WO2021258326A1 - 咪达唑仑纳米晶用于制备改善血脑屏障通透性的药物中的应用 - Google Patents
咪达唑仑纳米晶用于制备改善血脑屏障通透性的药物中的应用 Download PDFInfo
- Publication number
- WO2021258326A1 WO2021258326A1 PCT/CN2020/098020 CN2020098020W WO2021258326A1 WO 2021258326 A1 WO2021258326 A1 WO 2021258326A1 CN 2020098020 W CN2020098020 W CN 2020098020W WO 2021258326 A1 WO2021258326 A1 WO 2021258326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- midazolam
- present
- combination
- preferred technical
- scheme
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/551—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
- A61K31/5513—1,4-Benzodiazepines, e.g. diazepam or clozapine
- A61K31/5517—1,4-Benzodiazepines, e.g. diazepam or clozapine condensed with five-membered rings having nitrogen as a ring hetero atom, e.g. imidazobenzodiazepines, triazolam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
- A61K47/38—Cellulose; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/44—Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
Definitions
- the invention belongs to the technical field of medicine, and specifically relates to the application of midazolam nanocrystals in preparing medicines for improving the permeability of the blood-brain barrier.
- Midazolam [8-chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo[1,5- ⁇ ][1,4]benzodiazepine, the structure is as follows Shown in I] It acts through the binding site of the ⁇ -aminobutyric acid (GABA) receptor, and reduces the release of the excitatory transmitter glutamate by inhibiting the reverse transport of the glutamate carrier in human glial cells, thereby effectively controlling the release of the excitatory transmitter glutamate Convulsions.
- GABA ⁇ -aminobutyric acid
- midazolam maleate tablets is "sleep disorder, insomnia, especially suitable for those who have difficulty falling asleep, and medication before surgery or diagnostic procedures.”
- the indications of midazolam injection are "preoperative medication before induction of anesthesia, induction and maintenance of anesthesia, conscious sedation for diagnostic or therapeutic procedures".
- the effects of using tablets and injections as anticonvulsants and antiepileptic drugs are not good.
- Midazolam is difficult to dissolve in water under neutral conditions, and its solubility increases when pH ⁇ 3.
- Midazolam injection (pH 2.9-3.7) is used for anesthesia. When it is injected intramuscularly for anticonvulsant, it has defects such as high irritation. Nanosuspension is neutral and has less irritation, but because midazolam is a poorly soluble drug, drug dissolution and dissolution become the rate-limiting step for its absorption in the body. For this reason, increasing the dissolution rate of drugs has become an important means to improve the bioavailability of drugs. How to improve the solubility, dissolution and bioavailability of midazolam, develop a midazolam preparation suitable for large-scale industrial production and its preparation method, and significantly improve its effectiveness, safety and stability, has become an urgent need in this field. Technical issues.
- the purpose of the present invention is to provide a midazolam nanocrystalline composition, said nanocrystalline composition containing midazolam, a dispersion medium and a pharmaceutically acceptable carrier, wherein midazolam: the dispersion medium
- midazolam the dispersion medium
- the pharmaceutically acceptable carrier is selected from any one or combination of steric protective agents and charge stabilizers, and it is also preferred that the dispersion medium is selected from water, oil, polyethylene glycol, and glycerin Any one or a combination of them.
- the oil is selected from any one or a combination of soybean oil, corn oil, camellia oil, and cottonseed oil.
- the particle size of the midazolam nanocrystals is ⁇ 600nm, preferably ⁇ 500nm, more preferably ⁇ 400nm, still preferably 100nm-350nm, and even more preferably 150-300nm.
- the absolute value of the potential of the midazolam nanocrystalline composition is greater than 10 mV, preferably greater than 15 mV.
- the weight volume percentage of midazolam: dispersion medium in the nanocrystalline composition is 1.0%-40.0%, preferably 5.0%-25.0%, more preferably 8-20%.
- the steric protective agent in the nanocrystalline composition is 0.2%-10.0%, preferably 1.0%-5.0%, more preferably 1.5%-3.5%, It is also preferably 2.0%-3.0%.
- the steric protective agent is selected from any one or a combination of nonionic surfactants and high molecular polymers.
- the non-ionic surfactant is selected from any one or a combination of polysorbate, glyceryl monostearate, poloxamer, Span, Maize, and Benze.
- the high molecular polymer is selected from the group consisting of hydroxypropyl methylcellulose (Hypromellose, HPMC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), Any one or a combination of Tween, glycerin, decyl glucoside, hydroxypropyl cellulose, sodium carboxymethyl cellulose, sodium alginate.
- HPMC hydroxypropyl methylcellulose
- PVP polyvinylpyrrolidone
- PVA polyvinyl alcohol
- the steric protective agent is selected from HPMC E5, HPMC E3, HPMC E6, HPMC E4M, HPMC K4M, Poloxamer 188, Poloxamer 407, PVP K12, PVP K17, PVP Any one or a combination of K30, PVA, Tween 80, Tween 20, sodium carboxymethyl cellulose, glycerin, decyl glucoside.
- the charge stabilizer the weight volume percentage of the dispersion medium in the nanocrystalline composition is 0.1%-3.0%, preferably 0.3%-2.0%, more preferably 0.5%-1.5%.
- the charge stabilizer is selected from any one or a combination of zwitterionic surfactants and anionic surfactants.
- the zwitterionic surfactant is selected from any one or a combination of lecithin and soybean phospholipid.
- the anionic surfactant is selected from any one or a combination of sodium dodecyl sulfate (SDS) and docusate sodium (DOSS).
- the charge stabilizer is selected from any one or a combination of sodium lauryl sulfate, sodium docusate, lecithin, and soybean phospholipid.
- the HLB value (hydrophilic-lipophilic balance value) of the charge stabilizer is not less than 10, preferably not less than 20, and more preferably not less than 30.
- midazolam the weight volume percentage of the dispersion medium in the nanocrystalline composition is 0.5%-45.0%
- space protection agent the weight volume percentage of the dispersion medium is 0.2%-10.0%
- Charge stabilizer The weight volume percentage of the dispersion medium is 0.1%-3.0%.
- midazolam in the nanocrystalline composition the weight-volume percentage of the dispersion medium is 1.0%-40.0%
- the space protection agent the weight-volume percentage of the dispersion medium is 1.0%-5.0%
- Charge stabilizer The weight and volume percentage of the dispersion medium is 0.3%-2.0%.
- midazolam in the nanocrystalline composition the weight volume percentage of the dispersion medium is 5%-25%
- the space protection agent the weight volume percentage of the dispersion medium is 2.0%-3.0%
- Charge stabilizer the weight and volume percentage of the dispersion medium is 0.5%-1.5%.
- the nanocrystalline composition contains 5.0% midazolam, 2.5% HPMC and 1.0% SDS by weight and volume.
- the nanocrystalline composition contains 5.0% midazolam, 2.5% HPMC and 0.5% SDS by weight and volume.
- the nanocrystalline composition contains 10.0% by weight and volume of midazolam, 2.5% of HPMC and 1.0% of SDS.
- the nanocrystalline composition contains 10.0% by weight and volume of midazolam, 2.5% of HPMC and 0.5% of SDS.
- the pharmaceutically acceptable carrier further includes any one or a combination of a pH adjusting agent, a preservative, a freeze-dried protective agent, and a flavoring agent.
- the pH adjusting agent is selected from hydrochloric acid, sulfuric acid, chloric acid, nitric acid, hydrobromic acid, hydrofluoric acid, phosphoric acid, sulfonic acid, malic acid, sorbic acid, fumaric acid, citric acid Acid, carboxylic acid, hydroxy acid, keto acid, acetic acid, oxalic acid, citric acid, succinic acid, formic acid, acetic acid, propionic acid, butyric acid, malonic acid, succinic acid, adipic acid, pyruvic acid, glutamic acid, Tartaric acid, lactic acid, itaconic acid, ascorbic acid, fumaric acid, ⁇ -ketoglutarate, fruit acid, sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, sodium bicarbonate, sodium phosphate, disodium hydrogen phosphate, phosphoric acid Any one or a combination of sodium dihydrogen, dipotassium hydrogen
- the pH adjusting agent is a buffering agent, preferably citric acid, potassium citrate, sodium citrate, malic acid, sodium malate, potassium malate, potassium hydroxide, sodium bicarbonate, Sodium hydroxide, potassium carbonate, sodium carbonate, phosphoric acid, disodium hydrogen phosphate, sodium dihydrogen phosphate, monoethanolamine, diethanolamine, triethanolamine, lactic acid, sodium lactate, potassium lactate, propionic acid, sodium propionate, potassium propionate, tartaric acid , Any one of sodium tartrate, sodium fumarate, potassium tartrate, potassium fumarate, fumaric acid or a combination thereof.
- a buffering agent preferably citric acid, potassium citrate, sodium citrate, malic acid, sodium malate, potassium malate, potassium hydroxide, sodium bicarbonate, Sodium hydroxide, potassium carbonate, sodium carbonate, phosphoric acid, disodium hydrogen phosphate, sodium dihydrogen phosphate, monoethanolamine, diethanolamine, triethanolamine, lactic acid, sodium
- the preservative is selected from benzoic acid or its salt, sorbic acid or its salt, paraben, sodium metabisulfite, chlorhexidine, sodium citrate, butylated hydroxytoluene ( BHT), butylated hydroxyanisole (BHA), tocopherol, ethylenediaminetetraacetic acid, propyl gallate, quaternary ammonium compounds, or any combination thereof.
- the corrective agent is selected from any one of xylitol, stevioside, mogroside, glycyrrhizin, cyclamate, sucrose, sodium saccharin, glycerin, sorbitol, mannitol, and maltose Species or combinations thereof.
- the freeze-drying protective agent is selected from the group consisting of sucrose, maltose, lactose, fructose, dextran, mannitol, trehalose, sorbitol, xylitol, maltitol, oligosaccharide alcohol, Any one or a combination of polyethylene glycol and glycerin.
- the preparation form of the nanocrystalline composition is selected from any of suspensions, injections, freeze-dried powder injections, microemulsions, aerosols, creams, suppositories, gels, and foams. A sort of.
- the nanocrystalline composition is freeze-dried to obtain a freeze-dried solid preparation.
- the administration form of the nanocrystalline composition is selected from any one or a combination of injection administration, mucosal administration, and oral administration.
- the purpose of the present invention is to provide a preparation method of midazolam nanocrystalline composition, said nanocrystalline composition containing midazolam, a dispersion medium and a pharmaceutically acceptable carrier, wherein the midazolam:
- the weight-volume percentage of the dispersion medium is 0.5%-45.0%.
- the pharmaceutically acceptable carrier is selected from any one or a combination of steric protective agents and charge stabilizers. It is also preferred that the dispersion medium is selected from water, oil, and polyethylene.
- the preparation method includes the following steps: weigh the required amount of midazolam, a dispersion medium and a pharmaceutically acceptable carrier, and mix them uniformly, and then wet the method Grind or homogenize at high pressure, ready to be obtained.
- the required amount of midazolam, steric protectant, charge stabilizer, dispersion medium and optionally other pharmaceutically acceptable carrier is subjected to ultrasonic homogenization treatment and then wet Method grinding or high-pressure homogenization, ready to be obtained.
- the speed of the ultrasonic homogenization is 10000-28000 rpm, preferably 13000-25000 rpm, more preferably 16000-22000 rpm.
- the initial grinding speed is 800-2500 rpm, preferably 1000-2000 rpm, more preferably 1200-1800 rpm.
- the increase range of the grinding speed is 100-1000 rpm/min, preferably 300-800 rpm/min, more preferably 500-700 rpm/min.
- the grinding speed is 1500-4000 rpm/min, preferably 1800-3500 rpm/min, more preferably 2000-3000 rpm/min.
- the grinding time is 20min-72h, preferably 40min-180min, more preferably 60min-150min.
- the oil is selected from any one or a combination of soybean oil, corn oil, camellia oil, and cottonseed oil.
- the particle size of the midazolam nanocrystals is ⁇ 600nm, preferably ⁇ 500nm, more preferably ⁇ 400nm, still preferably 100nm-350nm, and even more preferably 150-300nm.
- the absolute value of the potential of the midazolam nanocrystalline composition is greater than 10 mV, preferably greater than 15 mV.
- the weight volume percentage of midazolam: dispersion medium in the nanocrystalline composition is 1.0%-40.0%, preferably 5.0%-25.0%, more preferably 8-20%.
- the steric protective agent in the nanocrystalline composition is 0.2%-10.0%, preferably 1.0%-5.0%, more preferably 1.5%-3.5%, It is also preferably 2.0%-3.0%.
- the steric protective agent is selected from any one or a combination of nonionic surfactants and high molecular polymers.
- the non-ionic surfactant is selected from any one or a combination of polysorbate, glyceryl monostearate, poloxamer, Span, Maize, and Benze .
- the high molecular polymer is selected from the group consisting of hydroxypropyl methylcellulose (Hypromellose, HPMC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), Any one or a combination of Tween, glycerin, decyl glucoside, hydroxypropyl cellulose, sodium carboxymethyl cellulose, sodium alginate.
- HPMC hydroxypropyl methylcellulose
- PVP polyvinylpyrrolidone
- PVA polyvinyl alcohol
- the steric protective agent is selected from HPMC E5, HPMC E3, HPMC E6, HPMC E4M, HPMC K4M, Poloxamer 188, Poloxamer 407, PVP K12, PVP K17, PVP Any one or a combination of K30, PVA, Tween 80, Tween 20, sodium carboxymethyl cellulose, glycerin, decyl glucoside.
- the charge stabilizer the weight volume percentage of the dispersion medium in the nanocrystalline composition is 0.1%-3.0%, preferably 0.3%-2.0%, more preferably 0.5%-1.5%.
- the charge stabilizer is selected from any one or a combination of zwitterionic surfactants and anionic surfactants.
- the zwitterionic surfactant is selected from any one or a combination of lecithin and soybean phospholipid.
- the anionic surfactant is selected from any one or a combination of sodium dodecyl sulfate (SDS) and docusate sodium (DOSS).
- the charge stabilizer is selected from any one or a combination of sodium lauryl sulfate, sodium docusate, lecithin, and soybean phospholipid.
- the HLB value of the charge stabilizer is not less than 10, preferably not less than 20, and more preferably not less than 30.
- midazolam the weight volume percentage of the dispersion medium in the nanocrystalline composition is 0.5%-45.0%
- space protection agent the weight volume percentage of the dispersion medium is 0.2%-10.0%
- Charge stabilizer The weight volume percentage of the dispersion medium is 0.1%-3.0%.
- midazolam in the nanocrystalline composition the weight-volume percentage of the dispersion medium is 1.0%-40.0%
- the space protection agent the weight-volume percentage of the dispersion medium is 1.0%-5.0%
- Charge stabilizer The weight and volume percentage of the dispersion medium is 0.3%-2.0%.
- midazolam in the nanocrystalline composition the weight volume percentage of the dispersion medium is 5%-25%
- the space protection agent the weight volume percentage of the dispersion medium is 2.0%-3.0%
- Charge stabilizer the weight and volume percentage of the dispersion medium is 0.5%-1.5%.
- the nanocrystalline composition contains 5.0% midazolam, 2.5% HPMC and 1.0% SDS in a weight/volume percentage.
- the nanocrystalline composition contains 5.0% midazolam, 2.5% HPMC and 0.5% SDS by weight and volume.
- the nanocrystalline composition contains 10.0% by weight and volume of midazolam, 2.5% of HPMC and 1.0% of SDS.
- the nanocrystalline composition contains 10.0% by weight and volume of midazolam, 2.5% of HPMC and 0.5% of SDS.
- the pharmaceutically acceptable carrier further includes any one or a combination of a pH adjusting agent, a preservative, a freeze-dried protective agent, and a flavoring agent.
- the pH adjusting agent, preservative, freeze-dried protective agent, and flavoring agent are optionally added before or after grinding.
- the pH adjusting agent is selected from hydrochloric acid, sulfuric acid, chloric acid, nitric acid, hydrobromic acid, hydrofluoric acid, phosphoric acid, sulfonic acid, malic acid, sorbic acid, fumaric acid, citric acid Acid, carboxylic acid, hydroxy acid, keto acid, acetic acid, oxalic acid, citric acid, succinic acid, formic acid, acetic acid, propionic acid, butyric acid, malonic acid, succinic acid, adipic acid, pyruvic acid, glutamic acid, Tartaric acid, lactic acid, itaconic acid, ascorbic acid, fumaric acid, ⁇ -ketoglutarate, fruit acid, sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, sodium bicarbonate, sodium phosphate, disodium hydrogen phosphate, phosphoric acid Any one or a combination of sodium dihydrogen, dipotassium hydrogen
- the pH adjusting agent is a buffering agent, preferably citric acid, potassium citrate, sodium citrate, malic acid, sodium malate, potassium malate, potassium hydroxide, sodium bicarbonate, Sodium hydroxide, potassium carbonate, sodium carbonate, phosphoric acid, disodium hydrogen phosphate, sodium dihydrogen phosphate, monoethanolamine, diethanolamine, triethanolamine, lactic acid, sodium lactate, potassium lactate, propionic acid, potassium propionate, sodium propionate, tartaric acid , Any one of sodium tartrate, sodium fumarate, potassium tartrate, potassium fumarate, fumaric acid or a combination thereof.
- a buffering agent preferably citric acid, potassium citrate, sodium citrate, malic acid, sodium malate, potassium malate, potassium hydroxide, sodium bicarbonate, Sodium hydroxide, potassium carbonate, sodium carbonate, phosphoric acid, disodium hydrogen phosphate, sodium dihydrogen phosphate, monoethanolamine, diethanolamine, triethanolamine, lactic acid, sodium
- the preservative is selected from benzoic acid or its salt, sorbic acid or its salt, paraben, sodium metabisulfite, chlorhexidine, sodium citrate, butylated hydroxytoluene ( BHT), butylated hydroxyanisole (BHA), tocopherol, ethylenediaminetetraacetic acid, propyl gallate, quaternary ammonium compounds, or any combination thereof.
- the corrective agent is selected from any one of xylitol, stevioside, mogroside, glycyrrhizin, cyclamate, sucrose, sodium saccharin, glycerin, sorbitol, mannitol, and maltose Species or combinations thereof.
- the freeze-drying protective agent is selected from the group consisting of sucrose, maltose, lactose, fructose, dextran, mannitol, trehalose, sorbitol, xylitol, maltitol, oligosaccharide alcohol, Any one or a combination of polyethylene glycol and glycerin.
- the preparation form of the nanocrystalline composition is selected from any of suspensions, injections, freeze-dried powder injections, microemulsions, aerosols, creams, suppositories, gels, and foams. A sort of.
- the nanocrystalline composition is freeze-dried to obtain a freeze-dried solid preparation.
- the administration form of the nanocrystalline composition is selected from any one or a combination of injection administration, mucosal administration, and oral administration.
- Another object of the present invention is to provide a midazolam nanocrystal suspension containing midazolam, a dispersion medium and a pharmaceutically acceptable carrier, wherein the midazolam: dispersed
- the weight volume percentage of the medium is 0.5%-45.0%
- the pharmaceutically acceptable carrier is selected from any one or a combination of steric protective agents and charge stabilizers, and it is also preferable that the dispersion medium is selected from water, oil, and polyethylene glycol. , Any one of glycerin or a combination thereof.
- the oil is selected from any one or a combination of soybean oil, corn oil, camellia oil, and cottonseed oil.
- the particle size of the midazolam nanocrystals is ⁇ 600nm, preferably ⁇ 500nm, more preferably ⁇ 400nm, still preferably 100nm-350nm, and even more preferably 150-300nm.
- the absolute value of the potential of the midazolam nanocrystal suspension is greater than 10 mV, preferably greater than 15 mV.
- the weight volume percentage of midazolam: dispersion medium in the nanocrystalline suspension is 1.0%-40.0%, preferably 5.0%-25.0%, more preferably 8-20% .
- the steric protective agent in the nanocrystalline suspension is 0.2%-10.0%, preferably 1.0%-5.0%, more preferably 1.5%-3.5% , It is also preferably 2.0%-3.0%.
- the steric protective agent is selected from any one or a combination of nonionic surfactants and high molecular polymers.
- the non-ionic surfactant is selected from any one or a combination of polysorbate, glyceryl monostearate, poloxamer, Span, Maize, and Benze .
- the high molecular polymer is selected from the group consisting of hydroxypropyl methylcellulose (Hypromellose, HPMC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), Any one or a combination of Tween, glycerin, decyl glucoside, hydroxypropyl cellulose, sodium carboxymethyl cellulose, sodium alginate.
- HPMC hydroxypropyl methylcellulose
- PVP polyvinylpyrrolidone
- PVA polyvinyl alcohol
- the steric protective agent is selected from HPMC E5, HPMC E3, HPMC E6, HPMC E4M, HPMC K4M, Poloxamer 188, Poloxamer 407, PVP K12, PVP K17, PVP Any one or a combination of K30, PVA, Tween 80, Tween 20, sodium carboxymethyl cellulose, glycerin, decyl glucoside.
- the charge stabilizer in the nanocrystalline suspension is 0.1%-3.0%, preferably 0.3%-2.0%, more preferably 0.5%-1.5% .
- the charge stabilizer is selected from any one or a combination of zwitterionic surfactants and anionic surfactants.
- the zwitterionic surfactant is selected from any one or a combination of lecithin and soybean phospholipid.
- the anionic surfactant is selected from any one or a combination of sodium dodecyl sulfate (SDS) and docusate sodium (DOSS).
- the charge stabilizer is selected from any one or a combination of sodium lauryl sulfate, sodium docusate, lecithin, and soybean phospholipid.
- the HLB value (hydrophilic-lipophilic balance value) of the charge stabilizer is not less than 10, preferably not less than 20, and more preferably not less than 30.
- the pharmaceutically acceptable carrier further includes any one or a combination of a pH adjusting agent, a preservative, and a freeze-dried protective agent.
- the pH adjusting agent is selected from hydrochloric acid, sulfuric acid, chloric acid, nitric acid, hydrobromic acid, hydrofluoric acid, phosphoric acid, sulfonic acid, malic acid, sorbic acid, fumaric acid, citric acid Acid, carboxylic acid, hydroxy acid, keto acid, acetic acid, oxalic acid, citric acid, succinic acid, formic acid, acetic acid, propionic acid, butyric acid, malonic acid, succinic acid, adipic acid, pyruvic acid, glutamic acid, Tartaric acid, lactic acid, itaconic acid, ascorbic acid, fumaric acid, ⁇ -ketoglutarate, fruit acid, sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, sodium bicarbonate, sodium phosphate, disodium hydrogen phosphate, phosphoric acid Any one or a combination of sodium dihydrogen, dipotassium hydrogen
- the pH adjusting agent is a buffer, preferably citric acid, potassium citrate, sodium citrate, malic acid, sodium malate, potassium malate, potassium hydroxide, sodium bicarbonate, Sodium hydroxide, potassium carbonate, sodium carbonate, phosphoric acid, disodium hydrogen phosphate, sodium dihydrogen phosphate, monoethanolamine, diethanolamine, triethanolamine, lactic acid, sodium lactate, potassium lactate, propionic acid, potassium propionate, sodium propionate, tartaric acid , Any one of sodium tartrate, sodium fumarate, potassium tartrate, potassium fumarate, fumaric acid or a combination thereof.
- the preservative is selected from benzoic acid or its salt, sorbic acid or its salt, paraben, sodium metabisulfite, chlorhexidine, sodium citrate, butylated hydroxytoluene ( BHT), butylated hydroxyanisole (BHA), tocopherol, ethylenediaminetetraacetic acid, propyl gallate, quaternary ammonium compounds, or any combination thereof.
- the freeze-dried protective agent is selected from the group consisting of sucrose, maltose, lactose, fructose, dextran, mannitol, trehalose, sorbitol, xylitol, maltitol, oligosaccharide alcohol, Any one or a combination of polyethylene glycol and glycerin.
- midazolam the weight volume percentage of the dispersion medium in the nanocrystalline composition is 0.5%-45.0%
- space protection agent the weight volume percentage of the dispersion medium is 0.2%-10.0%
- Charge stabilizer The weight volume percentage of the dispersion medium is 0.1%-3.0%.
- midazolam in the nanocrystalline suspension the weight volume percentage of the dispersion medium is 1.0%-40.0%
- the space protection agent the weight volume percentage of the dispersion medium is 1.0%-5.0 %
- charge stabilizer the weight volume percentage of the dispersion medium is 0.3%-2.0%.
- midazolam in the nanocrystalline suspension the weight volume percentage of the dispersion medium is 5%-25%
- the space protection agent the weight volume percentage of the dispersion medium is 2.0%-3.0%
- Charge stabilizer the weight and volume percentage of the dispersion medium is 0.5%-1.5%.
- the nanocrystalline suspension contains 5.0% by weight and volume of midazolam, 2.5% of HPMC, 1.0% of SDS, and the balance is water.
- the nanocrystalline suspension contains 5.0% midazolam, 2.5% HPMC, 0.5% SDS, and the balance is water.
- the nanocrystalline suspension contains 10.0% by weight and volume of midazolam, 2.5% of HPMC, 1.0% of SDS, and the balance is water.
- the nanocrystalline suspension contains 10.0% by weight and volume of midazolam, 2.5% of HPMC, 0.5% of SDS, and the balance is water.
- the nanocrystalline suspension is freeze-dried to obtain a freeze-dried solid preparation.
- the administration form of the nanocrystalline suspension is any one of injection administration, mucosal administration, oral administration, or a combination thereof.
- the purpose of the present invention is to provide a preparation method of midazolam nanocrystalline suspension, said suspension containing midazolam, a dispersion medium and a pharmaceutically acceptable carrier, wherein the midazolam:
- the weight and volume percentage of the dispersion medium is 0.5%-45.0%.
- the pharmaceutically acceptable carrier is selected from any one or a combination of steric protective agents and charge stabilizers. It is also preferred that the dispersion medium is selected from water, oil, and polyethylene.
- the preparation method includes the following steps: weigh the required amount of midazolam, a dispersion medium and a pharmaceutically acceptable carrier, and mix them uniformly, and then wet process Grind or homogenize at high pressure, ready to be obtained.
- the required amount of a homogeneous mixture of midazolam, steric protective agent, charge stabilizer, dispersion medium and optionally other pharmaceutically acceptable carriers is subjected to ultrasonic homogenization treatment, and then wet Method grinding or high-pressure homogenization, ready to be obtained.
- the ultrasonic homogenizing speed is 10000-28000rpm, preferably 13000-25000rpm, more preferably 16000-22000rpm.
- the initial grinding speed is 800-2500 rpm, preferably 1000-2000 rpm, more preferably 1200-1800 rpm.
- the increase range of the grinding speed is 100-1000 rpm/min, preferably 300-800 rpm/min, more preferably 500-700 rpm/min.
- the grinding speed is 1500-4000 rpm/min, preferably 1800-3500 rpm/min, more preferably 2000-3000 rpm/min.
- the grinding time is 20min-72h, preferably 40min-180min, more preferably 60-150min.
- the oil is selected from any one or a combination of soybean oil, corn oil, camellia oil, and cottonseed oil.
- the particle size of the midazolam nanocrystals is ⁇ 600nm, preferably ⁇ 500nm, more preferably ⁇ 400nm, still preferably 100nm-350nm, and even more preferably 150-300nm.
- the absolute value of the potential of the midazolam nanocrystalline composition is greater than 10 mV, preferably greater than 15 mV.
- the weight volume percentage of midazolam: dispersion medium in the nanocrystalline suspension is 1.0%-40.0%, preferably 5.0%-25.0%, more preferably 8-20% .
- the steric protective agent in the nanocrystalline suspension is 0.2%-10.0%, preferably 1.0%-5.0%, more preferably 1.5%-3.5% , It is also preferably 2.0%-3.0%.
- the steric protective agent is selected from any one or a combination of nonionic surfactants and high molecular polymers.
- the non-ionic surfactant is selected from any one or a combination of polysorbate, glyceryl monostearate, poloxamer, Span, Maize, and Benze .
- the high molecular polymer is selected from the group consisting of hydroxypropyl methylcellulose (Hypromellose, HPMC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), Any one or a combination of Tween, glycerin, decyl glucoside, hydroxypropyl cellulose, sodium carboxymethyl cellulose, sodium alginate.
- HPMC hydroxypropyl methylcellulose
- PVP polyvinylpyrrolidone
- PVA polyvinyl alcohol
- the steric protective agent is selected from HPMC E5, HPMC E3, HPMC E6, HPMC E4M, HPMC K4M, Poloxamer 188, Poloxamer 407, PVP K12, PVP K17, PVP Any one or a combination of K30, PVA, Tween 80, Tween 20, sodium carboxymethyl cellulose, glycerin, decyl glucoside.
- the charge stabilizer in the nanocrystalline suspension is 0.1%-3.0%, preferably 0.3%-2.0%, more preferably 0.5%-1.5% .
- the charge stabilizer is selected from any one or a combination of zwitterionic surfactants and anionic surfactants.
- the zwitterionic surfactant is selected from any one or a combination of lecithin and soybean phospholipid.
- the anionic surfactant is selected from any one or a combination of sodium dodecyl sulfate (SDS) and docusate sodium (DOSS).
- the charge stabilizer is selected from any one or a combination of sodium lauryl sulfate, sodium docusate, lecithin, and soybean phospholipid.
- the HLB value of the charge stabilizer is not less than 10, preferably not less than 20, and more preferably not less than 30.
- the pharmaceutically acceptable carrier further includes any one or a combination of a pH adjusting agent, a preservative, and a freeze-dried protective agent.
- the pH regulator, preservative, and freeze-dried protective agent are optionally added before or after grinding.
- the pH adjusting agent is selected from hydrochloric acid, sulfuric acid, chloric acid, nitric acid, hydrobromic acid, hydrofluoric acid, phosphoric acid, sulfonic acid, malic acid, sorbic acid, fumaric acid, citric acid Acid, carboxylic acid, hydroxy acid, keto acid, acetic acid, oxalic acid, citric acid, succinic acid, formic acid, acetic acid, propionic acid, butyric acid, malonic acid, succinic acid, adipic acid, pyruvic acid, glutamic acid, Tartaric acid, lactic acid, itaconic acid, ascorbic acid, fumaric acid, ⁇ -ketoglutarate, fruit acid, sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, sodium bicarbonate, sodium phosphate, disodium hydrogen phosphate, phosphoric acid Any one or a combination of sodium dihydrogen, dipotassium hydrogen
- the pH adjusting agent is a buffer, preferably citric acid, potassium citrate, sodium citrate, malic acid, sodium malate, potassium malate, potassium hydroxide, sodium bicarbonate, Sodium hydroxide, potassium carbonate, sodium carbonate, phosphoric acid, disodium hydrogen phosphate, sodium dihydrogen phosphate, monoethanolamine, diethanolamine, triethanolamine, lactic acid, sodium lactate, potassium lactate, propionic acid, potassium propionate, sodium propionate, tartaric acid , Any one of sodium tartrate, sodium fumarate, potassium tartrate, potassium fumarate, fumaric acid or a combination thereof.
- the preservative is selected from benzoic acid or its salt, sorbic acid or its salt, paraben, sodium metabisulfite, chlorhexidine, sodium citrate, butylated hydroxytoluene ( BHT), butylated hydroxyanisole (BHA), tocopherol, ethylenediaminetetraacetic acid, propyl gallate, quaternary ammonium compounds, or any combination thereof.
- the freeze-drying protective agent is selected from the group consisting of sucrose, maltose, lactose, fructose, dextran, mannitol, trehalose, sorbitol, xylitol, maltitol, oligosaccharide alcohol, Any one or a combination of polyethylene glycol and glycerin.
- midazolam the weight volume percentage of the dispersion medium in the nanocrystalline composition is 0.5%-45.0%
- space protection agent the weight volume percentage of the dispersion medium is 0.2%-10.0%
- Charge stabilizer The weight volume percentage of the dispersion medium is 0.1%-3.0%.
- midazolam in the nanocrystalline suspension the weight volume percentage of the dispersion medium is 1.0%-40.0%
- the space protection agent the weight volume percentage of the dispersion medium is 1.0%-5.0 %
- charge stabilizer the weight volume percentage of the dispersion medium is 0.3%-2.0%.
- midazolam in the nanocrystalline suspension the weight volume percentage of the dispersion medium is 5%-25%
- the space protection agent the weight volume percentage of the dispersion medium is 2.0%-3.0 %
- charge stabilizer the weight volume percentage of the dispersion medium is 0.5%-1.5%.
- the nanocrystalline suspension contains 5.0% by weight and volume of midazolam, 2.5% of HPMC, 1.0% of SDS, and the balance is water.
- the nanocrystalline suspension contains 5.0% midazolam, 2.5% HPMC, 0.5% SDS, and the balance is water.
- the nanocrystalline suspension contains 10.0% by weight and volume of midazolam, 2.5% of HPMC, 1.0% of SDS, and the balance is water.
- the nanocrystalline suspension contains 10.0% by weight and volume of midazolam, 2.5% of HPMC, 0.5% of SDS, and the balance is water.
- the nanocrystalline composition is freeze-dried to obtain a freeze-dried solid preparation.
- the administration form of the nanocrystalline suspension is any one of injection administration, mucosal administration, oral administration, or a combination thereof.
- Another object of the present invention is to provide a midazolam nanocrystalline solid composition, said solid composition containing midazolam nanocrystalline particles and a pharmaceutically acceptable carrier, wherein the midazolam
- the particle size of the nanocrystalline is ⁇ 600nm, preferably ⁇ 500nm, more preferably ⁇ 400nm, still preferably 100nm-350nm, more preferably 150-300nm.
- the midazolam nanocrystalline particles are prepared by drying any one of the midazolam nanocrystalline composition and midazolam nanocrystalline suspension of the present invention.
- the drying is selected from any one or a combination of freeze drying, spray drying, vacuum drying, and vacuum drying.
- the midazolam nanocrystalline particles contain 10%-95% of midazolam and 5%-90% of a pharmaceutically acceptable carrier, preferably a pharmaceutically acceptable carrier Any one or a combination selected from steric protective agent, charge stabilizer, dispersion medium.
- the steric protective agent is selected from any one or a combination of nonionic surfactants and high molecular polymers.
- the steric protective agent is selected from HPMC E5, HPMC E3, HPMC E6, HPMC E4M, HPMC K4M, Poloxamer 188, Poloxamer 407, PVP K12, PVP K17, PVP Any one or a combination of K30, PVA, Tween 80, Tween 20, sodium carboxymethyl cellulose, glycerin, decyl glucoside.
- the charge stabilizer is selected from any one or a combination of zwitterionic surfactants and anionic surfactants.
- the charge stabilizer is selected from any one or a combination of sodium lauryl sulfate, sodium docusate, lecithin, and soybean phospholipid.
- the pharmaceutically acceptable carrier is selected from binders, fillers, lubricants, correctives, buffers, wetting agents, disintegrants, effervescent agents, and other excipients. Any one or a combination of propellants.
- the nanocrystalline solid composition contains the following components: 60-180 parts of midazolam nanocrystalline particles, 100-200 parts of disintegrant, 35-70 parts of filler, and binder 35-65, lubricant 2-15.
- the binder is selected from povidone, hydroxypropyl cellulose, methyl cellulose, hypromellose, sodium carboxymethyl cellulose, polyvinyl alcohol, gum arabic, Any one or a combination of dextrin.
- the filler is selected from any one of lactose, powdered sugar, dextrin, starch or its derivatives, cellulose or its derivatives, inorganic calcium salt, sorbitol, glycine or combination.
- the inorganic calcium salt is selected from any one or a combination of calcium chloride, calcium sulfate, calcium phosphate, calcium hydrogen phosphate, and precipitated calcium carbonate.
- the cellulose derivative is selected from any one or a combination of microcrystalline cellulose, sodium carboxymethyl cellulose, ethyl cellulose, hydroxypropyl methyl cellulose, preferably starch
- the derivative is selected from any one or a combination of sodium carboxymethyl starch, sodium starch glycolate, pregelatinized starch, modified starch, hydroxypropyl starch, and corn starch.
- the lubricant is selected from any one or a combination of sodium stearyl fumarate, stearic acid, magnesium stearate, calcium stearate, talc, sucrose fatty acid ester .
- the corrective agent is selected from any one of xylitol, stevioside, mogroside, glycyrrhizin, cyclamate, sucrose, sodium saccharin, glycerin, sorbitol, mannitol, and maltose Species or combinations thereof.
- the wetting agent is selected from any one or a combination of sodium lauryl sulfate, water, ethanol, and isopropanol.
- the disintegrant is selected from any one of carboxymethyl cellulose, calcium carboxymethyl cellulose, sodium carboxymethyl starch, crospovidone, and partially pregelatinized starch. combination.
- the preparation form of the nanocrystalline solid composition is selected from any of tablets, capsules, granules, powders, and pills.
- Another object of the present invention is to provide a preparation method of midazolam nanocrystalline solid composition, including the following steps: weigh the required amount of midazolam nanocrystalline particles and a pharmaceutically acceptable carrier, and combine them Mix evenly and get it.
- the preparation form of the nanocrystalline solid composition is selected from any of tablets, capsules, granules, powders, and pills.
- the tablet preparation method is selected from any one of dry granulation and direct powder compression.
- the dry granulation method includes the following steps:
- the powder direct compression method includes the following steps:
- the plain tablets are compressed and then coated.
- Another object of the present invention is to provide any one or a combination of midazolam nanocrystal composition, midazolam nanocrystal suspension, midazolam nanocrystal solid composition for preparing anti-epileptic, anti-epileptic
- the convulsions are selected from any etiology or combination of fever, toxic substances, neurological damage, immature brain development, intracranial infection, electrolyte imbalance, metabolic disorders, environmental factors, genetic factors
- the convulsion caused by the etiology is preferably any one of neonatal convulsions, child convulsions, or complications thereof.
- the fever may be extracranial fever.
- the exo-cranial fever is selected from any of the causes of chickenpox, influenza, gastroenteritis, otitis media, respiratory infection, tonsillitis, vaccination, or a combination of causes.
- the epilepsy is selected from any one of generalized epileptic seizures, partial/focal epileptic seizures, epileptic seizures, reflex epileptic seizures, or their complications.
- the generalized epileptic seizure is selected from any one of generalized tonic-clonic seizures, absence seizures, tonic seizures, clonic seizures, myoclonic seizures, atonic seizures, or their complications.
- the partial seizures are selected from any one of simple partial seizures, complex partial seizures, secondary generalized seizures, or complications thereof.
- Another object of the present invention is to provide a pharmaceutical composition containing midazolam nanocrystals.
- the pharmaceutical composition consists of midazolam nanocrystals, midazolam nanocrystal solid compositions, Any one of the zolam nanocrystal suspension is used in combination with any other anti-epileptic drugs and any other anti-convulsant drugs.
- the other anti-epileptic drugs are selected from sodium channel blockers, drugs that reduce neurotransmitter release, and increase ⁇ -aminobutyric acid ( ⁇ -aminobutyric acid, GABA)-mediated excitability Inhibitory drugs, N-methyl-D-aspartate (NMDA) receptor blockers, ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists Any one or a combination of agents.
- ⁇ -aminobutyric acid GABA
- NMDA N-methyl-D-aspartate
- AMPA ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- the sodium channel blocker is selected from any one or a combination of phenytoin sodium, carbamazepine, oxcarbazepine, lamotrigine, and lacosamide.
- the drug for reducing neurotransmitter release is selected from any one of ethosuximide, sodium valproate, lamotrigine, topiramate, levetiracetam, gabapentin, and pregabalin Species or combinations thereof.
- the drug for improving the inhibition of ⁇ -aminobutyric acid-mediated excitability is selected from the group consisting of phenobarbital, phenytoin, fosphenytoin, benzodiazepines, non-urethanes, and valproic acid Any one or a combination of sodium, topiramate, tiagabine, and aminoethylene acid.
- the drug of the ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist is selected from perampanel and zonisar Any one or a combination of amines.
- the anticonvulsant drug is selected from phenobarbital sodium, diazepam, midazolam, phenytoin sodium, lidocaine, pregabalin, fosphenytoin, levetiracetam, topiramate , Lorazepam, sodium valproate, vigabatrin, any one or a combination thereof.
- Another object of the present invention is to provide any one or a combination of midazolam nanocrystal composition, midazolam nanocrystal solid composition, midazolam nanocrystal suspension for preparing anesthesia, sedation Any one or a combination of medicines.
- the sedation is preoperative sedation.
- the sedation is conscious sedation before diagnosis or endoscopic operation.
- the sedation is intraoperative sedation of induction of anesthesia, general anesthesia or epidural anesthesia.
- Another object of the present invention is to provide any one of midazolam nanocrystal composition, midazolam nanocrystal suspension, midazolam nanocrystal solid composition or a combination thereof for preparing and improving the blood-brain barrier Permeability in the application of drugs.
- the particle size of the midazolam nanocrystals is ⁇ 600nm, preferably ⁇ 500nm, more preferably ⁇ 400nm, still preferably 100nm-350nm, and even more preferably 150-300nm.
- the midazolam nanocrystalline composition, midazolam nanocrystalline solid composition, and midazolam nanocrystalline suspension contain midazolam and pharmaceutically acceptable Among them, preferably, the pharmaceutically acceptable carrier is selected from any one or a combination of a steric protective agent, a charge stabilizer, and a dispersion medium.
- the nanocrystalline composition contains midazolam, a dispersion medium and a pharmaceutically acceptable carrier, wherein the weight volume percentage of midazolam: the dispersion medium is 0.5%-45.0%
- the pharmaceutically acceptable carrier is selected from any one or a combination of steric protective agents and charge stabilizers, and it is also preferred that the dispersion medium is selected from any one or a combination of water, oil, polyethylene glycol, and glycerol.
- the nanocrystalline suspension contains midazolam, a dispersion medium and a pharmaceutically acceptable carrier, wherein the weight and volume percentage of midazolam: the dispersion medium is 0.5%- 45.0%, preferably the pharmaceutically acceptable carrier is selected from any one or a combination of steric protective agents and charge stabilizers, and it is also preferred that the dispersion medium is selected from any one or a combination of water, oil, polyethylene glycol, and glycerin .
- the nanocrystalline solid composition contains midazolam nanocrystalline particles and a pharmaceutically acceptable carrier, wherein the midazolam nanocrystalline particles are dried by drying the midazolam nanocrystalline particles of the present invention.
- the midazolam nanocrystal composition and the midazolam nanocrystal suspension are prepared by any method, and preferably drying is selected from any one or a combination of freeze drying, spray drying, vacuum drying, and vacuum drying.
- the midazolam nanocrystalline particles contain 10%-95% of midazolam and 5%-90% of a pharmaceutically acceptable carrier.
- the steric protective agent is selected from any one or a combination of nonionic surfactants and high molecular polymers.
- the non-ionic surfactant is selected from any one or a combination of polysorbate, glyceryl monostearate, poloxamer, Span, Maize, and Benze .
- the high molecular polymer is selected from the group consisting of hydroxypropyl methylcellulose (Hypromellose, HPMC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), Any one or a combination of Tween, glycerin, decyl glucoside, hydroxypropyl cellulose, sodium carboxymethyl cellulose, sodium alginate.
- HPMC hydroxypropyl methylcellulose
- PVP polyvinylpyrrolidone
- PVA polyvinyl alcohol
- the steric protective agent is selected from HPMC E5, HPMC E3, HPMC E6, HPMC E4M, HPMC K4M, Poloxamer 188, Poloxamer 407, PVP K12, PVP K17, PVP Any one or a combination of K30, PVA, Tween 80, Tween 20, sodium carboxymethyl cellulose, glycerin, decyl glucoside.
- the charge stabilizer is selected from any one or a combination of zwitterionic surfactants and anionic surfactants.
- the zwitterionic surfactant is selected from any one or a combination of lecithin and soybean phospholipid.
- the anionic surfactant is selected from any one or a combination of sodium dodecyl sulfate (SDS) and docusate sodium (DOSS).
- the charge stabilizer is selected from any one or a combination of sodium lauryl sulfate, sodium docusate, lecithin, and soybean phospholipid.
- the HLB value of the charge stabilizer is not less than 10, preferably not less than 20, and more preferably not less than 30.
- the drugs for improving the permeability of the blood-brain barrier are selected from brain drugs.
- the brain medicine is selected from any one or a combination of medicines for treating brain tumors, brain neuropathy, Parkinson's disease, and cerebrovascular diseases.
- the brain drug is selected from temozolomide, 6-benzylguanine, doxorubicin, lexiscan, methotrexate, bevacizumab, ritoximab, gemcitabine, Manidipine, regorafenib, artemisinin, paclitaxel anticancer drugs, temozolomide, vinca alkaloids, 5-fluorouracil, anthracycline anticancer drugs, pemetrexed, platinum anticancer drugs, Xi Any one or a combination of tonicine and its derivatives, cyclophosphamide, topotecan, lomustine, procarbazine.
- the dispersion medium of the present invention is a mixture of particles (molecules, ions or molecular aggregates, etc.) of one (or several) substances distributed in another substance. Such as solutions, colloids, suspensions, suspensions, suspensions and emulsions.
- the substance dispersed into particles is called “dispersant”, also called “dispersed phase”; the substance in which particles can be dispersed is called “dispersant”, also called “dispersion medium”.
- the dissolution apparatus of the present invention adopts a ZRS-8G dissolution apparatus of Tianda Tianfa Technology Co., Ltd.
- the nano particle size measurement, electric potential measurement, and polydispersity coefficient measurement of the present invention adopt a nano particle size analyzer modeled as Nano-ES90 of Malvern Company in the United Kingdom.
- the emulsification homogenizer of the present invention adopts the ultrasonic emulsification homogenizer of the model C25 of Shanghai Hengchuan Machinery Co., Ltd.
- the wet mill of the present invention adopts a wet mill of Research Lab made by Swiss Valbao Company.
- the percentage when the present invention relates to the percentage between liquid and liquid, the percentage is volume/volume percentage; when the present invention relates to the percentage between liquid and solid, the percentage is volume/weight percentage; the present invention When referring to the percentage between solid and liquid, the percentage is weight/volume percentage; the rest is weight/weight percentage.
- the present invention has the following beneficial technical effects:
- the midazolam nanocrystalline composition of the present invention has better quality and curative effect, and the nanocrystalline has uniform particle size distribution, no aggregation and stratification of fine particles, good stability, and is beneficial to improve the solubility of midazolam , And has the advantages of reducing drug side effects, low irritation, and improving bioavailability.
- the preparation method of the present invention is easy to operate, significantly shortens the production cycle, and thus significantly reduces the production cost, and is suitable for large-scale industrial production.
- phosphate buffer pH 3.5, 0.1 mol/L
- methanol 35:65 (V/V).
- the phosphate buffer is prepared by taking 9.8 g of phosphoric acid and 4.2 mL of triethylamine, placing them in 1 L of water, and adjusting the pH to 3.5 with a 1 mol/L sodium hydroxide solution.
- Dissolution medium weigh 40.8 g of potassium dihydrogen phosphate, place it in 6000 mL of water, stir to dissolve, and adjust the pH to 7.4 with 2.0 mol/L sodium hydroxide solution.
- the dissolution medium is potassium dihydrogen phosphate solution with pH 7.4, sampling at 5min, 10min, 20min, 30min, 45min, 60min, 2h, 4h, 8h respectively 2mL, filter, sample injection, calculate the cumulative release, and draw the release curve.
- HPLC chromatographic conditions octadecylsilane bonded silica gel as filler, mobile phase is phosphate buffer (0.1mol/L, pH3.5)-methanol (35:65, v/v); detection wavelength: 220nm ; Column temperature: 40°C; Flow rate: 1.0ml/min; Injection volume: 10 ⁇ L. The results are shown in Table 1 and Figure 1.
- Test Example 2 The irritation experiment of midazolam nanocrystal suspension
- Dosing volume 5mg/3kg (each rabbit is calculated at 3kg body weight, and each rabbit is given 0.5ml);
- Dosing frequency and time once a day, 8:30-11:30 in the morning; continuous administration for 5 days, adjust the administration volume according to the change of body weight.
- Blank control (negative control): Prepare 0.9% sterile physiological saline.
- SDS+HPMC E5 solution Add 1g SDS and 2.5g HPMC E5 to 100ml of water, and mix well.
- Midazolam nanocrystal suspension (MDZ/NCs(SDS)): 5% midazolam, 1% SDS, 2.5% HPMC E5, and the preparation is the same as in Example 1.
- each group of animals was put to death by anesthesia and bloodletting.
- the injection site was visually observed and recorded for redness, congestion, exudation, degeneration or necrosis.
- further histopathological examination of the injection site was done. Scan histopathological sections after HE staining.
- the grading standard of muscle stimulation response is shown in Table 3.
- Example 2 Place the nanocrystalline suspension prepared in Example 2 at 4°C, 25°C (room temperature), and 40°C (accelerated), respectively, at 0, 1, 2, 3, 4, 5, 6, 7, and 8. Samples were taken every month, diluted 200 times, and tested for particle size. The results are shown in Table 5.
- the 1 mg/mL midazolam nanocrystal suspension was diluted with physiological saline solution to 0.5 mg/mL, 0.25 mg/mL, 0.125 mg/mL, and 0.0625 mg/mL, respectively, for use.
- the 1 mg/mL midazolam solution was diluted with pH 3.5 physiological saline solution to 0.5 mg/mL, 0.25 mg/mL, 0.125 mg/mL, and 0.0625 mg/mL, respectively.
- Model group 10 SD rats, each weighing 250 ⁇ 20g, half male and half, were given 6.9mg/mL pentylenetetrazol solution, and the number of convulsions in the rats was recorded.
- Midazolam nanocrystal suspension test group 60 SD rats were divided into 6 groups, each with 10 rats, each weighing 250 ⁇ 20g, half of the male and female, respectively, the dose of intramuscular injection was 0.0625mg/kg, 0.125mg/kg, 0.25mg/kg, 0.5mg/kg, 1.0mg/kg, 2.0mg/kg of midazolam nanocrystal suspension, after 2 minutes, give 6.9mg/mL pentetrazole solution, record Number of convulsions in rats.
- midazolam nanocrystal suspension 50 SD rats were divided into 5 groups, each with 10 rats, half male and half male, and intramuscular injection doses of 0.625mg/kg, 1.25mg/kg, 2.5mg/ The midazolam nanocrystal suspensions of kg, 3.0 mg/kg, and 4.0 mg/kg were placed on a horizontal rod, and the number of drops in each group was recorded.
- the neurotoxicity experiment of midazolam solution and diazepam solution the experimental methods such as animal grouping and administration method are the same as midazolam nanocrystal suspension.
- midazolam nanocrystal suspension is better than midazolam solution and diazepam solution in controlling epileptic seizures.
- therapeutic index of midazolam nanocrystal suspension (TI, 112.58) is much greater than that of diazepam (13.09) and midazolam solution (35.33), which has higher therapeutic safety.
- D-Hank's cleans the cerebral cortex 3 times, transfers it to serum-free DMEM and cuts it into pieces, adds 4mL 0.1% type II collagenase (containing 120 ⁇ DNasel), digests it in a 37°C water bath for 1.5h, every 20min Shake the centrifuge tube.
- Rat brain microvascular endothelial cells were inoculated into the Transwell chamber on a 24-well plate at a density of 1*106 cells/well. The resistance value was measured from the first day of inoculation. After continuous cultivation and monitoring for 7 days, the TEER value exceeded 200 ⁇ cm 2 . The in vitro blood-brain barrier (BBB) model was successfully constructed.
- BBB blood-brain barrier
- HPLC detects the concentration of midazolam passing through the BBB.
- the preparation method of midazolam nano wafer preparation includes the following steps:
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Neurosurgery (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dispersion Chemistry (AREA)
- Pain & Pain Management (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
咪达唑仑纳米晶及其组合物在改善血脑屏障通透性中的药物中的应用。所述咪达唑仑纳米晶解决了溶解度的问题,提高了生物利用度,解决了片剂和注射液用作抗惊厥、抗癫痫的药物治疗效果欠佳的问题,可有效透过血脑屏障,用于癫痫的治疗。还提供了一种技术平台,在空间保护剂和电荷稳定剂存在情况下的纳米晶制剂提高了脑部药物血脑屏障通透性。
Description
本发明属于医药技术领域,具体涉及咪达唑仑纳米晶用于制备改善血脑屏障通透性的药物中的应用。
咪达唑仑【8-氯-6-(2-氟苯基)-1-甲基-4H-咪唑并[1,5-α][1,4]苯并二氮杂卓,结构如式Ⅰ所示】通过γ-氨基丁酸(GABA)受体结合位点发挥作用,通过抑制人胶质细胞谷氨酸载体的反向转运,减少兴奋性递质谷氨酸的释放,从而有效控制惊厥发作。马来酸咪达唑仑片剂的适应症为“睡眠障碍,失眠,特别适用于入睡困难者、手术或诊断性操作前用药”。咪达唑仑注射液的适应症为“麻醉诱导前的术前用药、麻醉诱导和维持、诊断性或治疗性操作的清醒镇静”。但将片剂和注射液用作抗惊厥、抗癫痫的药物治疗效果欠佳。
咪达唑仑在中性条件下难溶于水,在pH<3时溶解度升高。咪达唑仑注射液(pH 2.9-3.7)用于麻醉,将其肌肉注射用于抗惊厥时,存在刺激性高等缺陷。纳米混悬液为中性,其刺激性较小,但因咪达唑仑为难溶性药物,药物溶解和溶出成为其体内吸收的限速步骤。为此,提高药物溶出速度成为提高药物生物利用度的重要手段。如何提高咪达唑仑的溶解度、溶出度和生物利用度,开发适合于大规模工业化生产的咪达唑仑制剂及其制备方法,显著提高其有效性、安全性和稳定性成为本领域急需解决的技术问题。
发明内容
本发明的目的在于提供一种咪达唑仑纳米晶组合物,所述的纳米晶组合物含有咪达唑仑、分散介质和药学上可接受的载体,其中,咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,优选药学上可接受的载体选自空间保护剂、电荷稳定剂的任一种或其组合,还优选分散介质选自水、油、聚乙二醇、甘油的任一种或其组合。
本发明的优选技术方案中,所述的油选自大豆油、玉米油、茶油、棉籽油的任一种或其组合。
本发明的优选技术方案中,所述的咪达唑仑纳米晶的粒径≤600nm,优选为≤500nm,更优选为≤400nm,还优选为100nm-350nm,再优选为150-300nm。
本发明的优选技术方案中,所述的咪达唑仑纳米晶组合物的电位绝对值大于10mV,优选大于15mV。
本发明的优选技术方案中,所述的纳米晶组合物中咪达唑仑:分散介质的重量体积百分比为1.0%-40.0%,优选为5.0%-25.0%,更优选为8-20%。
本发明的优选技术方案中,所述的纳米晶组合物中空间保护剂:分散介质的重量体积百分比为0.2%-10.0%,优选为1.0%-5.0%,更优选为1.5%-3.5%,还优选为2.0%-3.0%。
本发明的优选技术方案中,所述的空间保护剂选自非离子型表面活性剂、高分子聚合物的任一种或其组合。
本发明的优选技术方案中,所述非离子型表面活性剂选自聚山梨酯、单硬脂酸甘油酯、泊洛沙姆、司盘、卖泽、苄泽的任一种或其组合。
本发明的优选技术方案中,所述的高分子聚合物选自羟丙基甲基纤维素(Hypromellose,HPMC)、聚乙烯吡咯烷酮(Polyvinyl pyrrolidone,PVP)、聚乙烯醇(Polyvinyl alcohol,PVA)、吐温、甘油、癸基葡糖苷、羟丙基纤维素、羧甲基纤维素钠、海藻酸钠的任一种或其组合。
本发明的优选技术方案中,所述的空间保护剂选自HPMC E5、HPMC E3、HPMC E6、HPMC E4M、HPMC K4M、泊洛沙姆188、泊洛沙姆407、PVP K12、PVP K17、PVP K30、PVA、吐温80、吐温20、羧甲基纤维素钠、甘油、癸基葡糖苷的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶组合物中电荷稳定剂:分散介质的重量体积百分比为0.1%-3.0%,优选为0.3%-2.0%,更优选为0.5%-1.5%。
本发明的优选技术方案中,所述的电荷稳定剂选自两性离子型表面活性剂、阴离子型表面活性剂的任一种或其组合。
本发明的优选技术方案中,所述的两性离子型表面活性剂选自卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述的阴离子型表面活性剂选自十二烷基硫酸钠(SDS)、多库酯钠(DOSS)的任一种或其组合。
本发明的优选技术方案中,所述电荷稳定剂选自十二烷基硫酸钠、多库酯钠、卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述电荷稳定剂的HLB值(亲水亲油平衡值)不低于10,优选不低于20,更优选不低于30。
本发明的优选技术方案中,所述的纳米晶组合物中咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,空间保护剂:分散介质的重量体积百分比为0.2%-10.0%,电荷稳定剂:分散介质的重量体积百分比为0.1%-3.0%。
本发明的优选技术方案中,所述的纳米晶组合物中咪达唑仑:分散介质的重量体积百分比为1.0%-40.0%,空间保护剂:分散介质的重量体积百分比为1.0%-5.0%,电荷稳定剂:分散介质的重量体积百分比为0.3%-2.0%。
本发明的优选技术方案中,所述的纳米晶组合物中咪达唑仑:分散介质的重量体积百分比为5%-25%,空间保护剂:分散介质的重量体积百分比为2.0%-3.0%,电荷稳定剂:分散介质的重量体积百分比为0.5%-1.5%。
本发明的优选技术方案中,所述的纳米晶组合物含有重量体积百分比为5.0%的咪达唑仑、2.5%的HPMC和1.0%的SDS。
本发明的优选技术方案中,所述的纳米晶组合物含有重量体积百分比为5.0%的咪达唑仑、2.5%的HPMC和0.5%的SDS。
本发明的优选技术方案中,所述的纳米晶组合物含有重量体积百分比为10.0%的咪达唑仑、2.5%的HPMC和1.0%的SDS。
本发明的优选技术方案中,所述的纳米晶组合物含有重量体积百分比为10.0%的咪达唑仑、2.5%的HPMC和0.5%的SDS。
本发明的优选技术方案中,所述药学上的可接受的载体还包括pH调节剂、防腐剂、冻干保护剂、矫味剂的任一种或其组合。
本发明的优选技术方案中,所述的pH调节剂选自盐酸、硫酸、氯酸、硝酸、氢溴酸、氢氟酸、磷酸、磺酸、苹果酸、山梨酸、富马酸、枸橼酸、羧酸、羟基酸、酮酸、醋酸、草酸、柠檬酸、琥珀酸、甲酸、乙酸、丙酸、丁酸、丙二酸、丁二酸、己二酸、丙酮酸、谷氨酸、酒石酸、乳酸、衣康酸、抗坏血酸、延胡索酸、α-酮戊二酸、果酸、氢氧化钠、氢氧化钾、氢氧化铵、碳酸钠、碳酸氢钠、磷酸钠、磷酸氢二钠、磷酸二氢钠、磷酸氢二钾、磷酸二氢钾、磷酸氢二胺、磷酸二氢胺的任一种或其组合。
本发明的优选技术方案中,所述的pH调节剂为缓冲剂,优选为柠檬酸、柠檬酸钾、柠檬酸钠、苹果酸、苹果酸钠、苹果酸钾、氢氧化钾、碳酸氢钠、氢氧化钠、碳酸钾、碳酸钠、磷酸、磷酸 氢二钠、磷酸二氢钠、单乙醇胺、二乙醇胺、三乙醇胺、乳酸、乳酸钠、乳酸钾、丙酸、丙酸钠、丙酸钾、酒石酸、酒石酸钠、富马酸钠、酒石酸钾、富马酸钾、富马酸的任一种或其组合。
本发明的优选技术方案中,所述的防腐剂选自苯甲酸或其盐、山梨酸或其盐、对羟苯甲酸酯、焦亚硫酸钠、氯己定、柠檬酸钠、丁基羟基甲苯(BHT)、丁基羟基苯甲醚(BHA)、生育酚、乙二胺四乙酸、没食子酸丙酯、季铵化合物的任一种或其组合。
本发明的优选技术方案中,所述的矫味剂选自木糖醇、甜菊苷、罗汉果甙、甘草甜素、甜茶素、蔗糖、糖精钠、甘油、山梨醇、甘露醇、麦芽糖的任一种或其组合。
本发明的优选技术方案中,所述的冻干保护剂选自蔗糖、麦芽糖、乳糖、果糖、葡聚糖、甘露醇、海藻糖、山梨醇、木糖醇、麦芽糖醇、低聚糖醇、聚乙二醇、甘油的任一种或其组合。
本发明的优选技术方案中,所述纳米晶组合物的制剂形式选自混悬液、注射液、冻干粉针、微乳、气雾剂、乳膏、栓剂、凝胶、泡沫剂的任一种。
本发明的优选技术方案中,将所述的纳米晶组合物冷冻干燥,即得冻干固体制剂。
本发明的优选技术方案中,所述纳米晶组合物的给药形式选自注射给药、粘膜给药、口服给药的任一种或其组合。
本发明的目的在于提供一种咪达唑仑纳米晶组合物的制备方法,所述的纳米晶组合物含有咪达唑仑、分散介质和药学上可接受的载体,其中,咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,优选药学上可接受的载体选自空间保护剂、电荷稳定剂的任一种或其组合,还优选分散介质选自水、油、聚乙二醇、甘油的任一种或其组合,所述的制备方法包括下述步骤:称取所需量的咪达唑仑、分散介质和药学上可接受的载体,将其均匀混合后,湿法研磨或高压均质,即得。
本发明的优选技术方案中,将所需量的咪达唑仑、空间保护剂、电荷稳定剂、分散介质与任选地药学上可接受的其他载体的均匀混合物经超声均质处理后,湿法研磨或高压均质,即得。
本发明的优选技术方案中,所述的超声均质的转速为10000-28000rpm,优选为13000-25000rpm,更优选为16000-22000rpm。
本发明的优选技术方案中,所述的初始研磨速度为800-2500rpm,优选为1000-2000rpm,更优选为1200-1800rpm。
本发明的优选技术方案中,所述的研磨速度增加幅度为100-1000rpm/min,优选为300-800rpm/min,更优选为500-700rpm/min。
本发明的优选技术方案中,所述的研磨速度为1500-4000rpm/min,优选为1800-3500rpm/min,更优选为2000-3000rpm/min。
本发明的优选技术方案中,所述的研磨时间为20min-72h,优选为40min-180min,更优选为60min-150min。
本发明的优选技术方案中,所述的油选自大豆油、玉米油、茶油、棉籽油的任一种或其组合。
本发明的优选技术方案中,所述的咪达唑仑纳米晶的粒径≤600nm,优选为≤500nm,更优选为≤400nm,还优选为100nm-350nm,再优选为150-300nm。
本发明的优选技术方案中,所述的咪达唑仑纳米晶组合物的电位绝对值大于10mV,优选大于15mV。
本发明的优选技术方案中,所述的纳米晶组合物中咪达唑仑:分散介质的重量体积百分比为1.0%-40.0%,优选为5.0%-25.0%,更优选为8-20%。
本发明的优选技术方案中,所述的纳米晶组合物中空间保护剂:分散介质的重量体积百分比为0.2%-10.0%,优选为1.0%-5.0%,更优选为1.5%-3.5%,还优选为2.0%-3.0%。
本发明的优选技术方案中,所述的空间保护剂选自非离子型表面活性剂、高分子聚合物的任一种或其组合。
本发明的优选技术方案中,所述的非离子型表面活性剂选自聚山梨酯、单硬脂酸甘油酯、泊洛沙姆、司盘、卖泽、苄泽的任一种或其组合。
本发明的优选技术方案中,所述的高分子聚合物选自羟丙基甲基纤维素(Hypromellose,HPMC)、聚乙烯吡咯烷酮(Polyvinyl pyrrolidone,PVP)、聚乙烯醇(Polyvinyl alcohol,PVA)、吐温、甘油、癸基葡糖苷、羟丙基纤维素、羧甲基纤维素钠、海藻酸钠的任一种或其组合。
本发明的优选技术方案中,所述的空间保护剂选自HPMC E5、HPMC E3、HPMC E6、HPMC E4M、HPMC K4M、泊洛沙姆188、泊洛沙姆407、PVP K12、PVP K17、PVP K30、PVA、吐温80、吐温20、羧甲基纤维素钠、甘油、癸基葡糖苷的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶组合物中电荷稳定剂:分散介质的重量体积百分比为0.1%-3.0%,优选为0.3%-2.0%,更优选为0.5%-1.5%。
本发明的优选技术方案中,所述的电荷稳定剂选自两性离子型表面活性剂、阴离子型表面活性剂的任一种或其组合。
本发明的优选技术方案中,所述的两性离子型表面活性剂选自卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述的阴离子型表面活性剂选自十二烷基硫酸钠(SDS)、多库酯钠(DOSS)的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂选自十二烷基硫酸钠、多库酯钠、卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂的HLB值不低于10,优选不低于20,更优选不低于30。
本发明的优选技术方案中,所述的纳米晶组合物中咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,空间保护剂:分散介质的重量体积百分比为0.2%-10.0%,电荷稳定剂:分散介质的重量体积百分比为0.1%-3.0%。
本发明的优选技术方案中,所述的纳米晶组合物中咪达唑仑:分散介质的重量体积百分比为1.0%-40.0%,空间保护剂:分散介质的重量体积百分比为1.0%-5.0%,电荷稳定剂:分散介质的重量体积百分比为0.3%-2.0%。
本发明的优选技术方案中,所述的纳米晶组合物中咪达唑仑:分散介质的重量体积百分比为5%-25%,空间保护剂:分散介质的重量体积百分比为2.0%-3.0%,电荷稳定剂:分散介质的重量体积百分比为0.5%-1.5%。
本发明的优选技术方案中,所述的纳米晶组合物含有重量/体积百分比为5.0%的咪达唑仑、2.5%的HPMC和1.0%的SDS。
本发明的优选技术方案中,所述的纳米晶组合物含有重量体积百分比为5.0%的咪达唑仑、2.5%的HPMC和0.5%的SDS。
本发明的优选技术方案中,所述的纳米晶组合物含有重量体积百分比为10.0%的咪达唑仑、2.5%的HPMC和1.0%的SDS。
本发明的优选技术方案中,所述的纳米晶组合物含有重量体积百分比为10.0%的咪达唑仑、2.5%的HPMC和0.5%的SDS。
本发明的优选技术方案中,所述药学上的可接受载体还包括pH调节剂、防腐剂、冻干保护剂、矫味剂的任一种或其组合。
本发明的优选技术方案中,所述的pH调节剂、防腐剂、冻干保护剂、矫味剂任选在研磨前或在研磨后加入。
本发明的优选技术方案中,所述的pH调节剂选自盐酸、硫酸、氯酸、硝酸、氢溴酸、氢氟酸、磷酸、磺酸、苹果酸、山梨酸、富马酸、枸橼酸、羧酸、羟基酸、酮酸、醋酸、草酸、柠檬酸、琥珀酸、甲酸、乙酸、丙酸、丁酸、丙二酸、丁二酸、己二酸、丙酮酸、谷氨酸、酒石酸、乳酸、衣康酸、抗坏血酸、延胡索酸、α-酮戊二酸、果酸、氢氧化钠、氢氧化钾、氢氧化铵、碳酸钠、碳酸氢钠、磷酸钠、磷酸氢二钠、磷酸二氢钠、磷酸氢二钾、磷酸二氢钾、磷酸氢二胺、磷酸二氢胺的任一种或其组合。
本发明的优选技术方案中,所述的pH调节剂为缓冲剂,优选为柠檬酸、柠檬酸钾、柠檬酸钠、苹果酸、苹果酸钠、苹果酸钾、氢氧化钾、碳酸氢钠、氢氧化钠、碳酸钾、碳酸钠、磷酸、磷酸氢二钠、磷酸二氢钠、单乙醇胺、二乙醇胺、三乙醇胺、乳酸、乳酸钠、乳酸钾、丙酸、丙酸钾、丙酸钠、酒石酸、酒石酸钠、富马酸钠、酒石酸钾、富马酸钾、富马酸的任一种或其组合。
本发明的优选技术方案中,所述的防腐剂选自苯甲酸或其盐、山梨酸或其盐、对羟苯甲酸酯、焦亚硫酸钠、氯己定、柠檬酸钠、丁基羟基甲苯(BHT)、丁基羟基苯甲醚(BHA)、生育酚、乙二胺四乙酸、没食子酸丙酯、季铵化合物的任一种或其组合。
本发明的优选技术方案中,所述的矫味剂选自木糖醇、甜菊苷、罗汉果甙、甘草甜素、甜茶素、蔗糖、糖精钠、甘油、山梨醇、甘露醇、麦芽糖的任一种或其组合。
本发明的优选技术方案中,所述的冻干保护剂选自蔗糖、麦芽糖、乳糖、果糖、葡聚糖、甘露醇、海藻糖、山梨醇、木糖醇、麦芽糖醇、低聚糖醇、聚乙二醇、甘油的任一种或其组合。
本发明的优选技术方案中,所述纳米晶组合物的制剂形式选自混悬液、注射液、冻干粉针、微乳、气雾剂、乳膏、栓剂、凝胶、泡沫剂的任一种。
本发明的优选技术方案中,将所述的纳米晶组合物冷冻干燥,即得冻干固体制剂。
本发明的优选技术方案中,所述纳米晶组合物的给药形式选自注射给药、粘膜给药、口服给药的任一种或其组合。
本发明的另一目的在于提供一种咪达唑仑纳米晶混悬液,所述混悬液中含有咪达唑仑、分散介质和药学上可接受的载体,其中,咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,优选药学上可接受的载体选自空间保护剂、电荷稳定剂的任一种或其组合,还优选分散介质选自水、油、聚乙二醇、甘油的任一种或其组合。
本发明的优选技术方案中,所述的油选自大豆油、玉米油、茶油、棉籽油的任一种或其组合。
本发明的优选技术方案中,所述的咪达唑仑纳米晶的粒径≤600nm,优选为≤500nm,更优选为≤400nm,还优选为100nm-350nm,再优选为150-300nm。
本发明的优选技术方案中,所述的咪达唑仑纳米晶混悬液的电位绝对值大于10mV,优选大于15mV。
本发明的优选技术方案中,所述的纳米晶混悬液中咪达唑仑:分散介质的重量体积百分比为1.0%-40.0%,优选为5.0%-25.0%,更优选为8-20%。
本发明的优选技术方案中,所述的纳米晶混悬液中空间保护剂:分散介质的重量体积百分比为0.2%-10.0%,优选为1.0%-5.0%,更优选为1.5%-3.5%,还优选为2.0%-3.0%。
本发明的优选技术方案中,所述的空间保护剂选自非离子型表面活性剂、高分子聚合物的任一种或其组合。
本发明的优选技术方案中,所述的非离子型表面活性剂选自聚山梨酯、单硬脂酸甘油酯、泊洛沙姆、司盘、卖泽、苄泽的任一种或其组合。
本发明的优选技术方案中,所述的高分子聚合物选自羟丙基甲基纤维素(Hypromellose,HPMC)、聚乙烯吡咯烷酮(Polyvinyl pyrrolidone,PVP)、聚乙烯醇(Polyvinyl alcohol,PVA)、吐温、甘油、癸基葡糖苷、羟丙基纤维素、羧甲基纤维素钠、海藻酸钠的任一种或其组合。
本发明的优选技术方案中,所述的空间保护剂选自HPMC E5、HPMC E3、HPMC E6、HPMC E4M、HPMC K4M、泊洛沙姆188、泊洛沙姆407、PVP K12、PVP K17、PVP K30、PVA、吐温80、吐温20、羧甲基纤维素钠、甘油、癸基葡糖苷的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶混悬液中电荷稳定剂:分散介质的重量体积百分比为0.1%-3.0%,优选为0.3%-2.0%,更优选为0.5%-1.5%。
本发明的优选技术方案中,所述的电荷稳定剂选自两性离子型表面活性剂、阴离子型表面活性剂的任一种或其组合。
本发明的优选技术方案中,所述的两性离子型表面活性剂选自卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述的阴离子型表面活性剂选自十二烷基硫酸钠(SDS)、多库酯钠(DOSS)的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂选自十二烷基硫酸钠、多库酯钠、卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂的HLB值(亲水亲油平衡值)不低于10,优选不低于20,更优选不低于30。
本发明的优选技术方案中,所述的药学上可接受的载体还包括pH调节剂、防腐剂、冻干保护剂的任一种或其组合。
本发明的优选技术方案中,所述的pH调节剂选自盐酸、硫酸、氯酸、硝酸、氢溴酸、氢氟酸、磷酸、磺酸、苹果酸、山梨酸、富马酸、枸橼酸、羧酸、羟基酸、酮酸、醋酸、草酸、柠檬酸、琥珀酸、甲酸、乙酸、丙酸、丁酸、丙二酸、丁二酸、己二酸、丙酮酸、谷氨酸、酒石酸、乳酸、衣康酸、抗坏血酸、延胡索酸、α-酮戊二酸、果酸、氢氧化钠、氢氧化钾、氢氧化铵、碳酸钠、碳酸氢钠、磷酸钠、磷酸氢二钠、磷酸二氢钠、磷酸氢二钾、磷酸二氢钾、磷酸氢二胺、磷酸二氢胺的任一种或其组合。
本发明的优选技术方案中,所述的pH调节剂为缓冲剂,优选为柠檬酸、柠檬酸钾、柠檬酸钠、苹果酸、苹果酸钠、苹果酸钾、氢氧化钾、碳酸氢钠、氢氧化钠、碳酸钾、碳酸钠、磷酸、磷酸氢二钠、磷酸二氢钠、单乙醇胺、二乙醇胺、三乙醇胺、乳酸、乳酸钠、乳酸钾、丙酸、丙酸钾、丙酸钠、酒石酸、酒石酸钠、富马酸钠、酒石酸钾、富马酸钾、富马酸的任一种或其组合。
本发明的优选技术方案中,所述的防腐剂选自苯甲酸或其盐、山梨酸或其盐、对羟苯甲酸酯、焦亚硫酸钠、氯己定、柠檬酸钠、丁基羟基甲苯(BHT)、丁基羟基苯甲醚(BHA)、生育酚、乙二胺四乙酸、没食子酸丙酯、季铵化合物的任一种或其组合。
本发明的优选技术方案中,所述的冻干保护剂选自蔗糖、麦芽糖、乳糖、果糖、葡聚糖、甘露醇、海藻糖、山梨醇、木糖醇、麦芽糖醇、低聚糖醇、聚乙二醇、甘油的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶组合物中咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,空间保护剂:分散介质的重量体积百分比为0.2%-10.0%,电荷稳定剂:分散介质的重量体积百分比为0.1%-3.0%。
本发明的优选技术方案中,所述的纳米晶混悬液中咪达唑仑:分散介质的重量体积百分比为1.0%-40.0%,空间保护剂:分散介质的重量体积百分比为1.0%-5.0%,电荷稳定剂:分散介质的重量体积百分比为0.3%-2.0%。
本发明的优选技术方案中,所述纳米晶混悬液中咪达唑仑:分散介质的重量体积百分比为5%-25%,空间保护剂:分散介质的重量体积百分比为2.0%-3.0%,电荷稳定剂:分散介质的重量体积百分比为0.5%-1.5%。
本发明的优选技术方案中,所述的纳米晶混悬液含有重量体积百分比为5.0%的咪达唑仑、2.5%的HPMC、1.0%的SDS,余量为水。
本发明的优选技术方案中,所述的纳米晶混悬液含有重量体积百分比为5.0%的咪达唑仑、2.5%的HPMC、0.5%的SDS,余量为水。
本发明的优选技术方案中,所述的纳米晶混悬液含有重量体积百分比为10.0%的咪达唑仑、2.5%的HPMC、1.0%的SDS,余量为水。
本发明的优选技术方案中,所述的纳米晶混悬液含有重量体积百分比为10.0%的咪达唑仑、2.5%的HPMC、0.5%的SDS,余量为水。
本发明的优选技术方案中,将所述的纳米晶混悬液冷冻干燥,即得冻干固体制剂。
本发明的优选技术方案中,所述纳米晶混悬液的给药形式为注射给药、粘膜给药、口服给药的任一种或其组合。
本发明的目的在于提供一种咪达唑仑纳米晶混悬液的制备方法,所述混悬液中含有咪达唑仑、分散介质和药学上可接受的载体,其中,咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%, 优选药学上可接受的载体选自空间保护剂、电荷稳定剂的任一种或其组合,还优选分散介质选自水、油、聚乙二醇、甘油的任一种或其组合,所述的制备方法包括下述步骤:称取所需量的咪达唑仑、分散介质和药学上可接受的载体,将其均匀混合后,湿法研磨或高压均质,即得。
本发明的优选技术方案中,将所需量的咪达唑仑、空间保护剂、电荷稳定剂、分散介质和任选地药学上可接受的其他载体的均匀混合物经超声均质处理后,湿法研磨或高压均质,即得。
本发明的优选技术方案中,所述的超声均质转速为10000-28000rpm,优选为13000-25000rpm,更优选为16000-22000rpm。
本发明的优选技术方案中,所述的初始研磨速度为800-2500rpm,优选为1000-2000rpm,更优选为1200-1800rpm。
本发明的优选技术方案中,所述的研磨速度增加幅度为100-1000rpm/min,优选为300-800rpm/min,更优选为500-700rpm/min。
本发明的优选技术方案中,所述的研磨速度为1500-4000rpm/min,优选为1800-3500rpm/min,更优选为2000-3000rpm/min。
本发明的优选技术方案中,所述的研磨时间为20min-72h,优选为40min-180min,更优选为60-150min。
本发明的优选技术方案中,所述的油选自大豆油、玉米油、茶油、棉籽油的任一种或其组合。
本发明的优选技术方案中,所述的咪达唑仑纳米晶的粒径≤600nm,优选为≤500nm,更优选为≤400nm,还优选为100nm-350nm,再优选为150-300nm。
本发明的优选技术方案中,所述的咪达唑仑纳米晶组合物的电位绝对值大于10mV,优选大于15mV。
本发明的优选技术方案中,所述的纳米晶混悬液中咪达唑仑:分散介质的重量体积百分比为1.0%-40.0%,优选为5.0%-25.0%,更优选为8-20%。
本发明的优选技术方案中,所述的纳米晶混悬液中空间保护剂:分散介质的重量体积百分比为0.2%-10.0%,优选为1.0%-5.0%,更优选为1.5%-3.5%,还优选为2.0%-3.0%。
本发明的优选技术方案中,所述的空间保护剂选自非离子型表面活性剂、高分子聚合物的任一种或其组合。
本发明的优选技术方案中,所述的非离子型表面活性剂选自聚山梨酯、单硬脂酸甘油酯、泊洛沙姆、司盘、卖泽、苄泽的任一种或其组合。
本发明的优选技术方案中,所述的高分子聚合物选自羟丙基甲基纤维素(Hypromellose,HPMC)、聚乙烯吡咯烷酮(Polyvinyl pyrrolidone,PVP)、聚乙烯醇(Polyvinyl alcohol,PVA)、吐温、甘油、癸基葡糖苷、羟丙基纤维素、羧甲基纤维素钠、海藻酸钠的任一种或其组合。
本发明的优选技术方案中,所述的空间保护剂选自HPMC E5、HPMC E3、HPMC E6、HPMC E4M、HPMC K4M、泊洛沙姆188、泊洛沙姆407、PVP K12、PVP K17、PVP K30、PVA、吐温80、吐温20、羧甲基纤维素钠、甘油、癸基葡糖苷的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶混悬液中电荷稳定剂:分散介质的重量体积百分比为0.1%-3.0%,优选为0.3%-2.0%,更优选为0.5%-1.5%。
本发明的优选技术方案中,所述的电荷稳定剂选自两性离子型表面活性剂、阴离子型表面活性剂的任一种或其组合。
本发明的优选技术方案中,所述的两性离子型表面活性剂选自卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述的阴离子型表面活性剂选自十二烷基硫酸钠(SDS)、多库酯钠(DOSS)的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂选自十二烷基硫酸钠、多库酯钠、卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂的HLB值不低于10,优选不低于20,更优选不 低于30。
本发明的优选技术方案中,所述的药学上可接受载体还包括pH调节剂、防腐剂、冻干保护剂的任一种或其组合。
本发明的优选技术方案中,所述的pH调节剂、防腐剂、冻干保护剂任选在研磨前或在研磨后加入。
本发明的优选技术方案中,所述的pH调节剂选自盐酸、硫酸、氯酸、硝酸、氢溴酸、氢氟酸、磷酸、磺酸、苹果酸、山梨酸、富马酸、枸橼酸、羧酸、羟基酸、酮酸、醋酸、草酸、柠檬酸、琥珀酸、甲酸、乙酸、丙酸、丁酸、丙二酸、丁二酸、己二酸、丙酮酸、谷氨酸、酒石酸、乳酸、衣康酸、抗坏血酸、延胡索酸、α-酮戊二酸、果酸、氢氧化钠、氢氧化钾、氢氧化铵、碳酸钠、碳酸氢钠、磷酸钠、磷酸氢二钠、磷酸二氢钠、磷酸氢二钾、磷酸二氢钾、磷酸氢二胺、磷酸二氢胺的任一种或其组合。
本发明的优选技术方案中,所述的pH调节剂为缓冲剂,优选为柠檬酸、柠檬酸钾、柠檬酸钠、苹果酸、苹果酸钠、苹果酸钾、氢氧化钾、碳酸氢钠、氢氧化钠、碳酸钾、碳酸钠、磷酸、磷酸氢二钠、磷酸二氢钠、单乙醇胺、二乙醇胺、三乙醇胺、乳酸、乳酸钠、乳酸钾、丙酸、丙酸钾、丙酸钠、酒石酸、酒石酸钠、富马酸钠、酒石酸钾、富马酸钾、富马酸的任一种或其组合。
本发明的优选技术方案中,所述的防腐剂选自苯甲酸或其盐、山梨酸或其盐、对羟苯甲酸酯、焦亚硫酸钠、氯己定、柠檬酸钠、丁基羟基甲苯(BHT)、丁基羟基苯甲醚(BHA)、生育酚、乙二胺四乙酸、没食子酸丙酯、季铵化合物的任一种或其组合。
本发明的优选技术方案中,所述的冻干保护剂选自蔗糖、麦芽糖、乳糖、果糖、葡聚糖、甘露醇、海藻糖、山梨醇、木糖醇、麦芽糖醇、低聚糖醇、聚乙二醇、甘油的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶组合物中咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,空间保护剂:分散介质的重量体积百分比为0.2%-10.0%,电荷稳定剂:分散介质的重量体积百分比为0.1%-3.0%。
本发明的优选技术方案中,所述的纳米晶混悬液中咪达唑仑:分散介质的重量体积百分比为1.0%-40.0%,空间保护剂:分散介质的重量体积百分比为1.0%-5.0%,电荷稳定剂:分散介质的重量体积百分比为0.3%-2.0%。
本发明的优选技术方案中,所述的纳米晶混悬液中咪达唑仑:分散介质的重量体积百分比为5%-25%,空间保护剂:分散介质的重量体积百分比为2.0%-3.0%,电荷稳定剂:分散介质的重量体积百分比为0.5%-1.5%。
本发明的优选技术方案中,所述的纳米晶混悬液含有重量体积百分比为5.0%的咪达唑仑、2.5%的HPMC、1.0%的SDS,余量为水。
本发明的优选技术方案中,所述的纳米晶混悬液含有重量体积百分比为5.0%的咪达唑仑、2.5%的HPMC、0.5%的SDS,余量为水。
本发明的优选技术方案中,所述纳米晶混悬液含有重量体积百分比为10.0%的咪达唑仑、2.5%的HPMC、1.0%的SDS,余量为水。
本发明的优选技术方案中,所述纳米晶混悬液含有重量体积百分比为10.0%的咪达唑仑、2.5%的HPMC、0.5%的SDS,余量为水。
本发明的优选技术方案中,将所述的纳米晶组合物冷冻干燥,即得冻干固体制剂。
本发明的优选技术方案中,所述纳米晶混悬液的给药形式为注射给药、粘膜给药、口服给药的任一种或其组合。
本发明的另一目的在于提供一种咪达唑仑纳米晶固体组合物,所述的固体组合物中含有咪达唑仑纳米晶颗粒和药学上可接受的载体,其中,所述咪达唑仑纳米晶的粒径≤600nm,优选为≤500nm,更优选为≤400nm,还优选为100nm-350nm,再优选为150-300nm。
本发明的优选技术方案中,所述的咪达唑仑纳米晶颗粒由干燥本发明的咪达唑仑纳米晶组合物、咪达唑仑纳米晶混悬液的任一种制备得到。
本发明的优选技术方案中,所述的干燥选自冷冻干燥、喷雾干燥、真空干燥、减压干燥的任一种或其组合。
本发明的优选技术方案中,所述的咪达唑仑纳米晶颗粒中含有咪达唑仑10%-95%和药学上可接受的载体为5%-90%,优选药学上可接受的载体选自空间保护剂、电荷稳定剂、分散介质的任一种或其组合。
本发明的优选技术方案中,所述的空间保护剂选自非离子型表面活性剂、高分子聚合物的任一种或其组合。
本发明的优选技术方案中,所述的空间保护剂选自HPMC E5、HPMC E3、HPMC E6、HPMC E4M、HPMC K4M、泊洛沙姆188、泊洛沙姆407、PVP K12、PVP K17、PVP K30、PVA、吐温80、吐温20、羧甲基纤维素钠、甘油、癸基葡糖苷的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂选自两性离子型表面活性剂、阴离子型表面活性剂的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂选自十二烷基硫酸钠、多库酯钠、卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述的药学上可接受的载体选自粘合剂、填充剂、润滑剂、矫味剂、缓冲剂、润湿剂、崩解剂、泡腾剂、其它赋形剂的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶固体组合物包含以下组分:咪达唑仑纳米晶颗粒60-180份、崩解剂100-200份、填充剂35-70、粘合剂35-65、润滑剂2-15。
本发明的优选技术方案中,所述的粘合剂选自聚维酮、羟丙基纤维素、甲基纤维素、羟丙甲纤维素、羧甲纤维素钠、聚乙烯醇、阿拉伯胶、糊精的任一种或其组合。
本发明的优选技术方案中,所述的填充剂选自乳糖、糖粉、糊精、淀粉或其衍生物、纤维素或其衍生物、无机钙盐、山梨醇、甘氨酸的任一种或其组合。
本发明的优选技术方案中,所述的无机钙盐选自氯化钙、硫酸钙、磷酸钙、磷酸氢钙、沉降碳酸钙的任一种或其组合。
本发明的优选技术方案中,所述的纤维素衍生物选自微晶纤维素、羧甲基纤维素钠、乙基纤维素、羟丙甲基纤维素的任一种或其组合,优选淀粉衍生物选自羧甲基淀粉钠、淀粉乙醇酸钠、预胶化淀粉、改良淀粉、羟丙基淀粉、玉米淀粉的任一种或其组合。
本发明的优选技术方案中,所述的润滑剂选自硬脂富马酸钠、硬脂酸、硬脂酸镁、硬脂酸钙、滑石粉、蔗糖脂肪酸酯的任一种或其组合。
本发明的优选技术方案中,所述的矫味剂选自木糖醇、甜菊苷、罗汉果甙、甘草甜素、甜茶素、蔗糖、糖精钠、甘油、山梨醇、甘露醇、麦芽糖的任一种或其组合。
本发明的优选技术方案中,所述的润湿剂选自十二烷基硫酸钠、水、乙醇、异丙醇的任一种或其组合。
本发明的优选技术方案中,所述的崩解剂选自羧甲纤维素、羧甲纤维素钙、羧甲基淀粉钠、交联聚维酮、部分预胶化淀粉的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶固体组合物的制剂形式选自片剂、胶囊剂、颗粒剂、散剂、丸剂的任一种。
本发明的另一目的在于提供一种咪达唑仑纳米晶固体组合物的制备方法,包括以下步骤:称取所需量的咪达唑仑纳米晶颗粒与药学上可接受的载体,将其均匀混合,即得。
本发明的优选技术方案中,所述的纳米晶固体组合物的制剂形式选自片剂、胶囊剂、颗粒剂、散剂、丸剂的任一种。
本发明的优选技术方案中,所述片剂制备方法选自干法制粒、粉末直压的任一种。
本发明的优选技术方案中,所述的干法制粒法包括以下步骤:
(a)物料预处理:将咪达唑仑纳米晶颗粒、崩解剂、填充剂、润滑剂和粘合剂过筛,备用;
(b)混合:称取处方量的咪达唑仑纳米晶颗粒、崩解剂、填充剂、润滑剂和粘合剂,将其混 合均匀;
(c)将(b)中混合物放置于干法制粒机制粒;
(d)总混合:将(c)所制得干颗粒与处方量的崩解剂、润滑剂、粘合剂混合均匀;
(e)压制素片:将(d)中制得的颗粒放置高速旋转压片机中压制,即得。本发明的优选技术方案中,所述的压制素片后进行包衣。
本发明的优选技术方案中,所述的粉末直压法包括下述步骤:
(a)物料预处理:将咪达唑仑纳米晶颗粒、崩解剂、填充剂、润滑剂、粘合剂过筛,备用;
(b)混合:称取处方量的活性药物咪达唑仑纳米晶颗粒、崩解剂、填充剂、润滑剂和粘合剂混合均匀;
(c)压制素片:将(b)中混合均匀样品放至高速旋转压片机中压制,即得。
本发明的优选技术方案中,所述的压制素片后进行包衣。
本发明的另一目的在于提供咪达唑仑纳米晶组合物、咪达唑仑纳米晶混悬液、咪达唑仑纳米晶固体组合物的任一种或其组合用于制备抗癫痫、抗惊厥的任一种的药物中的应用。
本发明的优选技术方案中,所述的惊厥选自发热、毒性物质、神经损害、脑发育不成熟、颅内感染、电解质失衡、代谢紊乱、环境因素、遗传因素的任一种病因或其组合病因引发的惊厥,优选为新生儿惊厥、儿童惊厥的任一种或其并发症。
本发明的优选技术方案中,所述的发热可为颅外源性发热。
本发明的优选技术方案中,所述的颅外源性发热选自水痘、流感、胃肠炎、中耳炎、呼吸道感染、扁桃体炎、接种疫苗的任一种病因或其组合病因引起的发热。
本发明的优选技术方案中,所述癫痫选自全面性癫痫发作、部分性/局灶性癫痫发作、癫痫性痉挛、反射性癫痫发作的任一种或其并发症。
本发明的优选技术方案中,所述全面性癫痫发作选自全面性强直阵挛发作、失神发作、强直发作、阵挛发作、肌阵挛发作、失张力发作的任一种或其并发症。
本发明的优选技术方案中,所述部分性癫痫发作选自简单部分性发作、复杂部分性发作、继发全面性发作的任一种或其并发症。
本发明的另一目的在于提供一种含有咪达唑仑纳米晶的药物组合物,所述的药物组合物由咪达唑仑纳米晶组合物、咪达唑仑纳米晶固体组合物、咪达唑仑纳米晶混悬液的任一种与其他抗癫痫药物、其他抗惊厥药物的任一种联合用药。
本发明的优选技术方案中,所述的其他抗癫痫药物选自钠通道阻滞剂、减少神经递质释放的药物、提高γ-氨基丁酸(γ-aminobutyric acid,GABA)介导的兴奋性抑制的药物、N-甲基-D-天冬氨酸(NMDA)受体阻滞剂、α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体拮抗剂的任一种或其组合。
本发明的优选技术方案中,所述的钠通道阻滞剂选自苯妥英钠、卡马西平、奥卡西平、拉莫三嗪、拉科酰胺的任一种或其组合。
本发明的优选技术方案中,所述的减少神经递质释放的药物选自乙琥胺、丙戊酸钠、拉莫三嗪、托吡酯、左乙拉西坦、加巴喷丁、普瑞巴林的任一种或其组合。
本发明的优选技术方案中,所述的提高γ-氨基丁酸介导的兴奋性抑制的药物选自苯巴比妥、苯妥英、磷苯妥英、苯二氮卓类、非氨酯、丙戊酸钠、托吡酯、噻加宾、氨乙烯酸的任一种或其组合。
本发明的优选技术方案中,所述的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体拮抗剂的药物选自吡仑帕奈、唑尼沙胺的任一种或其组合。
本发明的优选技术方案中,所述的抗惊厥药物选自苯巴比妥钠、地西泮、咪唑安定、苯妥英钠、利多卡因、普瑞巴林、磷苯妥英、左乙拉西坦、托吡酯、劳拉西泮、丙戊酸钠、氨己烯酸的任一种或其组合。
本发明的另一目的在于提供咪达唑仑纳米晶组合物、咪达唑仑纳米晶固体组合物、咪达唑仑纳米晶混悬液的任一种或其组合用于制备麻醉、镇静的任一种或其组合的药物中的应用。
本发明的优选技术方案中,所述的镇静为术前镇静。
本发明的优选技术方案中,所述的镇静为诊断或内镜操作前的清醒性镇静。
本发明的优选技术方案中,所述的镇静为麻醉诱导、全麻或硬膜外麻醉的术中镇静。
本发明的另一目的在于提供咪达唑仑纳米晶组合物、咪达唑仑纳米晶混悬液、咪达唑仑纳米晶固体组合物的任一种或其组合用于制备改善血脑屏障通透性中的药物中的应用。
本发明的优选技术方案中,所述咪达唑仑纳米晶的粒径≤600nm,优选为≤500nm,更优选为≤400nm,还优选为100nm-350nm,再优选为150-300nm。
本发明的优选技术方案中,所述的咪达唑仑纳米晶组合物、咪达唑仑纳米晶固体组合物、咪达唑仑纳米晶混悬液中含有咪达唑仑和药学上可接受的载体,其中,优选所述药学上可接受的载体选自空间保护剂、电荷稳定剂、分散介质的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶组合物含有咪达唑仑、分散介质和药学上可接受的载体,其中,咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,优选药学上可接受的载体选自空间保护剂、电荷稳定剂的任一种或其组合,还优选分散介质选自水、油、聚乙二醇、甘油的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶混悬液中含有咪达唑仑、分散介质和药学上可接受的载体,其中,咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,优选药学上可接受的载体选自空间保护剂、电荷稳定剂的任一种或其组合,还优选分散介质选自水、油、聚乙二醇、甘油的任一种或其组合。
本发明的优选技术方案中,所述的纳米晶固体组合物中含有咪达唑仑纳米晶颗粒和药学上可接受的载体,其中,所述的咪达唑仑纳米晶颗粒由干燥本发明的咪达唑仑纳米晶组合物、咪达唑仑纳米晶混悬液的任一种方式制备得到,优选干燥选自冷冻干燥、喷雾干燥、真空干燥、减压干燥的任一种或其组合。
本发明的优选技术方案中,所述的咪达唑仑纳米晶颗粒中含有咪达唑仑10%-95%和药学上可接受的载体为5%-90%。
本发明的优选技术方案中,所述的空间保护剂选自非离子型表面活性剂、高分子聚合物的任一种或其组合。
本发明的优选技术方案中,所述的非离子型表面活性剂选自聚山梨酯、单硬脂酸甘油酯、泊洛沙姆、司盘、卖泽、苄泽的任一种或其组合。
本发明的优选技术方案中,所述的高分子聚合物选自羟丙基甲基纤维素(Hypromellose,HPMC)、聚乙烯吡咯烷酮(Polyvinyl pyrrolidone,PVP)、聚乙烯醇(Polyvinyl alcohol,PVA)、吐温、甘油、癸基葡糖苷、羟丙基纤维素、羧甲基纤维素钠、海藻酸钠的任一种或其组合。
本发明的优选技术方案中,所述的空间保护剂选自HPMC E5、HPMC E3、HPMC E6、HPMC E4M、HPMC K4M、泊洛沙姆188、泊洛沙姆407、PVP K12、PVP K17、PVP K30、PVA、吐温80、吐温20、羧甲基纤维素钠、甘油、癸基葡糖苷的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂选自两性离子型表面活性剂、阴离子型表面活性剂的任一种或其组合。
本发明的优选技术方案中,所述的两性离子型表面活性剂选自卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述的阴离子型表面活性剂选自十二烷基硫酸钠(SDS)、多库酯钠(DOSS)的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂选自十二烷基硫酸钠、多库酯钠、卵磷脂、大豆磷脂的任一种或其组合。
本发明的优选技术方案中,所述的电荷稳定剂的HLB值不低于10,优选不低于20,更优选不 低于30。
本发明的优选技术方案中,所述的改善血脑屏障通透性的药物选自脑部药物。
本发明的优选技术方案中,所述的脑部药物选自治疗脑瘤、脑神经系统病变、帕金森病、脑血管疾病药物的任一种或其组合。
本发明的优选技术方案中,所述的脑部药物选自替莫唑胺、6-苄基鸟嘌呤、阿霉素、lexiscan、甲氨蝶呤、贝伐珠单抗、利托昔单抗、吉西他滨、马尼地平、瑞戈非尼、青蒿素、紫杉醇类抗癌药、替莫唑胺、长春花生物碱类、5-氟尿嘧啶、蒽环类抗癌药、培美曲塞、铂类抗癌药、喜树碱及其衍生物、环磷酰胺、托泊替康、洛莫司汀、甲基苄肼的任一种或其组合。
本发明所述的分散介质由一种(或几种)物质的微粒(分子、离子或分子集合体等)分布在另一种物质中而形成的混合物。如溶液、胶体、混悬液、混悬液、悬浊液和乳浊液等。在分散系中,被分散成微粒的物质称“分散质”,也称“分散相”;微粒能在其中分散的物质称“分散剂”,也称“分散介质”。
本发明的溶出仪采用天大天发科技有限公司的型号为ZRS-8G的溶出仪。
本发明的纳米粒度测定、电位测定、多分散系数测定采用英国Malvern公司的型号为Nano-ES90的纳米粒度测定仪。
本发明的乳化均质机采用上海恒川机械有限公司的型号为C25的超声乳化均质机。
本发明的湿磨机采用瑞士华尔宝公司的型号为research lab的湿磨机。
除非另有说明,本发明涉及液体与液体之间的百分比时,所述的百分比为体积/体积百分比;本发明涉及液体与固体之间的百分比时,所述百分比为体积/重量百分比;本发明涉及固体与液体之间的百分比时,所述百分比为重量/体积百分比;其余为重量/重量百分比。
与现有技术相比,本发明具有下述有益的技术效果:
1、本发明的咪达唑仑纳米晶组合物具有更优的质量和疗效,且纳米晶具有粒径分布均匀、无细小颗粒聚集分层现象、稳定性好、利于改善咪达唑仑的溶解度,并具有降低药物毒副作用、刺激性低、改善生物利用度高等优点。
2、本发明的制备方法操作简便,显著缩短生产周期,进而显著降低生产成本,适合于大规模工业化生产。
图1咪达唑仑纳米晶混悬液、咪达唑仑原料药、咪达唑仑和辅料物理混合物的释放曲线;
图2不同处方的肌肉刺激性比较;
图3咪达唑仑纳米晶混悬液、咪达唑仑溶液、地西泮溶液的抗惊厥和抗癫痫作用比较;
图4不同药物的肌肉注射给药的神经毒性比较。
以下对本发明具体实施方式的描述并不限制本发明,本领域技术人员可以根据本发明作出各种改变或变形,只要不脱离本发明的精神,均应属于本发明权利要求保护的范围。
实施例1 咪达唑仑纳米晶混悬液的制备
将2.5g HPMC E5加入至100ml水中,加热至50℃,搅拌至完全溶解后,再加入1g SDS、5g咪达唑仑,超声均质5min,使咪达唑仑充分润湿,混悬均匀。将初混物倒入湿磨机中,初始转速为1500rpm,转速每隔5min增加500rpm,直至转速达到3000rpm,持续研磨1h。将研磨好的纳米混悬液稀释200倍,检测制得的纳米晶的粒径为286.6nm,多分散系数(PDI)为0.124,Zeta电位为-23.4mV。
试验例1 咪达唑仑纳米晶混悬液的体外释放实验
1、溶液配制
(1)流动相:磷酸盐缓冲液(pH3.5,0.1mol/L):甲醇为35:65(V/V)。其中,磷酸盐缓冲液的制备为,取9.8g磷酸和4.2mL三乙胺,将其置于1L水中,用1mol/L氢氧化钠溶液调节pH至3.5。
(2)溶出介质:称量40.8g磷酸二氢钾,将其置于6000mL水中,搅拌溶解后,用2.0mol/L氢 氧化钠溶液调节pH至7.4。
2、实验条件
(1)咪达唑仑纳米晶混悬液:取实施例1制备的50mg/mL纳米晶混悬液,加水,将其稀释至10mg/mL,取1mL加入溶出仪;
(2)咪达唑仑原料药:取10mg的咪达唑仑原料药,将其置于1mL水中,加入溶出仪;
(3)物理混合物:取10mg咪达唑仑+5mg HPMC E5+2mg SDS,将其置于1ml水中,加入溶出仪。
(4)以上三组,37℃,75rpm转速,采用桨法溶出,溶出介质为pH 7.4的磷酸二氢钾溶液,分别在5min、10min、20min、30min、45min、60min、2h、4h、8h取样2mL,过滤,进样检测,计算累积释放度,绘制释放曲线。
HPLC色谱条件:用十八烷基硅烷键合硅胶为填充剂,流动相为磷酸盐缓冲液(0.1mol/L,pH3.5)-甲醇(35:65,v/v);检测波长:220nm;柱温:40℃;流速:1.0ml/min;进样量:10μL。结果见表1和图1。
表1
试验例2 咪达唑仑纳米晶混悬液的刺激性实验
1、实验动物
雄性新西兰大耳白兔4只,体重约2.5-3.5kg,约3-4月龄,普通级别。
2、实验方法
(1)供试品及对照品给药
给药途径:肌肉注射给药;
给药体积:5mg/3kg(每只家兔按3kg体重计算,每只给药0.5ml);
给药频率与时间:每天给药1次,上午8:30-11:30;连续给药5天,根据体重变化调整给药体积。
(2)溶液配制
空白对照(阴性对照):配制0.9%灭菌生理盐水。
1.7%醋酸阳性对照:将1.7g醋酸溶液加入到98.3g水中,混合均匀。
SDS+HPMC E5溶液:在100ml水中,加入1gSDS、2.5gHPMC E5,混合均匀。
咪达唑仑纳米晶混悬液(MDZ/NCs(SDS)):5%咪达唑仑,1%SDS,2.5%HPMC E5,制备同实施例1。
表2
给药后24小时,每组动物麻醉放血处死,肉眼观察和记录注射部位有无红肿、充血、渗出、变性或坏死等现象。同时对注射部位做进一步病理组织学检查。HE染色后扫描组织病理学切片。
肌肉刺激反应分级标准见表3。
表3
结果表明,空白对照:未见明显异常与炎症,反应级数0。1.7%醋酸阳性对照:组织中可见大量肌纤维坏死溶解,炎细胞较多,布满了肌肉细胞间隙,肌束间质发生水肿,肌纤维出现变性、萎缩与坏死等情况,反应级数5。SDS+HPMC E5溶液:组织染色均匀,间质未见明显异常与炎症,反应级数0。咪达唑仑纳米晶混悬液(MDZ/NCs(SDS)):肌纤维的形态结构无异常、排列整齐、分界明显,间质未见明显异常与炎症,反应级数0。结果见表4、图2。
表4 病理形态学检查
实施例2 咪达唑仑纳米晶混悬液的制备
将2.5g HPMC E5加入至100ml水中,加热至55℃,搅拌至完全溶解,再加入0.5g SDS、5g咪达唑仑,超声均质5min,使咪达唑仑充分润湿,混悬均匀。将初混物倒入湿磨机中,初始转速为1500rpm,每隔5min转速增加500rpm,直至3000rpm后,持续研磨1h,即得。将研磨好的纳米混悬液稀释200倍,检测制得的咪达唑仑纳米晶的粒径为267.3nm,多分散系数(PDI)为0.132,Zeta电位为-28.1mV。
试验例3 咪达唑仑纳米晶混悬液稳定性研究
将实施例2制备的纳米晶混悬液分别置于4℃,25℃(室温)、40℃(加速)条件下放置,在0、 1、2、3、4、5、6、7、8个月分别取样,稀释200倍,检测粒径。结果见表5。
表5
试验例4 咪达唑仑纳米晶混悬液的抗惊厥和抗癫痫作用研究
1、抗惊厥和抗癫痫作用
1)戊四氮溶液6.9mg/mL的配制:称取276.00mg戊四氮,将其置于50mL离心管中,用生理盐水溶液稀释至40mL,充分混匀,备用。
2)咪达唑仑纳米晶混悬液1mg/mL的配制:精密移取1mL咪达唑仑纳米晶(浓度50mg/mL)混悬液,将其置于50mL容量瓶中,加入生理盐水溶液,将其稀释定容至刻度,充分混匀,备用。
将1mg/mL咪达唑仑纳米晶混悬液用生理盐水溶液分别稀释至0.5mg/mL、0.25mg/mL、0.125mg/mL、0.0625mg/mL,备用。
3)咪达唑仑溶液1mg/mL的配制:精密称取50.00mg咪达唑仑,将其置于50mL容量瓶中,用pH3.5生理盐水溶液稀释定容至刻度,充分混匀,备用。
将1mg/mL咪达唑仑溶液,用pH3.5的生理盐水溶液分别稀释为0.5mg/mL、0.25mg/mL、0.125mg/mL、0.0625mg/mL。
4)地西泮溶液1mg/mL的配制:精密称取50.00mg地西泮,将其置于50mL容量瓶中,用乙醇溶 解兵稀释定容至50mL,充分混匀,备用。
将1mg/mL地西泮溶液用乙醇分别稀释为0.5mg/mL、0.25mg/mL、0.125mg/mL、0.0625mg/mL,备用。
模型组:SD大鼠10只,每只体重为250±20g,雌雄各半,给予6.9mg/mL的戊四氮溶液,记录大鼠惊厥数量。
咪达唑仑纳米晶混悬液试验组:SD大鼠60只分为6组,每组10只,每只体重为250±20g,雌雄各半,分别肌肉注射给予剂量为0.0625mg/kg、0.125mg/kg、0.25mg/kg、0.5mg/kg、1.0mg/kg、2.0mg/kg的咪达唑仑纳米晶混悬液,2min后,给予6.9mg/mL的戊四氮溶液,记录大鼠惊厥数量。
咪达唑仑溶液和地西泮溶液的抗惊厥和抗癫痫作用:动物分组、给药方式等实验方法同咪达唑仑纳米晶混悬液。
咪达唑仑纳米晶混悬液的神经毒性实验:SD大鼠50只分为5组,每组10只,雌雄各半,分别肌肉注射剂量0.625mg/kg、1.25mg/kg、2.5mg/kg、3.0mg/kg、4.0mg/kg的咪达唑仑纳米晶混悬液,将大鼠放置于水平棒上,记录每组的掉落只数。
咪达唑仑溶液和地西泮溶液的神经毒性实验:动物分组、给药方式等实验方法同咪达唑仑纳米晶混悬液。
结果使用SPSS 19.0软件进行统计分析,采用单因素方差分析,p<0.05时具有统计学差异,并运用Probit分析计算ED
50。
结果表明,咪达唑仑纳米晶混悬液在给药剂量0.25mg/kg时,惊厥控制率能达到100%。同等剂量下,地西泮溶液的惊厥控制率为50%,咪达唑仑溶液的惊厥控制率为90%。经过Probit计算三者的ED
50。结果见表6、表7、图3。
表6 肌肉注射给药抗惊厥和抗癫痫作用
注:与0.0625mg·kg
-1咪达唑仑纳米晶组相比,*p<0.05;与0.125mg·kg
-1咪达唑仑纳米晶组相比,**p<0.01;地西泮溶液与咪达唑仑纳米晶相比,
△p<0.05.
表7
2、咪达唑仑纳米晶混悬液神经毒性研究
记录每组小鼠掉落数,根据失衡率进行Probit分析计算,得到TD
50。结果见表8、表9和图4。
表8 肌注给药神经毒性比较
表9 半数中毒剂量比较
结果表明,咪达唑仑纳米晶混悬液控制癫痫发作效果优于咪达唑仑溶液和地西泮溶液。且咪达唑仑纳米晶混悬液的治疗指数(TI,112.58)远大于地西泮(13.09)和咪达唑仑溶液(35.33),具有更高的治疗安全性。
表10 治疗指数比较
试验例5 咪达唑仑纳米晶的血脑屏障通透性研究
1、实验动物
雄性SD大鼠10只,2周龄,北京维通利华实验动物技术有限公司,合格证号SCXK(京)2016-0011。
2、实验方法
咪达唑仑纳米晶混悬液、咪达唑仑溶液配制所采用溶液、方式参考实验例4。
(1)脑微血管内皮细胞分离与原代培养
取2周的SD大鼠,培养1天后处死,用止血钳将头夹断,泡在75%酒精中2min,并放置在D-Hank’s液中浸泡,取出脑组织置于冰中的培养皿中,获得脑皮质。
1)D-Hank’s清洗脑皮质3次,转移至不含血清的DMEM中剪碎,加入4mL 0.1%浓度的Ⅱ型胶原酶(含有120μDNasel),在37℃的水浴中消化1.5h,每隔20min摇晃离心管。
2)1000rpm离心8min,弃去上清,加入20%BSA重悬,14000rpm,4℃离心20min,去除中层组织及大血管,留取底部沉淀。
3)加入2mL的0.1%胶原酶/分散酶与40μDNaseⅠ,消化1h,1000rpm离心8min,弃上清。
4)将3mL大鼠内皮细胞分离液1加入离心管中,在其上层缓慢加入1mL分离液2,最后加入2mL不含FBS的DMEM重悬的细胞液在最上层,确保各层液面分层清晰,4℃,1000*g,离心20min。
5)离心后的离心管液面分为三层,吸取中层内皮细胞置不含FBS的DMEM,1000rpm离心5min,洗涤2次,弃去上清。
6)加入ECM重悬接种在培养瓶中30min后转移至被FN包被的培养瓶中,加入嘌呤霉素(4μg/mL)。
7)在37℃,5%CO
2细胞培养箱中培养至长满培养瓶。
(2)BMECs传代
1)吸出培养液,PBS清洗3次。
2)加入0.25%的胰蛋白酶消化1.5min,显微镜下观察消化情况,程度合适时加入培养基终止消化。
3)将消化后的细胞转移至离心管,离心速度为1000rpm,离心时间为5min,离心后弃掉上清。
4)用ECM专用培养液重悬后调整细胞密度为1*105个/mL,接种到FN包被的25cm
2培养瓶。
5)在37℃,5%CO
2细胞培养箱中培养至长满70%后,每天换液。
6)待细胞长满瓶后再次传代。
(3)脑微血管内皮细胞建立血脑屏障模型
1)吸去培养基,加入PBS清洗3次。
2)加入浓度为0.25%胰蛋白酶消化1-2min,显微镜下观察消化情况,程度合适时加入培养基终止消化。
3)将细胞置入15mL离心管中,1000rpm离心5min,弃上清。ECM培养液重悬,以1*106个/孔的密度接种于Transwell 24孔板上室(FN孵育)。
4)在37℃,5%CO
2细胞培养箱中培养,约2-3天后观察到细胞发生融合后,进行TEER实验。
(4)TEER实验
大鼠脑微血管内皮细胞接种至24孔板上的Transwell小室中,接种密度1*106个/孔,从接种第一天检测电阻值,连续培养并监测7天,TEER值超过200Ω·cm
2,体外血脑屏障(BBB)模型构建成功。
(5)CCK-8法检测咪达唑仑纳米晶混悬液的细胞毒性
细胞以每孔5×104个细胞的密度接种于96孔板,每孔加入100μL的ECM培养。细胞贴壁后,分别加入用浓度为10μg/mL、20μg/mL、40μg/mL、60μg/mL和80μg/mL的咪达唑仑纳米晶混悬液与咪达唑仑溶液,分别在24h、48h、72h取样检测。在波长450nm处测定上清液的吸光度值,以评价咪达唑仑纳米晶混悬液与咪达唑仑溶液对细胞活性的影响。细胞存活率的计算公式为:细胞存活率(%)=A实验组/A对照组×100%。每个浓度设置6个复孔,统计其平均值。
结果显示,随着给药浓度的增加,咪达唑仑纳米晶混悬液与咪达唑仑溶液的细胞毒性均增大,存活率逐渐降低。咪达唑仑溶液在细胞中培养24h、48h、72h后的细胞毒性均大于咪达唑仑纳米晶混悬液,表明咪达唑仑纳米晶混悬液有更好的生物安全性。结果见表11。
表11 咪达唑仑纳米晶混悬液在BMECs中的细胞毒性
(6)咪达唑仑纳米晶混悬液血脑屏障通透性研究
1)取长满脑微血管上皮细胞的培养瓶,PBS清洗3次,0.25%胰蛋白酶消化2min,在显微镜 下观察到细胞悬浮后立即加入含10%FBS的ECM培养基终止消化。
2)取24孔板,下层加入1mL培养基,上层放入transwell小室,加入200μL含1*106个/mL培养基,再在下室加入200μL ECM培养基,保持液面持平,2-4h后测电阻值,并计算电阻值(Ω·cm
2)=(R细胞-R空白)×S膜(cm
2)。
3)吸出上室与下室的ECM培养基,下室加入1200μL的D-Hanks,上室加入含药培养基200μL,含药量分别为10μg/mL的咪达唑仑纳米晶混悬液与咪达唑仑溶液。分别在5min、10min、20min、30min、45min、60min从下室取药200μL加入到进样小瓶中,取出后补液。
4)HPLC检测透过BBB的咪达唑仑浓度。HPLC方法为磷酸盐缓冲液(0.1mol/L,配制:9.81g磷酸置于1000mL水中,加入4mL三乙胺;用2mol/L NaOH调节pH至3.5):甲醇=35:65;柱温:30℃;λ
max=220nm;流速:1.0mL/min;进样量:10μL。
结果显示,咪达唑仑纳米晶血脑屏障的累积透过率为(18.59±0.86)%,是咪达唑仑溶液(7.44±0.14)%的2.5倍。结果见表12。
表12 咪达唑仑纳米晶混悬液在血脑屏障模型中的透过率
实施例3 咪达唑仑纳米晶混悬液的制备
将2.5g HPMC E5加入至100ml水中,加热至60℃,搅拌溶解后,再加入0.5g SDS、10g咪达唑仑,超声均质5min,使咪达唑仑充分润湿,混悬均匀。将初混物倒入湿磨机中,1500rpm为初始转速,每隔5min转速增加500rpm,直至3500rpm后,持续研磨2h,即得。将研磨好的纳米混悬液稀释200倍,检测粒径为223.6nm,多分散系数(PDI)为0.124,Zeta电位为-25.8mV。
实施例4 咪达唑仑纳米晶混悬液的制备
将8g HPMC E5加入至100ml水中,加热至55℃,搅拌至完全溶解,再加入2g SDS、45g咪达唑仑,超声均质20min,使咪达唑仑充分润湿,混悬均匀。将初混物倒入湿磨机中,初始转速为1500rpm,每隔10min转速增加500rpm,直至3000rpm后,持续研磨4h,即得。将研磨好的纳米混悬液稀释200倍,检测制得的咪达唑仑纳米晶的粒径为245.6nm,多分散系数(PDI)为0.231,Zeta电位为-30.3mV。
实施例5 咪达唑仑纳米晶混悬液的制备
将0.25g HPMC K4M加入至100ml水中,加热至55℃,搅拌至完全溶解,再加入0.05g SDS、0.5g咪达唑仑,超声均质5min,使咪达唑仑充分润湿,混悬均匀。将初混物倒入湿磨机中,初始转速为1500rpm,每隔2min转速增加500rpm,直至3000rpm后,持续研磨2h,即得。将研磨好的纳米混悬液稀释200倍,检测制得的咪达唑仑纳米晶的粒径为342.3nm,多分散系数(PDI)为0.215,Zeta电位为-18.3mV。
实施例6 咪达唑仑纳米晶混悬液的制备
将2.5g HPMC E5加入至100ml水中,加热至50℃,搅拌至完全溶解后,再加入0.5g DOSS、5g咪达唑仑,超声均质5min,使咪达唑仑充分润湿,混悬均匀。将初混物倒入湿磨机中,初始转速为1500rpm,转速每隔5min增加500rpm,直至转速达到3000rpm,持续研磨1h。将研磨好的纳米混 悬液稀释200倍,检测制得的纳米晶的粒径为293.4nm,多分散系数(PDI)为0.154,Zeta电位为-25.8mV。
实施例7 咪达唑仑纳米晶混悬液的制备
将2.5g CMC Na加入至100ml水中,加热至50℃,搅拌至完全溶解后,再加入0.5g P188、5g咪达唑仑,超声均质5min,使咪达唑仑充分润湿,混悬均匀。将初混物倒入湿磨机中,初始转速为1500rpm,转速每隔5min增加500rpm,直至转速达到3000rpm,持续研磨1h。将研磨好的纳米混悬液稀释200倍,检测制得的纳米晶的粒径为328.4nm,多分散系数(PDI)为0.203,Zeta电位为-35.2mV。
实施例8 咪达唑仑纳米晶片剂及其制备方法
咪达唑仑纳米晶片剂的组成:
咪达唑仑纳米晶片剂的制备方法,包括下述步骤:
1、将实施例3的咪达唑仑纳米晶混悬液冷冻干燥,制得其冻干颗粒;
2、将微晶纤维素、交联聚维酮、羟丙甲纤维素、滑石粉,过筛,备用;
3、称取所需量的咪达唑仑纳米晶混悬液冻干颗粒、微晶纤维素、交联聚维酮、羟丙甲纤维素、滑石粉,搅拌,将其混合均匀,将制得的均匀混合物置于高速旋转压片机中压片,即得。
以上对本发明具体实施方式的描述并不限制本发明,本领域技术人员可以根据本发明作出各种改变或变形,只要不脱离本发明的精神,均应属于本发明权利要求保护的范围。
Claims (10)
- 咪达唑仑纳米晶组合物、咪达唑仑纳米晶混悬液、咪达唑仑纳米晶固体组合物的任一种或其组合用于制备改善血脑屏障通透性中的药物中的应用。
- 根据权利要求1所述的应用,其特征在于,所述咪达唑仑纳米晶的粒径≤600nm,优选为≤500nm,更优选为≤400nm,还优选为100nm-350nm,再优选为150-300nm。
- 根据权利要求1-2任一项所述的应用,其特征在于,所述的咪达唑仑纳米晶组合物、咪达唑仑纳米晶固体组合物、咪达唑仑纳米晶混悬液中含有咪达唑仑和药学上可接受的载体,其中,优选所述药学上可接受的载体选自空间保护剂、电荷稳定剂、分散介质的任一种或其组合。
- 根据权利要求1-3任一项所述的应用,其特征在于,所述的纳米晶组合物含有咪达唑仑、分散介质和药学上可接受的载体,其中,咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,优选药学上可接受的载体选自空间保护剂、电荷稳定剂的任一种或其组合,还优选分散介质选自水、油、聚乙二醇、甘油的任一种或其组合。
- 根据权利要求1-4任一项所述的应用,其特征在于,所述的纳米晶混悬液中含有咪达唑仑、分散介质和药学上可接受的载体,其中,咪达唑仑:分散介质的重量体积百分比为0.5%-45.0%,优选药学上可接受的载体选自空间保护剂、电荷稳定剂的任一种或其组合,还优选分散介质选自水、油、聚乙二醇、甘油的任一种或其组合。
- 根据权利要求1-5任一项所述的应用,其特征在于,所述的纳米晶固体组合物中含有咪达唑仑纳米晶颗粒和药学上可接受的载体,其中,所 述的咪达唑仑纳米晶颗粒由干燥本发明的咪达唑仑纳米晶组合物、咪达唑仑纳米晶混悬液的任一种方式制备得到,优选干燥选自冷冻干燥、喷雾干燥、真空干燥、减压干燥的任一种或其组合,更优选咪达唑仑纳米晶颗粒中含有咪达唑仑10%-95%和药学上可接受的载体为5%-90%。
- 根据权利要求1-6任一项所述的应用,其特征在于,所述的空间保护剂选自非离子型表面活性剂、高分子聚合物的任一种或其组合。
- 根据权利要求1-7任一项所述的应用,其特征在于,所述的电荷稳定剂选自两性离子型表面活性剂、阴离子型表面活性剂的任一种或其组合。
- 根据权利要求1-8任一项所述的应用,其特征在于,所述的改善血脑屏障通透性的药物选自脑部药物。
- 根据权利要求1-9任一项所述的应用,其特征在于,所述的脑部药物选自治疗脑瘤、脑神经系统病变、帕金森病、脑血管疾病药物的任一种或其组合,优选脑部药物选自替莫唑胺、6-苄基鸟嘌呤、阿霉素、lexiscan、甲氨蝶呤、贝伐珠单抗、利托昔单抗、吉西他滨、马尼地平、瑞戈非尼、青蒿素、紫杉醇类抗癌药、替莫唑胺、长春花生物碱类、5-氟尿嘧啶、蒽环类抗癌药、培美曲塞、铂类抗癌药、喜树碱及其衍生物、环磷酰胺、托泊替康、洛莫司汀、甲基苄肼的任一种或其组合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/098020 WO2021258326A1 (zh) | 2020-06-24 | 2020-06-24 | 咪达唑仑纳米晶用于制备改善血脑屏障通透性的药物中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/098020 WO2021258326A1 (zh) | 2020-06-24 | 2020-06-24 | 咪达唑仑纳米晶用于制备改善血脑屏障通透性的药物中的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021258326A1 true WO2021258326A1 (zh) | 2021-12-30 |
Family
ID=79282761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/098020 WO2021258326A1 (zh) | 2020-06-24 | 2020-06-24 | 咪达唑仑纳米晶用于制备改善血脑屏障通透性的药物中的应用 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021258326A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116473931A (zh) * | 2022-01-13 | 2023-07-25 | 山东新时代药业有限公司 | 一种枸橼酸莫沙必利纳米晶片及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102309438A (zh) * | 2010-07-02 | 2012-01-11 | 中国人民解放军军事医学科学院毒物药物研究所 | 一种咪达唑仑药物组合物、其制备方法及用途 |
CN104350063A (zh) * | 2012-05-08 | 2015-02-11 | 埃塞克斯治疗公司 | 疏水性治疗剂的制剂、其制备方法及应用 |
CN105025880A (zh) * | 2013-01-14 | 2015-11-04 | 拉斐尔·罗塞洛 | 用于施用活性成分的盖仑氏形式 |
EP3192499A1 (de) * | 2016-01-14 | 2017-07-19 | Hoffmann & Sommer GmbH und Co. KG | Cellulosefaserbasierte trägermatrices für schichtartige produkte zur oralen und peroralen applikation sowie deren herstellung |
CN108498455A (zh) * | 2018-04-23 | 2018-09-07 | 中国人民解放军军事科学院军事医学研究院 | 一种油性水溶药物纳米晶及其制备方法 |
CN111110871A (zh) * | 2020-01-08 | 2020-05-08 | 中国科学院上海硅酸盐研究所 | 一种高效跨越血脑屏障且靶向原位脑胶质瘤的纳米诊疗剂材料及其制备方法 |
-
2020
- 2020-06-24 WO PCT/CN2020/098020 patent/WO2021258326A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102309438A (zh) * | 2010-07-02 | 2012-01-11 | 中国人民解放军军事医学科学院毒物药物研究所 | 一种咪达唑仑药物组合物、其制备方法及用途 |
CN104350063A (zh) * | 2012-05-08 | 2015-02-11 | 埃塞克斯治疗公司 | 疏水性治疗剂的制剂、其制备方法及应用 |
CN105025880A (zh) * | 2013-01-14 | 2015-11-04 | 拉斐尔·罗塞洛 | 用于施用活性成分的盖仑氏形式 |
EP3192499A1 (de) * | 2016-01-14 | 2017-07-19 | Hoffmann & Sommer GmbH und Co. KG | Cellulosefaserbasierte trägermatrices für schichtartige produkte zur oralen und peroralen applikation sowie deren herstellung |
CN108498455A (zh) * | 2018-04-23 | 2018-09-07 | 中国人民解放军军事科学院军事医学研究院 | 一种油性水溶药物纳米晶及其制备方法 |
CN111110871A (zh) * | 2020-01-08 | 2020-05-08 | 中国科学院上海硅酸盐研究所 | 一种高效跨越血脑屏障且靶向原位脑胶质瘤的纳米诊疗剂材料及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116473931A (zh) * | 2022-01-13 | 2023-07-25 | 山东新时代药业有限公司 | 一种枸橼酸莫沙必利纳米晶片及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2982367B1 (en) | Pharmaceutical composition for parenteral administration, containing donepezil | |
US9585893B2 (en) | Flumazenil complexes, compositions comprising same and uses thereof | |
TWI405590B (zh) | 微粉碎化有機化合物粒子之製法 | |
CN101365459B (zh) | 磺基烷基醚环糊精组合物和其制备方法 | |
US20130345156A1 (en) | Aqueous solution of 20(r)-ginsenoside rg3 pharmaceutical composition and process thereof | |
He et al. | Size effect of curcumin nanocrystals on dissolution, airway mucosa penetration, lung tissue distribution and absorption by pulmonary delivery | |
EA015336B1 (ru) | Стабильная композиция с наночастицами ацетаминофена | |
Saigal et al. | Development of controlled release inhalable polymeric microspheres for treatment of pulmonary hypertension | |
US20080254128A1 (en) | Process for the precipitation and isolation of 6,6-dimethyl-3-aza-bicyclo [3.1.0] hexane-amide compounds by controlled precipitation and pharmaceutical formulations containing same | |
WO2021258326A1 (zh) | 咪达唑仑纳米晶用于制备改善血脑屏障通透性的药物中的应用 | |
US20080193518A1 (en) | Process for the precipitation and isolation of 6,6-Dimethyl-3-Aza Bicyclo [3.1.0] Hexane-Amide compounds by controlled precipitation and pharmaceutical formulations containing same | |
CN112426406B (zh) | 一种咪达唑仑纳米晶混悬液及其制备方法和其应用 | |
CN112426427B (zh) | 咪达唑仑纳米晶用于制备改善血脑屏障通透性的药物中的应用 | |
CN112426407B (zh) | 一种咪达唑仑纳米晶组合物及其制备方法和其应用 | |
Bao et al. | Hydroxy-safflower yellow A composites: An effective strategy to enhance anti-myocardial ischemia by improving intestinal permeability | |
CN101773468A (zh) | 扎那米韦鼻用纳米混悬剂及其制备方法 | |
JP2023524963A (ja) | 非定型抗精神病薬による副作用の治療 | |
WO2023193694A1 (zh) | 一种安全、稳定的注射用尼莫地平及其制备方法 | |
TW202103700A (zh) | 吸入用尼達尼布(nintedanib)及尼達尼布鹽類之特定調配之組合物 | |
Uluhan et al. | Development and characterization of trimethobenzamide hydrochloride containing orally disintegrating tablets | |
WO2019041405A1 (zh) | 伊班膦酸钠的用途及粉雾剂和制备方法 | |
TW202421112A (zh) | (-)-表沒食子兒茶素沒食子酸酯類化合物的應用 | |
IT202100031637A1 (it) | Polveri per inalazione e procedimento di produzione | |
WO2024011120A1 (en) | Oral liposomal formulations of fasudil | |
Sah et al. | A 3D in-vitro biomimicking Caco-2 intestinal permeability model-based assessment of physically modified telmisartan towards an alkalizer-free formulation development |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20942141 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20942141 Country of ref document: EP Kind code of ref document: A1 |