层552具有声阻抗差,所述电极层571与所述电极层572具有声阻抗差,可以阻隔漏波。
图6是本发明实施例的一种体声波谐振装置600的剖面A结构示意图。
如图6所示,本发明实施例提供一种体声波谐振装置600包括:衬底层610,所述衬底层610的上表面侧包括空腔630;电极650,所述电极650的第一端650a位于所述空腔630内,所述电极650的第二端650b接触所述空腔630的侧壁;压电层670,位于所述电极650上,覆盖所述空腔630,其中,所述压电层670包括第一侧670a及所述第一侧670a相对的第二侧670b,所述衬底层610位于所述第一侧670a,所述电极650位于所述第一侧670a;电极690,位于所述第二侧670b,位于所述压电层670上。由图6可见,谐振区(即,所述电极650和所述电极690的重合区域)相对于所述空腔630悬空,与所述衬底层610没有重合部。其中,所述电极650包括:电极层651,位于所述第一侧670a,接触所述压电层670;电极层652,位于所述第一侧670a,接触所述电极层651,所述电极层652与所述压电层670分别位于所述电极层651两侧。其中,所述电极690包括:电极层691,位于所述第二侧670b,接触所述压电层670;电极层692,位于所述第二侧670b,接触所述电极层691,所述压电层670与所述电极层692分别位于所述电极层691两侧。
本实施例中,所述衬底层610的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。本实施例中,所述衬底层610的厚度包括但不限于:20微米至100微米。
本实施例中,所述电极层651的材料的声阻抗大于所述电极层652的材料的声阻抗。本实施例中,所述电极层652的材料的导电性高于所述电极层651的材料的导电性。本实施例中,所述电极层651的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层652的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层670为平层,还覆盖所述衬底层610的上表面侧。本实施例中,所述压电层670的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层670包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒。所属技术领域的技术人员知晓晶粒的晶向、晶面等可以基于坐标系表示。
本实施例中,所述第一晶粒可以基于第一立体坐标系表示,所述第二晶粒可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶粒的高,所述第二坐标轴对应所述第二晶粒的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层670包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
需要说明的是,在平面上形成所述压电层670可以使所述压电层670不包括明显转向的晶粒,从而可以提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层691的材料的声阻抗大于所述电极层692的材料的声阻抗。本实施例中,所述电极层692的材料的导电性高于所述电极层691的材料的导电性。本实施例中,所述电极层691的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层692的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极650上与所述电极690重合的部分位于所述空腔630内;所述电极690上与所述电极650重合的部分位于所述空腔630上方。
需要说明的是,所述电极层652与所述电极层692的导电性较高,从而降低了所述电极650和所述电极690的电阻,减少了电学损耗。此外,所述电极层651与所述电极层652具有声阻抗差,所述电极层691与所述电极层692具有声阻抗差,可以阻隔漏波。
图7是本发明实施例的一种体声波谐振装置700的剖面A结构示意图。
如图7所示,本发明实施例提供一种体声波谐振装置700包括:基底710,所述基底710的上表面侧包括空腔720和凹槽730,其中,所述凹槽730位于所述空腔720左右两侧中的一侧(即,水平方向上两侧中的一侧)并和所述空腔720相通,所述凹槽730的深度小于所述空腔720的深度;电极740,所述电极740的第一端740a位于所述空腔720内,所述电极740的第二端740b位于所述凹槽730内,其中,所述凹槽730的深度等于所述电极740的厚度;压电层750,位于所述电极740上,覆盖所述空腔720,所述压电层750包括第一侧750a及所述第一侧750a相对的第二侧750b,所述电极740位于所述第一侧750a;电极760,位于所述第二侧750b,位于所述压电层750上。由图7可见,谐振区(即,所述电极740和所述电极760的重合区域)相对于所述空腔720悬空,与所述基底710没有重合部。其中,所述电极740包括:电极层741,位于所述第一侧750a,接触所述压电层750;电极层742,位于所述第一侧750a,接触所述电极层741,所述电极层742与所述压电层750分别位于所述电极层741两侧。其中,所述电极760包括:电极层761,位于所述第二侧750b,接触所述压电层750;电极层762,位于所述第二侧750b,接触所述电极层761,所述压电层750与所述电极层762分别位于所述电极层761两侧。
本实施例中,所述基底710的材料包括但不限于以下至少之一:硅、碳化硅、玻璃、蓝宝石、尖晶石、砷化镓、氮化镓。
本实施例中,所述电极层741的材料的声阻抗大于所述电极层742的材料的声阻抗。本实施例中,所述电极层742的材料的导电性高于所述电极层741的材料的导电性。本实施例中,所述电极层741的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层742的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层750为平层,还覆盖所述基底710的上表面侧。本实施例中,所述压电层750的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述电极层761的材料的声阻抗大于所述电极层762的材料的声阻抗。本实施例中,所述电极层762的材料的导电性高于所述电极层761的材料的导电性。本实施例中,所述电极层761的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层762的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极740上与所述电极760重合的部分位于所述空腔720内;所述电极760上与所述电极740重合的部分位于所述空腔720上方。
需要说明的是,所述电极层742与所述电极层762的导电性较高,从而降低了所述电极740和所述电极760的电阻,减少了电学损耗。此外,所述电极层741与所述电极层742具有声阻抗差,所述电极层761与所述电极层762具有声阻抗差,可以阻隔漏波。
需要说明的是,交换电极中两个电极层的材料,可以带来额外的技术效果,也会对压电常数及机电耦合系数产生影响。请参阅以下具体实施例做详细说明。
如图7所示,本发明实施例提供一种体声波谐振装置700包括:基底710,所述基底710的上表面侧包括空腔720和凹槽730,其中,所述凹槽730位于所述空腔720左右两侧中的一侧(即,水平方向上两侧中的一侧)并和所述空腔720相通,所述凹槽730的深度小于所述空腔720的深度;电极740,所述电极740的第一端740a位于所述空腔720内,所述电极740的第二端740b位于所述凹槽730内,其中,所述凹槽730的深度等于所述电极740的厚度;压电层750,位于所述电极740上,覆盖所述空腔720,所述压电层750包括第一侧750a及所述第一侧750a相对的第二侧750b,所述电极740位于所述第一侧750a;电极760,位于所述第二侧750b,位于所述压电层750上。由图7可见,谐振区(即,所述电极740和所述电极760的重合区域)相对于所述空腔720悬空,与所述基底710没有重合部。其中,所述电极740包括:电极层741,位于所述第一侧750a,接触所述压电层750;电极层742,位于所述第一侧750a,接触所述电极层741,所述电极层742与所述压电层750分别位于所述电极层741两侧。其中,所述电极760包括:电极层761,位于所述第二侧750b,接触所述压电层750;电极层762,位于所述第二侧750b,接触所述电极层761,所述压电层750与所述电极层762分别位于所述电极层761两侧。
本实施例中,所述电极层742的材料的声阻抗大于所述电极层741的材料的声阻抗。本实施例中,所述电极层741的材料的导电性高于所述电极层742的材料的导电性。本实施例中,所述电极层742的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层741的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层750为平层,还覆盖所述基底710的上表面侧。本实施例中,所述压电层750的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,在所述压电层750的材料中掺入稀土元素,其中,所述稀土元素包括但不限于以下至少之一:钪、镧、钇。需要说明的是,在压电材料中掺入稀土元素,稀土元素原子会替代一定比例的压电材料中的一种元素原子,形成更长的化学键,从而产生压力。例如,在氮化铝中掺入钪,钪原子会替代一定比例的铝原子,氮原子数保持不变,形成的钪氮键比铝氮键长,从而产生压力,获得更高的压电常数及机电耦合系数,其中,所述一定比例指钪原子数占钪原子数加铝原子数之和的比例,其范围包括3%到40%。
本实施例中,所述电极层762的材料的声阻抗大于所述电极层761的材料的声阻抗。本实施例中,所述电极层761的材料的导电性高于所述电极层762的材料的导电性。本实施例中,所述电极层762的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层761的材料包括但不限于以下至少之一:铝、铍。
需要说明的是,所述电极层741与所述电极层761的导电性较高,从而降低了所述电极740和所述电极760的电阻,减少了电学损耗。此外,所述电极层741与所述电极层742具有声阻抗差,所述电极层761与所述电极层762具有声阻抗差,可以阻隔漏波。此外,所述电极层741与所述电极层761具有较低的声学衰弱,从而具有较低的声学损耗。此外,所述电极层741与所述电极层761具有较高导热性,从而提升谐振装置的散热能力。
图8a是本发明实施例的一种体声波谐振装置800的剖面A结构示意图。
如图8a所示,本发明实施例提供一种体声波谐振装置800包括:基底810;中间层820,位于所述基底810上,用于阻隔漏波,所述中间层820的上表面侧包括空腔830和凹槽840,其中,所述凹槽840位于所述空腔830左右两侧中的一侧并和所述空腔830相通,所述凹槽840的深度小于所述空腔830的深度;电极850,所述电极850的第一端850a位于所述空腔830内,所述电极850的第二端850b位于所述凹槽840内,其中,所述凹槽840的深度等于所述电极850的厚度;压电层860,位于所述电极850上,覆盖所述空腔830,所述压电层860包括第一侧860a及所述第一侧860a相对的第二侧860b,所述中间层820位于所述第一侧860a,所述电极850位于所述第一侧860a;电极870,位于所述第二侧860b,位于所述压电层860上。由图8a可见,谐振区(即,所述电极850和所述电极870的重合区域)相对于所述空腔830悬空,与所述中间层820没有重合部。其中,所述电极850包括:电极层851,位于所述第一侧860a,接触所述压电层860;电极层852,位于所述第一侧860a,接触所述电极层851,所述电极层852与所述压电层860分别位于所述电极层851两侧。其中,所述电极870包括:电极层871,位于所述第二侧860b,接触所述压电层860;电极层872,位于所述第二侧860b,接触所述电极层871,所述压电层860与所述电极层872分别位于所述电极层871两侧。
本实施例中,所述基底810的材料包括但不限于以下至少之一:硅、碳化硅、玻璃、蓝宝石、尖晶石、砷化镓、氮化镓。
本实施例中,所述中间层820的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。本实施例中,所述中间层820的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述电极层851的材料的声阻抗大于所述电极层852的材料的声阻抗。本实施例中,所述电极层852的材料的导电性高于所述电极层851的材料的导电性。本实施例中,所述电极层851的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层852的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层860为平层,还覆盖所述中间层820的上表面侧。本实施例中,所述压电层860的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层860包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒。所属技术领域的技术人员知晓晶粒的晶向、晶面等可以基于坐标系表示。
本实施例中,所述第一晶粒可以基于第一立体坐标系表示,所述第二晶粒可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶粒的高,所述第二坐标轴对应所述第二晶粒的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层860包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
需要说明的是,在平面上形成所述压电层860可以使所述压电层860不包括明显转向的晶粒,从而可以提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层871的材料的声阻抗大于所述电极层872的材料的声阻抗。本实施例中,所述电极层872的材料的导电性高于所述电极层871的材料的导电性。本实施例中,所述电极层871的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层872的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极850上与所述电极870重合的部分位于所述空腔830内;所述电极870上与所述电极850重合的部分位于所述空腔830上方。
参见图8b,图8b的纵轴表示归一化的Q值,图8b的横轴表示频率(单位为GHz),图8b包括插入损耗(insertion loss)曲线1和插入损耗曲线2,所述插入损耗曲线1对应单电极层电极的谐振装置(即,所述谐振装置的下电极包括一个电极层,所述谐振装置的上电极包括一个电极层),所述插入损耗曲线2对应本发明实施例提供的所述谐振装置800,其中,在频段1.85GHz至2GHz上,所述插入损耗曲线2的Q值高于所述插入损耗曲线1的Q值。需要说明的是,所述电极层852与所述电极层872的导电性较高,从而降低了所述电极850和所述电极870的电阻,减少了电学损耗,提升Q值。此外,所述电极层851与所述电极层852具有声阻抗差,所述电极层871与所述电极层872具有声阻抗差,可以阻隔漏波。
需要说明的是,交换电极中两个电极层的材料,可以带来额外的技术效果,也会对压电常数及机电耦合系数产生影响。请参阅以下具体实施例做详细说明。
如图8a所示,本发明实施例提供一种体声波谐振装置800包括:基底810;中间层820,位于所述基底810上,用于阻隔漏波,所述中间层820的上表面侧包括空腔830和凹槽840,其中,所述凹槽840位于所述空腔830左右两侧中的一侧并和所述空腔830相通,所述凹槽840的深度小于所述空腔830的深度;电极850,所述电极850的第一端850a位于所述空腔830内,所述电极850的第二端850b位于所述凹槽840内,其中,所述凹槽840的深度等于所述电极850的厚度;压电层860,位于所述电极850上,覆盖所述空腔830,所述压电层860包括第一侧860a及所述第一侧860a相对的第二侧860b,所述中间层820位于所述第一侧860a,所述电极850位于所述第一侧860a;电极870,位于所述第二侧860b,位于所述压电层860上。由图8a可见,谐振区(即,所述电极850和所述电极870的重合区域)相对于所述空腔830悬空,与所述中间层820没有重合部。其中,所述电极850包括:电极层851,位于所述第一侧860a,接触所述压电层860;电极层852,位于所述第一侧860a,接触所述电极层851,所述电极层852与所述压电层860分别位于所述电极层851两侧。其中,所述电极870包括:电极层871,位于所述第二侧860b,接触所述压电层860;电极层872,位于所述第二侧860b,接触所述电极层871,所述压电层860与所述电极层872分别位于所述电极层871两侧。
本实施例中,所述电极层852的材料的声阻抗大于所述电极层851的材料的声阻抗。本实施例中,所述电极层851的材料的导电性高于所述电极层852的材料的导电性。本实施例中,所述电极层852的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层851的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层860为平层,还覆盖所述中间层820的上表面侧。本实施例中,所述压电层860的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,在所述压电层860的材料中掺入稀土元素,其中,所述稀土元素包括但不限于以下至少之一:钪、镧、钇。需要说明的是,在压电材料中掺入稀土元素,稀土元素原子会替代一定比例的压电材料中的一种元素原子,形成更长的化学键,从而产生压力。例如,在氮化铝中掺入钪,钪原子会替代一定比例的铝原子,氮原子数保持不变,形成的钪氮键比铝氮键长,从而产生压力,获得更高的压电常数及机电耦合系数,其中,所述一定比例指钪原子数占钪原子数加铝原子数之和的比例,其范围包括3%到40%。
本实施例中,所述电极层872的材料的声阻抗大于所述电极层871的材料的声阻抗。本实施例中,所述电极层871的材料的导电性高于所述电极层872的材料的导电性。本实施例中,所述电极层872的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层871的材料包括但不限于以下至少之一:铝、铍。
参见图8c,图8c的纵轴表示归一化的Q值,图8c的横轴表示频率(单位为GHz),图8c包括插入损耗曲线1和插入损耗曲线2,所述插入损耗曲线1对应单电极层电极的谐振装置(即,所述谐振装置的下电极包括一个电极层,所述谐振装置的上电极包括一个电极层),所述插入损耗曲线2对应本发明实施例提供的所述谐振装置800,其中,在频段1.85GHz至2.05GHz上,所述插入损耗曲线2的Q值高于所述插入损耗曲线1的Q值。需要说明的是,所述电极层851与所述电极层871的导电性较高,从而降低了所述电极850和所述电极870的电阻,减少了电学损耗,提升了Q值。此外,所述电极层851与所述电极层852具有声阻抗差,所述电极层871与所述电极层872具有声阻抗差,可以阻隔漏波。此外,所述电极层851与所述电极层871具有较低的声学衰弱,从而具有较低的声学损耗,可以提升Q值。此外,所述电极层851与所述电极层871具有较高导热性,从而提升谐振装置的散热能力。
图9是本发明实施例的一种体声波谐振装置900的剖面A结构示意图。
如图9所示,本发明实施例提供一种体声波谐振装置900包括:基底910;薄膜920,位于所述基底910上;中间层930,位于所述薄膜920上,用于阻隔漏波,所述中间层930的上表面侧包括空腔940和凹槽950,其中,所述凹槽950位于所述空腔940左右两侧中的一侧并和所述空腔940相通,所述凹槽950的深度小于所述空腔940的深度;电极960,所述电极960的第一端960a位于所述空腔940内,所述电极960的第二端960b位于所述凹槽950内,其中,所述凹槽950的深度等于所述电极960的厚度;压电层970,位于所述电极960上,覆盖所述空腔940,所述压电层970包括第一侧970a及所述第一侧970a相对的第二侧970b,所述中间层930位于所述第一侧970a,所述电极960位于所述第一侧970a;电极980,位于所述第二侧970b,位于所述压电层970上。由图9可见,谐振区(即,所述电极960和所述电极980的重合区域)相对于所述空腔940悬空,与所述中间层930没有重合部。其中,所述电极960包括:电极层961,位于所述第一侧970a,接触所述压电层970;电极层962,位于所述第一侧970a,接触所述电极层961,所述电极层962与所述压电层970分别位于所述电极层961两侧。其中,所述电极980包括:电极层981,位于所述第二侧970b,接触所述压电层970;电极层982,位于所述第二侧970b,接触所述电极层981,所述压电层970与所述电极层982分别位于所述电极层981两侧。
本实施例中,所述基底910的材料包括但不限于以下至少之一:硅、碳化硅、玻璃、蓝宝石、尖晶石、砷化镓、氮化镓。
本实施例中,所述薄膜920包括但不限于多晶薄膜。本实施例中,所述多晶薄膜的材料包括但不限于以下至少之一:多晶硅、多晶氮化硅、多晶碳化硅。需要说明的是,所述薄膜920可以防止所述基底910表面形成自由电子层,以减少所述基底910的射频损耗。
本实施例中,所述中间层930的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。本实施例中,所述中间层930的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述电极层961的材料的声阻抗大于所述电极层962的材料的声阻抗。本实施例中,所述电极层962的材料的导电性高于所述电极层961的材料的导电性。本实施例中,所述电极层961的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层962的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层970为平层,还覆盖所述中间层930的上表面侧。本实施例中,所述压电层970的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层970包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒。所属技术领域的技术人员知晓晶粒的晶向、晶面等可以基于坐标系表示。
本实施例中,所述第一晶粒可以基于第一立体坐标系表示,所述第二晶粒可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶粒的高,所述第二坐标轴对应所述第二晶粒的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层970包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
需要说明的是,在平面上形成所述压电层970可以使所述压电层970不包括明显转向的晶粒,从而可以提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层981的材料的声阻抗大于所述电极层982的材料的声阻抗。本实施例中,所述电极层982的材料的导电性高于所述电极层981的材料的导电性。本实施例中,所述电极层981的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层982的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极960上与所述电极980重合的部分位于所述空腔940内;所述电极980上与所述电极960重合的部分位于所述空腔940上方。
需要说明的是,所述电极层962与所述电极层982的导电性较高,从而降低了所述电极960和所述电极980的电阻,减少了电学损耗。此外,所述电极层961与所述电极层962具有声阻抗差,所述电极层981与所述电极层982具有声阻抗差,可以阻隔漏波。
图10是本发明实施例的一种体声波谐振装置1000的剖面A结构示意图。
如图10所示,本发明实施例提供一种体声波谐振装置1000包括:衬底层1010,所述衬底层1010的上表面侧包括空腔1020和凹槽1030,其中,所述凹槽1030位于所述空腔1020左右两侧中的一侧并和所述空腔1020相通,所述凹槽1030的深度小于所述空腔1020的深度;电极1040,所述电极1040的第一端1040a位于所述空腔1020内,所述电极1040的第二端1040b位于所述凹槽1030内,其中,所述凹槽1030的深度等于所述电极1040的厚度;压电层1050,位于所述电极1040上,覆盖所述空腔1020,所述压电层1050包括第一侧1050a及所述第一侧1050a相对的第二侧1050b,所述电极1040位于所述第一侧1050a;电极1060,位于所述第二侧1050b,位于所述压电层1050上。由图10可见,谐振区(即,所述电极1040和所述电极1060的重合区域)相对于所述空腔1020悬空,与所述衬底层1010没有重合部。其中,所述电极1040包括:电极层1041,位于所述第一侧1050a,接触所述压电层1050;电极层1042,位于所述第一侧1050a,接触所述电极层1041,所述电极层1042与所述压电层1050分别位于所述电极层1041两侧。其中,所述电极1060包括:电极层1061,位于所述第二侧1050b,接触所述压电层1050;电极层1062,位于所述第二侧1050b,接触所述电极层1061,所述压电层1050与所述电极层1062分别位于所述电极层1061两侧。
本实施例中,所述衬底层1010的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。本实施例中,所述衬底层1010的厚度包括但不限于:20微米至100微米。
本实施例中,所述电极层1041的材料的声阻抗大于所述电极层1042的材料的声阻抗。本实施例中,所述电极层1042的材料的导电性高于所述电极层1041的材料的导电性。本实施例中,所述电极层1041的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层1042的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层1050为平层,还覆盖所述衬底层1010的上表面侧。本实施例中,所述压电层1050的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层1050包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒。所属技术领域的技术人员知晓晶粒的晶向、晶面等可以基于坐标系表示。
本实施例中,所述第一晶粒可以基于第一立体坐标系表示,所述第二晶粒可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶粒的高,所述第二坐标轴对应所述第二晶粒的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层1050包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
需要说明的是,在平面上形成所述压电层1050可以使所述压电层1050不包括明显转向的晶粒,从而可以提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层1061的材料的声阻抗大于所述电极层1062的材料的声阻抗。本实施例中,所述电极层1062的材料的导电性高于所述电极层1061的材料的导电性。本实施例中,所述电极层1061的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层1062的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极1040上与所述电极1060重合的部分位于所述空腔1020内;所述电极1060上与所述电极1040重合的部分位于所述空腔1020上方。
需要说明的是,所述电极层1042与所述电极层1062的导电性较高,从而降低了所述电极1040和所述电极1060的电阻,减少了电学损耗。此外,所述电极层1041与所述电极层1042具有声阻抗差,所述电极层1061与所述电极层1062具有声阻抗差,可以阻隔漏波。
图11是本发明实施例的一种体声波谐振装置1100的剖面A结构示意图。
如图11所示,本发明实施例提供一种体声波谐振装置1100包括:基底1110;中间层1120,位于所述基底1110上,用于阻隔漏波,所述中间层1120的上表面侧包括空腔1130和凹槽1140,其中,所述凹槽1140位于所述空腔1130左右两侧中的一侧并和所述空腔1130相通,所述凹槽1140的深度小于所述空腔1130的深度;电极1150,所述电极1150的第一端1150a位于所述空腔1130内,所述电极1150的第二端1150b位于所述凹槽1140内;隔膜1160,位于所述电极1150上,其中,所述凹槽1140的深度等于所述电极1150与所述隔膜1160的厚度之和;压电层1170,位于所述隔膜1160上,覆盖所述空腔1130,所述压电层1170包括第一侧1170a及所述第一侧1170a相对的第二侧1170b,所述中间层1120位于所述第一侧1170a,所述电极1150位于所述第一侧1170a,所述隔膜1160位于所述第一侧1170a;隔膜1180,位于所述第二侧1170b,位于所述压电层1170上;电极1190,位于所述第二侧1170b,位于所述隔膜1180上。由图11可见,谐振区(即,所述电极1150和所述电极1190的重合区域)相对于所述空腔1130悬空,与所述中间层1120没有重合部。其中,所述电极1150包括:电极层1151,位于所述第一侧1170a,接触所述隔膜1160;电极层1152,位于所述第一侧1170a,接触所述电极层1151,所述电极层1152与所述隔膜1160分别位于所述电极层1151两侧。其中,所述电极1190包括:电极层1191,位于所述第二侧1170b,接触所述隔膜1180;电极层1192,位于所述第二侧1170b,接触所述电极层1191,所述隔膜1180与所述电极层1192分别位于所述电极层1191两侧。
本实施例中,所述基底1110的材料包括但不限于以下至少之一:硅、碳化硅、玻璃、蓝宝石、尖晶石、砷化镓、氮化镓。
本实施例中,所述中间层1120的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。本实施例中,所述中间层1120的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述电极层1152的材料的声阻抗大于所述电极层1151的材料的声阻抗。本实施例中,所述电极层1151的材料的导电性高于所述电极层1152的材料的导电性。本实施例中,所述电极层1152的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层1151的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述隔膜1160的材料包括但不限于以下至少之一:钨、氮化钨、氮化钛、钴、钌、钽、氮化钽、氧化铟。本实施例中,所述隔膜1160的厚度范围包括但不限于:30纳米至50纳米。需要说明的是,所述隔膜1160用于防止电极材料与压电材料发生化学反应,影响电学性能;所属技术领域的技术人员知晓的其他防扩散隔膜(diffusion barrier)材料也可以用于本发明实施例。此外,防扩散隔膜的厚度与电极相比较薄。本实施例中,所述隔膜1160的声阻抗大于所述电极层1151的声阻抗。
本实施例中,所述压电层1170为平层,还覆盖所述中间层1120的上表面侧。本实施例中,所述压电层1170的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,在所述压电层1170的材料中掺入稀土元素,其中,所述稀土元素包括但不限于以下至少之一:钪、镧、钇。需要说明的是,在压电材料中掺入稀土元素,稀土元素原子会替代一定比例的压电材料中的一种元素原子,形成更长的化学键,从而产生压力。例如,在氮化铝中掺入钪,钪原子会替代一定比例的铝原子,氮原子数保持不变,形成的钪氮键比铝氮键长,从而产生压力,获得更高的压电常数及机电耦合系数,其中,所述一定比例指钪原子数占钪原子数加铝原子数之和的比例,其范围包括3%到40%。
本实施例中,所述压电层1170包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒。所属技术领域的技术人员知晓晶粒的晶向、晶面等可以基于坐标系表示。
本实施例中,所述第一晶粒可以基于第一立体坐标系表示,所述第二晶粒可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶粒的高,所述第二坐标轴对应所述第二晶粒的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层1170包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
需要说明的是,在平面上形成所述压电层1170可以使所述压电层1170不包括明显转向的晶粒,从而可以提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述隔膜1180的材料包括但不限于以下至少之一:钨、氮化钨、氮化钛、钴、钌、钽、氮化钽、氧化铟。本实施例中,所述隔膜1180的厚度范围包括:30纳米至50纳米。需要说明的是,所属技术领域的技术人员知晓的其他防扩散隔膜材料也可以用于本发明实施例。本实施例中,所述隔膜1180的声阻抗大于所述电极层1191的声阻抗。
本实施例中,所述电极层1192的材料的声阻抗大于所述电极层1191的材料的声阻抗。本实施例中,所述电极层1191的材料的导电性高于所述电极层1192的材料的导电性。本实施例中,所述电极层1192的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述电极层1191的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极1150上与所述电极1190重合的部分位于所述空腔1130内;所述电极1190上与所述电极1150重合的部分位于所述空腔1130上方。
需要说明的是,所述电极层1151与所述电极层1191的导电性较高,从而降低了所述电极1150和所述电极1190的电阻,减少了电学损耗。此外,所述电极层1151与所述电极层1152具有声阻抗差,所述电极层1191与所述电极层1192具有声阻抗差,可以阻隔漏波。此外,所述电极层1151与所述电极层1191具有较低的声学衰弱,从而具有较低的声学损耗。此外,所述电极层1151与所述电极层1191具有较高导热性,从而提升谐振装置的散热能力。
图12是本发明实施例的一种体声波谐振装置1200的剖面A结构示意图。
如图12所示,本发明实施例提供一种体声波谐振装置1200包括:基底1210;中间层1220,位于所述基底1210上,用于阻隔漏波,所述中间层1220的上表面侧包括空腔1230和凹槽1240,其中,所述凹槽1240位于所述空腔1230左右两侧中的一侧并和所述空腔1230相通,所述凹槽1240的深度小于所述空腔1230的深度;电极1250,所述电极1250的第一端1250a位于所述空腔1230内,所述电极1250的第二端1250b位于所述凹槽1240内,其中,所述凹槽1240的深度等于所述电极1250的厚度;压电层1260,位于所述电极1250上,覆盖所述空腔1230,所述压电层1260包括第一侧1260a及所述第一侧1260a相对的第二侧1260b,所述中间层1220位于所述第一侧1260a,所述电极1250位于所述第一侧1260a;电极1270,位于所述第二侧1260b,位于所述压电层1260上。由图12可见,谐振区(即,所述电极1250和所述电极1270的重合区域)相对于所述空腔1230悬空,与所述中间层1220没有重合部。其中,所述电极1250包括:电极层1251,位于所述第一侧1260a,接触所述压电层1260;介质层1252,位于所述第一侧1260a,接触所述电极层1251;电极层1253,位于所述第一侧1260a,接触所述介质层1252,所述电极层1253与所述电极层1251分别位于所述介质层1252两侧。其中,所述电极1270包括:电极层1271,位于所述第二侧1260b,接触所述压电层1260;介质层1272,位于所述第二侧1260b,接触所述电极层1271;电极层1273,位于所述第二侧1260b,接触所述介质层1272,所述电极层1271与所述电极层1273分别位于所述介质层1272两侧。
本实施例中,所述基底1210的材料包括但不限于以下至少之一:硅、碳化硅、玻璃、蓝宝石、尖晶石、砷化镓、氮化镓。
本实施例中,所述中间层1220的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。本实施例中,所述中间层1220的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述电极层1251的材料的声阻抗大于所述电极层1253的材料的声阻抗。本实施例中,所述电极层1253的材料的导电性高于所述电极层1251的材料的导电性。本实施例中,所述介质层1252的声阻抗小于所述电极层1253的声阻抗。本实施例中,所述电极层1251的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述介质层1252的材料包括但不限于以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。本实施例中,所述电极层1253的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层1260为平层,还覆盖所述中间层1220的上表面侧。本实施例中,所述压电层1260的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层1260包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒。所属技术领域的技术人员知晓晶粒的晶向、晶面等可以基于坐标系表示。
本实施例中,所述第一晶粒可以基于第一立体坐标系表示,所述第二晶粒可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶粒的高,所述第二坐标轴对应所述第二晶粒的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层1260包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
需要说明的是,在平面上形成所述压电层1260可以使所述压电层1260不包括明显转向的晶粒,从而可以提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层1271的材料的声阻抗大于所述电极层1273的材料的声阻抗。本实施例中,所述电极层1273的材料的导电性高于所述电极层1271的材料的导电性。本实施例中,所述介质层1272的声阻抗小于所述电极层1273的声阻抗。本实施例中,所述电极层1271的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述介质层1272的材料包括但不限于以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。本实施例中,所述电极层1273的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极1250上与所述电极1270重合的部分位于所述空腔1230内;所述电极1270上与所述电极1250重合的部分位于所述空腔1230上方。
需要说明的是,所述电极层1253与所述电极层1273的导电性较高,从而降低了所述电极1250和所述电极1270的电阻,减少了电学损耗。此外,所述介质层1252的声阻抗小于所述电极层1251和所述电极层1253的声阻抗,所述介质层1272的声阻抗小于所述电极层1271和所述电极层1273的声阻抗,可以阻隔漏波。
图13是本发明实施例的一种体声波谐振装置1300的剖面A结构示意图。
如图13所示,本发明实施例提供一种体声波谐振装置1300包括:基底1310;中间层1320,位于所述基底1310上,用于阻隔漏波,所述中间层1320的上表面侧包括空腔1330和凹槽1340,其中,所述凹槽1340位于所述空腔1330左右两侧中的一侧并和所述空腔1330相通,所述凹槽1340的深度小于所述空腔1330的深度;电极1350,所述电极1350的第一端1350a位于所述空腔1330内,所述电极1350的第二端1350b位于所述凹槽1340内,其中,所述凹槽1340的深度等于所述电极1350的厚度;压电层1360,位于所述电极1350上,覆盖所述空腔1330,所述压电层1360包括第一侧1360a及所述第一侧1360a相对的第二侧1360b,所述中间层1320位于所述第一侧1360a,所述电极1350位于所述第一侧1360a;电极1370,位于所述第二侧1360b,位于所述压电层1360上。由图13可见,谐振区(即,所述电极1350和所述电极1370的重合区域)相对于所述空腔1330悬空,与所述中间层1320没有重合部。其中,所述电极1350包括:电极层1351,位于所述第一侧1360a,接触所述压电层1360;介质层1352,位于所述第一侧1360a,接触所述电极层1351,所述介质层1352包括至少一个通孔1353;电极层1354,位于所述第一侧1360a,嵌入所述至少一个通孔1353,覆盖所述介质层1352;所述介质层1352两侧分别为所述电极层1351与所述电极层1354,所述电极层1354通过所述至少一个通孔1353接触所述电极层1351。其中,所述电极1370包括:电极层1371,位于所述第二侧1360b,接触所述压电层1360;介质层1372,位于所述第二侧1360b,接触所述电极层1371,所述介质层1372包括至少一个通孔1373;电极层1374,位于所述第二侧1360b,嵌入所述至少一个通孔1373,覆盖所述介质层1372;所述介质层1372两侧分别为所述电极层1371与所述电极层1374,所述电极层1374通过所述至少一个通孔1373接触所述电极层1371。
本实施例中,所述基底1310的材料包括但不限于以下至少之一:硅、碳化硅、玻璃、蓝宝石、尖晶石、砷化镓、氮化镓。
本实施例中,所述中间层1320的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。本实施例中,所述中间层1320的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述电极层1351的材料的声阻抗大于所述电极层1353的材料的声阻抗。本实施例中,所述电极层1353的材料的导电性高于所述电极层1351的材料的导电性。本实施例中,所述介质层1352的声阻抗小于所述电极层1353的声阻抗。本实施例中,所述电极层1351的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述介质层1352的材料包括但不限于以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。本实施例中,所述电极层1353的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述压电层1360为平层,还覆盖所述中间层1320的上表面侧本实施例中,所述压电层1360的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层1360包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒。所属技术领域的技术人员知晓晶粒的晶向、晶面等可以基于坐标系表示。
本实施例中,所述第一晶粒可以基于第一立体坐标系表示,所述第二晶粒可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶粒的高,所述第二坐标轴对应所述第二晶粒的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层1360包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
需要说明的是,在平面上形成所述压电层1360可以使所述压电层1360不包括明显转向的晶粒,从而可以提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述电极层1371的材料的声阻抗大于所述电极层1373的材料的声阻抗。本实施例中,所述电极层1373的材料的导电性高于所述电极层1371的材料的导电性。本实施例中,所述介质层1372的声阻抗小于所述电极层1373的声阻抗。本实施例中,所述电极层1371的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述介质层1372的材料包括但不限于以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。本实施例中,所述电极层1373的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极1350上与所述电极1370重合的部分位于所述空腔1330内;所述电极1370上与所述电极1350重合的部分位于所述空腔1330上方。
需要说明的是,所述电极层1353与所述电极层1373的导电性较高,从而降低了所述电极1350和所述电极1370的电阻,减少了电学损耗。此外,所述介质层1352的声阻抗小于所述电极层1351和所述电极层1353的声阻抗,所述介质层1372的声阻抗小于所述电极层1371和所述电极层1373的声阻抗,可以阻隔漏波。
图14是本发明实施例的一种体声波谐振装置1400的剖面A结构示意图。
如图14所示,本发明实施例提供一种体声波谐振装置1400包括:基底1410;中间层1420,位于所述基底1410上,用于阻隔漏波,所述中间层1420的上表面侧包括空腔1430和凹槽1440,其中,所述凹槽1440位于所述空腔1430左右两侧中的一侧并和所述空腔1430相通,所述凹槽1440的深度小于所述空腔1430的深度;电极1450,所述电极1450的第一端1450a位于所述空腔1430内,所述电极1450的第二端1450b位于所述凹槽1440内;隔膜1460,位于所述电极1450上,其中,所述凹槽1440的深度等于所述电极1450与所述隔膜1460的厚度之和;压电层1470,位于所述隔膜1460上,覆盖所述空腔1430,所述压电层1470包括第一侧1470a及所述第一侧1470a相对的第二侧1470b,所述中间层1420位于所述第一侧1470a,所述电极1450位于所述第一侧1470a,所述隔膜1460位于所述第一侧1470a;隔膜1480,位于所述第二侧1470b,位于所述压电层1470上;电极1490,位于所述第二侧1470b,位于所述隔膜1480上。由图14可见,谐振区(即,所述电极1450和所述电极1490的重合区域)相对于所述空腔1430悬空,与所述中间层1420没有重合部。其中,所述电极1450包括:电极层1451,位于所述第一侧1470a,接触所述隔离层1460;介质层1452,位于所述第一侧1470a,接触所述电极层1451,所述介质层1452包括至少一个通孔1453;电极层1454,位于所述第一侧1470a,嵌入所述至少一个通孔1453,覆盖所述介质层1452;所述介质层1452两侧分别为所述电极层1451与所述电极层1454,所述电极层1454通过所述至少一个通孔1453接触所述电极层1451。其中,所述电极1490包括:电极层1491,位于所述第二侧1470b,接触所述隔离层1480;介质层1492,位于所述第二侧1470b,接触所述电极层1491,所述介质层1492包括至少一个通孔1493;电极层1494,位于所述第二侧1470b,嵌入所述至少一个通孔1493,覆盖所述介质层1492;所述介质层1492两侧分别为所述电极层1491与所述电极层1494,所述电极层1494通过所述至少一个通孔1493接触所述电极层1491。
本实施例中,所述基底1410的材料包括但不限于以下至少之一:硅、碳化硅、玻璃、蓝宝石、尖晶石、砷化镓、氮化镓。
本实施例中,所述中间层1420的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。本实施例中,所述中间层1320的厚度包括但不限于:0.1微米至10微米。
本实施例中,所述电极层1451的材料的声阻抗大于所述电极层1453的材料的声阻抗。本实施例中,所述电极层1453的材料的导电性高于所述电极层1451的材料的导电性。本实施例中,所述介质层1452的声阻抗小于所述电极层1453的声阻抗。本实施例中,所述电极层1451的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述介质层1452的材料包括但不限于以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。本实施例中,所述电极层1453的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述隔膜1460的材料包括但不限于以下至少之一:钨、氮化钨、氮化钛、钴、钌、钽、氮化钽、氧化铟。本实施例中,所述隔膜1460的厚度范围包括:30纳米至50纳米。需要说明的是,所述隔膜1460用于防止电极材料与压电材料发生化学反应,影响电学性能;所属技术领域的技术人员知晓的其他防扩散隔膜材料也可以用于本发明实施例。此外,防扩散隔膜的厚度与电极相比较薄。本实施例中,所述隔膜1460的声阻抗大于所述电极层1451的声阻抗。
本实施例中,所述压电层1470为平层,还覆盖所述中间层1470的上表面侧本实施例中,所述压电层1470的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层1470包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒。所属技术领域的技术人员知晓晶粒的晶向、晶面等可以基于坐标系表示。
本实施例中,所述第一晶粒可以基于第一立体坐标系表示,所述第二晶粒可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶粒的高,所述第二坐标轴对应所述第二晶粒的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反, 所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层1470包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
需要说明的是,在平面上形成所述压电层1470可以使所述压电层1470不包括明显转向的晶粒,从而可以提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述隔膜1480的材料包括但不限于以下至少之一:钨、氮化钨、氮化钛、钴、钌、钽、氮化钽、氧化铟。本实施例中,所述隔膜1480的厚度范围包括:30纳米至50纳米。需要说明的是,所述隔膜1480用于防止电极材料与压电材料发生化学反应,影响电学性能;所属技术领域的技术人员知晓的其他防扩散隔膜材料也可以用于本发明实施例。此外,防扩散隔膜的厚度与电极相比较薄。本实施例中,所述隔膜1480的声阻抗大于所述电极层1491的声阻抗。
本实施例中,所述电极层1491的材料的声阻抗大于所述电极层1493的材料的声阻抗。本实施例中,所述电极层1493的材料的导电性高于所述电极层1491的材料的导电性。本实施例中,所述介质层1492的声阻抗小于所述电极层1493的声阻抗。本实施例中,所述电极层1491的材料包括但不限于以下至少之一:钌、钼、钨、铂、铱。本实施例中,所述介质层1492的材料包括但不限于以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。本实施例中,所述电极层1493的材料包括但不限于以下至少之一:铝、铍。
本实施例中,所述电极1450上与所述电极1490重合的部分位于所述空腔1430内;所述电极1490上与所述电极1450重合的部分位于所述空腔1330上方。
需要说明的是,所述电极层1453与所述电极层1493的导电性较高,从而降低了所述电极1450和所述电极1490的电阻,减少了电学损耗。此外,所述介质层1452的声阻抗小于所述电极层1451和所述电极层1453的声阻抗,所述介质层1492的声阻抗小于所述电极层1491和所述电极层1493的声阻抗,可以阻隔漏波。
综上所述,本发明提供的体声波谐振装置包括第一电极(即,下电极)和第二电极(即,上电极),其中,所述第一电极包括第一电极层和第二电极层,所述第二电极包括第三电极层和第四电极层,所述第二电极层的导电性较所述第一电极层更高,所述第四电极层的导电性较所述第三电极层更高,从而可以减小所述第一电极和所述第二电极的电阻,降低电学损耗,提升Q值。
应该理解,此处的例子和实施例仅是示例性的,本领域技术人员可以在不背离本申请和所附权利要求所限定的本发明的精神和范围的情况下,做出各种修改和更正。

Claims (36)

  1. 一种体声波谐振装置,其特征在于,包括:
    第一层,所述第一层包括位于第一侧的第一空腔;
    第一电极,所述第一电极的第一端位于所述第一空腔内,所述第一电极的第二端接触所述第一层;
    第二层,位于所述第一侧,位于所述第一电极上;以及
    第二电极,位于所述第二层上,所述第一电极和所述第二电极位于所述第二层两侧;
    其中,所述第一电极上与所述第二电极重合的第一部分位于所述第一空腔内;
    其中,所述第一电极包括第一电极层和第二电极层,所述第二电极层和所述第二层位于所述第一电极层的两侧;
    其中,所述第二电极包括第三电极层和第四电极层,所述第二层和所述第四电极层位于所述第三电极层的两侧。
  2. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一层还包括:中间层,所述中间层包括所述第一空腔。
  3. 如权利要求2所述的体声波谐振装置,其特征在于,所述中间层的材料包括以下至少之一:聚合物、绝缘电介质、多晶硅。
  4. 如权利要求2所述的体声波谐振装置,其特征在于,所述中间层的厚度包括:0.1微米至10微米。
  5. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一层还包括:衬底层,所述衬底层包括所述第一空腔。
  6. 如权利要求5所述的体声波谐振装置,其特征在于,所述衬底层的材料包括以下至少之一:聚合物、绝缘电介质、多晶硅。
  7. 如权利要求5所述的体声波谐振装置,其特征在于,所述衬底层的厚度包括:20微米至100微米。
  8. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一层还包括:第一基底,所述第一基底包括所述第一空腔。
  9. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一层还包括位于所述第一侧的第一凹槽,所述第一凹槽位于所述第一空腔水平方向上的一侧并与所述第一空腔相通,所述第二端位于所述第一凹槽内。
  10. 如权利要求1所述的体声波谐振装置,其特征在于,所述第二层包括:压电层,所述压电层包括多个晶粒,所述多个晶粒包括第一晶粒和第二晶粒,其中,所述第一晶粒和所述第二晶粒是所述多个晶粒中的任意两个晶粒;沿第一方向的第一坐标轴对应所述第一晶粒的高,沿第二方向的第二坐标轴对应所述第二晶粒的高,其中,所述第一方向和所述第二方向相同或相反。
  11. 如权利要求10所述的体声波谐振装置,其特征在于,所述第一晶粒对应第一坐标系,所述第一坐标系包括所述第一坐标轴和沿第三方向的第三坐标轴;所述第二晶粒对应第二坐标系,所述第二坐标系包括所述第二坐标轴和沿第四方向的第四坐标轴。
  12. 如权利要求11所述的体声波谐振装置,其特征在于,所述第一坐标系还包括沿第五方向的第五坐标轴,所述第二坐标系还包括沿第六方向的第六坐标轴。
  13. 如权利要求12所述的体声波谐振装置,其特征在于,所述第三方向和所述第四方向相同或相反。
  14. 如权利要求10所述的体声波谐振装置,其特征在于,所述压电层的材料包括以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
  15. 如权利要求1所述的体声波谐振装置,其特征在于,所述第二层包括:压电层,所述压电层包括多个晶粒,所述多个晶粒组成的晶体的摇摆曲线半峰宽低于2.5度。
  16. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一电极层的声阻抗大于所述第二电极层的声阻抗;所述第一电极层的导电性低于所述第二电极层的导电性;所述第三电极层的声阻抗大于所述第四电极层的声阻抗;所述第三电极层的导电性低于所述第四电极层的导电性。
  17. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一电极层的材料包括以下至少之一:钌、钼、钨、铂、铱;所述第二电极层的材料包括以下至少之一:铝、铍;所述第三电极层的材料包括以下至少之一:钌、钼、钨、铂、铱;所述第四电极层的材料包括以下至少之一:铝、铍。
  18. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一电极层的声阻抗小于所述第二电极层的声阻抗;所述第一电极层的导电性高于所述第二电极层的导电性;所述第三电极层的声阻抗小于所述第四电极层的声阻抗;所述第三电极层的导电性高于所述第四电极层的导电性。
  19. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一电极层的材料包括以下至少之一:铝、铍;所述第二电极层的材料包括以下至少之一:钌、钼、钨、铂、铱;所述第三电极层的材料包括以下至少之一:铝、铍;所述第四电极层的材料包括以下至少之一:钌、钼、钨、铂、铱。
  20. 如权利要求1所述的体声波谐振装置,其特征在于,还包括:第一隔膜,所述第一电极层和所述第二层位于所述第一隔膜两侧,所述第一隔膜的声阻抗大于所述第一电极层的声阻抗。
  21. 如权利要求20所述的体声波谐振装置,其特征在于,所述第一隔膜的材料包括以下至少之一:钨、氮化钨、氮化钛、钴、钌、钽、氮化钽、氧化铟。
  22. 如权利要求1所述的体声波谐振装置,其特征在于,还包括:第二隔膜,所述第二层和所述第三电极层位于所述第二隔膜两侧,所述第二隔膜的声阻抗大于所述第三电极层的声阻抗。
  23. 如权利要求22所述的体声波谐振装置,其特征在于,所述第二隔膜的材料包括以下至少之一:钨、氮化钨、氮化钛、钴、钌、钽、氮化钽、氧化铟。
  24. 如权利要求1所述的体声波谐振装置,其特征在于,所述第一电极还包括第一介质层,所述第一介质层两侧为所述第二电极层和所述第一电极层,所述第一介质层的声阻抗小于所述第一电极层的声阻抗,所述第一介质层的声阻抗小于所述第二电极层的声阻抗。
  25. 如权利要求24所述的体声波谐振装置,其特征在于,所述第一介质层的材料包括以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。
  26. 如权利要求24所述的体声波谐振装置,其特征在于,所述第一介质层包括至少一个第二凹槽,所述第二电极层嵌入所述至少一个第二凹槽内,覆盖所述第一介质层。
  27. 如权利要求1所述的体声波谐振装置,其特征在于,所述第二电极还包括第二介质层,所述第二介质层两侧为所述第三电极层和所述第四电极层,所述第二介质层的声阻抗小于所述第三电极层的声阻抗,所述第二介质层的声阻抗小于所述第四电极层的声阻抗。
  28. 如权利要求27所述的体声波谐振装置,其特征在于,所述第二介质层的材料包括以下至少之一:二氧化硅、碳氧化硅、氮化硅、氮化铝、氧化钛、氧化铪、氧化铝。
  29. 如权利要求27所述的体声波谐振装置,其特征在于,所述第二介质层包括至少一个第三凹槽,所述第四电极层嵌入所述至少一个第三凹槽内,覆盖所述第二介质层。
  30. 如权利要求1所述的体声波谐振装置,其特征在于,还包括:第二基底,位于所述第一层的第二侧,所述第二侧与所述第一侧相对。
  31. 如权利要求30所述的体声波谐振装置,其特征在于,还包括:薄膜,位于所述第一层和所述第二基底之间。
  32. 如权利要求31所述的体声波谐振装置,其特征在于,所述薄膜包括:多晶薄膜。
  33. 一种滤波装置,其特征在于,包括:至少一个如权利要求1 至32 其中之一所述的体声波谐振装置。
  34. 一种射频前端装置,其特征在于,包括:功率放大装置与至少一个如权利要求33所述的滤波装置;所述功率放大装置与所述滤波装置连接。
  35. 一种射频前端装置,其特征在于,包括:低噪声放大装置与至少一个如权利要求33所述的滤波装置;所述低噪声放大装置与所述滤波装置连接。
  36. 一种射频前端装置,其特征在于,包括:多工装置,所述多工装置包括至少一个如权利要求33所述的滤波装置。
PCT/CN2020/102913 2020-06-22 2020-07-20 一种体声波谐振装置、一种滤波装置及一种射频前端装置 WO2021258442A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/018,686 US11528006B2 (en) 2020-06-22 2020-09-11 BAW resonance device, filter device and RF front-end device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010575797.3A CN111740718A (zh) 2020-06-22 2020-06-22 一种体声波谐振装置、一种滤波装置及一种射频前端装置
CN202010575797.3 2020-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/018,686 Continuation US11528006B2 (en) 2020-06-22 2020-09-11 BAW resonance device, filter device and RF front-end device

Publications (1)

Publication Number Publication Date
WO2021258442A1 true WO2021258442A1 (zh) 2021-12-30

Family

ID=72652063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102913 WO2021258442A1 (zh) 2020-06-22 2020-07-20 一种体声波谐振装置、一种滤波装置及一种射频前端装置

Country Status (2)

Country Link
CN (2) CN111740718A (zh)
WO (1) WO2021258442A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115225060A (zh) * 2022-09-15 2022-10-21 常州承芯半导体有限公司 声表面波谐振装置及其形成方法
CN115242215A (zh) * 2022-09-19 2022-10-25 常州承芯半导体有限公司 体声波谐振装置及其形成方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696774A (zh) * 2020-12-31 2022-07-01 诺思(天津)微系统有限责任公司 单晶体声波谐振器、滤波器及电子设备
CN113824422A (zh) * 2021-09-08 2021-12-21 常州承芯半导体有限公司 体声波谐振装置、滤波装置及射频前端装置
CN113872554A (zh) * 2021-09-08 2021-12-31 常州承芯半导体有限公司 体声波谐振装置、滤波装置及射频前端装置
CN113783548B (zh) * 2021-11-08 2022-04-01 深圳新声半导体有限公司 谐振器及滤波器
CN114362712B (zh) * 2022-03-21 2022-10-21 常州承芯半导体有限公司 体声波谐振装置及其形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873010A (zh) * 2014-03-17 2014-06-18 电子科技大学 一种压电薄膜体声波谐振器及其制备方法
CN206658185U (zh) * 2017-03-07 2017-11-21 杭州左蓝微电子技术有限公司 一种薄膜体声波谐振器及滤波器
CN208768044U (zh) * 2018-11-13 2019-04-19 杭州左蓝微电子技术有限公司 基于键合的薄膜体声波谐振器
US20190253036A1 (en) * 2018-02-13 2019-08-15 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave resonator
CN110401428A (zh) * 2018-04-25 2019-11-01 上海珏芯光电科技有限公司 薄膜体声波谐振器及其制造方法
CN111082774A (zh) * 2019-10-23 2020-04-28 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器、滤波器及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873010A (zh) * 2014-03-17 2014-06-18 电子科技大学 一种压电薄膜体声波谐振器及其制备方法
CN206658185U (zh) * 2017-03-07 2017-11-21 杭州左蓝微电子技术有限公司 一种薄膜体声波谐振器及滤波器
US20190253036A1 (en) * 2018-02-13 2019-08-15 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave resonator
CN110401428A (zh) * 2018-04-25 2019-11-01 上海珏芯光电科技有限公司 薄膜体声波谐振器及其制造方法
CN208768044U (zh) * 2018-11-13 2019-04-19 杭州左蓝微电子技术有限公司 基于键合的薄膜体声波谐振器
CN111082774A (zh) * 2019-10-23 2020-04-28 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器、滤波器及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115225060A (zh) * 2022-09-15 2022-10-21 常州承芯半导体有限公司 声表面波谐振装置及其形成方法
CN115242215A (zh) * 2022-09-19 2022-10-25 常州承芯半导体有限公司 体声波谐振装置及其形成方法

Also Published As

Publication number Publication date
CN113904648A (zh) 2022-01-07
CN111740718A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2021258442A1 (zh) 一种体声波谐振装置、一种滤波装置及一种射频前端装置
JP4688070B2 (ja) 圧電薄膜共振子、圧電薄膜デバイスおよびその製造方法
US20230223913A1 (en) Baw resonance device, filter device and rf front-end device
WO2023036027A1 (zh) 体声波谐振装置、滤波装置及射频前端装置
CN113992180B (zh) 体声波谐振装置及其形成方法、滤波装置及射频前端装置
CN214045584U (zh) 一种体声波谐振装置、一种滤波装置及一种射频前端装置
EP4372987A1 (en) Bulk acoustic wave resonator device and method for forming same, filtering device, and radio frequency front end device
EP4372989A1 (en) Bulk acoustic wave resonance device and method for forming same, filtering device, and radio frequency front end device
WO2023036028A1 (zh) 体声波谐振装置、滤波装置及射频前端装置
US11528006B2 (en) BAW resonance device, filter device and RF front-end device
JP2006295182A (ja) 低ロスの薄膜コンデンサおよびその製造方法
CN114337581A (zh) 体声波谐振装置的形成方法
WO2023036026A1 (zh) 体声波谐振装置、滤波装置及射频前端装置
US20220321079A1 (en) Method for forming bulk acoustic wave resonance device
WO2021042344A1 (zh) 一种体声波谐振装置及一种体声波滤波器
WO2021042342A1 (zh) 一种体声波谐振装置及一种体声波滤波器
WO2022001861A1 (zh) 设置插入层以提升功率的体声波谐振器、滤波器及电子设备
US20220038075A1 (en) Bulk-acoustic wave resonator
TWI794053B (zh) 體聲波共振器
WO2022228452A1 (zh) 体声波谐振器、滤波器及电子设备
CN114598286A (zh) 体声波谐振装置的形成方法
EP4027515A1 (en) Method for forming bulk acoustic wave resonance device
CN115580255A (zh) 体声波谐振装置及其形成方法、滤波装置及射频前端装置
TW202205704A (zh) 體聲波共振器以及製造體聲波共振器之方法
CN117439565A (zh) 体声波谐振装置及其形成方法、滤波装置及射频前端装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942326

Country of ref document: EP

Kind code of ref document: A1