WO2021256442A1 - 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法 - Google Patents

機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法 Download PDF

Info

Publication number
WO2021256442A1
WO2021256442A1 PCT/JP2021/022593 JP2021022593W WO2021256442A1 WO 2021256442 A1 WO2021256442 A1 WO 2021256442A1 JP 2021022593 W JP2021022593 W JP 2021022593W WO 2021256442 A1 WO2021256442 A1 WO 2021256442A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
calculation
mechanical properties
measured
mechanical property
Prior art date
Application number
PCT/JP2021/022593
Other languages
English (en)
French (fr)
Inventor
穣 松井
孝文 尾関
一貴 寺田
健二 安達
大輝 今仲
大地 泉
純二 嶋村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CA3181997A priority Critical patent/CA3181997A1/en
Priority to JP2021554397A priority patent/JP7095814B2/ja
Priority to CN202180042024.1A priority patent/CN115803616A/zh
Priority to KR1020227043658A priority patent/KR20230011347A/ko
Priority to EP21826503.1A priority patent/EP4166252A4/en
Priority to US18/001,266 priority patent/US20230251226A1/en
Publication of WO2021256442A1 publication Critical patent/WO2021256442A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/80Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating mechanical hardness, e.g. by investigating saturation or remanence of ferromagnetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Definitions

  • This disclosure relates to a mechanical property measuring device, a mechanical property measuring method, a substance manufacturing equipment, a substance management method, and a substance manufacturing method.
  • sampling inspections may be carried out as inspections of the mechanical properties of steel materials.
  • the sampling inspection is a so-called destructive test in which an inspection site is taken out from a steel material and processed into a mechanical test piece for testing.
  • it has been required to guarantee the quality by non-destructively measuring or evaluating the mechanical properties of steel products themselves, instead of sampling inspection. Therefore, attempts have been made to measure the mechanical properties through various physical quantities related to the mechanical properties of the steel material, which are measured during or after the steel material is manufactured.
  • Patent Document 1 describes a technique for detecting a high hardness portion locally existing in a metal material by applying an AC magnetic field to the metal material and detecting an induced eddy current.
  • Patent Document 2 has a first opening through which the long material is inserted on one side along the longitudinal direction of the long material, and a second opening through which the long material is inserted on the other side.
  • a detection device including a joint iron member having a shape substantially axially symmetric with respect to the axis passing through the first opening and the second opening will be described.
  • the detection device of Patent Document 2 can reduce the dead zone at the end in the longitudinal direction of the long lumber, and can detect the change in magnetic characteristics with high accuracy.
  • Patent Document 3 provides a technique for evaluating the film thickness of a coating material of a subject from the eddy current intensity induced in the subject and grasping the degree of deterioration of the subject from the information on the thinning of the film thickness of the coating material. Describe.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a mechanical property measuring device and a mechanical property measuring method capable of accurately measuring mechanical properties via physical quantities. .. Another object of the present disclosure is to provide a substance manufacturing facility and a substance manufacturing method capable of improving the manufacturing yield of a substance by enabling accurate measurement of mechanical properties via physical quantities. be. Further, another object of the present disclosure is to provide a method of controlling a substance, which can provide a high quality substance by enabling accurate measurement of mechanical properties via physical quantities.
  • the mechanical property measuring device is A physical quantity measuring unit that measures a plurality of physical quantities of a substance to be measured having a substance and a film on the surface of the substance, and a physical quantity measuring unit.
  • a classification processing unit that selects one of a plurality of calculation models for calculating the mechanical properties of the substance based on at least two of the plurality of measured physical quantities.
  • the method for measuring mechanical characteristics is as follows.
  • the substance manufacturing equipment is Manufacturing equipment that manufactures substances and A physical quantity measuring unit that measures a plurality of physical quantities of a substance to be measured having a substance and a film on the surface of the substance.
  • a classification processing unit that selects one of a plurality of calculation models for calculating the mechanical properties of the substance based on at least two of the plurality of measured physical quantities, and a classification processing unit.
  • a mechanical property measuring device including a calculation model selected by the classification processing unit, a mechanical property calculation unit for calculating the mechanical properties of the substance using at least two of the plurality of physical quantities, and a mechanical property measuring device. , Equipped with The measuring device measures the mechanical properties of the substance manufactured in the manufacturing equipment.
  • the method for managing a substance is as follows.
  • the method for producing a substance according to an embodiment of the present disclosure is as follows.
  • the manufacturing steps to manufacture the substance and A measurement step for measuring a plurality of physical quantities of the substance to be measured, using the manufactured substance and a film on the surface of the substance as objects to be measured.
  • the mechanical property can be accurately measured via a physical quantity. Further, according to the substance manufacturing equipment and the substance manufacturing method according to the present disclosure, it is possible to improve the manufacturing yield of the substance by making it possible to accurately measure the mechanical properties via the physical quantity. Further, according to the substance management method according to the present disclosure, it is possible to provide a high-quality substance by making it possible to accurately measure mechanical properties via physical quantities.
  • FIG. 1 is a block diagram of a mechanical property measuring device according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram of the physical quantity measuring unit.
  • FIG. 3 is a diagram showing a specific configuration example of the sensor.
  • FIG. 4 is a diagram showing an example of a signal applied to an exciting coil to generate an AC magnetic field.
  • FIG. 5 is a flowchart showing a process of collecting learning data.
  • FIG. 6 is a flowchart showing a method of measuring mechanical characteristics.
  • FIG. 7 is a diagram comparing the calculated mechanical characteristics with the actually measured values.
  • FIG. 8 is a block diagram of a mechanical property measuring device according to another embodiment.
  • FIG. 9 is a block diagram of a mechanical property measuring device according to another embodiment.
  • FIG. 8 is a block diagram of a mechanical property measuring device according to another embodiment.
  • FIG. 10 is a diagram showing an example of a method for manufacturing a steel material.
  • FIG. 11 is a diagram showing an example in which the determination result is displayed on the display unit.
  • FIG. 12 is a diagram illustrating the correspondence between one parameter and one mechanical property when one model is present.
  • FIG. 13 is a diagram illustrating the correspondence between one parameter and one mechanical characteristic when a plurality of models exist.
  • FIG. 14 is a diagram illustrating the separation of distributions by a plurality of parameters when a plurality of models exist.
  • FIG. 15 is a diagram illustrating a list of position information of the cured portion.
  • FIG. 1 is a block diagram of a mechanical property measuring device 100 according to the first embodiment of the present disclosure.
  • the measuring device 100 is a non-destructive mechanical characteristic of the substance 1 (see FIG. 2) of the measurement object 101 via a plurality of physical quantities of the measurement object 101 (see FIG. 2) measured by the physical quantity measuring unit 5.
  • the mechanical property is a mechanical property, and particularly refers to a property against an external force such as pulling, compression, or shearing.
  • mechanical properties include strengths such as tensile stress, yield stress and compressive stress, hardness such as Vickers hardness and Leeb hardness, and brittleness.
  • the physical quantity is an objectively measurable quantity and includes, for example, temperature, mass, and electromagnetic features.
  • a steel material will be described as an example of the substance 1, but the substance 1 is not limited to the steel material.
  • hardness is explained as an example of mechanical properties, mechanical properties are not limited to hardness.
  • an electromagnetic feature quantity including a current waveform distortion amount, a current waveform amplitude, a harmonic amplitude, a magnetic permeability and a coercive force will be described as an example, but the plurality of physical quantities are limited to the electromagnetic feature quantity. I can't.
  • electromagnetic features such as magnetic permeability and coercive force have a correlation with the mechanical properties of a metal, and it is preferable to measure or evaluate the mechanical properties using the electromagnetic features.
  • an eddy current flaw detection method or a 3MA (Micromagnetic Multiparameter Microstructure and Stress Analysis) technique is preferable.
  • an AC signal AC current or AC voltage
  • the frequency of one of them to 200 Hz or less, even when the film 2 (see FIG. 2) is formed on the surface of the substance 1, the AC magnetic field sufficiently penetrates to the surface of the substance 1 and is more accurate. It is more preferable because it enables us to measure or evaluate mechanical properties well.
  • the above measuring method is particularly preferable.
  • the measuring device 100 includes a physical quantity measuring unit 5, a control unit 8, a storage unit 10, and a display unit 11.
  • the control unit 8 includes a classification processing unit 81, a mechanical characteristic calculation unit 82, and a physical quantity measurement control unit 83.
  • the storage unit 10 includes a plurality of calculation models M 1 , M 2 , ..., M n for calculating the mechanical properties of the substance 1.
  • n is an integer of 2 or more. Details of each element of the measuring device 100 will be described later.
  • FIG. 2 is a block diagram of the physical quantity measuring unit 5.
  • the physical quantity measuring unit 5 includes a sensor 3 and a scanning unit 6.
  • the sensor 3 measures the physical quantity of the object to be measured 101.
  • the measurement object 101 has a substance 1 and a film 2 formed on the surface of the substance 1. Details of each element of the physical quantity measuring unit 5 will be described later.
  • an iron oxide film called scale or black skin is formed on the surface of the steel material during the production of the steel material.
  • iron oxide films there are various types of iron oxide films, but in general, magnetite (triiron tetroxide, Fe 3 O 4 ), ustite (ferrous oxide, FeO) and hematite (red iron ore, Fe 2 O 3 ) are known.
  • magnetite triiron tetroxide, Fe 3 O 4
  • ustite ferrrous oxide, FeO
  • hematite red iron ore, Fe 2 O 3
  • scales differ in the composition of oxygen and iron, but they also differ in their electromagnetic characteristics.
  • magnetite is magnetic, but Wüstite is not.
  • the physical quantity is measured from the surface. That is, in the present invention, the physical quantity is measured together with the substance 1 which is a steel material and the scale which is a film 2 as a measurement object 101.
  • the film 2 which is a scale affects the measurement of the substance 1 which is a steel material.
  • the type and composition of the scale vary depending on the state of the steel material at the time of manufacture.
  • the structure of the steel material itself may have anisotropy in magnetism, and the electromagnetic characteristics differ depending on the object to be measured 101. Therefore, it is very difficult to measure or evaluate the mechanical properties of the steel material such as hardness of the measurement object 101 having the steel material and the scale simply in relation to the electromagnetic features of the measurement object 101.
  • the electromagnetic characteristics of the scale of the film 2 have a greater influence. Therefore, it is more difficult to measure or evaluate the mechanical properties of the surface layer of the steel material such as hardness of the measurement object 101 having the steel material and the scale simply in relation to the electromagnetic features of the measurement object 101. Become.
  • the mechanical properties of the substance 1 are determined for the measurement object 101 having the substance 1 and the film 2 on the surface. , It becomes very difficult to measure or evaluate by simply relating to a plurality of physical quantities of the measurement object 101. Further, when measuring the mechanical characteristics of the surface layer of the substance 1, for the measurement object 101 having the substance 1 and the film 2 on the surface, the mechanical characteristics of the surface layer of the substance 1 are measured by a plurality of the measurement objects 101. It becomes more difficult to measure or evaluate simply in relation to the physical quantity of.
  • FIG. 12 is a diagram illustrating the correspondence between one parameter and one mechanical property when one model is present.
  • one mathematical model for example, model M1 in FIG. 12
  • any one parameter A for example, one of the electromagnetic features
  • the mechanical properties can be calculated from the parameter A.
  • the substance 1 is, for example, a steel material, it actually has elements constituting the surface layer structure such as the distribution of the steel structure and the scale (an example of the film 2). Therefore, as shown in FIG. 13, the correlation between any one parameter A and the mechanical properties has a plurality of relationships (models M1, M2, M3 and M4) depending on the combination of the substance 1 and the film 2 forming the surface layer structure. ) Exists.
  • the models M2 and M3 can correspond to the case where the scale is thick and the case where the scale is thin, respectively.
  • the measured values of the parameter A are the same, there is a possibility that two types of hardness are calculated, and the hardness calculation accuracy is lowered.
  • the model M2 and the model M4 are recognized separately. Further, although not shown in the figure, if the combination of parameter B and parameter C is also used, it can be expected that the model can be more reliably separated and recognized. By using a plurality of parameters in this way, it is possible to determine the data group of each model. Then, by selecting and using an appropriate model from the plurality of determined models, the mechanical characteristics can be accurately measured or evaluated.
  • the storage unit 10 stores various information and a program for operating the measuring device 100.
  • the various information stored in the storage unit 10 may include a plurality of calculation models M 1 , M 2 , ..., M n prepared in advance for calculating the mechanical properties of the substance.
  • the programs stored in the storage unit 10 include a program that operates the control unit 8 as the classification processing unit 81, a program that operates the control unit 8 as the mechanical characteristic calculation unit 82, and the control unit 8 as the physical quantity measurement control unit 83. Contains a program to run.
  • the storage unit 10 is composed of, for example, a semiconductor memory or a magnetic memory.
  • the storage unit 10 may store information on the range or boundary of the groups G 1 , G 2 , ..., G n , which will be described later, prepared in advance.
  • the display unit 11 displays various information including the mechanical properties of the substance 1 to the user.
  • the display unit 11 includes a display capable of displaying characters, images, and the like, and a touch screen capable of detecting contact with a user's finger or the like.
  • the display may be a display device such as a liquid crystal display (LCD: Liquid Crystal Display) or an organic EL display (OELD: Organic Electro-Luminescence Display).
  • the touch screen detection method may be any method such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, or a load detection method.
  • the display unit 11 may be configured by a display that does not include a touch screen.
  • the control unit 8 controls the entire operation of the measuring device 100.
  • the control unit 8 includes one or more processors.
  • the processor may include at least one general purpose processor that reads a particular program and performs a particular function, and a dedicated processor that is specialized for a particular process.
  • the dedicated processor may include an application specific integrated circuit (ASIC).
  • the processor may include a programmable logic device (PLD).
  • the PLD may include an FPGA (Field-Programmable Gate Array).
  • the control unit 8 may include at least one of a SoC (System-on-a-chip) in which one or a plurality of processors cooperate and a SiP (System In a Package).
  • the control unit 8 functions as a classification processing unit 81, a mechanical characteristic calculation unit 82, and a physical quantity measurement control unit 83 according to a program read from the storage unit 10.
  • control unit 8 may have a function of generating a plurality of calculation models M 1 , M 2 , ..., M n after the collection of learning data is completed. Further, the control unit 8 sets a range or a boundary of the groups G 1 , G 2 , ..., G n corresponding to each of the plurality of calculation models M 1 , M 2 , ..., M n. For example, when the measurement object 101 is determined to belong to the group G i based on the electromagnetic features and is classified, the corresponding calculation model M i is used.
  • i is any integer from 1 to n. The details of model generation will be described later.
  • the classification processing unit 81 classifies a plurality of calculation models M 1 , M 2 , ..., M n based on at least two of the plurality of physical quantities of the measurement object 101 measured by the physical quantity measurement unit 5. More specifically, one of a plurality of calculation models M 1 , M 2 , ..., M n is selected based on at least two of the plurality of physical quantities of the measurement object 101. As an example, it is assumed that the distortion amount of the current waveform, the amplitude of the current waveform, the amplitude of the harmonics, the magnetic permeability, and the coercive force, which are electromagnetic features, are all used for selecting one calculation model M i.
  • the classification processing unit 81 acquires information on the range or boundary of the groups G 1 , G 2 , ..., G n from the storage unit 10. Then, in the classification processing unit 81, the combination of the distortion amount of the current waveform, the amplitude of the current waveform, the amplitude of the harmonics, the magnetic permeability and the coercive force belongs to any of the groups G 1 , G 2 , ..., G n. Is determined. When it is determined that these values belong to the group G i , the classification processing unit 81 selects the calculation model M i corresponding to the group G i. Selected calculated model M i are used by the mechanical characteristic calculating unit 82.
  • the mechanical property calculation unit 82 calculates the mechanical property of the substance 1 by using the calculation model M i selected by the classification processing unit 81 and at least two of the plurality of physical quantities.
  • a plurality of physical quantities include the above-mentioned electromagnetic feature quantities, and the strain amount of the current waveform, the amplitude of the current waveform, the amplitude of the harmonics, the magnetic permeability, and the coercive force are all used for calculating the mechanical properties of the substance 1. It is supposed to be done.
  • the mechanical characteristic calculation unit 82 acquires the information of the calculation model M i selected from the classification processing unit 81.
  • the mechanical characteristic calculation unit 82 acquires the calculation model M i from the storage unit 10.
  • Mechanical characteristic calculating unit 82 strain in the current waveform, the amplitude of the current waveform, the amplitude of the harmonics, the value of permeability and coercive force, by inputting the calculated model M i, the mechanical properties of the material 1 calculate.
  • the mechanical property calculation unit 82 may output the calculated hardness of the steel material to the display unit 11 in order to show the user.
  • the classification processing unit 81 classifies into a plurality of calculation models M 1 , M 2 , ..., M n , that is, when the calculation model M i is selected, all the electromagnetic features are used in the above example. However, some combinations of two or more electromagnetic features may be used.
  • the mechanical property calculation unit 82 calculates the mechanical property of the substance 1, all the electromagnetic features are used in the above example, but a part of two or more electromagnetic features is calculated as the model M. You may enter it in i. At this time, part of the electromagnetic characteristic amount input to the calculation model M i may differ from the part of the electromagnetic characteristic quantity used when the classification processing unit 81 selects the calculation model M i.
  • the classification processing unit 81 selects the calculation model M i using the combination of the distortion amount of the current waveform and the amplitude of the current waveform, and the mechanical characteristic calculation unit 82 selects the amplitude of the current waveform, the amplitude of the harmonics, and the magnetic permeability. May be input to the calculation model M i to calculate the mechanical properties of the substance 1.
  • the physical quantity measurement control unit 83 controls the operation of the physical quantity measurement unit 5.
  • the physical quantity measurement control unit 83 operates, for example, the sensor 3 to measure the electromagnetic feature quantity.
  • the sensor 3 measures the physical quantity of the measurement object 101 having the substance 1 and the film 2.
  • a magnetic sensor will be described as an example of the sensor 3, but the sensor 3 is not limited to the magnetic sensor.
  • the number of sensors 3 may be one, but may be multiple.
  • the measurement result of the sensor 3 shows a physical quantity including the influence of the film 2, that is, a physical quantity in a state of having not only the substance 1 but also the film 2.
  • the mechanical properties calculated by the mechanical property calculation unit 82 relate to the substance 1 that does not contain the film 2.
  • FIG. 3 is a diagram showing one specific configuration example of the sensor 3.
  • the sensor 3 is, for example, a magnetic sensor and may include an exciting coil 31 and a magnetizing yoke 32.
  • the sensor 3 acts an AC magnetic field on the measurement object 101 while moving relative to the measurement object 101.
  • the exciting coil and the coil for measuring the electromagnetic change are shared by one coil.
  • the sensor 3 measures the influence of an eddy current or the like induced on the object to be measured 101 by the AC magnetic field as a change in the electromagnetic feature amount.
  • the sensor for measuring the electromagnetic feature may be configured such that an exciting coil is wound around a magnetization yoke, and the exciting coil and a coil for receiving a signal are separately wound.
  • the senor for measuring the electromagnetic feature may be configured such that an exciting coil is wound around the magnetization yoke and the coil for measuring the electromagnetic change is independently installed between the magnetization yokes.
  • the sensor for measuring the electromagnetic feature amount is not limited to the configuration shown in FIG. 3 as long as it has a configuration including an exciting coil, a coil for measuring electromagnetic changes, and a magnetization yoke.
  • the electromagnetic feature quantity of the surface layer may be used as the physical quantity to be measured.
  • changes in the magnetic hysteris curve and Barkhausen noise correlate with mechanical properties such as tensile strength and hardness of the material. Therefore, it is preferable to measure the amount of electromagnetic features on the surface layer with a magnetic sensor as shown in FIG.
  • the magnetic hysteris curve is also referred to as a BH curve, and is a curve showing the relationship between the strength of the magnetic field and the magnetic flux density.
  • the magnetic feature selectively measures only the surface layer of the object to be measured with a magnetic sensor. can do.
  • the skin effect the higher the frequency of the alternating current, the easier it is for the current to concentrate on the surface.
  • the penetration depth is defined as the depth at which the current becomes about 0.37 times the surface current due to the skin effect, the relationship is given by the following equation (1).
  • d is the penetration depth [m]
  • f is the frequency [Hz]
  • is the magnetic permeability [H / m]
  • is the conductivity [S / m]
  • is the pi.
  • the penetration depth can be adjusted by adjusting the frequency according to the surface depth range to be measured or evaluated. For example, when it is desired to measure or evaluate mechanical properties up to about 0.25 mm on the surface layer, the frequency is determined so that the penetration depth is about 0.25 mm. Preferably, in consideration of attenuation, it is desirable that 3/4 of the penetration depth is larger than 0.25 mm with respect to the surface layer depth.
  • FIG. 4 shows an example of a signal applied to the exciting coil 31 to generate an AC magnetic field.
  • the signal of FIG. 4 is a signal in which a high frequency signal is superimposed on a low frequency signal.
  • the sensor 3 can efficiently measure the electromagnetic feature amount based on the low frequency signal and the electromagnetic feature amount based on the high frequency signal.
  • the low frequency signal is, for example, a 150 Hz sine wave.
  • the high frequency signal is, for example, a 1 kHz sine wave.
  • the membrane 2 when the membrane 2 is thin and the relative magnetic permeability of the membrane 2 (ratio of the magnetic permeability of a substance to the magnetic permeability of a vacuum) is low, magnetism is easily transmitted.
  • the electromagnetic features may be measured using only an appropriate high frequency.
  • the film 2 when the film 2 is thick and the relative magnetic permeability of the substance constituting the film 2 is high, it is difficult for magnetism to pass through and it is difficult for a signal to reach the substance 1.
  • the low frequency signal may be a DC signal.
  • the low frequency signal may be a sinusoidal signal or a rectangular signal.
  • the scanning unit 6 moves the sensor 3 relative to the measurement object 101.
  • the scanning unit 6 may move the sensor 3 to an evaluation point designated by the physical quantity measurement control unit 83. Further, the scanning unit 6 may acquire information on the moving speed of the substance 1 and adjust the sensor 3 so that it moves at an appropriate relative speed.
  • the mechanical property measuring device 100 calculates the mechanical property of the substance 1 based on the physical quantity of the measurement object 101 measured by the physical quantity measuring unit 5.
  • the object to be measured 101 is a steel material having a scale.
  • physical quantities include electromagnetic features.
  • the mechanical property of substance 1 is the hardness of the steel material.
  • one of a plurality of calculation models M 1 , M 2 , ..., M n is used. In order to accurately measure mechanical properties, it is important to select multiple calculation models M 1 , M 2 , ..., M n correctness, and an appropriate calculation model M i based on physical quantities.
  • the measuring device 100 collects training data as follows, generates a plurality of calculation models M 1 , M 2 , ..., M n , and sets a range of groups G 1 , G 2 , ..., G n.
  • FIG. 5 is a flowchart showing the process of collecting learning data.
  • the control unit 8 sets the position of the measurement object 101 for measuring the physical quantity, that is, the evaluation point (step S1).
  • the control unit 8 causes the physical quantity measurement unit 5 to measure the physical quantity at the set evaluation point (step S2).
  • the physical quantity of the measurement object 101 is an explanatory variable.
  • the control unit 8 executes the pre-processing (step S3).
  • the pretreatment is, for example, to remove the film 2 from the object to be measured 101 so that the mechanical properties at the evaluation points can be measured.
  • the object to be measured 101 is a steel material having a scale on the surface
  • the scale can be removed by etching or grinding.
  • the pretreatment may include cutting the measurement object 101 at the evaluation point to expose the cross section of the substance 1.
  • the control unit 8 measures the mechanical characteristics at the evaluation point (step S4).
  • the training data includes mechanical properties as objective variables.
  • the mechanical property may be, for example, the hardness of the cross section of the steel material at the evaluation site.
  • As the mechanical properties for example, a value obtained by converting the leave hardness of the surface of the steel material obtained by using a rebound type hardness meter into the hardness of the cross section by the conversion formula obtained from the past test may be used. Further, in order to perform more accurate conversion, a value obtained by further normalizing the converted value with respect to the thickness of the steel material may be used. That is, a process of converting to a value in the thickness of the reference steel material may be executed.
  • the reference steel material has a thickness of, for example, 28 mm.
  • the mechanical property may be the Vickers hardness obtained by directly measuring the cut surface.
  • the control unit 8 acquires the measured mechanical characteristics.
  • the control unit 8 associates the data labels such as the control number and the evaluation location of the substance 1, the explanatory variables, and the objective variables, and stores them in the storage unit 10 as one learning data.
  • control unit 8 determines that sufficient training data has not been collected for model generation (No in step S5), the control unit 8 returns to the process of step S1 and further collects training data.
  • control unit 8 proceeds to the process of step S6 when it is determined that the learning data sufficient for model generation is collected and the collection is completed (Yes in step S5).
  • the learning data group stored in the storage unit 10 by the control unit 8, that is, a set of a plurality of learning data may include objective variables obtained by different methods.
  • the training data group includes the Vickers hardness obtained by directly measuring the cut surface, the value obtained by converting the leave hardness of the surface of the steel material into the hardness of the cross section, and the converted value further regarding the thickness of the steel material. It may include objective variables obtained by at least two of the normalized values. For example, Vickers hardness is accurate, but it takes time to measure to cut steel. Therefore, it is possible to generate an accurate learning data group within a realistic time by allowing a mixture of objective variables obtained by different measurement methods.
  • the control unit 8 divides the learning data included in the learning data group into groups G 1 , G 2 , ..., G n by machine learning.
  • machine learning may be performed based on electromagnetic features and other parameters.
  • appropriate classification by machine learning may be executed.
  • Other parameters may include, for example, the composition of membrane 2 and at least one of the tissues of substance 1.
  • logistic regression, support vector machine, K-nearest neighbor method, random tree logic, or the like may be used. Among these, since the boundary can be set so as to maximize the margin for the training data group of each group, the classification by the groups G 1 , G 2 , ..., G n by the support vector machine is the most preferable. ..
  • the control unit 8 stores information on the range or boundary of the groups G 1 , G 2 , ..., G n defined by the above method in the storage unit 10.
  • grouping is performed by machine learning based on the composition of the film 2.
  • machine learning is performed based on the structure of the substance 1 in order to calculate more accurate mechanical properties in consideration of the influence of the magnetic anisotropy of the steel material.
  • the control unit 8 generates calculation models M 1 , M 2 , ..., M n for each group G 1 , G 2 , ..., G n (step S6).
  • the control unit 8 generates the calculation model M i based on the learning data divided into, for example, the group G i.
  • Calculation model M i is the explanatory variable of the training data may be provided as a linear regression model or a non-linear regression model combines the objective variable, the.
  • the linear regression model a method such as a generalized linear model or a generalized linear mixed model may be used. Further, a method using a neural network using deep learning may be adopted.
  • the linear regression model is more accurate than the non-linear regression model in the case of extrapolation.
  • a linear regression model it is most preferable to use a linear regression model. Also, as described above, grouping is performed by machine learning based on at least one property of substance 1 and film 2, and a plurality of calculation models M 1 and M according to at least one property of substance 1 and film 2. 2 , ..., M n is preferably generated.
  • the control unit 8 stores the generated plurality of calculation models M 1 , M 2 , ..., M n in the storage unit 10, and ends a series of processes.
  • the mechanical property measuring device 100 calculates the mechanical property of the substance 1 based on the physical quantity of the measurement object 101 measured by the physical quantity measuring unit 5.
  • the object to be measured 101 is a steel material having a scale.
  • substance 1 is a steel material.
  • the film 2 on the surface of the substance 1 is a scale.
  • physical quantities include electromagnetic features.
  • the mechanical property of substance 1 is the hardness of the steel material.
  • the sensor 3 is the magnetic sensor shown in FIGS. 2 and 3. In calculating the mechanical properties of substance 1, one of a plurality of calculation models M 1 , M 2 , ..., M n is used.
  • the mechanical property measuring device 100 calculates the mechanical property of the substance 1 as follows.
  • FIG. 6 is a flowchart showing a method of measuring mechanical characteristics. Then, these plurality of calculation models M 1 , M 2 , ..., M n are prepared in advance and stored in the storage unit 10 of the mechanical property measuring device 100 before measuring the measurement object 101.
  • the control unit 8 causes the physical quantity measurement unit 5 to measure the physical quantity of the measurement object 101 (measurement step, step S11). At this time, in order to measure the mechanical properties of the substance 1 (particularly the surface layer), the physical quantity is measured from a certain surface of the film 2 of the substance 1. That is, in this measurement method, the physical quantity is measured together with the substance 1 which is a steel material and the scale which is a film 2 as a measurement object 101. This is the same even when the substance 1 is not a steel material and the film 2 is not a scale. Specifically, the sensor 3 of the physical quantity measuring unit 5 is arranged on the surface of the film 2.
  • the measurement result of the sensor 3 shows the physical quantity including the influence of the film 2, that is, the physical quantity in the state of having the film 2 as well as the substance 1.
  • the scanning unit 6 moves the sensor 3 relative to the measurement object 101.
  • the sensor 3 applies an AC magnetic field to the evaluation point of the measurement object 101 designated by the physical quantity measurement control unit 83.
  • the sensor 3 measures the influence of an eddy current or the like induced on the object to be measured 101 by the AC magnetic field as a change in the electromagnetic feature amount.
  • the physical quantity measuring unit 5 sends the measured electromagnetic feature quantity as a plurality of physical quantities to the control unit 8.
  • the control unit 8 has a plurality of calculation models M 1 , M 2 , ..., M prepared in advance for calculating the mechanical properties of the substance based on at least two of the plurality of physical quantities of the measurement object 101.
  • Classify into n That is, one of a plurality of calculation models M 1 , M 2 , ..., M n is selected based on at least two of the physical quantities (classification step, step S12).
  • the control unit 8 has at least two of the physical quantities based on the information of the range or boundary of the groups G 1 , G 2 , ..., G n prepared in advance and stored in the storage unit 10. Determine the group G i to which the combination of values belongs.
  • the control unit 8 selects the calculation model M i corresponding to the determined group G i.
  • the method for classifying into groups G 1 , G 2 , ..., G n logistic regression, support vector machine, K-nearest neighbor method, random tree logic, or the like may be used as described above.
  • the boundary can be set so as to maximize the margin for the training data group of each group, the classification by the groups G 1 , G 2 , ..., G n by the support vector machine is the most preferable. ..
  • the ranges of these groups G 1 , G 2 , ..., G n are stored in the storage unit 10 of the mechanical property measuring device 100, they are prepared and stored in advance before the measurement object 101 is measured. Keep it.
  • Control unit 8 based on the calculation model M i selected, calculates the mechanical properties of the material 1 (calculation step, step S13).
  • the calculation models M 1 , M 2 , ..., M n are linear in which at least two of the physical quantities of the measurement object 101, which is an explanatory variable, and the mechanical properties of the substance 1, which is the objective variable, are linked. It may be prepared as a regression model or a non-linear regression model.
  • the linear regression model a method such as a generalized linear model or a generalized linear mixed model may be used. Further, a method using a neural network using deep learning may be adopted.
  • the linear regression model is more accurate than the non-linear regression model in the case of extrapolation.
  • control unit 8 calculates the mechanical properties of the substance 1 using the selected calculation model M i and at least two physical quantities required as inputs.
  • the mechanical property of the substance 1 may be, for example, the hardness of the cross section of the steel material at the evaluation point.
  • the mechanical properties for example, a value obtained by converting the leave hardness of the surface of the steel material obtained by using a rebound type hardness meter into the hardness of the cross section by the conversion formula obtained from the past test may be used.
  • a value obtained by further normalizing the converted value with respect to the thickness of the steel material may be used. That is, a process of converting to a value in the thickness of the reference steel material may be executed.
  • the reference steel material has a thickness of, for example, 28 mm.
  • the mechanical property may be the Vickers hardness obtained by directly measuring the cut surface.
  • the control unit 8 outputs the calculated mechanical characteristics of the substance 1 to the display unit 11 (output step, step S14), and ends a series of processes.
  • the mechanical properties of the substance 1 displayed on the display unit 11 are recognized by the user.
  • the user may execute the control of the substance 1 or the instruction to change the manufacturing parameter of the substance 1 based on the displayed mechanical properties of the substance 1.
  • the above configuration allows the mechanical characteristics to be accurately measured via physical quantities. Can be measured.
  • a more appropriate calculation model can be selected by the classification processing unit 81 or the classification step (step S12). Greater effect is obtained.
  • a more appropriate calculation model can be created and selected by the classification processing unit 81 or the classification step (step S12), so that the above effect can be further obtained. The above effect can be obtained in the same manner in the case of the second embodiment and the third embodiment described later.
  • the measuring device 100 is a device for measuring the hardness of the surface layer of the steel material.
  • the substance 1 is a steel material.
  • the film 2 is a scale formed on the surface of the steel material.
  • the sensor 3 is an electromagnetic sensor.
  • the physical quantity of the object to be measured 101 is an electromagnetic feature quantity of a steel material having a scale.
  • the mechanical property to be measured in this embodiment is the hardness of the cross section of the steel material at a depth of 0.25 mm.
  • the steel material was manufactured by coarsely rolling continuously cast slabs and then quenching them online by continuous cooling.
  • the hardness of the cross section of the steel produced in this manufacturing process was measured at a depth of 0.25 mm.
  • an electromagnetic sensor capable of measuring the electromagnetic feature amount is arranged in the measuring device 100, and the electromagnetic feature amount on the surface layer of the steel material having scale on the surface is measured.
  • a dolly that moves manually was used as the scanning unit 6. Eight electromagnetic sensors were arranged side by side on this dolly. Eight electromagnetic sensors scanned the entire surface of the steel material.
  • a voltage obtained by superimposing a sine wave of 1 kHz or more on a sine wave having a frequency of 150 Hz or less was applied to the electromagnetic sensor.
  • Multiple types of electromagnetic features were extracted from the current waveforms observed by the electromagnetic sensor.
  • 20 feature quantities such as current waveform distortion amount, amplitude and phase change, harmonic amplitude and phase change, maximum value, minimum value, average value, and coercive force of incremental magnetic permeability are used as electromagnetic feature amounts.
  • the frequency of the applied sine wave is set to 150 Hz or less so that the AC magnetic field excited by the electromagnetic sensor enters up to about 300 ⁇ m from the surface of the steel material.
  • the incremental magnetic permeability is a value indicating the ease of magnetization in a state where a magnetic field is applied, and is indicated by a gradient of a minor loop in a magnetization curve showing the relationship between the magnetic flux density and the magnetic field.
  • three groups G 1 , G 2 and G 3 were generated based on the relationship between scale composition, steel texture, electromagnetic features and cross-sectional hardness. Support vector machines were used for machine learning in grouping. For each of the three groups G 1 , G 2 , and G 3 , multiple computational models M 1 , M 2 , and M 3 were generated by machine learning using a general linearized regression model.
  • the measuring device 100 measured the electromagnetic feature amount by the physical quantity measuring unit 5.
  • the control unit 8 determines the group to which the measured electromagnetic features belong, and selects one calculation model M 1 , M 2 or M 3 for calculating the hardness from the electromagnetic features. Then, the control unit 8 calculated the hardness using the selected calculation model M 1 , M 2 or M 3.
  • FIG. 7 is a diagram comparing the hardness calculated in this embodiment with the measured value obtained by the hardness meter.
  • the actual hardness of the surface layer on the horizontal axis is an actually measured value, which is the hardness obtained by cutting out a test piece and examining it using a rebound type hardness meter.
  • the predicted hardness on the vertical axis is the hardness calculated using the groups G 1 , G 2 , G 3 and the selected calculation model M 1 , M 2 or M 3.
  • the hardnesses H 0 and H 1 are the lower limit value and the upper limit value of the hardness to be measured, respectively.
  • the predicted hardness is almost the same as the actual surface layer hardness, and the measurement can be performed with an accuracy of about 9 Hv standard deviation. Therefore, the hardness calculated by the above method is considered to have the same accuracy as the hardness test.
  • FIG. 10 An example of a specific manufacturing method is shown in FIG.
  • the method for manufacturing the thick steel sheet 43 shown in FIG. 10 includes a rough rolling step S41, a finish rolling step S42, a cooling step S43, a surface layer hardness measuring step S45, a surface layer hardness remeasurement step S46, and a removing step S47.
  • the demagnetization step S44 may be added. When added, the steps proceed in the order of the cooling step S43, the demagnetization step S44, and the surface hardness measuring step S45.
  • the steel piece 41 is hotly roughly rolled at a temperature of 1000 ° C. or higher.
  • finish rolling is performed hot at a temperature of 850 ° C. or higher, and the steel piece 41 is made into a thick steel plate 42.
  • the thick steel plate 42 is cooled.
  • cooling step S43 for example, cooling is started at a temperature at which the temperature of the thick steel sheet is 800 ° C. or higher, and cooling is performed until the temperature of the thick steel sheet becomes about 450 ° C. at the end of cooling.
  • the surface hardness measuring step S45 the mechanical properties of the surface layer are measured on the entire surface of the cooled thick steel plate 42 by using the measuring method executed by the measuring device 100. Then, from the measured result, a portion harder than the preset surface layer hardness is determined as a cured portion.
  • FIG. 11 shows an example in which the determination result is displayed on the display unit 11.
  • the cured portion which is the portion where the surface hardness exceeds the threshold value, is two-dimensionally mapped in a specific color (dark gray) corresponding to the measurement position.
  • the threshold value is set to 230 Hv as an example.
  • a demagnetization step S44 immediately before the surface hardness measurement step S45 and demagnetize the residual magnetic field in this demagnetization step S44.
  • the demagnetizing device uses a distance attenuation method to demagnetize the surface layer so that the residual magnetic field is 0.5 mT or less.
  • a two-dimensional map and a list of the detected position information of the hardened part are output for the part determined to be the hardened part.
  • the 2D map and the list of the position information of the hardened part are transmitted to the quality control system of the manufacturing process and can be referred to in each process.
  • the position information of the cured portion is labeled with each detected cured portion, and IDs are collectively assigned as the same defect.
  • the position (Y_max) in the above may be output.
  • a model map showing the color may be output. Normally, only the determination result map is used, but at least one of the hardness distribution map and the model map may be referred to when a detailed hardness distribution is required, for example, when it is desired to compare with the manufacturing conditions of the cooling step S43. ..
  • the surface hardness of the cured portion detected in the surface hardness measurement step S45 is remeasured.
  • the mechanical characteristics of the surface layer are remeasured only for the cured portion including the vicinity region by using the measurement method executed by the measuring device 100.
  • it is determined again that the surface hardness of the remeasured cured portion exceeds the above threshold value it is determined that the cured portion has a locally hard region, and the thick steel plate 42 is removed in the removal step S47. Send to.
  • the portion determined to be the cured portion in the remeasurement step S46 is removed. Specifically, the portion determined to be a hardened portion is ground and removed by a known grinding means such as a grinder.
  • a known grinding means such as a grinder.
  • the production from the thick steel plate 42 to the thick steel plate 43 is completed, and the thick steel plate 43 is sent to another process (shipping process to the customer, steel pipe manufacturing process, etc.).
  • the wall thickness of the thick steel plate 42 at the grinding position is measured with respect to the portion ground in the removal step S47 of the thick steel plate 42 using a known or existing thickness gauge, and the dimensions set in advance at the time of manufacturing the steel plate. It is desirable to check if it is within the tolerance.
  • the surface hardness of the hardened portion After removing the hardened portion, it is desirable to measure the surface hardness of the hardened portion again with a known contact-type hardness meter. From this measurement result, it is confirmed that the hardness is equal to or less than the preset surface hardness. If it can be confirmed, the production from the thick steel plate 42 to the thick steel plate 43 is completed.
  • the thick steel plate 42 is not subjected to the removing step S47.
  • the production of the thick steel sheet 43 is completed, and the thick steel plate 43 is sent to other processes (shipping process to consumers, steel pipe manufacturing process, etc.).
  • the method for manufacturing a thick steel sheet in this embodiment may further include an annealing step S48 (not shown) after the cooling step S43 and before the surface hardness measuring step S45.
  • the surface hardness of the thick steel sheet 43 to be manufactured (more specifically, the Vickers hardness measured from the upper surface on the surface from which the oxide scale has been removed according to ASTM A 956 / A 956MA Standard Test Method for Leeb Hardness Testing of Steel Products).
  • ASTM A 956 / A 956MA Standard Test Method for Leeb Hardness Testing of Steel Products In the case of a steel type having 230 Hv or more and the thick steel plate 43 is prone to warp, it is desirable to go through the surface hardness measurement step S45 after the annealing step S48 after the cooling step S43.
  • the annealing step S48 softening of the structure by tempering can be expected. Tissue softening leads to suppression of the formation of hardened parts, and as a result, it can be expected that the removed area will be reduced.
  • the hardness is determined according to ASTM A 956 / A 956MA Standard Test Method for Leeb hardness Testing of Steel products from the upper surface on the surface from which the oxidation scale has been removed. Is measured.
  • the thickness of the measurement target affects the measured value. Therefore, the values of the cross-sectional Vickers hardness at a depth of 0.25 mm and the hardness of the surface layer by the repulsion type hardness meter are examined in advance for each thickness, and a relational expression is constructed.
  • the hardness value determined as a hardened portion is determined by adjusting based on a pre-constructed relational expression in order to consider the influence of the thickness based on the cross-sectional hardness at 0.25 mm. It's okay.
  • the reference depth is 0.25 mm, but the reference depth is not limited.
  • a known grinding means has been described as a removing method for removing the hardened portion determined in the surface hardness measuring step S45 on the surface layer of the thick steel plate 42, but the present invention is not limited to this. .. If it is a method that can remove the hardened portion, it can also be removed by using a known method other than grinding (for example, heat treatment).
  • the mechanical properties can be accurately measured via physical quantities, so that the mechanical properties are high. It is possible to provide a thick steel plate 43 which is a quality substance 1. More specifically, the thick steel plate 43 in which the hardened portion is suppressed can be manufactured from the thick steel plate 42.
  • FIG. 8 is a block diagram of the mechanical property measuring device 100 according to the second embodiment of the present disclosure.
  • the plurality of calculation models M 1 , M 2 , ..., M n are stored in the storage unit 10 included in the measuring device 100.
  • the plurality of calculation models M 1 , M 2 , ..., M n are stored in the database 12 outside the measuring device 100.
  • the mechanical property measuring device 100 according to the present embodiment includes a communication unit 7.
  • the control unit 8 can access the database 12 via the communication unit 7.
  • the control unit 8 stores the generated plurality of calculation models M 1 , M 2 , ..., M n in the database 12 via the communication unit 7. Further, the control unit 8 acquires the calculation model M i selected from the database 12 via the communication unit 7.
  • the other configuration of the measuring device 100 is the same as that of the first embodiment.
  • a measuring device 100 for mechanical properties according to the present embodiment, a manufacturing facility for a substance 1 including the measuring device 100, a method for measuring mechanical properties executed by the measuring device 100, a method for managing a substance 1 using the measuring method, and a manufacturing method for the substance 1.
  • the mechanical properties can be accurately measured via physical quantities.
  • the plurality of calculation models M 1 , M 2 , ..., M n are stored in the database 12 outside the measuring device 100, the plurality of calculation models M 1 , M exceeding the storage capacity of the internal storage unit 10. 2 , ..., M n can be handled.
  • the communication method of the communication unit 7 may be a short-range wireless communication standard, a wireless communication standard for connecting to a mobile phone network, or a wired communication standard.
  • Near field communication standards may include, for example, WiFi®, Bluetooth®, infrared and NFC (Near Field Communication).
  • the wireless communication standard connected to the mobile phone network may include, for example, LTE (Long Term Evolution) or a mobile communication system of the 4th generation or later.
  • the communication method used in the communication between the communication unit 7 and the physical quantity measuring unit 5 may be a communication standard such as LPWA (Low Power Wide Area) or LPWAN (Low Power Wide Area Network).
  • FIG. 9 is a block diagram of the mechanical property measuring device 100 according to the third embodiment of the present disclosure.
  • the plurality of calculation models M 1 , M 2 , ..., M n are stored in the storage unit 10 included in the measuring device 100. Further, in the first embodiment, the plurality of calculation models M 1 , M 2 , ..., M n are models corresponding to one kind of measurement object 101.
  • the measuring device 100 acquires the product type information 15 via the communication unit 7.
  • the variety information 15 is information indicating the variety of the substance 1.
  • the measuring device 100 can correspond to m kinds of varieties, where m is an integer of 2 or more. Different varieties, for example, have different structures and production conditions for substance 1.
  • a plurality of different calculation models M j1 , M j2 , ..., M jn are prepared for each type of substance 1.
  • j is any integer from 1 to m.
  • the group G ji is set corresponding to the calculation model M ji. Therefore, information on the range or boundary of any one group G j1 , G j2 , ..., G jn of the substance 1 is prepared as one classification model C j.
  • the classification model C j can be prepared for each type, for example.
  • the plurality of classification models C 1 , C 2 , ..., C m are stored in a first database 13 outside the measuring device 100.
  • the plurality of calculation models M 11 , M 12 , ..., M 1n , ..., M m1 , M m2 , ..., M mn are stored in a second database 14 outside the measuring device 100.
  • the control unit 8 can access the first database 13 and the second database 14 via the communication unit 7.
  • the control unit 8 stores the generated plurality of classification models C 1 , C 2 , ..., C m in the first database 13 via the communication unit 7.
  • the control unit 8 stores the generated plurality of calculation models M 11 , M 12 , ..., M 1n , ..., M m1 , M m2 , ..., M mn in the second database 14 via the communication unit 7. Let me. Further, the control unit 8 acquires the product type information 15 via the communication unit 7. The control unit 8 acquires the classification model C j corresponding to the product of the substance 1 designated by the product information 15 from the first database 13 via the communication unit 7. The control unit 8 acquires the calculation model M ji selected from the second database 14 via the communication unit 7.
  • the other configuration of the measuring device 100 is the same as that of the second embodiment.
  • a measuring device 100 for mechanical properties according to the present embodiment, a manufacturing facility for a substance 1 including the measuring device 100, a method for measuring mechanical properties executed by the measuring device 100, a method for managing a substance 1 using the measuring method, and a manufacturing method for the substance 1.
  • the mechanical properties can be accurately measured via physical quantities.
  • a plurality of classification models C 1, C 2, ..., C m and a plurality of calculation models M 11, M 12, ..., M 1n, ..., M m1, M m2, ..., external M mn measurement device 100 Since it is stored in the first database 13 and the second database 14 in the above, it is possible to handle a model that exceeds the storage capacity of the internal storage unit 10. Further, since it is possible to deal with a plurality of varieties of substance 1, the versatility in measuring mechanical properties is enhanced.
  • each means, each step, etc. can be rearranged so as not to be logically inconsistent, and a plurality of means, steps, etc. can be combined or divided into one. ..
  • the configuration of the measuring device 100 and the physical quantity measuring unit 5 described in the above embodiment is an example, and it is not necessary to include all of the components.
  • the measuring device 100 does not have to include the display unit 11.
  • the measuring device 100 and the physical quantity measuring unit 5 may include other components.
  • the physical quantity measuring unit 5, the control unit 8, and the storage unit 10 may be physically separated from each other.
  • the physical quantity measuring unit 5 and the control unit 8 of the measuring device 100 may be electrically connected, and this connection may be wired or wireless. Further, a known technique may be used for the connection.
  • the present disclosure can be realized as a program describing processing contents that realize each function of the measuring device 100 or as a storage medium on which the program is recorded. It should be understood that the scope of this disclosure also includes these.
  • the measuring device 100 according to the above embodiment has been described in the case where the learning data group is collected by using the measuring device 100 according to the present invention in FIG. 1, but the present invention is not limited thereto.
  • Another physical measuring device may be used to collect the physical quantity of the object to be measured 101.
  • the measuring device 100 shows an example of creating a method for distinguishing into groups G 1 , G 2 , ..., G n
  • these may be created by another information processing device.
  • the information processing apparatus acquires a learning data group and creates a method for distinguishing it into groups G 1 , G 2 , ..., G n.
  • the information processing apparatus transmits to the measuring apparatus 100 a method for distinguishing the created groups G 1 , G 2 , ..., G n. That is, the method for distinguishing the groups G 1 , G 2 , ..., G n created by another device is installed in the control unit 8 of the measuring device 100 and used as a part of the measuring device 100.
  • the measuring device 100 shows an example of creating a method for distinguishing into groups G 1 , G 2 , ..., G n
  • these may be created by another information processing device.
  • the information processing apparatus acquires a separately prepared learning data group and creates a method for distinguishing the groups G 1 , G 2 , ..., G n.
  • the information processing apparatus transmits to the measuring apparatus 100 a method for distinguishing the groups G 1 , G 2 , ..., G n. That is, the method for distinguishing the groups G 1 , G 2 , ..., G n created by another device is installed in the control unit 8 of the measuring device 100 and used as a part of the measuring device 100.
  • the measurement device 100 has shown an example of creating a plurality of calculation models M 1 , M 2 , ..., M n , these may be created by another information processing device.
  • the information processing apparatus acquires the learning data group and creates a plurality of calculation models M 1 , M 2 , ..., M n. Further, the information processing apparatus transmits the created plurality of calculation models M 1 , M 2 , ..., M n to the measuring apparatus 100. That is, a plurality of calculation models M 1 , M 2 , ..., M n created by another device are installed in the control unit 8 of the measurement device 100 and used as a part of the measurement device 100.
  • the measurement device 100 has shown an example of creating a plurality of calculation models M 1 , M 2 , ..., M n , these may be created by another information processing device.
  • the information processing apparatus acquires a separately prepared learning data group and creates a plurality of calculation models M 1 , M 2 , ..., M n. Further, the information processing apparatus transmits the created plurality of calculation models M 1 , M 2 , ..., M n to the measuring apparatus 100. That is, a plurality of calculation models M 1 , M 2 , ..., M n created by another device are installed in the control unit 8 of the measurement device 100 and used as a part of the measurement device 100.
  • the position of the sensor 3 may be fixed.
  • the scanning unit 6 may move the measurement object 101.
  • the scanning unit 6 is a trolley by human power in the above description, it may be a trolley provided with a mechanical drive device. Further, the scanning unit 6 may be controlled by a control unit different from the control unit 8 of the measuring device 100 to enable scanning.
  • the control unit of the scanning unit 6 may be capable of automatic scanning in cooperation with a control unit (not shown) of another manufacturing facility.
  • the control unit 8 of the mechanical characteristic measuring device 100 may enable automatic scanning.
  • the scanning unit 6, the control unit of the scanning unit, the control unit of the manufacturing equipment, and the control unit 8 of the measuring device 100 may be electrically connected, and these connections may be wired or wireless. .. Further, the connection may utilize known or new technology.
  • the user's judgment may be input based on the displayed mechanical properties of the substance 1.
  • the user may input, for example, a pass / fail judgment by touching the touch screen with a finger or the like.
  • the control unit 8 may perform control such as deciding whether or not to carry out the grinding process according to the quality determination result from the user.
  • the control unit 8 may execute the determination of the quality of the substance 1 based on the set threshold value on behalf of the user.
  • the steel material is described as an example of the substance 1
  • the electromagnetic feature amount is described as an example of the physical quantity
  • the hardness is described as an example of the mechanical feature, but other combinations may be used.
  • the effect of the present invention can be obtained even if the physical quantity is temperature.
  • the substance 1 is a metal or a compound
  • the effect of the present invention can be obtained.
  • the film 2 on the surface of the metal or compound has characteristics different from those of the metal or compound with respect to a plurality of physical quantities to be measured, a greater effect can be obtained.
  • examples of the metal include iron, steel, nickel, cobalt, aluminum, titanium, or an alloy containing any one or more of them.
  • examples of the compound include an inorganic compound, an organic compound, and a compound containing any one or more of iron, steel, nickel, cobalt, aluminum, and titanium.
  • the electromagnetic feature quantity is used as a plurality of physical quantities.
  • the effect of the present invention can be obtained more clearly.
  • the substance 1 is a steel material
  • its mechanical properties are determined by the ratio of alloying elements contained in the steel material, the quenching treatment and the annealing treatment method. Therefore, as the measured physical quantity, at least one of the surface temperatures before and after the quenching treatment and the annealing treatment may be used.
  • the mechanical characteristic measuring device 100 configured as described above and the mechanical characteristic measuring method executed by the measuring device 100 are suitably applied to, for example, the following equipment or scene.
  • the present invention may be applied as a part of the inspection equipment constituting the manufacturing equipment of the substance 1. That is, the surface of the substance 1 manufactured by a known, new or existing manufacturing facility is measured by the measuring device 100 for mechanical properties according to the present invention together with the film 2 on the surface of the substance 1. You may. Further, the inspection equipment may inspect the mechanical properties of the substance 1 from the measurement results and, for example, preset mechanical properties. In other words, the mechanical property measuring device 100 according to the present invention measures the substance 1 manufactured by the manufacturing equipment. Further, the inspection facility provided with the mechanical property measuring device 100 according to the present invention inspects the substance 1 manufactured by the manufacturing facility using, for example, preset mechanical properties.
  • the present invention may be applied as a part of an inspection step included in the method for producing substance 1.
  • the substance 1 produced in the publicly known, new or existing production step may be inspected in the inspection step with the film 2 on the surface of the substance 1.
  • the inspection step includes the above-mentioned measurement step, classification step, and calculation step according to the present invention, and calculates the mechanical properties of the substance 1 with the substance 1 having the film 2 on the surface as the measurement object 101.
  • the mechanical property of the substance 1 is calculated by using the measuring device 100 of the mechanical property according to the present invention, with the substance 1 having the film 2 on the surface as the measurement target 101.
  • the condition change step for changing the manufacturing conditions of the manufacturing step so as to be included in the reference range when the mechanical property of the substance 1 calculated by the calculation step or the measuring device 100 is not included in the reference range, the condition change step for changing the manufacturing conditions of the manufacturing step so as to be included in the reference range.
  • the reference range may be a standard range of mechanical properties obtained statistically using substance 1 produced in the past.
  • the manufacturing conditions are parameters that can be adjusted in the manufacturing step of substance 1.
  • the production conditions for example, the heating temperature, heating time, cooling time, etc. of the substance 1 can be selected.
  • the mechanical properties can be accurately measured via the physical quantity, so that the substance 1 can be manufactured at a high yield.
  • the mechanical property of the substance 1 obtained from the measuring device 100 of the mechanical property or the calculation step is the mechanical property of the surface layer of the substance 1, it is more appropriate by the classification processing unit 81 or the classification step (step S12). Since various calculation models can be created and selected, the above effect can be further obtained.
  • the manufacturing equipment of the substance 1 As an example of the manufacturing equipment of the substance 1, the following can be mentioned. That is, Rolling equipment that rolls steel pieces into steel plates, A device for measuring mechanical properties according to the present invention is provided, the surface hardness of the steel sheet is measured by the measuring device, and the measured surface hardness of the steel sheet is preset with respect to the surface layer of the steel sheet. Inspection equipment that determines parts that are harder than the surface hardness as hardened parts, A removal facility for removing the determined hardened portion on the surface layer of the steel sheet, and Steel sheet manufacturing equipment row. If the manufacturing equipment row further includes demagnetization equipment for demagnetizing the surface layer of the steel sheet or the entire steel sheet between the rolling equipment and the inspection equipment, the accuracy of measurement or evaluation of mechanical characteristics can be improved. It is more preferable because it can prevent the decrease.
  • a rolling step of rolling a piece of steel into a steel plate The surface hardness of the steel sheet is measured by the method for measuring mechanical properties according to the present invention, and the measured surface hardness of the steel sheet is a portion harder than the surface hardness preset for the surface layer of the steel sheet.
  • a removal step for removing the determined hardened portion on the surface layer of the steel sheet A method for manufacturing a steel sheet having. If the manufacturing method further includes a demagnetization step for demagnetizing the surface layer of the steel sheet or the entire steel sheet between the rolling step and the inspection step, the accuracy of measurement or evaluation of mechanical properties is lowered. It is more preferable because it can prevent the processing.
  • a rolling step is performed at 850 ° C. or higher in order to obtain a predetermined shape and mechanical properties with continuous steel pieces.
  • quenching and annealing may be further performed as a heat treatment step.
  • electromagnetic features such as incremental permeability, coercive force, and Barkhausen noise correlate with the mechanical properties of steel. Therefore, it is preferable that the electromagnetic feature amount is measured as the physical quantity of the measurement object 101 in a state where the structure of the steel material is determined through the heat treatment step. At this time, the measurement object 101 refers to the steel plate and the film on the surface of the steel plate.
  • the film on the surface of the steel sheet examples include an iron oxide film such as scale and black skin, an organic film such as a resin coating, a plating film or a chemical conversion treatment film. Further, since the mechanical properties are determined by quenching and annealing, the temperature before and after quenching or the temperature before and after annealing is separately measured as the physical quantity of the object 101 to be measured in the manufacturing method. , May be used.
  • the present invention may be applied to the method for controlling the substance 1 and the substance 1 may be controlled by inspecting the substance 1.
  • the substance 1 prepared in advance having the film 2 on the surface is inspected in the inspection step, and the substance 1 is managed in the management step for classifying the substance 1 based on the inspection result obtained in the inspection step.
  • the inspection step includes the above-mentioned measurement step, classification step, and calculation step according to the present invention, and the mechanical property of the substance 1 is determined by using the substance 1 prepared in advance with the film 2 on the surface as the measurement object 101. calculate.
  • the mechanical property of the substance 1 is calculated using the substance 1 having the film 2 on the surface as the measurement target 101 by using the measuring device of the mechanical property according to the present invention.
  • the substance 1 can be managed.
  • the manufactured substance 1 is classified based on the criteria specified in advance based on the mechanical properties of the substance 1 obtained by the calculation step or the measuring device 100 of the mechanical properties, so that the substance 1 is classified.
  • the steel material can be classified into classes according to the hardness. According to such a method for managing the substance 1, the mechanical properties can be accurately measured via the physical quantity, so that the substance 1 of high quality can be provided.
  • the mechanical property of the substance 1 obtained from the measuring device 100 of the mechanical property or the calculation step is the mechanical property of the surface layer of the substance 1, it is more appropriate by the classification processing unit 81 or the classification step (step S12). Since various calculation models can be created and selected, the above effect can be further obtained.
  • the surface hardness of the steel sheet is measured by the method for measuring mechanical properties according to the present invention, and a portion harder than the surface hardness preset for the surface layer of the steel sheet is determined from the measured surface hardness of the steel sheet.
  • Inspection step to determine as a hardened part A method for manufacturing a steel sheet, comprising a control step for classifying the steel sheet according to the area and / or position of the determined hardened portion on the surface layer of the steel sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

物理量を介して正確に機械的特性を計測可能な、機械的特性の計測装置および機械的特性の計測方法が提供される。物理量を介して正確に機械的特性を計測可能とすることで物質の製造歩留まりを向上可能とする、物質の製造設備および物質の製造方法が提供される。また、物理量を介して正確に機械的特性を計測可能とすることで高品質の物質が提供される。機械的特性の計測装置(100)は、物質と物質の表面にある膜とを有する計測対象物の複数の物理量を計測する物理量計測部(5)と、計測された複数の物理量のうちの少なくとも2つに基づいて、物質の機械的特性を算出する複数の算出モデル(M1、M2、…、Mn)のうちの1つを選択する分類処理部(81)と、分類処理部(81)により選択された算出モデルと、複数の物理量のうちの少なくとも2つと、を用いて物質の機械的特性を算出する機械的特性算出部(82)と、を備える。

Description

機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法
 本開示は、機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法に関する。
 ラインパイプなどの素材となる鋼材製造において、鋼材の機械的特性の検査として、抜取り検査が実施されることがある。抜取り検査は、鋼材から検査部位を取り出し、機械試験片に加工して試験を行う、いわゆる破壊試験である。近年、抜取り検査でなく、鋼材商品そのものの機械的特性を非破壊的に計測または評価して、品質を保証することが求められている。そこで、鋼材製造中または鋼材製造後に計測される鋼材の機械的特性に関わる様々な物理量を介して機械的特性を計測する試みが実施されている。
 例えば、特許文献1は、金属材料に交流磁場を作用させて、誘起された渦電流を検出することによって、金属材料に局部的に存在する高硬度部を検出する技術を記載する。
 例えば、特許文献2は、長尺材の長手方向に沿った一方側で長尺材が挿通される第1開口部と、他方側で長尺材が挿通される第2開口部と、を有し、第1開口部および第2開口部を通る軸線に対して略軸対称な形状を有する継鉄部材を備える検出装置を記載する。特許文献2の検出装置は、長尺材の長手方向端部の不感帯を減らすことができ、精度良く磁気特性変化を検出できる。
 例えば、特許文献3は、被検体に誘起される渦電流強度から被検体のコーティング材の膜厚を評価し、コーティング材の膜厚の減肉に関する情報から被検体の劣化程度を把握する技術を記載する。
特開2008-224495号公報 国際公開第2019/087460号 特開平9-113488号公報
 ここで、鋼材表層の電磁気特徴量をセンサで計測して機械的特性を計測する場合に、従来の技術では、電磁気特徴量と機械的特性との関係のばらつきが大きく、正確な算出が難しいとの問題がある。例えば同じ機械的特性が得られるように製造された鋼材について、センサで計測した鋼材表層の電磁気特徴量が異なることがある。そこで、鋼材の製造プロセスで利用可能な、機械的特性を非破壊で正確に計測できる技術が求められている。
 本開示は、上記事情に鑑みてなされたものであり、物理量を介して正確に機械的特性を計測可能な、機械的特性の計測装置および機械的特性の計測方法を提供することを目的とする。また、本開示の他の目的は、物理量を介して正確に機械的特性を計測可能とすることで物質の製造歩留まりを向上可能とする、物質の製造設備および物質の製造方法を提供することである。さらに、本開示の他の目的は、物理量を介して正確に機械的特性を計測可能とすることで高品質の物質を提供することができる、物質の管理方法を提供することである。
 上記課題を解決するために、計測対象物の物理量と機械的特性との関係について調べた結果、発明者は、これらの関係が、計測対象物が有する膜の性質に影響されることを見出した。
 本開示の一実施形態に係る機械的特性の計測装置は、
 物質と前記物質の表面にある膜とを有する計測対象物の複数の物理量を計測する物理量計測部と、
 計測された前記複数の物理量のうちの少なくとも2つに基づいて、前記物質の機械的特性を算出する複数の算出モデルのうちの1つを選択する分類処理部と、
 前記分類処理部により選択された算出モデルと、前記複数の物理量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する機械的特性算出部と、
 を備える。
 本開示の一実施形態に係る機械的特性の計測方法は、
 物質と前記物質の表面にある膜とを有する計測対象物の複数の物理量を計測する計測ステップと、
 計測された前記複数の物理量のうちの少なくとも2つに基づいて、前記物質の機械的特性を算出する複数の算出モデルのうちの1つを選択する分類ステップと、
 前記分類ステップにて選択された算出モデルと、前記複数の物理量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する算出ステップと、
 を備える。
 本開示の一実施形態に係る物質の製造設備は、
 物質を製造する製造設備と、
 物質と前記物質の表面にある膜とを有する計測対象物の複数の物理量を計測する物理量計測部、
 計測された前記複数の物理量のうちの少なくとも2つに基づいて、前記物質の機械的特性を算出する複数の算出モデルのうちの1つを選択する分類処理部、および、
 前記分類処理部により選択された算出モデルと、前記複数の物理量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する機械的特性算出部、を備える機械的特性の計測装置と、
 を備え、
 前記計測装置は、前記製造設備で製造された物質の機械的特性を計測する。
 本開示の一実施形態に係る物質の管理方法は、
 物質と前記物質の表面にある膜とを有する計測対象物の複数の物理量を計測する計測ステップと、
 計測された前記複数の物理量のうちの少なくとも2つに基づいて、前記物質の機械的特性を算出する複数の算出モデルのうちの1つを選択する分類ステップと、
 前記分類ステップにて選択された算出モデルと、前記複数の物理量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する算出ステップと、
 算出された前記物質の機械的特性に基づいて前記物質を分類する管理ステップと、を備える。
 本開示の一実施形態に係る物質の製造方法は、
 物質を製造する製造ステップと、
 製造された前記物質と該物質の表面にある膜とを計測対象物として、前記計測対象物の複数の物理量を計測する計測ステップと、
 計測された前記複数の物理量のうちの少なくとも2つに基づいて、前記物質の機械的特性を算出するために用意された複数の算出モデルのうちの1つを選択する分類ステップと、
 前記分類ステップにて選択された算出モデルと、前記複数の物理量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する算出ステップと、を備える。
 本開示の一実施形態に係る機械的特性の計測装置および機械的特性の計測方法によれば、物理量を介して正確に機械的特性を計測することができる。また、本開示に係る物質の製造設備および物質の製造方法によれば、物理量を介して正確に機械的特性を計測可能とすることで物質の製造歩留まりを向上可能とすることができる。さらに、本開示に係る物質の管理方法によれば、物理量を介して正確に機械的特性を計測可能とすることで高品質の物質を提供することができる。
図1は、本開示の一実施形態に係る機械的特性の計測装置のブロック図である。 図2は、物理量計測部のブロック図である。 図3は、センサの具体的な構成例を示す図である。 図4は、交流磁場を生成させるために励磁コイルに与えられる信号の一例を示す図である。 図5は、学習データの収集の処理を示すフローチャートである。 図6は、機械的特性の計測方法を示すフローチャートである。 図7は、算出された機械的特性と実測値とを比較した図である。 図8は、別の実施形態に係る機械的特性の計測装置のブロック図である。 図9は、別の実施形態に係る機械的特性の計測装置のブロック図である。 図10は、鋼材の製造方法の例を示す図である。 図11は、判定結果を表示部で表示した例を示す図である。 図12は、1つのモデルが存在する場合の1つのパラメータと1つの機械的特性との対応を例示する図である。 図13は、複数のモデルが存在する場合の1つのパラメータと1つの機械的特性との対応を例示する図である。 図14は、複数のモデルが存在する場合に、複数のパラメータによる分布の分離について説明する図である。 図15は、硬化部の位置情報のリストについて説明する図である。
(第1の実施形態)
 図1は、本開示の第1の実施形態に係る機械的特性の計測装置100のブロック図である。計測装置100は、物理量計測部5が計測した計測対象物101(図2参照)の複数の物理量を介して、非破壊的に、計測対象物101の物質1(図2参照)の機械的特性を計測する。ここで、機械的特性は、力学的特性であって、特に引っ張り、圧縮またはせん断などの外力に対する性質をいう。例えば機械的特性は、引張応力、降伏応力および圧縮応力などの強度、ビッカース硬さ(Vickers hardness)およびリーブ硬さ(Leeb hardness)などの硬さ、ならびに脆性を含む。物理量は、客観的に測定可能な量であって、例えば温度、質量および電磁的な特徴量などを含む。
 以下、本実施形態において、物質1として鋼材を例に説明されるが、物質1は鋼材に限られない。また、機械的特性として硬さを例に説明されるが、機械的特性は硬さに限られない。また、複数の物理量として、電流波形の歪量、電流波形の振幅、高調波の振幅、透磁率および保磁力を含む電磁気特徴量を例に説明されるが、複数の物理量は電磁気特徴量に限られない。ここで、透磁率および保磁力といった電磁気特徴量は従来から金属の機械的特性と相関があることが知られており、電磁気特徴量を用いて機械的特性を計測または評価することが好ましい。電磁気特徴量を計測する方法としては、渦流探傷法または3MA(Micromagnetic Multiparameter Microstructure and Stress Analysis)技術などが好ましい。特に、交流磁場を生成するために与えられる信号として2つ以上の周波数を重畳させた交流信号(交流電流または交流電圧)を用いると、より多くの電磁気特徴量を取得することができ、好ましい。さらに、そのうちの1つの周波数を200Hz以下とすることで、物質1の表面に膜2(図2参照)が形成されている場合でも交流磁場が物質1の表面まで十分に浸透して、より精度よく機械的特性を計測または評価できるようになるため、より好ましい。物質1の表層の電磁気特徴量を計測する場合、上記の計測方法は特に好ましい。
(機械的特性の計測装置の構成)
 図1に示すように、計測装置100は、物理量計測部5と、制御部8と、記憶部10と、表示部11と、を備える。制御部8は、分類処理部81と、機械的特性算出部82と、物理量計測制御部83と、を備える。記憶部10は、物質1の機械的特性を算出する複数の算出モデルM1、M2、…、Mnを備える。ここで、nは2以上の整数である。計測装置100の各要素の詳細については後述する。
 図2は、物理量計測部5のブロック図である。物理量計測部5は、センサ3と、走査部6と、を備える。センサ3は、計測対象物101の物理量を計測する。計測対象物101は、物質1と、物質1の表面に形成された膜2と、を有する。物理量計測部5の各要素の詳細については後述する。
 例えば物質1が鋼材の場合、鋼材の製造途中で鋼材の表面にはスケールまたは黒皮と呼ばれる酸化鉄膜が形成される。酸化鉄膜には様々な種類が存在するが、一般に、マグネタイト(四酸化三鉄、Fe34)、ウスタイト(酸化第一鉄、FeO)およびヘマタイト(赤鉄鉱、Fe23)が知られている。これらのスケールは、それぞれ酸素と鉄の組成が異なるだけでなく、電磁気的な特徴が異なる。例えば、マグネタイトには磁性があるが、ウスタイトは磁性がない。ここで、鋼材である物質1の(特に表層の)機械的特性を計測するには、表面から物理量を計測することになる。つまり、本発明においては、鋼材である物質1と膜2であるスケールとを一緒に、計測対象物101として物理量を計測する。
 そのため、スケールである膜2は、鋼材である物質1の計測に影響を与える。また、スケールの種類および組成は、鋼材の製造時の状態によって変化する。さらに、鋼材自体の組織によって磁性に異方性を有することがあり、電磁気的な特徴は計測対象物101によって異なる。したがって、鋼材とスケールとを有する計測対象物101について、硬さなどの鋼材の機械的特性を、単純に計測対象物101の電磁気特徴量に関係づけて測定または評価することは非常に難しい。特に、物質1の表層の機械的特性を計測する場合には、膜2であるスケールの電磁気的な特徴がより大きく影響する。その為、鋼材とスケールとを有する計測対象物101について、硬さなどの鋼材の表層の機械的特性を、単純に計測対象物101の電磁気特徴量に関係づけて測定または評価することはより難しくなる。
 これは、物質1が鋼材以外および膜2がスケール以外の場合でも、同様である。特に、計測する複数の物理量に対し、膜2が物質1とは異なる特徴を備えていた場合は、物質1と表面にある膜2とを有する計測対象物101について、物質1の機械的特性を、計測対象物101の複数の物理量に単純に関係づけて測定または評価することは非常に難しくなる。さらに、物質1の表層の機械的特徴を計測する場合には、物質1と表面にある膜2とを有する計測対象物101について、物質1の表層の機械的特性を、計測対象物101の複数の物理量に単純に関係づけて測定または評価することはより難しくなる。
 ここで、物質1の機械的特性を、計測対象物101の複数の物理量に単純に関係づけて測定または評価することが難しいことについて、図12から図14を示しながら、以下に説明する。図12は、1つのモデルが存在する場合の1つのパラメータと1つの機械的特性との対応を例示する図である。任意の1つのパラメータA(例えば電磁気特徴量の1つ)と機械的特性とを1対1の関係として結びつける数学的なモデルを1つ(例えば、図12中のモデルM1)構築できる場合に、そのモデルを用いてパラメータAから機械的特性(図12~図14の例では硬さ)を算出することができる。しかし、物質1が例えば鋼材の場合、実際には鋼組織の分布、スケール(膜2の一例)といった表層構造を構成する要素などを有する。そのため、図13に示すように、任意の1つのパラメータAと機械的特性との相関は表層構造をなす物質1と膜2の組み合わせに応じて、複数の関係(モデルM1、M2、M3およびM4)が存在する。例えば、モデルM2およびM3は、それぞれスケールが厚い場合、薄い場合に対応し得る。図13に示すように、測定されたパラメータAの値が同じであっても2通りの硬さが算出される可能性があり、硬さの算出精度が低下する。ここで、適切なモデルを選択することによって、硬さの算出精度の低下を回避できる。ところが、例えば1つのパラメータAのある値に対して、類似する機械的特性を出力する複数のモデルがある場合(例えば、図13だとモデルM2の右上端とモデルM4の左下端を含む領域)に、これらの複数のモデルが1つのモデルと認識されることがあり得る。この問題に対して、図14に示すように、複数のパラメータを用いることによって、各モデルを分離して認識することが可能である。図14の例では、パラメータAとパラメータBの組み合わせを用いることによって、モデルM1、モデルM3、モデルM2およびM4を合わせた分布が分離して認識される。さらに、パラメータAとパラメータCの組み合わせを用いることによって、モデルM2とモデルM4とが分離して認識される。さらに、図には示していないが、パラメータBとパラメータCの組み合わせも合わせて利用すれば、より確実にモデルを分離して認識させることが期待できる。このように複数のパラメータを用いることで、各モデルのデータ群を判定することが可能である。そして、判定された複数のモデルから、適切なモデルを選択して用いることによって、精度よく機械的特性を計測または評価することができる。
 記憶部10は、各種情報、および、計測装置100を動作させるためのプログラムを記憶する。記憶部10が記憶する各種情報には、物質の機械的特性を算出するために予め用意された複数の算出モデルM1、M2、…、Mnが含まれてよい。記憶部10が記憶するプログラムには、制御部8を分類処理部81として動作させるプログラム、制御部8を機械的特性算出部82として動作させるプログラム、および、制御部8を物理量計測制御部83として動作させるプログラムが含まれる。記憶部10は、例えば、半導体メモリまたは磁気メモリなどで構成される。ここで、記憶部10は、予め用意された後述するグループG1、G2、…、Gnの範囲または境界の情報を記憶してよい。
 表示部11は、ユーザに対して、物質1の機械的特性を含む各種情報を表示する。本実施形態において、表示部11は、文字、画像などを表示可能なディスプレイと、ユーザの指などの接触を検出可能なタッチスクリーンとを含んで構成される。ディスプレイは、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機ELディスプレイ(OELD:Organic Electro‐Luminescence Display)などの表示デバイスであり得る。タッチスクリーンの検出方式は、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式または荷重検出方式などの任意の方式であり得る。ここで、別の例として、表示部11は、タッチスクリーンを含まないディスプレイで構成されてよい。
 制御部8は、計測装置100の全体の動作を制御する。制御部8は、1以上のプロセッサを含んで構成される。プロセッサは、特定のプログラムを読み込み特定の機能を実行する汎用のプロセッサ、および、特定の処理に特化した専用のプロセッサの少なくとも1つを含んでよい。専用のプロセッサは、特定用途向けIC(ASIC;Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD;Programmable Logic Device)を含んでよい。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。制御部8は、1つまたは複数のプロセッサが協働するSoC(System-on-a-chip)、および、SiP(System In a Package)の少なくとも1つを含んでよい。制御部8は、記憶部10から読みだしたプログラムに従って、分類処理部81、機械的特性算出部82および物理量計測制御部83として機能する。
 また、制御部8は、学習データの収集の完了後に、複数の算出モデルM1、M2、…、Mnを生成する機能を備えてもよい。また、制御部8は、複数の算出モデルM1、M2、…、Mnのそれぞれに対応するグループG1、G2、…、Gnの範囲または境界を設定する。例えば、計測対象物101が電磁気特徴量に基づいてグループGiに属すると判定され、分類された場合に、対応する算出モデルMiが使用される。ここで、iは、1からnまでのいずれかの整数である。モデル生成の詳細については後述する。
 分類処理部81は、物理量計測部5により計測された計測対象物101の複数の物理量のうちの少なくとも2つに基づいて、複数の算出モデルM1、M2、…、Mnに分類する。より具体的には、計測対象物101の複数の物理量のうちの少なくとも2つに基づいて、複数の算出モデルM1、M2、…、Mnのうちの1つを選択する。一例として、電磁気特徴量である電流波形の歪量、電流波形の振幅、高調波の振幅、透磁率および保磁力の全てが、1つの算出モデルMiの選択に用いられるとする。まず、分類処理部81は、グループG1、G2、…、Gnの範囲または境界の情報を記憶部10から取得する。そして、分類処理部81は、電流波形の歪量、電流波形の振幅、高調波の振幅、透磁率および保磁力の値の組み合わせが、グループG1、G2、…、Gnのどれに属するかを判定する。分類処理部81は、これらの値がグループGiに属すると判定した場合に、グループGiに対応する算出モデルMiを選択する。選択された算出モデルMiは、機械的特性算出部82によって使用される。
 機械的特性算出部82は、分類処理部81により選択された算出モデルMiと、複数の物理量のうちの少なくとも2つと、を用いて物質1の機械的特性を算出する。一例として、複数の物理量が上記の電磁気特徴量を含み、電流波形の歪量、電流波形の振幅、高調波の振幅、透磁率および保磁力の全てが、物質1の機械的特性の算出に用いられるとする。機械的特性算出部82は、分類処理部81から選択された算出モデルMiの情報を取得する。機械的特性算出部82は、算出モデルMiを記憶部10から取得する。機械的特性算出部82は、電流波形の歪量、電流波形の振幅、高調波の振幅、透磁率および保磁力の値を、算出モデルMiに入力することによって、物質1の機械的特性を算出する。機械的特性算出部82は、ユーザに示すために、算出した鋼材の硬さを表示部11に出力してよい。
 ここで、分類処理部81が複数の算出モデルM1、M2、…、Mnに分類する、すなわち、算出モデルMiを選択する場合に、上記の例では全ての電磁気特徴量が用いられたが、2つ以上の電磁気特徴量の一部の組み合わせが用いられてよい。また、機械的特性算出部82が物質1の機械的特性を算出する場合に、上記の例では全ての電磁気特徴量が用いられたが、2つ以上の電磁気特徴量の一部を算出モデルMiに入力してよい。このとき、算出モデルMiに入力される電磁気特徴量の一部は、分類処理部81が算出モデルMiを選択する場合に用いられた電磁気特徴量の一部と異なっていてよい。例えば、分類処理部81が電流波形の歪量と電流波形の振幅との組み合わせを用いて算出モデルMiを選択し、機械的特性算出部82が電流波形の振幅、高調波の振幅および透磁率を算出モデルMiに入力して物質1の機械的特性を算出してよい。
 物理量計測制御部83は、物理量計測部5の動作を制御する。物理量計測制御部83は、例えばセンサ3を動作させて、電磁気特徴量を計測させる。
(物理量計測部の構成)
 センサ3は、物質1と膜2とを有する計測対象物101の物理量を測定する。本実施形態において、センサ3として磁気センサを例に説明されるが、センサ3は磁気センサに限られない。センサ3は、1つであってよいが、複数であり得る。ここで、センサ3の計測結果は、膜2の影響を含む物理量、すなわち、物質1だけでなく膜2を有する状態での物理量を示す。これに対し、機械的特性算出部82が算出する機械的特性は、膜2を含まない物質1に関する。
 図3は、センサ3の1つの具体的な構成例を示す図である。センサ3は、例えば磁気センサであって、励磁コイル31と、磁化ヨーク32と、を備えてよい。センサ3は、計測対象物101に対して相対的に移動しながら、計測対象物101に交流磁場を作用させる。図3に示すセンサでは、励磁コイルと電磁気変化を計測するコイルとを1つのコイルで兼用としている。センサ3は、交流磁場によって計測対象物101に誘起された渦電流などの影響を、電磁気特徴量の変化として計測する。別の例として、電磁気特徴量を計測するセンサは、磁化ヨークに励磁コイルをまきつけ、励磁コイルと信号を受信するためのコイルを別途に巻き付ける構成でよい。さらに別の例として、電磁気特徴量を計測するセンサは、磁化ヨークに励磁コイルをまきつけ、電磁気変化を計測するコイルを磁化ヨーク間に独立して設置する構成でよい。電磁気特徴量を計測するセンサは、励磁コイル、電磁気変化を計測するコイル、磁化ヨークを備える構成であれば、図3に示した構成に限定されない。
 ここで、鋼材においては、計測される物理量として、表層の電磁気特徴量が用いられてよい。鋼材においては、磁気ヒステリス曲線の変化およびバルクハウゼンノイズが材料の引張強度および硬さといった機械的特性と相関があることは知られている。そのため、図3に示すような磁気センサで表層の電磁気特徴量を計測するのがよい。ここで、磁気ヒステリス曲線は、B-Hカーブとも称され、磁界の強さと磁束密度との関係を示す曲線である。また、交流電流が導体を流れる場合に、電流密度が導体の表面で高く、表面から離れると低くなる現象(表皮効果)により、磁気センサで計測対象物の表層のみ選択的に電磁気特徴量を計測することができる。表皮効果は交流電流の周波数が高くなるほど電流が表面へ集中しやすい。表皮効果により電流が表面電流の約0.37倍となる深さを浸透深さとしたとき、その関係は下記の式(1)で与えられる。式(1)において、dが浸透深さ[m]、fが周波数[Hz]、μが透磁率[H/m]、σが導電率[S/m]、πが円周率である。
Figure JPOXMLDOC01-appb-M000001
 式(1)の通り、周波数が高くなるほど浸透深さは浅くなる。換言すると、周波数が低くなるほど浸透深さは深くなる。したがって、計測または評価したい表層深さ範囲に応じて周波数を調整して、浸透深さを調整することができる。たとえば、表層0.25mm程度のまでの機械的特性を計測または評価したい場合に、浸透深さが0.25mm程度となるように周波数が決定される。好ましくは、減衰を考慮して、表層深さに対して浸透深さの3/4が0.25mmよりも大きいことが望ましい。
 図4は、交流磁場を生成するために励磁コイル31に与えられる信号の一例を示す。図4の信号は、低周波信号に高周波信号が重畳された信号である。このような信号を用いることによって、センサ3は、低周波信号に基づく電磁気特徴量と、高周波信号に基づく電磁気特徴量と、を効率的に計測することが可能になる。低周波信号は一例として150Hzの正弦波である。高周波信号は一例として1kHzの正弦波である。高周波信号と低周波信号を重畳させることで、物質1に膜2が形成された場合でも、物質1の表層までの電磁気特徴量の計測が容易になる。ここで、例えば膜2が薄い場合、膜2の比透磁率(物質の透磁率と真空の透磁率との比)が低い場合には、磁気が透過しやすい。磁気が透過しやすい場合に、適切な高周波だけを用いて電磁気特徴量を計測してよい。また、例えば膜2が厚い場合、膜2を構成する物質の比透磁率が高い場合には、磁気が透過しにくく、物質1まで信号が届きにくい。磁気が透過しにくい場合に、低周波信号に高周波信号を重畳させることで、より深くまで磁気を届けることができる。このとき、低周波信号は直流信号でよい。別の例として、低周波信号は、正弦波信号でよいし、矩形信号でよい。
 走査部6は、センサ3を計測対象物101に対して相対的に移動させる。走査部6は、物理量計測制御部83によって指定された評価箇所に、センサ3を移動させてよい。また、走査部6は、物質1の移動速度の情報を取得して、センサ3が適切な相対速度で移動するように調整してよい。
(学習データの収集とモデル作成)
 本実施形態に係る機械的特性の計測装置100は、物理量計測部5で計測された計測対象物101の物理量に基づいて、物質1の機械的特性を算出する。例えば、計測対象物101は、スケールを有する鋼材である。例えば、物理量は電磁気特徴量を含む。例えば、物質1の機械的特性は鋼材の硬さである。物質1の機械的特性の算出において、複数の算出モデルM1、M2、…、Mnのうちの1つが用いられる。正確に機械的特性を計測するためには、複数の算出モデルM1、M2、…、Mnの正しさ、および、物理量に基づく適切な算出モデルMiの選択が重要である。計測装置100は、以下のように学習データを収集し、複数の算出モデルM1、M2、…、Mnを生成し、グループG1、G2、…、Gnの範囲を設定する。
 図5は、学習データの収集の処理を示すフローチャートである。制御部8は、物理量を計測する計測対象物101の位置、すなわち評価箇所を設定する(ステップS1)。
 制御部8は、物理量計測部5に、設定した評価箇所における物理量を計測させる(ステップS2)。ここで、学習データにおいて、計測対象物101の物理量は説明変数である。
 制御部8は、事前処理を実行させる(ステップS3)。ここで、事前処理は、例えば計測対象物101から膜2を除去して、評価箇所における機械的特性の計測が可能であるようにすることである。例えば計測対象物101が表面にスケールを有する鋼材である場合に、スケールは、エッチングまたは研削などによって除去され得る。また、事前処理は、計測対象物101を評価箇所において切断し、物質1の断面を露出させることを含んでよい。
 制御部8は、評価箇所における機械的特性を計測させる(ステップS4)。学習データは、目的変数として機械的特性を含む。機械的特性は、例えば評価箇所における鋼材の断面の硬さであってよい。機械的特性は、例えばリバウンド式硬さ計を用いて得られた鋼材の表面のリーブ硬さを、過去の試験から得られた換算式によって断面の硬さに換算した値が用いられてよい。また、さらに正確な換算を行うために、換算した値をさらに鋼材の厚みについて正規化した値が用いられてもよい。すなわち、基準となる鋼材の厚さにおける値に換算する処理が実行されてよい。基準となる鋼材の厚さは、例えば28mmである。また、上記の事前処理が計測対象物101を評価箇所において切断したものである場合に、機械的特性は、切断面を直接的に計測したビッカース硬さであってよい。制御部8は、計測させた機械的特性を取得する。制御部8は、物質1の管理番号および評価箇所などのデータラベルと、説明変数と、目的変数と、を関連付けて1つの学習データとして、記憶部10に記憶させる。
 制御部8は、モデル生成に十分な学習データが収集されていないと判定する場合に(ステップS5のNo)、ステップS1の処理に戻って、さらに学習データを収集する。
 制御部8は、モデル生成に十分な学習データが収集されて、収集が完了したと判定する場合に(ステップS5のYes)、ステップS6の処理に進む。
 ここで、制御部8が記憶部10に記憶させた学習データ群、すなわち複数の学習データの集合は、異なる手法で得られた目的変数を含んでよい。上記の例では、学習データ群は、切断面を直接的に計測したビッカース硬さ、鋼材の表面のリーブ硬さを断面の硬さに換算した値、および、換算した値をさらに鋼材の厚みについて正規化した値、のうちの少なくとも2つの手法で得られた目的変数を含んでよい。例えば、ビッカース硬さは正確であるが、鋼材を切断するために計測に時間を要する。そこで、異なる計測手法で得られた目的変数の混在を許容することによって、現実的な時間内で正確な学習データ群を生成することが可能である。
 制御部8は、学習データ群が含む学習データを、機械学習によってグループG1、G2、…、Gnに区分する。グループ化において、電磁気特徴量および他のパラメータに基づいて機械学習が実行されてよい。また、一部の電磁気特徴量および他のパラメータに基づいて事前にグループ(原グループ)が設定された後に、機械学習による適切な区分が実行されてよい。他のパラメータは例えば膜2の組成および物質1の組織の少なくとも1つを含んでよい。グループG1、G2、…、Gnに区分する手法は、ロジスティック回帰、サポートベクターマシン、K近傍法、または、ランダムツリーロジックなどが用いられてよい。この中では、各グループのもつ学習データ群に対して、マージンを最大にとるように境界を定めることができるため、サポートベクターマシンによりグループG1、G2、…、Gnによる分類が最も好ましい。
 制御部8は、上記の手法によって定められたグループG1、G2、…、Gnの範囲または境界の情報を記憶部10に記憶する。ここで、特に物質1が鋼材である場合に、機械的特性は膜2であるスケールの性質に影響される。そのため、膜2の組成に基づく機械学習によってグループ化が実行されることが好ましい。また、鋼材の磁性の異方性の影響を考慮して、さらに正確な機械的特性を算出するために、物質1の組織に基づいて機械学習が行われることが好ましい。
 制御部8は、グループG1、G2、…、Gnごとに、算出モデルM1、M2、…、Mnを生成する(ステップS6)。制御部8は、例えばグループGiに区分された学習データに基づいて算出モデルMiを生成する。算出モデルMiは、学習データの説明変数と、目的変数と、を結びつけた線形回帰モデルまたは非線形回帰モデルとして用意されてよい。線形回帰モデルとしては、一般化線形モデル、一般化線形混合モデルといった手法を用いてよい。また、深層学習を利用したニューラルネットワークを用いた手法が採用されてもよい。ここで、線形回帰モデルは、外挿の場合に非線形回帰モデルよりも精度がよい。そのため、線形回帰モデルを用いることが最も好ましい。また、上記のように、物質1および膜2の少なくとも1つの性質に基づく機械学習によってグループ化が実行されて、物質1および膜2の少なくとも1つの性質に応じた複数の算出モデルM1、M2、…、Mnが生成されることが好ましい。制御部8は、生成した複数の算出モデルM1、M2、…、Mnを記憶部10に記憶させて、一連の処理を終了する。
(機械的特性の計測方法)
 本実施形態に係る機械的特性の計測装置100は、物理量計測部5で計測された計測対象物101の物理量に基づいて、物質1の機械的特性を算出する。例えば、計測対象物101は、スケールを有する鋼材である。例えば、物質1は鋼材である。例えば、物質1の表面にある膜2はスケールである。例えば、物理量は電磁気特徴量を含む。例えば、物質1の機械的特性は鋼材の硬さである。例えば、センサ3は図2と図3に示した磁気センサである。物質1の機械的特性の算出において、複数の算出モデルM1、M2、…、Mnのうちの1つが用いられる。正確に機械的特性を計測するためには、複数の算出モデルM1、M2、…、Mnの正しさ、および、物理量に基づく適切な算出モデルMiの選択が重要である。その為に、本実施形態に係る機械的特性の計測装置100は、物質1の機械的特性を以下のように算出する。図6は、機械的特性の計測方法を示すフローチャートである。そして、これら複数の算出モデルM1、M2、…、Mnは、計測対象物101を計測する前に、予め用意しかつ機械的特性の計測装置100の記憶部10に格納しておく。
 制御部8は、物理量計測部5に、計測対象物101の物理量を計測させる(計測ステップ、ステップS11)。このとき、物質1の(特に表層の)機械的特性を計測するには、物質1の膜2のある表面から物理量を計測する。つまり、本計測方法においては、鋼材である物質1と膜2であるスケールとを一緒に、計測対象物101として物理量を計測する。これは、物質1が鋼材以外および膜2がスケール以外の場合でも、同様である。具体的には、膜2の表面に物理量計測部5のセンサ3を配置する。センサ3の計測結果は、膜2の影響を含む物理量、すなわち、物質1だけでなく膜2を有する状態での物理量を示す。走査部6は、センサ3を計測対象物101に対して相対的に移動させる。その結果、センサ3は、物理量計測制御部83によって指定された、計測対象物101の評価箇所に交流磁場を作用させる。センサ3は、交流磁場によって計測対象物101に誘起された渦電流などの影響を、電磁気特徴量の変化として計測する。物理量計測部5は、計測された電磁気特徴量を複数の物理量として制御部8へ送る。
 制御部8は、計測対象物101の複数の物理量のうちの少なくとも2つに基づいて、物質の機械的特性を算出するために予め用意された複数の算出モデルM1、M2、…、Mnに分類する。すなわち、物理量のうちの少なくとも2つに基づいて、複数の算出モデルM1、M2、…、Mnのうちの1つを選択する(分類ステップ、ステップS12)。具体的には、制御部8は、予め用意されて記憶部10に記憶されているグループG1、G2、…、Gnの範囲または境界の情報に基づいて、物理量のうちの少なくとも2つの値の組み合わせが属するグループGiを判定する。制御部8は、判定したグループGiに対応する算出モデルMiを選択する。ここで、グループG1、G2、…、Gnに区分する手法は、先に述べた通り、ロジスティック回帰、サポートベクターマシン、K近傍法、または、ランダムツリーロジックなどが用いられてよい。この中では、各グループのもつ学習データ群に対して、マージンを最大にとるように境界を定めることができるため、サポートベクターマシンによりグループG1、G2、…、Gnによる分類が最も好ましい。これらグループG1、G2、…、Gnの範囲は、機械的特性の計測装置100の記憶部10に格納しておく場合、計測対象物101を計測する前に、予め用意して格納しておく。
 制御部8は、選択した算出モデルMiに基づいて、物質1の機械的特性を算出する(算出ステップ、ステップS13)。ここで、算出モデルM1、M2、…、Mnは、説明変数である計測対象物101の物理量のうちの少なくとも2つと、目的変数である物質1の機械的特性と、を結びつけた線形回帰モデルまたは非線形回帰モデルとして用意されてよい。線形回帰モデルとしては、一般化線形モデル、一般化線形混合モデルといった手法を用いてよい。また、深層学習を利用したニューラルネットワークを用いた手法が採用されてもよい。ここで、線形回帰モデルは、外挿の場合に非線形回帰モデルよりも精度がよい。そのため、線形回帰モデルを用いることが最も好ましい。また、物質1および膜2の少なくとも1つの性質に基づく前述の機械学習によってグループ化が実行されて、物質1および膜2の少なくとも1つの性質に応じた複数の算出モデルM1、M2、…、Mnが生成されていることが好ましい。制御部8は、選択した算出モデルMiと、入力として必要な少なくとも2つの物理量と、を用いて物質1の機械的特性を算出する。
 ここで、物質1の機械的特性は、例えば評価箇所における鋼材の断面の硬さであってよい。機械的特性は、例えばリバウンド式硬さ計を用いて得られた鋼材の表面のリーブ硬さを、過去の試験から得られた換算式によって断面の硬さに換算した値が用いられてよい。また、さらに正確な換算を行うために、換算した値をさらに鋼材の厚みについて正規化した値が用いられてもよい。すなわち、基準となる鋼材の厚さにおける値に換算する処理が実行されてよい。基準となる鋼材の厚さは、例えば28mmである。また、上記の事前処理が計測対象物101を評価箇所において切断したものである場合に、機械的特性は、切断面を直接的に計測したビッカース硬さであってよい。
 制御部8は、算出した物質1の機械的特性を表示部11に出力し(出力ステップ、ステップS14)、一連の処理を終了する。表示部11に表示された物質1の機械的特性は、ユーザによって認識される。ユーザは、表示された物質1の機械的特性に基づいて、物質1の管理または物質1の製造パラメータの変更指示などを実行してよい。
 以上のように、本実施形態に係る機械的特性の計測装置100、および、計測装置100が実行する機械的特性の計測方法によれば、上記の構成によって、物理量を介して正確に機械的特性を計測することができる。特に、計測する複数の物理量に対し、膜2が物質1とは異なる特徴を備えていた場合は、分類処理部81または分類ステップ(ステップS12)により、より適切な算出モデルを選択できるので、上記効果がより大きく得られる。また、物質1の表層の機械的特徴を計測する場合においては、分類処理部81または分類ステップ(ステップS12)により、より適切な算出モデルを作成し選択できるので、上記効果がさらに大きく得られる。なお、上記効果は、後述する第2の実施形態および第3の実施形態の場合も、同様に得られる。
(実施例)
 以下、本開示の効果を実施例に基づいて具体的に説明するが、本開示はこれら実施例に限定されるものではない。
(第1の実施例)
 第1の実施例において、計測装置100は、鋼材の表層の硬さを計測する装置である。本実施例において、物質1は鋼材である。膜2は鋼材の表面に生じたスケールである。センサ3は電磁気センサである。計測対象物101の物理量は、スケールを有する鋼材の電磁気特徴量である。本実施例で計測したい機械的特性は、深さ0.25mmにおける鋼材の断面の硬さである。
 鋼材は連続鋳造されたスラブを粗厚延し、さらにオンラインで連続的に冷却による焼き入れをおこなって製造された。学習データの収集のために、この製造プロセスで製造された鋼材について、深さ0.25mmにおける断面の硬さが計測された。
 本実施例では、計測装置100に電磁気特徴量を計測可能な電磁気センサを配置し、表面にスケールが生じた鋼材の表層の電磁気特徴量を計測した。ここで、走査部6として、人力にて移動する台車が用いられた。この台車に、8個の電磁気センサが並べて配置された。8個の電磁気センサは鋼材全面を走査した。
 電磁気センサには、150Hz以下の周波数の正弦波に1kHz以上の正弦波を重畳した電圧が引加された。電磁気センサで観測される電流波形から、複数種類の電磁気特徴量が抽出された。本実施例において、電磁気特徴量として、電流波形の歪量、振幅と位相変化、高調波の振幅と位相変化、増分透磁率の最大値、最小値、平均値、保磁力など20個の特徴量が抽出された。ここで、電磁気センサで励起される交流磁場が鋼材の表面から300μm程度まで入り込むように、引加される正弦波の周波数を150Hz以下とした。また、増分透磁率は、磁場が印加された状態における磁化のされ易さを示す値であって、磁束密度と磁場との関係を示す磁化曲線においてマイナーループの勾配で示される。
 学習データの収集後に、スケールの組成、鋼材の組織、電磁気特徴量および断面の硬さの関係に基づいて、3つのグループG1、G2、G3が生成された。グループ化における機械学習は、サポートベクターマシンが使用された。3つのグループG1、G2、G3のそれぞれについて、一般線形化回帰モデルを用いて、機械学習によって複数の算出モデルM1、M2、M3が生成された。
 鋼材の表層の硬さを算出するために、計測装置100は、物理量計測部5によって電磁気特徴量を計測した。制御部8は、計測した電磁気特徴量が属するグループを判定し、電磁気特徴量から硬さを算出するための1つの算出モデルM1、M2またはM3を選択した。そして、制御部8は、選択した算出モデルM1、M2またはM3を用いて、硬さを算出した。
 図7は、本実施例で算出された硬さと硬さ計で得られた実測値とを比較した図である。横軸の表層実硬さは実測値であり、試験片を切り出しリバウンド式硬さ計を用いて調べた硬さである。また、縦軸の予測硬さは、グループG1、G2、G3と選択した算出モデルM1、M2またはM3とを用いて算出された硬さである。ここで、硬さH0、H1は、それぞれ、測定する硬さの下限値、上限値である。図7に示すように、予測硬さは、表層実硬さとほぼ一致しており、標準偏差9Hv程度の精度で計測することができた。したがって、上記手法によって算出される硬さは、硬さ試験と同程度の精度を有すると考えられる。
(第2の実施例)
 第2の実施例として、計測装置100が実行する機械的特性の計測方法を、厚鋼板の製造方法において、表層の硬さの検査として用いた例を示す。具体的な製造方法の一例を、図10に示す。図10に示した厚鋼板43の製造方法は、粗圧延工程S41、仕上げ圧延工程S42、冷却工程S43、表層硬さ計測工程S45、表層硬さ再計測工程S46および除去工程S47、を含む。さらに必要に応じて、脱磁工程S44を追加してもよい。追加した場合は、冷却工程S43から脱磁工程S44、表層硬さ計測工程S45の順で工程が進む。
 粗圧延工程S41では、例えば鋼片41を、1000℃以上の温度で熱間で粗圧延する。次の仕上げ圧延工程S42では、850℃以上の温度で熱間で仕上げ圧延を行い、鋼片41を厚鋼板42とする。その後の冷却工程S43で、厚鋼板42を冷却する。ここで、冷却工程S43では、例えば厚鋼板の温度が800℃以上となる温度で冷却を開始し、冷却終了時に厚鋼板の温度が450℃程度となるまで冷却を行う。
 表層硬さ計測工程S45では、計測装置100が実行する計測方法を用いて、冷却後の厚鋼板42の全面に対し、表層の機械的特性を計測する。そして、その計測された結果から、予め設定された表層硬さよりも硬い部位を、硬化部として判定する。判定結果を表示部11で表示した例を、図11に示す。図11では、表層硬さが閾値を超えた部分である硬化部を、特定の色(濃い灰色)で計測位置に対応させて2次元マッピングしてある。ここで、閾値は、一例として230Hvに設定した。図11においては、右端近くに、判定された複数の硬化部がある。このように、硬化部があると判定された厚鋼板42は、再計測工程S46に送られる。
 ここで、マグネットクレーンのような磁力を用いて鋼板を釣り上げた場合、クレーンのマグネット部分が吸着した部分に残留磁場が残る。電磁気特徴量を計測して機械的特性を計測する場合、少なくとも表層に残留磁場があると、機械的特性の計測または評価の精度が低下することがある。そこで、残留磁場が発生するプロセスがある場合には、表層硬さ計測工程S45の直前に脱磁工程S44を追加し、この脱磁工程S44で残留磁場を脱磁することが好ましい。そのとき、脱磁装置は、距離減衰方式をもちいて表層の残留磁場が0.5mT以下となるように脱磁をする。
 また、表層硬さ計測工程S45では、硬化部と判定された部位について、2次元のマップと検出された硬化部の位置情報のリストが出力される。2次元マップおよび硬化部の位置情報のリストは製造工程の品質管理システムに伝送され、各工程で参照できる。硬化部の位置情報は、図15に示すように、検出された各硬化部に対して、ラベリング処理を行い、同じ欠陥としてまとめてIDが割り当てられる。また、ID毎に、硬さの最大値(図中H_max)、硬さの平均値(H_ave)、硬さの最大値があるL方向における位置(X_max)、硬さの最大値があるC方向における位置(Y_max)などが出力されてよい。2次元のマップは、図11のように判定された硬化部を表示した判定結果マップと、鋼板の計測範囲に対して硬さを色に割り付けて表示した硬度分布マップ、どのモデルが使用されたのかを表示したモデルマップが出力されてよい。通常において、判定結果マップのみが用いられるが、例えば、冷却工程S43の製造条件と対比したい場合など、詳細な硬度分布が必要な場合に、硬度分布マップおよびモデルマップの少なくとも1つが参照されてよい。
 再計測工程S46では、表層硬さ計測工程S45にて検出された硬化部の表層硬さの再計測を行う。ここでは、計測装置100が実行する計測方法を用いて、近傍領域を含めた硬化部だけに対し、表層の機械的特性を再計測する。そして、再計測された硬化部の表層硬さが、上記閾値を超えると再び判定された場合には、局所的に硬い領域を有した硬化部であると判定し、厚鋼板42を除去工程S47に送る。
 そして、除去工程S47では、再計測工程S46で硬化部と判定された部位を除去する。具体的には、硬化部と判定された部位を、グラインダーなどの公知の研削手段によって研削して取り除く。この除去工程S47の後に、厚鋼板42から厚鋼板43への製造が完了し、他工程(需要家への出荷工程、鋼管製造工程など)へと厚鋼板43が送られる。なお、厚鋼板42の除去工程S47にて研削された部位に対し、公知または既存の厚み計を使用して研削位置における厚鋼板42の肉厚を測定し、鋼板製造時に予め設定されている寸法公差に入っているか確認を行うことが望ましい。また、硬化部を除去した後に、硬化部に対し、表層硬さを公知の接触式硬さ計で再々度計測することが望ましい。この計測結果から、予め設定された表層硬さ以下であることを確認する。もし確認できたならば、厚鋼板42から厚鋼板43への製造が完了する。
 一方、表層硬さ計測工程S45にて硬化部がないと判定された場合、または、再計測工程S46にて硬化部でないと判定された場合には、除去工程S47は経ずに、厚鋼板42から厚鋼板43への製造が完了し、他工程(需要家への出荷工程、鋼管製造工程など)へと厚鋼板43が送られる。
 なお、本実施例における厚鋼板の製造方法は、先の冷却工程S43の後でかつ表層硬さ計測工程S45の前に、さらに、焼鈍工程S48(図示せず)などを含んでもよい。特に、製造する厚鋼板43の表層硬さ(より具体的には、酸化スケールを除去した表面で上面から、ASTM A 956/A 956MA Standard Test Method for Leeb Hardness Testing of Steel Productsにしたがって測定したビッカース硬さ)が230Hv以上、且つ、厚鋼板43に反りが生じやすい鋼の品種の場合には、冷却工程S43の後に焼鈍工程S48を経た後で表層硬さ計測工程S45を経ることが望ましい。焼鈍工程S48を経ることで、焼き戻しによる組織の軟化が期待できる。組織の軟化は、硬化部の発生の抑制に繋がるので、結果として除去領域が減ることを期待できる。
 上記のように、表層硬さ計測工程S45において、硬さを確認するために、酸化スケールを除去した表面で上面から、ASTM A 956/A 956MA Standard Test Method for Leeb hardness Testing of Steel productsに従って硬さが計測される。ここで、反発式の硬さ計測では、計測対象の厚みが計測値に影響する。そのため、事前に厚み毎に深さ0.25mmにおける断面ビッカース硬さと表層の反発式硬さ計による硬さの値が事前に調べられて関係式が構築される。硬化部として判定される硬さの値は、0.25mmにおける断面硬さを基準として、厚みによる影響を考慮するために、事前に構築された関係式に基づいて調整が行われて、決定されてよい。この例において、基準とする深さを0.25mmとしているが、基準とする深さは限定されない。
 なお、本実施例では、厚鋼板42の表層における表層硬さ計測工程S45で判定された硬化部を除去する除去方法として、公知の研削手段にて説明をしたが、本発明においてはそれに限定されない。硬化部を除去できる方法であるならば、研削以外の公知の方法(例えば熱処理など)を用いて除去することもできる。
 本実施例のように、計測装置100が実行する機械的特性の計測方法を、厚鋼板43の製造方法において使用した場合、物理量を介して正確に機械的特性を計測することができる為、高品質の物質1である厚鋼板43を提供することができる。より具体的には、厚鋼板42から硬化部が抑制された厚鋼板43を製造することができる。
(第2の実施形態)
 図8は、本開示の第2の実施形態に係る機械的特性の計測装置100のブロック図である。第1の実施形態において、複数の算出モデルM1、M2、…、Mnは、計測装置100が備える記憶部10に記憶される。本実施形態において、複数の算出モデルM1、M2、…、Mnは、計測装置100の外部にあるデータベース12に記憶される。本実施形態に係る機械的特性の計測装置100は通信部7を備える。制御部8は、通信部7を介して、データベース12にアクセス可能である。本実施形態において、制御部8は、生成した複数の算出モデルM1、M2、…、Mnを、通信部7を介して、データベース12に記憶させる。また、制御部8は、通信部7を介して、データベース12から選択した算出モデルMiを取得する。計測装置100の他の構成は、第1の実施形態と同じである。
 本実施形態に係る機械的特性の計測装置100、計測装置100を備える物質1の製造設備、計測装置100が実行する機械的特性の計測方法、その計測方法を用いる物質1の管理方法および製造方法によれば、第1の実施形態と同様に、物理量を介して正確に機械的特性を計測することができる。さらに、複数の算出モデルM1、M2、…、Mnが計測装置100の外部にあるデータベース12に記憶されるため、内部の記憶部10の記憶容量を超える複数の算出モデルM1、M2、…、Mnを扱うことが可能になる。
 ここで、通信部7の通信方式は、近距離無線通信規格または携帯電話網へ接続する無線通信規格であってよいし、有線通信規格であってよい。近距離無線通信規格は、例えば、WiFi(登録商標)、Bluetooth(登録商標)、赤外線およびNFC(Near Field Communication)などを含んでよい。携帯電話網へ接続する無線通信規格は、例えば、LTE(Long Term Evolution)または第4世代以降の移動通信システムなどを含んでよい。また、通信部7と物理量計測部5との通信において用いられる通信方式は、例えばLPWA(Low Power Wide Area)またはLPWAN(Low Power Wide Area Network)などの通信規格でよい。
(第3の実施形態)
 図9は、本開示の第3の実施形態に係る機械的特性の計測装置100のブロック図である。第1の実施形態において、複数の算出モデルM1、M2、…、Mnは、計測装置100が備える記憶部10に記憶される。また、第1の実施形態において、複数の算出モデルM1、M2、…、Mnは、1つの品種である計測対象物101に対応するモデルである。本実施形態において、計測装置100は、通信部7を介して品種情報15を取得する。品種情報15は、物質1の品種を示す情報である。本実施形態において、計測装置100は、mを2以上の整数として、m種類の品種に対応可能である。品種が異なると、例えば物質1の組織および製造条件が異なる。そのため、物質1の品種毎に、異なる複数の算出モデルMj1、Mj2、…、Mjnが用意される。ここで、jは、1からmまでのいずれかの整数である。また、上記のように、算出モデルMjiに対応してグループGjiが設定される。そのため、物質1の、任意の1つのグループGj1、Gj2、…、Gjnの範囲または境界の情報が、1つの分類モデルCjとして用意される。分類モデルCjは、物質1が鋼材の場合、例えば品種毎に用意することができる。
 複数の分類モデルC1、C2、…、Cmは、計測装置100の外部にある第1のデータベース13に記憶される。複数の算出モデルM11、M12、…、M1n、…、Mm1、Mm2、…、Mmnは、計測装置100の外部にある第2のデータベース14に記憶される。制御部8は、通信部7を介して、第1のデータベース13および第2のデータベース14にアクセス可能である。本実施形態において、制御部8は、生成した複数の分類モデルC1、C2、…、Cmを、通信部7を介して、第1のデータベース13に記憶させる。制御部8は、生成した複数の算出モデルM11、M12、…、M1n、…、Mm1、Mm2、…、Mmnを、通信部7を介して、第2のデータベース14に記憶させる。また、制御部8は、通信部7を介して、品種情報15を取得する。制御部8は、通信部7を介して、品種情報15が指定する物質1の品種に対応する分類モデルCjを、第1のデータベース13から取得する。制御部8は、通信部7を介して、第2のデータベース14から選択した算出モデルMjiを取得する。計測装置100の他の構成は、第2の実施形態と同じである。
 本実施形態に係る機械的特性の計測装置100、計測装置100を備える物質1の製造設備、計測装置100が実行する機械的特性の計測方法、その計測方法を用いる物質1の管理方法および製造方法によれば、第1の実施形態と同様に、物理量を介して正確に機械的特性を計測することができる。さらに、複数の分類モデルC1、C2、…、Cmおよび複数の算出モデルM11、M12、…、M1n、…、Mm1、Mm2、…、Mmnが計測装置100の外部にある第1のデータベース13および第2のデータベース14に記憶されるため、内部の記憶部10の記憶容量を超えるモデルを扱うことが可能になる。また、物質1の複数の品種に対応可能であるため、機械的特性の計測における汎用性が高まる。
 本開示を諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形および修正を行うことが容易であることに注意されたい。従って、これらの変形および修正は本開示の範囲に含まれることに留意されたい。例えば、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の手段およびステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。
 上記の実施形態において説明した計測装置100および物理量計測部5の構成は例示であり、構成要素の全てを含まなくてもよい。例えば、計測装置100は表示部11を備えなくてよい。また、計測装置100および物理量計測部5は別の構成要素を備えてよい。例えば、物理量計測部5と制御部8および記憶部10とは、物理的に距離が離れていてもよい。この場合、物理量計測部5と計測装置100の制御部8は電気的に接続されていればよく、この接続は、有線か無線かは問わない。また、その接続は、公知の技術を利用してもよい。
 例えば、本開示は、計測装置100の各機能を実現する処理内容を記述したプログラムまたはプログラムを記録した記憶媒体としても実現し得る。本開示の範囲には、これらも包含されると理解されたい。
 例えば、上記の実施形態に係る計測装置100は、図1の本発明に係る計測装置100を用いて、学習データ群を収集した場合で説明したが、本発明はそれに限定されない。別の物理用計測装置を用いて、計測対象物101の物理量を収集してもよい。
 例えば、上記の実施形態に係る計測装置100がグループG1、G2、…、Gnに区別する手法を作成する例を示したが、これらは他の情報処理装置によって作成されてもよい。この場合、かかる情報処理装置が学習データ群を取得し、グループG1、G2、…、Gnに区別する手法を作成する。また、情報処理装置が、作成したグループG1、G2、…、Gnに区別する手法を計測装置100に伝送する。つまり、別装置で作成したグループG1、G2、…、Gnに区別する手法を、計測装置100の制御部8にインストールして、計測装置100の一部として使用することとなる。
 例えば、上記の実施形態に係る計測装置100がグループG1、G2、…、Gnに区別する手法を作成する例を示したが、これらは他の情報処理装置によって作成されてもよい。この場合、かかる情報処理装置が、別途用意された学習データ群を取得し、グループG1、G2、…、Gnに区別する手法を作成する。また、情報処理装置が、グループG1、G2、…、Gnに区別する手法を計測装置100に伝送する。つまり、別装置で作成したグループG1、G2、…、Gnに区別する手法を、計測装置100の制御部8にインストールして、計測装置100の一部として使用することとなる。
 例えば、上記の実施形態に係る計測装置100が複数の算出モデルM1、M2、…、Mnを作成する例を示したが、これらは他の情報処理装置によって作成されてもよい。この場合、かかる情報処理装置が学習データ群を取得し、複数の算出モデルM1、M2、…、Mnを作成する。また、情報処理装置が、作成した複数の算出モデルM1、M2、…、Mnを計測装置100に伝送する。つまり、別装置で作成した複数の算出モデルM1、M2、…、Mnを、計測装置100の制御部8にインストールして、計測装置100の一部として使用することとなる。
 例えば、上記の実施形態に係る計測装置100が複数の算出モデルM1、M2、…、Mnを作成する例を示したが、これらは他の情報処理装置によって作成されてもよい。この場合、かかる情報処理装置が、別途用意された学習データ群を取得し、複数の算出モデルM1、M2、…、Mnを作成する。また、情報処理装置が、作成した複数の算出モデルM1、M2、…、Mnを計測装置100に伝送する。つまり、別装置で作成した複数の算出モデルM1、M2、…、Mnを、計測装置100の制御部8にインストールして、計測装置100の一部として使用することとなる。
 例えば、上記の実施形態において、走査部6によってセンサ3が走査する例を示したが、センサ3の位置は固定されてよい。センサ3の位置が固定される場合に、走査部6は、計測対象物101を移動させてよい。また、走査部6は、上記説明では人力による台車としたが、機械的な駆動装置を備えた台車としてもよい。また、計測装置100の制御部8とは別の制御部により制御されて走査が可能となる走査部6としてもよい。特に、物質1の製造設備内に設置される場合は、公知の走査装置、新規の走査装置、公知の走査方法、新規の走査方法、公知の制御装置、新規の制御装置、公知の制御方法または新規の制御方法の1つ以上を利用して、本発明に係る物理量計測部5を設置するのが好ましい。さらに、走査部6の制御部は、他の製造設備の制御部(図示せず)と協同して、自動走査できるようにしてもよい。また逆に、機械的特性の計測装置100の制御部8により、自動走査できるようにしてもよい。この場合、走査部6と走査部の制御部と製造設備の制御部と計測装置100の制御部8は、電気的に接続されていればよく、これらの接続は、有線か無線かは問わない。また、その接続は、公知または新規の技術を利用してもよい。
 例えば、上記の実施形態において、表示された物質1の機械的特性に基づいて、ユーザの判定が入力可能であってよい。ユーザは、表示部11において、例えば良否の判定をタッチスクリーンへの指などの接触によって入力してよい。制御部8は、ユーザからの良否判定結果に応じて、例えば研削工程の実施または不実施を決定するなどの制御を行ってよい。また、別の例として、物質1を管理する管理工程の効率化のために、ユーザに代わって、制御部8が設定された閾値に基づいて物質1の良否の判定を実行してよい。
 また、上記の実施形態では、物質1の例として鋼材、物理量の例として電磁気特徴量、機械的特徴の例として、硬さで説明したが、他の組み合わせでもよい。例えば、物理量が温度でも、本発明の効果が得られる。例えば、物質1が金属または化合物でも、本発明の効果が得られる。特に、金属または化合物の表面にある膜2が、計測する複数の物理量に対し、当該金属または化合物とは異なる特徴を備えている場合は、より大きな効果を得ることができる。ここで、金属の例としては、鉄、鋼、ニッケル、コバルト、アルミニウム、チタンまたはこれらの内いずれか1つ以上を含む合金、があげられる。一方、化合物としては、無機化合物、有機化合物、または、鉄、鋼、ニッケル、コバルト、アルミニウムもしくはチタンの内いずれか1つ以上を含む化合物、があげられる。中でも、物質1が鉄、鋼、ニッケル、コバルト、これらの内いずれか1つ以上を含む合金またはこれらの内いずれか1つ以上を含む化合物であれば、複数の物理量として電磁気特徴量を用いる場合に、本発明の効果をより明確に得ることができる。特に、物質1が鋼材である場合、その機械的特性は、当該鋼材が含有している合金元素の割合、焼入れ処理および焼鈍処理の方法によって決定される。したがって、計測される物理量として、焼入れ処理および焼鈍処理前後での表面温度の少なくとも1つが用いられてもよい。
(適用例)
 上記のように構成された機械的特性の計測装置100および計測装置100が実行する機械的特性の計測方法は、例えば以下のような設備または場面で好適に適用される。
 また、本発明を物質1の製造設備を構成する検査設備の一部として適用してもよい。すなわち、本発明に係る機械的特性の計測装置100によって、公知、新規または既存の製造設備で製造された物質1の表面を、当該物質1の表面にある膜2と共に計測装置で計測するようにしてもよい。さらに、その計測結果と例えば予め設定された機械的特性とから、検査設備は当該物質1の機械的特性を検査するようにしてもよい。言い換えれば、本発明に係る機械的特性の計測装置100は、製造設備によって製造された物質1を計測する。また、本発明に係る機械的特性の計測装置100を備えた検査設備は、製造設備によって製造された物質1を、例えば予め設定された機械的特性を使って検査する。
 また、本発明を物質1の製造方法に含まれる検査ステップの一部として適用してもよい。具体的には、公知、新規または既存の製造ステップにおいて製造された物質1を、当該物質1の表面に膜2があるままで、検査ステップで検査するようにしてもよい。ここで、検査ステップは、本発明に係る前述の計測ステップ、分類ステップおよび算出ステップを備え、表面に膜2のある物質1を計測対象物101として、物質1の機械的特性を算出する。または、検査ステップは、本発明に係る機械的特性の計測装置100を使って、表面に膜2のある物質1を計測対象物101として、物質1の機械的特性を算出する。より好ましい形態として、算出ステップまたは計測装置100によって算出された物質1の機械的特性が基準範囲に含まれない場合に、基準範囲に含まれるように、製造ステップの製造条件を変更する条件変更ステップが、製造方法に含まれていてよい。ここで、基準範囲は、過去に製造された物質1を用いて統計で得られた機械的特性の標準的な範囲であってよい。製造条件は、物質1の製造ステップで調整可能なパラメータである。製造条件は、例えば物質1の加熱温度、加熱時間または冷却時間などが選択可能である。
 これら物質1の製造設備および物質1の製造方法によれば、物理量を介して正確に機械的特性を計測することができる為、物質1を歩留りよく製造することができる。ここで、機械的特性の計測装置100または算出ステップから得られる物質1の機械的特性が、物質1の表層の機械的特性の場合、分類処理部81または分類ステップ(ステップS12)により、より適切な算出モデルを作成し選択できるので、上記効果がさらに大きく得られる。
 ここで、物質1の製造設備の一例として、次のものがあげられる。すなわち、
 鋼片を圧延して鋼板とする圧延設備と、
 本発明に係る機械的特性の計測装置を備え、前記計測装置により前記鋼板の表層硬さを計測し、前記計測された前記鋼板の表層硬さから、前記鋼板の表層に対して予め設定された表層硬さよりも硬い部位を、硬化部として判定する検査設備と、
 前記鋼板の表層における前記判定された硬化部を除去する除去設備と、
 を備える鋼板の製造設備列。
 なお、前記製造設備列が、前記圧延設備と前記検査設備の間に、必要に応じて鋼板表層または全体を脱磁する脱磁設備をさらに備えれば、機械的特性の計測または評価の精度が低下することを防ぐことができるため、より好ましい。
 またここで、物質1の製造方法の一例として、次のものがあげられる。すなわち、
 鋼片を圧延して鋼板とする圧延ステップと、
 本発明に係る機械的特性の計測方法により前記鋼板の表層硬さを計測し、前記計測された前記鋼板の表層硬さから、前記鋼板の表層に対して予め設定された表層硬さよりも硬い部位を、硬化部として判定する検査ステップと、
 前記鋼板の表層における前記判定された硬化部を除去する除去ステップと、
 を有する鋼板の製造方法。
 なお、前記製造方法が、前記圧延ステップと前記検査ステップの間に、必要に応じて鋼板表層または全体を脱磁する脱磁ステップをさらに備えれば、機械的特性の計測または評価の精度が低下することを防ぐことができるため、より好ましい。
 上記鋼板の製造方法の場合は、連続された鋼片で、所定の形状および機械的特性を得るために、850℃以上で圧延ステップを行う。当該圧延ステップ後、さらに熱処理ステップとして、焼き入れおよび焼鈍を行ってもよい。増分透磁率、保磁力、バルクハウゼンノイズなどの電磁気特徴量は、鋼材の機械的特性と相関があることがよく知られている。したがって、上記熱処理ステップを経て鋼材の組織が定まった状態にて、計測対象物101の物理量として電磁気特徴量が計測されることが好ましい。この際、計測対象物101は、鋼板とこの鋼板の表面にある膜とを指す。また、鋼板の表面の膜としては、例えば、スケールおよび黒皮などの酸化鉄膜、樹脂コーティングなどの有機被膜、めっき被膜または化成処理被膜などがあげられる。また、機械的特性は、焼き入れおよび焼鈍で決定されるため、製造方法における計測対象物101の物理量として、さらに焼き入れの前後の温度、または、焼鈍の前後の温度などを、別途計測して、使用してもよい。
 さらに、本発明を物質1の管理方法に適用し、物質1を検査することにより、物質1の管理を行うようにしてもよい。具体的には、表面に膜2のある予め用意された物質1に対し、検査ステップで検査し、検査ステップで得られた検査結果を元に、物質1を分類する管理ステップで管理する。ここで、検査ステップは、本発明に係る前述の計測ステップ、分類ステップおよび算出ステップを備え、表面に膜2のある予め用意された物質1を計測対象物101として、物質1の機械的特性を算出する。または、検査ステップは、本発明に係る機械的特性の計測装置を使って、表面に膜2のある物質1を計測対象物101として、物質1の機械的特性を算出する。続く管理ステップで、物質1の管理を行うことができる。管理ステップでは、算出ステップまたは機械的特性の計測装置100により得られた、物質1の機械的特性に基づいて、製造された物質1が予め指定された基準を元に分類することで、物質1を管理する。例えば、物質1が鋼材で、物質1の機械的特性が鋼材の硬さである場合に、鋼材を硬さに応じたクラスに分類することができる。このような物質1の管理方法によれば、物理量を介して正確に機械的特性を計測することができる為、高品質の物質1を提供することができる。ここで、機械的特性の計測装置100または算出ステップから得られる物質1の機械的特性が、物質1の表層の機械的特性の場合、分類処理部81または分類ステップ(ステップS12)により、より適切な算出モデルを作成し選択できるので、上記効果がさらに大きく得られる。
 また、ここで、物質1の管理方法の一例として、次のものがあげられる。すなわち、
 本発明に係る機械的特性の計測方法により鋼板の表層硬さを計測し、前記計測された前記鋼板の表層硬さから、前記鋼板の表層に対して予め設定された表層硬さよりも硬い部位を、硬化部として判定する、検査ステップと、
 前記鋼板の表層における前記判定された硬化部の面積および/または位置により前記鋼板を分類する管理ステップと、を有する鋼板の製造方法。
 1 物質
 2 膜
 3 センサ
 5 物理量計測部
 6 走査部
 7 通信部
 8 制御部
 10 記憶部
 11 表示部
 12 データベース
 13 第1のデータベース
 14 第2のデータベース
 15 品種情報
 31 励磁コイル
 32 磁化ヨーク
 41 鋼片
 42 厚鋼板
 43 厚鋼板(硬化部のない状態)
 81 分類処理部
 82 機械的特性算出部
 83 物理量計測制御部
 100 計測装置
 101 計測対象物

Claims (7)

  1.  物質と前記物質の表面にある膜とを有する計測対象物の複数の物理量を計測する物理量計測部と、
     計測された前記複数の物理量のうちの少なくとも2つに基づいて、前記物質の機械的特性を算出する複数の算出モデルのうちの1つを選択する分類処理部と、
     前記分類処理部により選択された算出モデルと、前記複数の物理量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する機械的特性算出部と、
     を備える、機械的特性の計測装置。
  2.  前記複数の物理量は、電磁気特徴量として、電流波形の歪量、電流波形の振幅、高調波の振幅、透磁率および保磁力を含み、
     前記分類処理部は、前記電磁気特徴量のうちの少なくとも2つに基づいて、前記複数の算出モデルのうちの1つを選択し、
     前記機械的特性算出部は、前記分類処理部にて選択された算出モデルと、前記電磁気特徴量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する、
     請求項1に記載の機械的特性の計測装置。
  3.  物質と前記物質の表面にある膜とを有する計測対象物の複数の物理量を計測する計測ステップと、
     計測された前記複数の物理量のうちの少なくとも2つに基づいて、前記物質の機械的特性を算出する複数の算出モデルのうちの1つを選択する分類ステップと、
     前記分類ステップにて選択された算出モデルと、前記複数の物理量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する算出ステップと、
     を備える、機械的特性の計測方法。
  4.  物質を製造する製造設備と、
     物質と前記物質の表面にある膜とを有する計測対象物の複数の物理量を計測する物理量計測部、
     計測された前記複数の物理量のうちの少なくとも2つに基づいて、前記物質の機械的特性を算出する複数の算出モデルのうちの1つを選択する分類処理部、および、
     前記分類処理部により選択された算出モデルと、前記複数の物理量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する機械的特性算出部、を備える機械的特性の計測装置と、
     を備え、
     前記計測装置は、前記製造設備で製造された物質の機械的特性を計測する、物質の製造設備。
  5.  前記計測装置は、
     前記複数の物理量は、電磁気特徴量として、電流波形の歪量、電流波形の振幅、高調波の振幅、透磁率および保磁力を含み、
     前記分類処理部は、前記電磁気特徴量のうちの少なくとも2つに基づいて、前記複数の算出モデルのうちの1つを選択し、
     前記機械的特性算出部は、前記分類処理部により選択された算出モデルと、前記電磁気特徴量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する、
     請求項4に記載の物質の製造設備。
  6.  物質と前記物質の表面にある膜とを有する計測対象物の複数の物理量を計測する計測ステップと、
     計測された前記複数の物理量のうちの少なくとも2つに基づいて、前記物質の機械的特性を算出する複数の算出モデルのうちの1つを選択する分類ステップと、
     前記分類ステップにて選択された算出モデルと、前記複数の物理量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する算出ステップと、
     算出された前記物質の機械的特性に基づいて前記物質を分類する管理ステップと、を備える、物質の管理方法。
  7.  物質を製造する製造ステップと、
     製造された前記物質と該物質の表面にある膜とを計測対象物として、前記計測対象物の複数の物理量を計測する計測ステップと、
     計測された前記複数の物理量のうちの少なくとも2つに基づいて、前記物質の機械的特性を算出するために用意された複数の算出モデルのうちの1つを選択する分類ステップと、
     前記分類ステップにて選択された算出モデルと、前記複数の物理量のうちの少なくとも2つと、を用いて前記物質の機械的特性を算出する算出ステップと、を備える、物質の製造方法。
PCT/JP2021/022593 2020-06-15 2021-06-14 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法 WO2021256442A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3181997A CA3181997A1 (en) 2020-06-15 2021-06-14 Mechanical property measuring apparatus, mechanical property measuring method, substance manufacturing equipment, substance management method, and substance manufacturing method
JP2021554397A JP7095814B2 (ja) 2020-06-15 2021-06-14 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法
CN202180042024.1A CN115803616A (zh) 2020-06-15 2021-06-14 机械特性的测量装置、机械特性的测量方法、物质的制造设备、物质的管理方法以及物质的制造方法
KR1020227043658A KR20230011347A (ko) 2020-06-15 2021-06-14 기계적 특성의 계측 장치, 기계적 특성의 계측 방법, 물질의 제조 설비, 물질의 관리 방법 및 물질의 제조 방법
EP21826503.1A EP4166252A4 (en) 2020-06-15 2021-06-14 DEVICE FOR MEASURING MECHANICAL PROPERTIES, METHOD FOR MEASURING MECHANICAL PROPERTIES, SUBSTANCE PRODUCTION SYSTEM, SUBSTANCE MANAGEMENT METHOD AND SUBSTANCE PRODUCTION METHOD
US18/001,266 US20230251226A1 (en) 2020-06-15 2021-06-14 Mechanical property measuring apparatus, mechanical property measuring method, substance manufacturing equipment, substance management method, and substance manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-103334 2020-06-15
JP2020103334 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021256442A1 true WO2021256442A1 (ja) 2021-12-23

Family

ID=79268088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022593 WO2021256442A1 (ja) 2020-06-15 2021-06-14 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法

Country Status (7)

Country Link
US (1) US20230251226A1 (ja)
EP (1) EP4166252A4 (ja)
JP (1) JP7095814B2 (ja)
KR (1) KR20230011347A (ja)
CN (1) CN115803616A (ja)
CA (1) CA3181997A1 (ja)
WO (1) WO2021256442A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3182555A1 (en) * 2020-06-15 2021-12-23 Yutaka Matsui Mechanical property measuring apparatus, mechanical property measuring method, substance manufacturing equipment, substance management method, and substance manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113488A (ja) 1995-10-16 1997-05-02 Toshiba Corp 電磁気的材質評価方法及び装置
JP2008224495A (ja) 2007-03-14 2008-09-25 Sumitomo Metal Ind Ltd 渦流検査方法、該渦流検査方法で検査した鋼管、及び該渦流検査方法を実施するための渦流検査装置
WO2016063433A1 (ja) * 2014-10-21 2016-04-28 日本電気株式会社 推定結果表示システム、推定結果表示方法および推定結果表示プログラム
US20170108469A1 (en) * 2015-06-29 2017-04-20 The Charles Stark Draper Laboratory, Inc. System and method for characterizing ferromagnetic material
WO2018062398A1 (ja) * 2016-09-30 2018-04-05 株式会社Uacj アルミニウム製品の特性予測装置、アルミニウム製品の特性予測方法、制御プログラム、および記録媒体
JP2018169994A (ja) * 2017-03-30 2018-11-01 三菱総研Dcs株式会社 情報処理装置、情報処理方法およびコンピュータプログラム
JP2018178157A (ja) * 2017-04-05 2018-11-15 株式会社荏原製作所 半導体製造装置、半導体製造装置の故障予知方法、および半導体製造装置の故障予知プログラム
JP2019042807A (ja) * 2017-09-04 2019-03-22 Jfeスチール株式会社 鋼板の製造方法及び磁性材用表層硬さ計測装置
WO2019087460A1 (ja) 2017-10-30 2019-05-09 新日鐵住金株式会社 長尺材の磁気特性変化部検出装置及び方法
JP2019158474A (ja) * 2018-03-09 2019-09-19 三菱重工業株式会社 応力推定装置、応力推定方法およびプログラム
JP2019207123A (ja) * 2018-05-28 2019-12-05 三栄源エフ・エフ・アイ株式会社 機械学習システム、食感評価モデル、食感評価装置、機械学習方法および食感評価方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606952B2 (ja) * 1990-06-20 1997-05-07 新日本製鐵株式会社 鉄鋼製品の製造可否判定装置
WO1993003328A1 (en) * 1991-08-05 1993-02-18 Daikin Industries, Ltd. Method and apparatus for analyzing physical quantities, and apparatus for removing line spectrum noise
GB9322431D0 (en) * 1993-10-30 1993-12-22 Orb Elect Steels Ltd Hardness testing of steels
JP5428292B2 (ja) * 2008-10-30 2014-02-26 Jfeスチール株式会社 高強度冷延鋼板の製造方法
US8776005B1 (en) * 2013-01-18 2014-07-08 Synopsys, Inc. Modeling mechanical behavior with layout-dependent material properties
JP6683111B2 (ja) * 2016-11-28 2020-04-15 株式会社島津製作所 試料解析システム
CN106971026B (zh) * 2017-03-08 2020-06-16 武汉科技大学 基于全局可加模型的微合金钢力学性能预报方法
JP7163099B2 (ja) * 2018-08-10 2022-10-31 株式会社東芝 エネルギー管理装置、モデル管理方法及びコンピュータプログラム
CA3182555A1 (en) * 2020-06-15 2021-12-23 Yutaka Matsui Mechanical property measuring apparatus, mechanical property measuring method, substance manufacturing equipment, substance management method, and substance manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113488A (ja) 1995-10-16 1997-05-02 Toshiba Corp 電磁気的材質評価方法及び装置
JP2008224495A (ja) 2007-03-14 2008-09-25 Sumitomo Metal Ind Ltd 渦流検査方法、該渦流検査方法で検査した鋼管、及び該渦流検査方法を実施するための渦流検査装置
WO2016063433A1 (ja) * 2014-10-21 2016-04-28 日本電気株式会社 推定結果表示システム、推定結果表示方法および推定結果表示プログラム
US20170108469A1 (en) * 2015-06-29 2017-04-20 The Charles Stark Draper Laboratory, Inc. System and method for characterizing ferromagnetic material
WO2018062398A1 (ja) * 2016-09-30 2018-04-05 株式会社Uacj アルミニウム製品の特性予測装置、アルミニウム製品の特性予測方法、制御プログラム、および記録媒体
JP2018169994A (ja) * 2017-03-30 2018-11-01 三菱総研Dcs株式会社 情報処理装置、情報処理方法およびコンピュータプログラム
JP2018178157A (ja) * 2017-04-05 2018-11-15 株式会社荏原製作所 半導体製造装置、半導体製造装置の故障予知方法、および半導体製造装置の故障予知プログラム
JP2019042807A (ja) * 2017-09-04 2019-03-22 Jfeスチール株式会社 鋼板の製造方法及び磁性材用表層硬さ計測装置
WO2019087460A1 (ja) 2017-10-30 2019-05-09 新日鐵住金株式会社 長尺材の磁気特性変化部検出装置及び方法
JP2019158474A (ja) * 2018-03-09 2019-09-19 三菱重工業株式会社 応力推定装置、応力推定方法およびプログラム
JP2019207123A (ja) * 2018-05-28 2019-12-05 三栄源エフ・エフ・アイ株式会社 機械学習システム、食感評価モデル、食感評価装置、機械学習方法および食感評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166252A4

Also Published As

Publication number Publication date
CA3181997A1 (en) 2021-12-23
US20230251226A1 (en) 2023-08-10
CN115803616A (zh) 2023-03-14
JP7095814B2 (ja) 2022-07-05
KR20230011347A (ko) 2023-01-20
EP4166252A1 (en) 2023-04-19
EP4166252A4 (en) 2023-11-29
JPWO2021256442A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
JP7095815B2 (ja) 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法
CN110187000B (zh) 一种电磁无损检测双相钢微观组织的方法
Sha et al. Noncontact and nondestructive evaluation of heat-treated bearing rings using pulsed eddy current testing
WO2019094173A1 (en) Methods of using nondestructive material inspection systems
JP7095814B2 (ja) 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法
Altpeter et al. Electromagnetic techniques for materials characterization
JP7095817B2 (ja) 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法
Maillard et al. QIRT 10
Yang et al. Reliable characterization of bearing rings using Eddy current and Barkhausen noise data fusion
Kahrobaee et al. Characterisation of work-hardening in Hadfield steel using non-destructive eddy current method
CN115166026B (zh) 一种碳纤维复合材料板结构损伤识别分类系统及方法
RU2808619C1 (ru) Устройство для измерения механических свойств, способ измерения механических свойств, оборудование для изготовления материала, способ контроля материала и способ изготовления материала
RU2808618C1 (ru) Устройство для измерения механических свойств, способ измерения механических свойств, оборудование для изготовления материала, способ контроля материала и способ изготовления
RU2827986C1 (ru) Устройство для измерения механических свойств, способ измерения механических свойств, оборудование для изготовления материала, способ контроля материала и способ изготовления материала
Ricci et al. Magnetic imaging and machine vision NDT for the on-line inspection of stainless steel strips
Rabung et al. Nondestructive Characterization of Residual Stress Using Micromagnetic and Ultrasonic Techniques
Schreiber et al. A fatigue life assessment of aircraft alloys using fractal analysis in combination with eddy current testing
Li et al. Dynamic electromagnetic thermography system for rail inspection
Stefanita et al. Magnetic nondestructive testing techniques
Psuj Fusion of multiple parameters of signals obtained by vector magnetic flux observation for evaluation of stress loaded steel samples
Schreiber et al. Pre-crack fatigue life assessment of relevant aircraft materials using fractal analysis of eddy current test data
CA3137689A1 (en) Metal structure evaluator for rolled steel sheets, method for evaluating metal structure of rolled steel sheet, production facility of steel product, method for manufacturing steel product, and method of quality management of steel product
JP4192230B2 (ja) 鋳鉄の非破壊評価方法及び装置
Smetana et al. Numerical Modeling of Artificial Surface Cracks in Eddy-Current Non-Destructive Evaluation
JP2023055168A (ja) スポット溶接部のai評価方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021554397

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3181997

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202217071167

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20227043658

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021826503

Country of ref document: EP

Effective date: 20230116