CN115803616A - 机械特性的测量装置、机械特性的测量方法、物质的制造设备、物质的管理方法以及物质的制造方法 - Google Patents
机械特性的测量装置、机械特性的测量方法、物质的制造设备、物质的管理方法以及物质的制造方法 Download PDFInfo
- Publication number
- CN115803616A CN115803616A CN202180042024.1A CN202180042024A CN115803616A CN 115803616 A CN115803616 A CN 115803616A CN 202180042024 A CN202180042024 A CN 202180042024A CN 115803616 A CN115803616 A CN 115803616A
- Authority
- CN
- China
- Prior art keywords
- substance
- measuring
- calculation
- mechanical property
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/80—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating mechanical hardness, e.g. by investigating saturation or remanence of ferromagnetic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C51/00—Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9013—Arrangements for scanning
- G01N27/902—Arrangements for scanning by moving the sensors
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
提供可借助物理量准确地测量机械特性的机械特性的测量装置及机械特性的测量方法。提供能够通过可借助物理量准确地测量机械特性来提高物质的制造成品率的物质的制造设备及物质的制造方法。另外,通过可借助物理量准确地测量机械特性来提供高品质的物质。机械特性的测量装置(100)具备:物理量测量部(5),测量具有物质和位于物质的表面的膜的测量对象物的多个物理量;分类处理部(81),基于测量出的多个物理量中的至少两个来选择计算物质的机械特性的多个计算模型(M1、M2、…、Mn)中的一个;以及机械特性计算部(82),使用由分类处理部(81)选择出的计算模型和多个物理量中的至少两个来计算物质的机械特性。
Description
技术领域
本公开涉及机械特性的测量装置、机械特性的测量方法、物质的制造设备、物质的管理方法以及物质的制造方法。
背景技术
在成为管线管(line pipe)等的材料的钢材制造中,作为钢材的机械特性的检查,有时实施抽样检查。抽样检查为从钢材取出检查部位,加工成机械试件来进行试验的所谓的破坏试验。近些年,追求非破坏地测量或评价钢材商品本身的机械特性而非抽样检查,来保证品质。因此,尝试了借助在钢材制造中或钢材制造后测量的与钢材的机械特性相关的各种物理量来测量机械特性。
例如,专利文献1记载一种技术:使交流磁场作用于金属材料,检测感应出的涡流,由此检测局部存在于金属材料的高硬度部。
例如,专利文献2记载一种检测装置,具备轭铁部件,该轭铁部件具有在沿着长条材料的长度方向的一侧供长条材料插通的第一开口部和在另一侧供长条材料插通的第二开口部,并具有相对于通过第一开口部及第二开口部的轴线大致轴对称的形状。专利文献2的检测装置能够减少长条材料的长度方向端部的死区,能够高精度地检测磁特性变化。
例如,专利文献3记载一种技术:根据在被检体中感应出的涡流强度来评价被检体的涂层材料的膜厚,并根据与涂层材料的膜厚的减薄相关的信息来掌握被检体的劣化程度。
专利文献1:日本特开2008-224495号公报
专利文献2:国际公开第2019/087460号
专利文献3:日本特开平9-113488号公报
这里,在由传感器测量钢材表层的电磁特征量来测量机械特性的情况下,在现有技术中,电磁特征量与机械特性的关系的偏差大,具有难以进行准确的计算的问题。例如针对以得到相同的机械特性的方式制造出的钢材,有时由传感器测量出的钢材表层的电磁特征量不同。因此,追求一种在钢材的制造过程中可利用的、能够非破坏且准确地测量机械特性的技术。
发明内容
本公开是鉴于上述情况而做出的,目的在于提供可借助物理量来准确地测量机械特性的机械特性的测量装置及机械特性的测量方法。另外,本公开的另一目的在于提供能够通过可借助物理量来准确地测量机械特性来提高物质的制造成品率的物质的制造设备及物质的制造方法。并且,本公开的又一目的在于提供能够通过可借助物理量来准确地测量机械特性来提供高品质的物质的物质的管理方法。
为了解决上述课题,针对测量对象物的物理量与机械特性的关系调查的结果是:发明人发现了它们的关系受测量对象物所具有的膜的性质影响。
本公开的一个实施方式的机械特性的测量装置具备:
物理量测量部,测量具有物质和位于上述物质的表面的膜的测量对象物的多个物理量;
分类处理部,基于测量出的上述多个物理量中的至少两个来选择计算上述物质的机械特性的多个计算模型中的一个;以及
机械特性计算部,使用由上述分类处理部选择出的计算模型和上述多个物理量中的至少两个来计算上述物质的机械特性。
本公开的一个实施方式的机械特性的测量方法具备:
测量步骤,测量具有物质和位于上述物质的表面的膜的测量对象物的多个物理量;
分类步骤,基于测量出的上述多个物理量中的至少两个来选择计算上述物质的机械特性的多个计算模型中的一个;以及
计算步骤,使用在上述分类步骤中选择出的计算模型和上述多个物理量中的至少两个来计算上述物质的机械特性。
本公开的一个实施方式的物质的制造设备具备制造物质的制造设备、和机械特性的测量装置,
上述机械特性的测量装置具备:
物理量测量部,测量具有物质和位于上述物质的表面的膜的测量对象物的多个物理量;
分类处理部,基于测量出的上述多个物理量中的至少两个来选择计算上述物质的机械特性的多个计算模型中的一个;以及
机械特性计算部,使用由上述分类处理部选择出的计算模型和上述多个物理量中的至少两个来计算上述物质的机械特性,
上述测量装置测量通过上述制造设备制造出的物质的机械特性。
本公开的一个实施方式的物质的管理方法具备:
测量步骤,测量具有物质和位于上述物质的表面的膜的测量对象物的多个物理量;
分类步骤,基于测量出的上述多个物理量中的至少两个来选择计算上述物质的机械特性的多个计算模型中的一个;
计算步骤,使用在上述分类步骤中选择出的计算模型和上述多个物理量中的至少两个来计算上述物质的机械特性;以及
管理步骤,基于计算出的上述物质的机械特性来对上述物质进行分类。
本公开的一个实施方式的物质的制造方法具备:
制造步骤,制造物质;
测量步骤,将制造出的上述物质和位于该物质的表面的膜作为测量对象物来测量上述测量对象物的多个物理量;
分类步骤,基于测量出的上述多个物理量中的至少两个来选择为了计算上述物质的机械特性而准备的多个计算模型中的一个;以及
计算步骤,使用在上述分类步骤中选择出的计算模型和上述多个物理量中的至少两个来计算上述物质的机械特性。
根据本公开的一个实施方式的机械特性的测量装置及机械特性的测量方法,能够借助物理量准确地测量机械特性。另外,根据本公开的物质的制造设备及物质的制造方法,能够通过可借助物理量准确地测量机械特性来提高物质的制造成品率。并且,根据本公开的物质的管理方法,能够通过借助物理量来准确地测量机械特性来提供高品质的物质。
附图说明
图1是本公开的一个实施方式的机械特性的测量装置的框图。
图2是物理量测量部的框图。
图3是表示传感器的具体构成例的图。
图4是表示为了生成交流磁场而赋予励磁线圈的信号的一个例子的图。
图5是表示学习数据的收集处理的流程图。
图6是表示机械特性的测量方法的流程图。
图7是将计算出的机械特性与实测值进行比较的图。
图8是其他实施方式的机械特性的测量装置的框图。
图9是其他实施方式的机械特性的测量装置的框图。
图10是表示钢材的制造方法的例子的图。
图11是表示在显示部显示判定结果的例子的图。
图12是例示存在一个模型的情况下的一个参数与一个机械特性的对应的图。
图13是例示存在多个模型的情况下的一个参数与一个机械特性的对应的图。
图14是在存在多个模型的情况下对基于多个参数的分布的分离进行说明的图。
图15是针对硬化部的位置信息的列表进行说明的图。
具体实施方式
(第一实施方式)
图1是本公开的第一实施方式的机械特性的测量装置100的框图。测量装置100借助物理量测量部5测量出的测量对象物101(参照图2)的多个物理量来非破坏性地测量测量对象物101的物质1(参照图2)的机械特性。这里,机械特性为力学特性,特别是指相对于拉伸、压缩或剪切等外力的性质。例如机械特性包括拉伸应力、屈服应力及压缩应力等强度、维氏硬度(Vickers hardness)及里氏硬度(Leeb hardness)等硬度、以及脆性。物理量为可客观测定的量,例如包括温度、质量及电磁特征量等。
以下,在本实施方式中,作为物质1而以钢材为例来进行说明,但物质1并不局限于钢材。另外,作为机械特性而以硬度为例来进行说明,但机械特性并不局限于硬度。另外,作为多个物理量,以包括电流波形的失真量、电流波形的振幅、谐波的振幅、磁导率及矫顽力的电磁特征量为例来进行说明,但多个物理量并不局限于电磁特征量。这里,一直以来公知磁导率及矫顽力之类的电磁特征量与金属的机械特性具有相关性,优选使用电磁特征量来测量或评价机械特性。作为测量电磁特征量的方法,优选涡流探伤法或3MA(MicromagneticMultiparameter Microstructure and Stress Analysis:微磁、微参数、微结构和应力分析)技术等。特别是,若使用叠加了两个以上频率的交流信号(交流电流或交流电压)作为为了生成交流磁场而赋予的信号,则能够获取更多的电磁特征量,所以优选。并且,通过将其中的一个频率设为200Hz以下,从而即使在物质1的表面形成有膜2(参照图2)的情况下,交流磁场也能够充分浸透至物质1的表面,来更高精度地测量或评价机械特性,因而更加优选。在测量物质1的表层的电磁特征量的情况下,上述的测量方法特别优选。
(机械特性的测量装置的结构)
如图1所示,测量装置100具备物理量测量部5、控制部8、存储部10及显示部11。控制部8具备分类处理部81、机械特性计算部82及物理量测量控制部83。存储部10具备计算物质1的机械特性的多个计算模型M1、M2、…、Mn。这里,n为2以上的整数。关于测量装置100的各要素的详细内容将后述。
图2是物理量测量部5的框图。物理量测量部5具备传感器3和扫描部6。传感器3对测量对象物101的物理量进行测量。测量对象物101具有物质1和形成于物质1的表面的膜2。关于物理量测量部5的各要素的详细内容将后述。
例如在物质1为钢材的情况下,在钢材的制造中途在钢材的表面形成被称为氧化皮或黑皮的氧化铁膜。氧化铁膜存在各种各样的种类,但通常公知有磁铁矿(四氧化三铁,Fe3O4)、方铁矿(氧化亚铁,FeO)及赤铁矿(三氧化二铁,Fe2O3)。上述的氧化皮不仅各自氧和铁的组成不同,电磁特征也不同。例如,磁铁矿具有磁性,但方铁矿没有磁性。这里,为了测量作为钢材的物质1的(特别是表层的)机械特性,从表面测量物理量。即,在本发明中,将钢材亦即物质1与膜2亦即氧化皮一起作为测量对象物101来测量物理量。
因此,氧化皮亦即膜2对钢材亦即物质1的测量造成影响。另外,氧化皮的种类及组成根据钢材制造时的状态而发生变化。并且,有时由于钢材本身的组织而使磁性具有各向异性,电磁特征根据测量对象物101而不同。因此,针对具有钢材和氧化皮的测量对象物101,非常难以将硬度等钢材的机械特性简单地与测量对象物101的电磁特征量建立关联来进行测定或评价。特别是在测量物质1的表层的机械特性的情况下,膜2亦即氧化皮的电磁特征影响更大。因此,针对具有钢材和氧化皮的测量对象物101,更加难以将硬度等钢材的表层的机械特性简单地与测量对象物101的电磁特征量建立关联来进行测定或评价。
这在物质1为钢材以外以及膜2为氧化皮以外的情况下也同样。特别是在对于测量的多个物理量而言、膜2具备与物质1不同的特征的情况下,针对具有物质1和位于表面的膜2的测量对象物101,非常难以将物质1的机械特性与测量对象物101的多个物理量简单地建立关联来进行测定或评价。并且,在测量物质1的表层的机械特征的情况下,针对具有物质1和位于表面的膜2的测量对象物101,更加难以将物质1的表层的机械特性与测量对象物101的多个物理量简单地建立关联来进行测定或评价。
这里,针对难以将物质1的机械特性与测量对象物101的多个物理量简单地建立关联来进行测定或评价这一情况,以下示出图12~图14来进行说明。图12是例示存在一个模型的情况下的一个参数与一个机械特性的对应的图。在能够构建一个将任意一个参数A(例如电磁特征量的一个)和机械特性以一对一的关系关联起来的数学模型(例如图12中的模型M1)的情况下,能够使用该模型来根据参数A计算机械特性(在图12~图14的例子中为硬度)。但是,在物质1例如为钢材的情况下,实际上具有钢组织的分布、氧化皮(膜2的一个例子)之类的构成表层构造的要素等。因此,如图13所示,任意一个参数A与机械特性的相关性根据形成表层构造的物质1和膜2的组合而存在多个关系(模型M1、M2、M3及M4)。例如,模型M2可应对氧化皮厚的情况,模型M3可应对氧化皮薄的情况。如图13所示,即使测定出的参数A的值相同,也有可能计算出两种硬度,硬度的计算精度下降。这里,通过选择适当的模型,能够避免硬度的计算精度下降。然而,例如对于一个参数A的某个值,在具有多个输出相似的机械特性的模型的情况下(例如,图13中为包括模型M2的右上端和模型M4的左下端的区域),有可能将上述的多个模型识别为一个模型。对于该问题,如图14所示,能够通过使用多个参数来将各模型分离来进行识别。在图14的例子中,通过使用参数A与参数B的组合,可将组合了模型M1、模型M3、模型M2及M4的分布分离来进行识别。并且,通过使用参数A与参数C的组合,可将模型M2与模型M4分离来进行识别。并且,虽在图中未示出,但若还一并利用参数B与参数C的组合,则能够期待更可靠地将模型分离来进行识别。通过像这样使用多个参数,而能够判定各模型的数据组。而且,从判定出的多个模型中选择适当的模型来使用,由此能够高精度地测量或评价机械特性。
存储部10存储各种信息及用于使测量装置100动作的程序。存储部10存储的各种信息可以包括为了计算物质的机械特性而预先准备的多个计算模型M1、M2、…、Mn。存储部10存储的程序包括使控制部8作为分类处理部81动作的程序、使控制部8作为机械特性计算部82动作的程序、及使控制部8作为物理量测量控制部83动作的程序。存储部10例如由半导体存储器或磁存储器等构成。这里,存储部10也可以存储预先准备的后述的组G1、G2、…、Gn的范围或边界的信息。
显示部11对用户显示包含物质1的机械特性的各种信息。在本实施方式中,显示部11构成为包括可显示文字、图像等的显示器和可检测用户手指等的接触的触摸屏。显示器能够为液晶显示器(LCD:Liquid Crystal Display)、有机EL显示器(OELD:OrganicElectro-Luminescence Display)等显示设备。触摸屏的检测方式能够为静电电容方式、电阻膜方式、表面声波方式、红外线方式、电磁感应方式或载荷检测方式等任意方式。这里,作为其他例子,显示部11也可以由不包含触摸屏的显示器构成。
控制部8控制测量装置100整体的动作。控制部8构成为包括1个以上的处理器。处理器可以包括读取特定的程序并执行特定的功能的通用处理器、及专用于特定的处理的专用处理器中的至少一个。专用处理器可以包括专用IC(ASIC;Application SpecificIntegrated Circuit)。处理器可以包括可编程逻辑器件(PLD;Programmable LogicDevice)。PLD可以包括FPGA(Field-Programmable Gate Array:现场可编程门阵列)。控制部8可以包括一个或多个处理器协作的SoC(System-on-a-chip:单芯片系统)、及SiP(System In a Package:系统级封装)中的至少一个。控制部8根据从存储部10读取的程序来作为分类处理部81、机械特性计算部82及物理量测量控制部83发挥功能。
另外,控制部8也可以具备在学习数据的收集完成后生成多个计算模型M1、M2、…、Mn的功能。另外,控制部8设定与多个计算模型M1、M2、…、Mn分别对应的组G1、G2、…、Gn的范围或边界。例如,在基于电磁特征量判定为测量对象物101属于组Gi并进行了分类的情况下,使用对应的计算模型Mi。这里,i为1~n的任一整数。关于模型生成的详细内容将后述。
分类处理部81基于由物理量测量部5测量出的测量对象物101的多个物理量中的至少两个来分类给多个计算模型M1、M2、…、Mn。更具体而言,基于测量对象物101的多个物理量中的至少两个来选择多个计算模型M1、M2、…、Mn中的一个。作为一个例子,将作为电磁特征量的电流波形的失真量、电流波形的振幅、谐波的振幅、磁导率及矫顽力的全部使用在一个计算模型Mi的选择中。首先,分类处理部81从存储部10获取组G1、G2、…、Gn的范围或边界的信息。然后,分类处理部81判定电流波形的失真量、电流波形的振幅、谐波的振幅、磁导率及矫顽力的值的组合属于组G1、G2、…、Gn的哪个。分类处理部81在判定为上述的值属于组Gi的情况下,选择与组Gi对应的计算模型Mi。选择出的计算模型Mi被机械特性计算部82使用。
机械特性计算部82使用由分类处理部81选择出的计算模型Mi和多个物理量中的至少两个来计算物质1的机械特性。作为一个例子,多个物理量包括上述的电磁特征量,将电流波形的失真量、电流波形的振幅、谐波的振幅、磁导率及矫顽力的全部使用在物质1的机械特性的计算中。机械特性计算部82获取由分类处理部81选择出的计算模型Mi的信息。机械特性计算部82从存储部10获取计算模型Mi。机械特性计算部82通过将电流波形的失真量、电流波形的振幅、谐波的振幅、磁导率及矫顽力的值输入计算模型Mi来计算物质1的机械特性。机械特性计算部82可以为了展示给用户而将计算出的钢材的硬度输出至显示部11。
这里,在分类处理部81分类给多个计算模型M1、M2、…、Mn、即选择计算模型Mi的情况下,在上述的例子中,使用了所有的电磁特征量,但也可以使用两个以上的电磁特征量的一部分的组合。另外,在机械特性计算部82计算物质1的机械特性的情况下,在上述的例子中,使用了所有的电磁特征量,但也可以将两个以上的电磁特征量的一部分输入至计算模型M1。此时,被输入至计算模型M1的电磁特征量的一部分也可以与在分类处理部81选择计算模型M1的情况下所使用的电磁特征量的一部分不同。例如,可以是分类处理部81使用电流波形的失真量与电流波形的振幅的组合来选择计算模型M1,机械特性计算部82将电流波形的振幅、谐波的振幅及磁导率输入至计算模型M1来计算物质1的机械特性。
物理量测量控制部83控制物理量测量部5的动作。物理量测量控制部83例如使传感器3动作来测量电磁特征量。
(物理量测量部的结构)
传感器3测定具有物质1和膜2的测量对象物101的物理量。在本实施方式中,作为传感器3而以磁传感器为例进行说明,但传感器3并不局限于磁传感器。传感器3可以为一个,但也可为多个。这里,传感器3的测量结果表示包括膜2的影响的物理量、即在不仅具有物质1还具有膜2的状态下的物理量。相对于此,机械特性计算部82计算的机械特性与不包含膜2的物质1相关。
图3是表示传感器3的一个具体构成例的图。传感器3例如为磁传感器,可以具备励磁线圈31和磁轭32。传感器3边相对于测量对象物101相对地移动、边使交流磁场作用于测量对象物101。在图3所示的传感器中,由一个线圈兼作励磁线圈与测量电磁变化的线圈。传感器3测量通过交流磁场而在测量对象物101中感应出的涡流等的影响作为电磁特征量的变化。作为其他例子,测量电磁特征量的传感器也可以构成为将励磁线圈卷绕于磁轭并与励磁线圈独立地卷绕用于接收信号的线圈。作为又一其他例子,测量电磁特征量的传感器也可以构成为将励磁线圈卷绕于磁轭并将测量电磁变化的线圈单独设置在磁轭间。测量电磁特征量的传感器只要是具备励磁线圈、测量电磁变化的线圈、磁轭的结构即可,并不限定于图3所示的结构。
这里,在钢材中,作为被测量的物理量,可以使用表层的电磁特征量。在钢材中,公知磁滞曲线的变化及巴克豪森噪声与材料的拉伸强度及硬度之类的机械特性具有相关性。因此,通过图3所示那样的磁传感器测量表层的电磁特征量较好。这里,磁滞曲线也被称为B-H曲线,为表示磁场的强度与磁通密度的关系的曲线。另外,当交流电流在导体流动的情况下,根据电流密度在导体的表面高、若远离表面则变低的现象(趋肤效应),能够利用磁传感器仅对测量对象物的表层选择地测量电磁特征量。趋肤效应是交流电流的频率越高则电流越易向表面集中。在将因趋肤效应而导致电流为表面电流的约0.37倍的深度作为浸透深度时,其关系由下述的式(1)给出。在式(1)中,d为浸透深度[m],f为频率[Hz],μ为磁导率[H/m],σ为导电率[S/m],π为圆周率。
[公式1]
如式(1)那样,频率越高则浸透深度越浅。换言之,频率越低则浸透深度越深。因此,能够根据想测量或评价的表层深度范围调整频率,来调整浸透深度。例如,在想测量或评价至表层0.25mm左右为止的机械特性的情况下,以浸透深度为0.25mm左右的方式决定频率。考虑到衰减,优选相对于表层深度,希望浸透深度的3/4大于0.25mm。
图4表示为了生成交流磁场而赋予励磁线圈31的信号的一个例子。图4的信号是在低频信号叠加了高频信号的信号。通过使用这样的信号,传感器3能够高效地测量基于低频信号的电磁特征量和基于高频信号的电磁特征量。作为一个例子,低频信号为150Hz的正弦波。作为一个例子,高频信号为1kHz的正弦波。通过使高频信号与低频信号叠加,从而即使在物质1形成了膜2的情况下,也易于测量至物质1的表层的电磁特征量。这里,例如在膜2薄的情况下、膜2的相对磁导率(物质的磁导率与真空的磁导率之比)低的情况下,磁易透过。在磁易透过的情况下,也可以仅使用适当的高频来测量电磁特征量。另外,例如在膜2厚的情况下、构成膜2的物质的相对磁导率高的情况下,磁不易透过,信号不易到达物质1。在磁不易透过的情况下,通过在低频信号叠加高频信号,从而使磁到达至更深。此时,低频信号可以是直流信号。作为其他例子,低频信号也可以是正弦波信号,也可以是矩形信号。
扫描部6使传感器3相对于测量对象物101相对地移动。扫描部6可以使传感器3移动到由物理量测量控制部83指定的评价部位。另外,扫描部6也可以获取物质1的移动速度的信息,来调整为传感器3以适当的相对速度移动。
(学习数据的收集与模型制作)
本实施方式的机械特性的测量装置100基于由物理量测量部5测量出的测量对象物101的物理量来计算物质1的机械特性。例如,测量对象物101为具有氧化皮的钢材。例如,物理量包括电磁特征量。例如,物质1的机械特性为钢材的硬度。在物质1的机械特性的计算中,使用多个计算模型M1、M2、…、Mn中的一个。为了准确地测量机械特性,多个计算模型M1、M2、…、Mn的准确性、及基于物理量的适当的计算模型Mi的选择重要。测量装置100如以下那样收集学习数据,并生成多个计算模型M1、M2、…、Mn,设定组G1、G2、…、Gn的范围。
图5是表示学习数据的收集处理的流程图。控制部8设定测量物理量的测量对象物101的位置即评价部位(步骤S1)。
控制部8使物理量测量部5测量设定的评价部位处的物理量(步骤S2)。这里,在学习数据中,测量对象物101的物理量为说明变量。
控制部8执行预处理(步骤S3)。这里,预处理例如是从测量对象物101去除膜2,而能够测量评价部位处的机械特性。例如在测量对象物101是表面具有氧化皮的钢材的情况下,氧化皮可通过蚀刻或磨削等被去除。另外,预处理可以包括在评价部位将测量对象物101切断来使物质1的截面露出。
控制部8测量评价部位处的机械特性(步骤S4)。学习数据包含机械特性作为目标变量。机械特性例如可以是评价部位处的钢材的截面的硬度。机械特性例如可以使用将使用回弹式硬度计而得到的钢材的表面的里氏硬度通过根据过去的试验得到的换算式换算为截面的硬度的值。另外,为了进行更准确的换算,也可以使用将换算后的值进一步关于钢材的厚度标准化而得到的值。即,也可以执行换算为成为基准的钢材的厚度下的值的处理。成为基准的钢材的厚度例如为28mm。另外,在上述的预处理为将测量对象物101在评价部位切断的处理的情况下,机械特性也可以是直接测量切断面而得的维氏硬度。控制部8获取测量出的机械特性。控制部8将物质1的管理编号及评价部位等数据标签、说明变量及目标变量建立关联来作为一个学习数据存储于存储部10。
在判定为未收集到对模型生成而言足够的学习数据的情况下(步骤S5的否),控制部8返回步骤S1的处理,进一步收集学习数据。
在收集到对模型生成而言足够的学习数据而判定为收集完成的情况下(步骤S5的是),控制部8进入至步骤S6的处理。
这里,控制部8使存储部10存储了的学习数据组即多个学习数据的集合可以包括通过不同的方法得到的目标变量。在上述的例子中,学习数据组可以包括将直接测量切断面而得的维氏硬度、钢材的表面的里氏硬度换算为截面的硬度的值、以及将换算而得的值进一步关于钢材的厚度标准化而得的值中的至少通过两种方法得到的目标变量。例如,维氏硬度准确,但由于切断钢材,所以测量需要时间。因此,通过允许利用不同的测量方法得到的目标变量的混合存在,而能够在现实的时间内生成准确的学习数据组。
控制部8将学习数据组包含的学习数据通过机器学习划分为组G1、G2、…、Gn。在分组中,可以基于电磁特征量及其他参数来执行机器学习。另外,也可以在事先基于一部分的电磁特征量及其他参数设定了组(原组)之后,执行机器学习涉及的适当的划分。其他参数例如可以包括膜2的组成及物质1的组织中的至少一个。划分为组G1、G2、…、Gn的方法可以使用逻辑回归、支持向量机、K近邻法、或者随机树逻辑等。其中,对于各组具有的学习数据组,能够以将间隔(margin)取为最大的方式确定边界,因此最优选利用支持向量机进行组G1、G2、…、Gn的分类。
控制部8将利用上述的方法确定出的组G1、G2、…、Gn的范围或边界的信息存储于存储部10。这里,特别是在物质1为钢材的情况下,机械特性受膜2亦即氧化皮的性质影响。因此,优选通过基于膜2的组成的机器学习来执行分组。另外,考虑到钢材的磁性的各向异性的影响,为了计算出更准确的机械特性,优选基于物质1的组织来进行机器学习。
控制部8按每个组G1、G2、…、Gn来生成计算模型M1、M2、…、Mn(步骤S6)。控制部8例如基于划分为组Gi的学习数据来生成计算模型Mi。可以准备计算模型Mi作为将学习数据的说明变量与目标变量建立关联的线性回归模型或非线性回归模型。作为线性回归模型,可以使用广义线性模型、广义线性混合模型之类的方法。另外,也可以采用使用了利用深度学习的神经网络的方法。这里,线性回归模型在外插的情况下比非线性回归模型精度高。因此,最优选使用线性回归模型。另外,如上述那样,优选通过基于物质1及膜2的至少一个性质的机器学习来执行分组,生成与物质1及膜2的至少一个性质相应的多个计算模型M1、M2、…、Mn。控制部8使存储部10存储所生成的多个计算模型M1、M2、…、Mn,结束一系列的处理。
(机械特性的测量方法)
本实施方式的机械特性的测量装置100基于通过物理量测量部5测量出的测量对象物101的物理量来计算物质1的机械特性。例如,测量对象物101为具有氧化皮的钢材。例如,物质1为钢材。例如,位于物质1的表面的膜2为氧化皮。例如,物理量包含电磁特征量。例如,物质1的机械特性为钢材的硬度。例如,传感器3为图2和图3所示的磁传感器。在物质1的机械特性的计算中,使用多个计算模型M1、M2、…、Mn中的一个。为了准确地测量机械特性,多个计算模型M1、M2、…、Mn的准确性、及基于物理量的适当的计算模型Mi的选择重要。因此,本实施方式的机械特性的测量装置100如以下那样计算物质1的机械特性。图6是表示机械特性的测量方法的流程图。并且,在测量测量对象物101前,预先准备上述的多个计算模型M1、M2、…、Mn并且将它们储存于机械特性的测量装置100的存储部10。
控制部8使物理量测量部5测量测量对象物101的物理量(测量步骤,步骤S11)。此时,为了测量物质1的(特别是表层的)机械特性,从物质1的具有膜2的表面测量物理量。即,在本测量方法中,将钢材亦即物质1与膜2亦即氧化皮一起作为测量对象物101来测量物理量。这在物质1为钢材以外以及膜2为氧化皮以外的情况下也同样。具体而言,在膜2的表面配置物理量测量部5的传感器3。传感器3的测量结果表示包含膜2的影响的物理量、即在不仅具有物质1还具有膜2的状态下的物理量。扫描部6使传感器3相对于测量对象物101相对地移动。其结果是传感器3使交流磁场作用于由物理量测量控制部83指定的测量对象物101的评价部位。传感器3测量通过交流磁场而在测量对象物101中感应出的涡流等的影响作为电磁特征量的变化。物理量测量部5将测量出的电磁特征量作为多个物理量来向控制部8发送。
控制部8基于测量对象物101的多个物理量中的至少两个来分类给为了计算物质的机械特性而预先准备的多个计算模型M1、M2、…、Mn。即,基于物理量中的至少两个来选择多个计算模型M1、M2、…、Mn中的一个(分类步骤,步骤S12)。具体而言,控制部8基于预先准备并存储于存储部10的组G1、G2、…、Gn的范围或边界的信息来判定物理量中的至少两个的值的组合所属的组Gi。控制部8选择与判定出的组Gi对应的计算模型Mi。这里,划分为组G1、G2、…、Gn的方法可以如先前所述那样,使用逻辑回归、支持向量机、K近邻法、或者随机树逻辑等。其中,对于各组具有的学习数据组,能够以将间隔取为最大的方式确定边界,因此最优选利用支持向量机进行组G1、G2、…、Gn的分类。对于上述的组G1、G2、…、Gn的范围而言,在储存于机械特性的测量装置100的存储部10的情况下,在对测量对象物101进行测量前预先准备并储存。
控制部8基于选择出的计算模型Mi来计算物质1的机械特性(计算步骤,步骤S13)。这里,可以准备计算模型M1、M2、…、Mn作为将说明变量亦即测量对象物101的物理量中的至少两个与目标变量亦即物质1的机械特性建立关联的线性回归模型或非线性回归模型来。作为线性回归模型,可以使用广义线性模型、广义线性混合模型之类的方法。另外,也可以采用使用了利用深度学习的神经网络的方法。这里,线性回归模型在外插的情况下比非线性回归模型精度高。因此,最优选使用线性回归模型。另外,优选通过基于物质1及膜2的至少一个性质的上述的机器学习来执行分组,来生成与物质1及膜2的至少一个性质相应的多个计算模型M1、M2、…、Mn。控制部8使用选择出的计算模型Mi和作为输入所需的至少两个物理量来计算物质1的机械特性。
这里,物质1的机械特性例如可以是评价部位处的钢材的截面的硬度。机械特性例如可以使用通过由过去的试验得到的换算式将使用回弹式硬度计而得到的钢材的表面的里氏硬度换算为截面的硬度的值。另外,为了进行更准确的换算,也可以使用将换算后的值进一步关于钢材的厚度标准化而得的值。即,也可以执行换算成成为基准的钢材的厚度下的值的处理。成为基准的钢材的厚度例如为28mm。另外,在上述的预处理为将测量对象物101在评价部位切断的处理的情况下,机械特性也可以是直接测量切断面而得的维氏硬度。
控制部8将计算出的物质1的机械特性输出至显示部11(输出步骤,步骤S14),结束一系列的处理。显示部11所显示的物质1的机械特性由用户识别。用户可以基于所显示的物质1的机械特性来执行物质1的管理或物质1的制造参数的变更指示等。
如以上那样,根据本实施方式的机械特性的测量装置100、及测量装置100执行的机械特性的测量方法,通过上述的结构,能够借助物理量来准确地测量机械特性。特别是在对于测量的多个物理量而言、膜2具备与物质1不同的特征的情况下,能够通过分类处理部81或分类步骤(步骤S12)来选择更适当的计算模型,因此可得到更强的上述效果。另外,在测量物质1的表层的机械特征的情况下,能够通过分类处理部81或分类步骤(步骤S12)来创建更适当的计算模型并进行选择,因此可得到更强的上述效果。此外,上述效果在后述的第二实施方式及第三实施方式的情况下也同样可得到。
(实施例)
以下,基于实施例对本公开的效果具体地进行说明,但本公开并不限定于这些实施例。
(第一实施例)
在第一实施例中,测量装置100为测量钢材的表层的硬度的装置。在本实施例中,物质1为钢材。膜2为在钢材的表面产生的氧化皮。传感器3为电磁传感器。测量对象物101的物理量为具有氧化皮的钢材的电磁特征量。本实施例中想测量的机械特性为深度0.25mm处的钢材的截面的硬度。
通过对连续铸造出的板坯进行粗厚轧并进一步在线连续地进行基于冷却的淬火而制造出钢材。为了学习数据的收集,针对通过该制造过程制造出的钢材,测量了深度0.25mm处的截面的硬度。
在本实施例中,在测量装置100配置可测量电磁特征量的电磁传感器,测量了在表面产生了氧化皮的钢材的表层的电磁特征量。这里,作为扫描部6,使用了通过人力来移动的台车。在该台车排列配置有8个电磁传感器。8个电磁传感器对钢材整个面进行了扫描。
对电磁传感器施加了在150Hz以下的频率的正弦波叠加了1kHz以上的正弦波的电压。从通过电磁传感器观测到的电流波形提取了多个种类的电磁特征量。在本实施例中,作为电磁特征量,提取了电流波形的失真量、振幅与相位变化、谐波的振幅与相位变化、增量磁导率的最大值、最小值、平均值、矫顽力等20个特征量。这里,将施加的正弦波的频率设为150Hz以下,以便由电磁传感器激发的交流磁场从钢材的表面进入至300μm左右。另外,增量磁导率是表示施加了磁场的状态下的磁化容易度的值,在表示磁通密度与磁场的关系的磁化曲线中用局部磁滞回线(minor loop)的斜率表示。
在学习数据的收集后,基于氧化皮的组成、钢材的组织、电磁特征量及截面的硬度的关系而生成了三个组G1、G2、G3。分组中的机器学习使用了支持向量机。针对三个组G1、G2、G3的每一个,使用一般线性回归模型,通过机器学习而生成了多个计算模型M1、M2、M3。
为了计算钢材的表层的硬度,测量装置100通过物理量测量部5测量了电磁特征量。控制部8判定测量出的电磁特征量所属的组,并选择了用于根据电磁特征量计算硬度的一个计算模型M1、M2或M3。而且,控制部8使用选择出的计算模型M1、M2或M3来计算硬度。
图7是将本实施例中计算出的硬度与通过硬度计得到的实测值进行比较的图。横轴的表层实际硬度为实测值,为切取试件并使用回弹式硬度计而调查出的硬度。另外,纵轴的预测硬度为使用组G1、G2、G3和选择出的计算模型M1、M2或M3来计算出的硬度。这里,硬度H0、H1分别为进行测定的硬度的下限值、上限值。如图7所示,预测硬度与表层实际硬度几乎一致,能够以标准偏差9Hv左右的精度进行测量。因此,认为通过上述方法计算的硬度具有与硬度试验同等程度的精度。
(第二实施例)
作为第二实施例,示出将测量装置100执行的机械特性的测量方法在厚钢板的制造方法中作为表层的硬度的检查来使用的例子。具体制造方法的一个例子如图10所示。图10所示的厚钢板43的制造方法包括粗轧工序S41、精轧工序S42、冷却工序S43、表层硬度测量工序S45、表层硬度再测量工序S46及去除工序S47。并且,根据需要,也可以追加退磁工序S44。在追加了退磁工序S44的情况下,从冷却工序S43起按照退磁工序S44、表层硬度测量工序S45的顺序推进工序。
在粗轧工序S41中,例如以1000℃以上的温度对钢坯41进行热粗轧。在接着的精轧工序S42中,以850℃以上的温度进行热精轧,使钢坯41成为厚钢板42。在之后的冷却工序S43中,对厚钢板42进行冷却。这里,在冷却工序S43中,例如在厚钢板的温度为800℃以上的温度下开始冷却,并冷却至在冷却结束时厚钢板的温度为450℃左右为止。
在表层硬度测量工序S45中,使用测量装置100执行的测量方法,来对冷却后的厚钢板42的整个面测量表层的机械特性。而且,根据该测量出的结果将比预先设定的表层硬度硬的部位判定为硬化部。通过显示部11显示了判定结果的例子如图11所示。在图11中,将表层硬度超过了阈值的部分亦即硬化部用特定的颜色(深灰色)对应于测量位置而进行二维绘图。这里,作为一个例子,阈值设定为230Hv。在图11中,在右端附近具有判定出的多个硬化部。像这样,判定为具有硬化部的厚钢板42被输送至再测量工序S46。
这里,在使用磁力起重机那样的磁力来吊起了钢板的情况下,在起重机的磁铁部分所吸附的部分残留有剩余磁场。在测量电磁特征量来测量机械特性的情况下,若至少在表层具有剩余磁场,则有时机械特性的测量或评价的精度下降。因此,在具有产生剩余磁场的过程的情况下,优选在表层硬度测量工序S45的紧前追加退磁工序S44,通过该退磁工序S44将剩余磁场退磁。此时,退磁装置利用距离衰减方式进行退磁,以便表层的剩余磁场成为0.5mT以下。
另外,在表层硬度测量工序S45中,针对判定为硬化部的部位,输出二维图和检测出的硬化部的位置信息的列表。二维图及硬化部的位置信息的列表被传送至制造工序的品质管理系统,能够在各工序中进行参照。对于硬化部的位置信息,如图15所示,针对检测出的各硬化部进行标记处理,作为相同的缺陷而被统一分配ID。另外,也可以按每个ID来输出硬度的最大值(图中H_max)、硬度的平均值(H_ave)、具有硬度的最大值的L方向上的位置(X_max)、具有硬度的最大值的C方向上的位置(Y_max)等。对于二维图,可以输出如图11那样显示判定出的硬化部的判定结果图、针对钢板的测量范围将硬度分配成颜色来显示的硬度分布图、显示使用了哪个模型的模型图。通常,仅使用判定结果图,但例如在想与冷却工序S43的制造条件进行对比的情况下等需要详细的硬度分布的情况下,可以参照硬度分布图及模型图中的至少一个。
在再测量工序S46中,进行在表层硬度测量工序S45中检测出的硬化部的表层硬度的再测量。这里,使用测量装置100执行的测量方法,仅对包含附近区域的硬化部再测量表层的机械特性。而且,在再次判定为再测量出的硬化部的表层硬度超过上述阈值的情况下,判定为是局部具有硬的区域的硬化部,并将厚钢板42输送至去除工序S47。
而且,在去除工序S47中,去除在再测量工序S46中判定为硬化部的部位。具体而言,将判定为硬化部的部位通过研磨机等公知的磨削机构进行磨削来除去。在该去除工序S47之后,从厚钢板42向厚钢板43的制造完成,并向其他工序(向需要者的出厂工序、钢管制造工序等)输送厚钢板43。此外,希望对在厚钢板42的去除工序S47中被磨削的部位使用公知或现有的厚度计来测定磨削位置处的厚钢板42的壁厚,确认是否进入到在钢板制造时预先设定的尺寸公差。另外,希望在去除硬化部之后通过公知的接触式硬度计对硬化部再次测量表层硬度。根据该测量结果确认为预先设定的表层硬度以下。若能够确认到,则从厚钢板42向厚钢板43的制造完成。
另一方面,当在表层硬度测量工序S45中判定为无硬化部的情况下,或者在再测量工序S46中判定为不是硬化部的情况下,从厚钢板42向厚钢板43的制造不经过去除工序S47而完成,并向其他工序(向需要者的出厂工序、钢管制造工序等)输送厚钢板43。
此外,本实施例中的厚钢板的制造方法可以在在先的冷却工序S43之后且在表层硬度测量工序S45之前还包括退火工序S48(未图示)等。特别是在制造的厚钢板43的表层硬度(更具体而言,是在去除了氧化皮的表面从上表面起按照ASTM A 956/A956MA钢产品里氏硬度标准试验方法(Standard Test Method for Leeb Hardness Testing of SteelProducts)测定的维氏硬度)为230Hv以上、且易在厚钢板43产生翘曲的钢的品种的情况下,希望在冷却工序S43之后经过了退火工序S4后经过表层硬度测量工序S45。通过经过退火工序S48,能够期待回火带来的组织的软化。组织的软化与硬化部产生的抑制有关,因此结果是能够期待去除区域减少。
如上述那样,在表层硬度测量工序S45中,为了确认硬度,在去除了氧化皮的表面从上表面起按照ASTM A956/A 956MA钢产品里氏硬度标准试验方法测量硬度。这里,在回弹式的硬度测量中,测量对象的厚度影响测量值。因此,事先按每个厚度事先调查深度0.25mm处的截面维氏硬度和表层的回弹式硬度计测量的硬度的值来构建关系式。可以以0.25mm处的截面硬度为基准,为了考虑厚度带来的影响而基于事先构建的关系式来进行调整并决定判定为硬化部的硬度的值。在该例子中,设为基准的深度为0.25mm,但设为基准的深度不限定。
此外,在本实施例中,作为去除厚钢板42的表层中的在表层硬度测量工序S45中判定出的硬化部的去除方法,在公知的磨削机构中进行了说明,但在本发明中并不限定于此。只要是能够去除硬化部的方法即可,还能够使用除磨削以外的公知方法(例如热处理等)来去除。
如本实施例那样,当在厚钢板43的制造方法中使用测量装置100执行的机械特性的测量方法的情况下,能够借助物理量来准确地测量机械特性,因此能够提供高品质的物质1亦即厚钢板43。更具体而言,能够由厚钢板42制造抑制了硬化部的厚钢板43。
(第二实施方式)
图8是本公开的第二实施方式的机械特性的测量装置100的框图。在第一实施方式中,多个计算模型M1、M2、…、Mn存储于测量装置100具备的存储部10。在本实施方式中,多个计算模型M1、M2、…、Mn存储在位于测量装置100的外部的数据库12。本实施方式的机械特性的测量装置100具备通信部7。控制部8能够经由通信部7访问数据库12。在本实施方式中,控制部8经由通信部7使数据库12存储所生成的多个计算模型M1、M2、…、Mn。另外,控制部8经由通信部7获取从数据库12选择出的计算模型Mi。测量装置100的其他结构与第一实施方式相同。
根据本实施方式的机械特性的测量装置100、具备测量装置100的物质1的制造设备、测量装置100执行的机械特性的测量方法、使用该测量方法的物质1的管理方法及制造方法,能够与第一实施方式同样地借助物理量来准确地测量机械特性。并且,多个计算模型M1、M2、…、Mn存储在位于测量装置100的外部的数据库12,因此能够处理超过内部的存储部10的存储容量的多个计算模型M1、M2、…、Mn。
这里,通信部7的通信方式可以是近距离无线通信标准或与移动电话网连接的无线通信标准,也可以是有线通信标准。近距离无线通信标准例如可以包括WiFi(注册商标)、Bluetooth(注册商标)、红外线及NFC(Near Field Communication:近场通信)等。与移动电话网连接的无线通信标准例如可以包括LTE(Long Term Evolution:长期演进)或第四代及第四代以后的移动通信系统等。另外,在通信部7与物理量测量部5的通信中使用的通信方式例如可以是LPWA(Low Power Wide Area:低功耗广域技术)或LPWAN(Low Power WideArea Network:低功率广域网络)等通信标准。
(第三实施方式)
图9是本公开的第三实施方式的机械特性的测量装置100的框图。在第一实施方式中,多个计算模型M1、M2、…、Mn存储于测量装置100具备的存储部10。另外,在第一实施方式中,多个计算模型M1、M2、…、Mn为与一个品种亦即测量对象物101对应的模型。在本实施方式中,测量装置100经由通信部7获取品种信息15。品种信息15为表示物质1的品种的信息。在本实施方式中,测量装置100将m设为2以上的整数,而能够应对m个种类的品种。若品种不同,则例如物质1的组织及制造条件不同。因此,按物质1的每个品种准备不同的多个计算模型Mj1、Mj2、…、Mjn。这里,j为1~m的任一整数。另外,如上述那样,与计算模型Mji对应地设定组Gji。因此,准备物质1的任意的一个组Gj1、Gj2、…、Gjn的范围或边界的信息作为一个分类模型Cj。在物质1为钢材的情况下,例如能够按每个品种来准备分类模型Cj。
多个分类模型C1、C2、…、Cm存储在位于测量装置100的外部的第一数据库13。多个计算模型M11、M12、…、M1n、…、Mm1、Mm2、…、Mmn存储在位于测量装置100的外部的第二数据库14。控制部8能够经由通信部7访问第一数据库13及第二数据库14。在本实施方式中,控制部8经由通信部7使第一数据库13存储所生成的多个分类模型C1、C2、…、Cm。控制部8经由通信部7使第二数据库14存储所生成的多个计算模型M11、M12、…、M1n、…、Mm1、Mm2、…、Mmn。另外,控制部8经由通信部7获取品种信息15。控制部8经由通信部7从第一数据库13获取与品种信息15指定的物质1的品种对应的分类模型Cj。控制部8经由通信部7获取从第二数据库14选择出的计算模型Mji。测量装置100的其他结构与第二实施方式相同。
根据本实施方式的机械特性的测量装置100、具备测量装置100的物质1的制造设备、测量装置100执行的机械特性的测量方法、使用该测量方法的物质1的管理方法及制造方法,能够与第一实施方式同样地借助物理量来准确地测量机械特性。并且,多个分类模型C1、C2、…、Cm及多个计算模型M11、M12、…、M1n、…、Mm1、Mm2、…、Mmn存储在位于测量装置100的外部的第一数据库13及第二数据库14,因此能够处理超过内部的存储部10的存储容量的模型。另外,能够应对物质1的多个品种,因此机械特性测量中的通用性提高。
虽然基于各附图及实施例说明了本公开,但应当注意本领域技术人员能够容易地基于本公开进行各种变形及修正。因此,应当留意这些变形及修正包含在本公开的范围内。例如,各单元、各步骤等所包括的功能等能够以逻辑上不矛盾的方式重新配置,能够将多个单元及步骤等组合成一个或者进行分割。
在上述的实施方式中说明过的测量装置100及物理量测量部5的结构为例示,可以不包含全部构成要素。例如,测量装置100也可以不具备显示部11。另外,测量装置100及物理量测量部5也可以具备其他构成要素。例如,物理量测量部5与控制部8及存储部10也可以在物理上距离较远。在该情况下,物理量测量部5与测量装置100的控制部8只要电连接即可,该连接是有线还是无线均可。另外,该连接可以利用公知的技术。
例如,本公开也可实现为记述了实现测量装置100的各功能的处理内容的程序或记录有程序的存储介质。应当理解它们也包含在本公开的范围内。
例如,上述的实施方式的测量装置100以使用图1的本发明的测量装置100来收集学习数据组的情况进行了说明,但本发明并不限定于此。也可以使用其他物理用测量装置来收集测量对象物101的物理量。
例如,示出了上述的实施方式的测量装置100创建区分为组G1、G2、…、Gn的方法的例子,但它们也可以由其他信息处理装置创建。在该情况下,该信息处理装置获取学习数据组,创建区分为组G1、G2、…、Gn的方法。另外,信息处理装置将所创建的区分为组G1、G2、…、Gn的方法传送至测量装置100。即,将通过其他装置所创建的区分为组G1、G2、…、Gn的方法安装在测量装置100的控制部8,作为测量装置100的一部分来使用。
例如,示出了上述的实施方式的测量装置100创建区分为组G1、G2、…、Gn的方法的例子,但它们也可以由其他信息处理装置创建。在该情况下,该信息处理装置获取另外准备的学习数据组,创建区分为组G1、G2、…、Gn的方法。另外,信息处理装置将区分为组G1、G2、…、Gn的方法传送至测量装置100。即,将通过其他装置制所创建的区分为组G1、G2、…、Gn的方法安装在测量装置100的控制部8,作为测量装置100的一部分来使用。
例如,示出了上述的实施方式的测量装置100创建多个计算模型M1、M2、…、Mn的例子,但它们也可以由其他信息处理装置创建。在该情况下,该信息处理装置获取学习数据组,创建多个计算模型M1、M2、…、Mn。另外,信息处理装置将所创建的多个计算模型M1、M2、…、Mn传送至测量装置100。即,将通过其他装置所创建的多个计算模型M1、M2、…、Mn安装在测量装置100的控制部8,作为测量装置100的一部分来使用。
例如,示出了上述的实施方式的测量装置100制作多个计算模型M1、M2、…、Mn的例子,但它们也可以由其他信息处理装置创建。在该情况下,该信息处理装置获取另外准备的学习数据组,创建多个计算模型M1、M2、…、Mn。另外,信息处理装置将所创建的多个计算模型M1、M2、…、Mn传送至测量装置100。即,将通过其他装置所创建的多个计算模型M1、M2、…、Mn安装在测量装置100的控制部8,作为测量装置100的一部分来使用。
例如,在上述的实施方式中,示出了传感器3通过扫描部6来进行扫描的例子,但传感器3的位置也可以被固定。在传感器3的位置被固定的情况下,扫描部6可以使测量对象物101移动。另外,扫描部6在上述说明中为利用人力的台车,但也可以为具备机械式的驱动装置的台车。另外,也可以为能够被与测量装置100的控制部8不同的控制部控制来实现扫描的扫描部6。特别是在设置于物质1的制造设备内的情况下,优选利用公知的扫描装置、新的扫描装置、公知的扫描方法、新的扫描方法、公知的控制装置、新的控制装置、公知的控制方法或新的控制方法的一个以上,并设置本发明的物理量测量部5。并且,扫描部6的控制部也可以构成为能够与其他制造设备的控制部(未图示)协作来自动扫描。另外,相反地,也可以构成为能够通过机械特性的测量装置100的控制部8来自动扫描。在该情况下,扫描部6、扫描部的控制部、制造设备的控制部及测量装置100的控制部8只要电连接即可,它们的连接是有线还是无线均可。另外,该连接也可以利用公知或新的技术。
例如,在上述的实施方式中,也可以是能够基于所显示的物质1的机械特性来输入用户的判定。用户可以在显示部11中例如通过手指与触摸屏等的接触来输入优劣的判定。控制部8可以根据来自用户的优劣判定结果来进行例如决定磨削工序的实施或不实施等的控制。另外,作为其他例子,为了管理物质1的管理工序的高效化,也可以代替用户,而由控制部8基于所设定的阈值来执行物质1的优劣的判定。
另外,在上述的实施方式中,作为物质1的例子以钢材、作为物理量的例子以电磁特征量、作为机械特征的例子以硬度进行了说明,但也可以是其他组合。例如,即使物理量为温度,也可得到本发明的效果。例如,即使物质1为金属或化合物,也可得到本发明的效果。特别是在对于测量的多个物理量而言、位于金属或化合物的表面的膜2具备与该金属或化合物不同的特征的情况下,能够得到更强的效果。这里,作为金属的例子,可举出铁、钢、镍、钴、铝、钛或者包括它们中的任一个以上的合金。另一方面,作为化合物,可举出无机化合物、有机化合物、或者包括铁、钢、镍、钴、铝或钛中的任一个以上的化合物。其中,若物质1为铁、钢、镍、钴、包括它们中的任一个以上的合金或包括它们中的任一个以上的化合物,则在使用电磁特征量作为多个物理量的情况下,能够更明确地得到本发明的效果。特别是在物质1为钢材的情况下,其机械特性由该钢材含有的合金元素的比例、淬火处理及退火处理的方法决定。因此,作为被测量的物理量,也可以使用在淬火处理及退火处理前后的表面温度的至少一个。
(应用例)
例如在以下那样的设备或场景中优选应用如上述那样构成的机械特性的测量装置100及测量装置100执行的机械特性的测量方法。
另外,也可以将本发明应用为构成物质1的制造设备的检查设备的一部分。即,根据本发明的机械特性的测量装置100,可以将通过公知、新的或现有的制造设备制造出的物质1的表面与位于该物质1的表面的膜2一起用测量装置进行测量。并且,检查设备也可以根据该测量结果和例如预先设定的机械特性来检查该物质1的机械特性。换言之,本发明的机械特性的测量装置100测量由制造设备制造出的物质1。另外,具备本发明的机械特性的测量装置100的检查设备例如使用预先设定的机械特性来检查由制造设备制造出的物质1。
另外,也可以将本发明应用为物质1的制造方法所包含的检查步骤的一部分。具体而言,也可以将在公知、新的或现有的制造步骤中制造出的物质1在物质1的表面具有膜2的状态下通过检查步骤进行检查。这里,检查步骤具备本发明的前述的测量步骤、分类步骤及计算步骤,将表面具有膜2的物质1作为测量对象物101来计算物质1的机械特性。或者,检查步骤使用本发明的机械特性的测量装置100,将表面具有膜2的物质1作为测量对象物101来计算物质1的机械特性。作为更优选的方式,可以是在由计算步骤或测量装置100计算出的物质1的机械特性不包括在基准范围内的情况下,制造方法包括变更制造步骤的制造条件的条件变更步骤,以便上述计算出的物质1的机械特性包括在基准范围内。这里,基准范围可以是使用过去制造的物质1通过统计得到的机械特性的标准范围。制造条件为在物质1的制造步骤中可调整的参数。制造条件例如可选择物质1的加热温度、加热时间或冷却时间等。
根据上述的物质1的制造设备及物质1的制造方法,能够借助物理量来准确地测量机械特性,因此能够高成品率地制造物质1。这里,在从机械特性的测量装置100或计算步骤得到的物质1的机械特性为物质1的表层的机械特性的情况下,能够通过分类处理部81或分类步骤(步骤S12)来创建更适当的计算模型并进行选择,因此可得到更强的上述效果。
这里,作为物质1的制造设备的一个例子,可列举以下的制造设备。即,
一种钢板的制造设备列,具备:
轧制设备,将钢坯轧制成为钢板;
检查设备,具备本发明的机械特性的测量装置,通过上述测量装置来测量上述钢板的表层硬度,并根据上述测量出的上述钢板的表层硬度将比对于上述钢板的表层预先设定的表层硬度硬的部位判定为硬化部;以及
去除设备,去除上述钢板的表层中的上述判定出的硬化部。
此外,上述制造设备列若根据需要上述轧制设备与上述检查设备之间还具备将钢板表层或整体退磁的退磁设备,则能够防止机械特性的测量或评价的精度下降,因此更优选。
另外,这里,作为物质1的制造方法的一个例子,可举出以下的制造方法。即,
一种钢板的制造方法,具备:
轧制步骤,将钢坯轧制成为钢板;
检查步骤,通过本发明的机械特性的测量方法来测量上述钢板的表层硬度,并根据上述测量出的上述钢板的表层硬度将比对于上述钢板的表层预先设定的表层硬度硬的部位判定为硬化部;以及
去除步骤,去除上述钢板的表层中的上述判定出的硬化部。
此外,上述制造方法若根据需要在上述轧制步骤与上述检查步骤之间还具备将钢板表层或整体退磁的退磁步骤,则能够防止机械特性的测量或评价的精度下降,因此更优选。
在上述钢板的制造方法的情况下,在连续的钢坯中,为了得到规定的形状及机械特性,以850℃以上进行轧制步骤。在该轧制步骤后,可以还进行淬火及退火,作为热处理步骤。众所周知,增量磁导率、矫顽力、巴克豪森噪声等电磁特征量与钢材的机械特性具有相关性。因此,优选在经过上述热处理步骤而钢材的组织确定了的状态下,测量电磁特征量作为测量对象物101的物理量。此时,测量对象物101是指钢板和位于该钢板的表面的膜。另外,作为钢板的表面的膜,例如,可举出氧化皮及黑皮等氧化铁膜、树脂涂层等有机被膜、镀覆被膜或化学转化处理被膜等。另外,机械特性通过淬火及退火来决定,因此作为制造方法中的测量对象物101的物理量,可以还另外测量淬火前后的温度或者退火前后的温度等来使用。
并且,也可以将本发明应用于物质1的管理方法,通过检查物质1来进行物质1的管理。具体而言,在检查步骤中对表面具有膜2的预先准备的物质1进行检查,根据在检查步骤中得到的检查结果来在对物质1进行分类的管理步骤中进行管理。这里,检查步骤具备本发明的上述的测量步骤、分类步骤及计算步骤,将表面具有膜2的预先准备的物质1作为测量对象物101来计算物质1的机械特性。或者,检查步骤使用本发明的机械特性的测量装置,并将表面具有膜2的物质1作为测量对象物101来计算物质1的机械特性。在接下来的管理步骤中,能够进行物质1的管理。在管理步骤中,基于通过计算步骤或机械特性的测量装置100得到的物质1的机械特性,制造出的物质1根据预先指定的基准进行分类,由此管理物质1。例如,在物质1为钢材、物质1的机械特性为钢材的硬度的情况下,能够将钢材分类为与硬度相应的等级。根据这样的物质1的管理方法,能够借助物理量来准确地测量机械特性,因此能够提供高品质的物质1。这里,在从机械特性的测量装置100或计算步骤得到的物质1的机械特性在为物质1的表层的机械特性的情况下,能够通过分类处理部81或分类步骤(步骤S12)来创建更适当的计算模型并进行选择,因此可得到更强的上述效果。
另外,这里,作为物质1的管理方法的一个例子,可举出以下的管理方法。即,
一种钢板的制造方法,具有:
检查步骤,通过本发明的机械特性的测量方法测量钢板的表层硬度,并根据上述测量出的上述钢板的表层硬度,将比对于上述钢板的表层预先设定的表层硬度硬的部位判定为硬化部;和
管理步骤,根据上述钢板的表层中的上述判定出的硬化部的面积及/或位置来对上述钢板进行分类。
附图标记说明
1…物质;2…膜;3…传感器;5…物理量测量部;6…扫描部;7…通信部;8…控制部;10…存储部;11…显示部;12…数据库;13…第一数据库;14…第二数据库;15…品种信息;31…励磁线圈;32…磁轭;41…钢坯;42…厚钢板;43…厚钢板(无硬化部的状态);81…分类处理部;82…机械特性计算部;83…物理量测量控制部;100…测量装置;101…测量对象物。
Claims (7)
1.一种机械特性的测量装置,其特征在于,具备:
物理量测量部,测量具有物质和位于所述物质的表面的膜的测量对象物的多个物理量;
分类处理部,基于测量出的所述多个物理量中的至少两个来选择计算所述物质的机械特性的多个计算模型中的一个;以及
机械特性计算部,使用由所述分类处理部选择出的计算模型和所述多个物理量中的至少两个来计算所述物质的机械特性。
2.根据权利要求1所述的机械特性的测量装置,其特征在于,
所述多个物理量包括电流波形的失真量、电流波形的振幅、谐波的振幅、磁导率及矫顽力作为电磁特征量,
所述分类处理部基于所述电磁特征量中的至少两个来选择所述多个计算模型中的一个,
所述机械特性计算部使用由所述分类处理部选择出的计算模型和所述电磁特征量中的至少两个来计算所述物质的机械特性。
3.一种机械特性的测量方法,其特征在于,具备:
测量步骤,测量具有物质和位于所述物质的表面的膜的测量对象物的多个物理量;
分类步骤,基于测量出的所述多个物理量中的至少两个来选择计算所述物质的机械特性的多个计算模型中的一个;以及
计算步骤,使用在所述分类步骤中选择出的计算模型和所述多个物理量中的至少两个来计算所述物质的机械特性。
4.一种物质的制造设备,其特征在于,
具备制造物质的制造设备和机械特性的测量装置,
所述机械特性的测量装置具备:
物理量测量部,测量具有物质和位于所述物质的表面的膜的测量对象物的多个物理量;
分类处理部,基于测量出的所述多个物理量中的至少两个来选择计算所述物质的机械特性的多个计算模型中的一个;以及
机械特性计算部,使用由所述分类处理部选择出的计算模型和所述多个物理量中的至少两个来计算所述物质的机械特性,
所述测量装置测量通过所述制造设备制造出的物质的机械特性。
5.根据权利要求4所述的物质的制造设备,其特征在于,
对于所述测量装置,
所述多个物理量包括电流波形的失真量、电流波形的振幅、谐波的振幅、磁导率及矫顽力作为电磁特征量,
所述分类处理部基于所述电磁特征量中的至少两个来选择所述多个计算模型中的一个,
所述机械特性计算部使用由所述分类处理部选择出的计算模型和所述电磁特征量中的至少两个来计算所述物质的机械特性。
6.一种物质的管理方法,其特征在于,具备:
测量步骤,测量具有物质和位于所述物质的表面的膜的测量对象物的多个物理量;
分类步骤,基于测量出的所述多个物理量中的至少两个来选择计算所述物质的机械特性的多个计算模型中的一个;
计算步骤,使用在所述分类步骤中选择出的计算模型和所述多个物理量中的至少两个来计算所述物质的机械特性;以及
管理步骤,基于计算出的所述物质的机械特性来对所述物质进行分类。
7.一种物质的制造方法,其特征在于,具备:
制造步骤,制造物质;
测量步骤,将制造出的所述物质和位于该物质的表面的膜作为测量对象物来测量所述测量对象物的多个物理量;
分类步骤,基于测量出的所述多个物理量中的至少两个来选择为了计算所述物质的机械特性而准备的多个计算模型中的一个;以及
计算步骤,使用在所述分类步骤中选择出的计算模型和所述多个物理量中的至少两个来计算所述物质的机械特性。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020103334 | 2020-06-15 | ||
JP2020-103334 | 2020-06-15 | ||
PCT/JP2021/022593 WO2021256442A1 (ja) | 2020-06-15 | 2021-06-14 | 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115803616A true CN115803616A (zh) | 2023-03-14 |
Family
ID=79268088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180042024.1A Pending CN115803616A (zh) | 2020-06-15 | 2021-06-14 | 机械特性的测量装置、机械特性的测量方法、物质的制造设备、物质的管理方法以及物质的制造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230251226A1 (zh) |
EP (1) | EP4166252A4 (zh) |
JP (1) | JP7095814B2 (zh) |
KR (1) | KR20230011347A (zh) |
CN (1) | CN115803616A (zh) |
CA (1) | CA3181997A1 (zh) |
WO (1) | WO2021256442A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4166251A4 (en) * | 2020-06-15 | 2023-12-06 | JFE Steel Corporation | MECHANICAL PROPERTY MEASUREMENT DEVICE, MECHANICAL PROPERTY MEASUREMENT METHOD, MATERIAL MANUFACTURING FACILITY, MATERIAL MANAGEMENT METHOD, AND MATERIAL MANUFACTURING METHOD |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2606952B2 (ja) * | 1990-06-20 | 1997-05-07 | 新日本製鐵株式会社 | 鉄鋼製品の製造可否判定装置 |
WO1993003328A1 (en) * | 1991-08-05 | 1993-02-18 | Daikin Industries, Ltd. | Method and apparatus for analyzing physical quantities, and apparatus for removing line spectrum noise |
GB9322431D0 (en) * | 1993-10-30 | 1993-12-22 | Orb Elect Steels Ltd | Hardness testing of steels |
JPH09113488A (ja) | 1995-10-16 | 1997-05-02 | Toshiba Corp | 電磁気的材質評価方法及び装置 |
JP4998821B2 (ja) | 2007-03-14 | 2012-08-15 | 住友金属工業株式会社 | 渦流検査方法及び該渦流検査方法を実施するための渦流検査装置 |
JP5428292B2 (ja) * | 2008-10-30 | 2014-02-26 | Jfeスチール株式会社 | 高強度冷延鋼板の製造方法 |
US8776005B1 (en) * | 2013-01-18 | 2014-07-08 | Synopsys, Inc. | Modeling mechanical behavior with layout-dependent material properties |
WO2016063433A1 (ja) * | 2014-10-21 | 2016-04-28 | 日本電気株式会社 | 推定結果表示システム、推定結果表示方法および推定結果表示プログラム |
EP3314247A4 (en) * | 2015-06-29 | 2019-01-23 | The Charles Stark Draper Laboratory, Inc. | SYSTEM AND METHOD FOR CHARACTERIZING FERROMAGNETIC MATERIAL |
CN109843460A (zh) * | 2016-09-30 | 2019-06-04 | 株式会社Uacj | 铝制品的特性预测装置、铝制品的特性预测方法、控制程序、以及记录介质 |
JP6683111B2 (ja) * | 2016-11-28 | 2020-04-15 | 株式会社島津製作所 | 試料解析システム |
CN106971026B (zh) * | 2017-03-08 | 2020-06-16 | 武汉科技大学 | 基于全局可加模型的微合金钢力学性能预报方法 |
JP6313516B1 (ja) * | 2017-03-30 | 2018-04-18 | 三菱総研Dcs株式会社 | 情報処理装置、情報処理方法およびコンピュータプログラム |
JP6860406B2 (ja) * | 2017-04-05 | 2021-04-14 | 株式会社荏原製作所 | 半導体製造装置、半導体製造装置の故障予知方法、および半導体製造装置の故障予知プログラム |
JP6948297B2 (ja) * | 2017-09-04 | 2021-10-13 | Jfeスチール株式会社 | 鋼板の製造方法、磁性材用表層硬さ計測装置及び鋼板の製造設備列 |
JP6791401B2 (ja) | 2017-10-30 | 2020-11-25 | 日本製鉄株式会社 | 長尺材の磁気特性変化部検出装置及び方法 |
JP7059050B2 (ja) * | 2018-03-09 | 2022-04-25 | 三菱重工業株式会社 | 応力推定装置、応力推定方法およびプログラム |
JP7131766B2 (ja) * | 2018-05-28 | 2022-09-06 | 三栄源エフ・エフ・アイ株式会社 | 機械学習システム、食感評価モデル、食感評価装置、機械学習方法および食感評価方法 |
JP7163099B2 (ja) * | 2018-08-10 | 2022-10-31 | 株式会社東芝 | エネルギー管理装置、モデル管理方法及びコンピュータプログラム |
EP4166251A4 (en) * | 2020-06-15 | 2023-12-06 | JFE Steel Corporation | MECHANICAL PROPERTY MEASUREMENT DEVICE, MECHANICAL PROPERTY MEASUREMENT METHOD, MATERIAL MANUFACTURING FACILITY, MATERIAL MANAGEMENT METHOD, AND MATERIAL MANUFACTURING METHOD |
-
2021
- 2021-06-14 KR KR1020227043658A patent/KR20230011347A/ko not_active Application Discontinuation
- 2021-06-14 EP EP21826503.1A patent/EP4166252A4/en active Pending
- 2021-06-14 CN CN202180042024.1A patent/CN115803616A/zh active Pending
- 2021-06-14 US US18/001,266 patent/US20230251226A1/en active Pending
- 2021-06-14 WO PCT/JP2021/022593 patent/WO2021256442A1/ja active Application Filing
- 2021-06-14 CA CA3181997A patent/CA3181997A1/en active Pending
- 2021-06-14 JP JP2021554397A patent/JP7095814B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
CA3181997A1 (en) | 2021-12-23 |
JPWO2021256442A1 (zh) | 2021-12-23 |
US20230251226A1 (en) | 2023-08-10 |
EP4166252A4 (en) | 2023-11-29 |
JP7095814B2 (ja) | 2022-07-05 |
EP4166252A1 (en) | 2023-04-19 |
WO2021256442A1 (ja) | 2021-12-23 |
KR20230011347A (ko) | 2023-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7095815B2 (ja) | 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法 | |
CN110187000B (zh) | 一种电磁无损检测双相钢微观组织的方法 | |
Sha et al. | Noncontact and nondestructive evaluation of heat-treated bearing rings using pulsed eddy current testing | |
CN115803616A (zh) | 机械特性的测量装置、机械特性的测量方法、物质的制造设备、物质的管理方法以及物质的制造方法 | |
JP7095817B2 (ja) | 機械的特性の計測装置、機械的特性の計測方法、物質の製造設備、物質の管理方法および物質の製造方法 | |
Yang et al. | Reliable characterization of bearing rings using Eddy current and Barkhausen noise data fusion | |
Diogenes et al. | Corrosion evaluation of carbon steel bars by magnetic non-destructive method | |
RU2808619C1 (ru) | Устройство для измерения механических свойств, способ измерения механических свойств, оборудование для изготовления материала, способ контроля материала и способ изготовления материала | |
RU2808618C1 (ru) | Устройство для измерения механических свойств, способ измерения механических свойств, оборудование для изготовления материала, способ контроля материала и способ изготовления | |
RU2827986C1 (ru) | Устройство для измерения механических свойств, способ измерения механических свойств, оборудование для изготовления материала, способ контроля материала и способ изготовления материала | |
Ricci et al. | Magnetic imaging and machine vision NDT for the on-line inspection of stainless steel strips | |
Yasmine et al. | 3MA Non-destructive analysis on hardened material by finite element simulation and experiment | |
Chady et al. | Evaluation of fatigue-loaded steel samples using fusion of electromagnetic methods | |
JP7409472B1 (ja) | 材料データ処理装置及び方法 | |
Stefanita et al. | Magnetic nondestructive testing techniques | |
RU2548944C1 (ru) | Способ неразрушающего контроля изделий | |
JP7409464B1 (ja) | 材料データ処理装置及び方法 | |
Arnold et al. | Non-destructive Materials Characterization by Electromagnetic Techniques | |
CN117907426B (zh) | 一种基于梯度法特征分析的金属涡流无损检测方法 | |
Psuj | Fusion of multiple parameters of signals obtained by vector magnetic flux observation for evaluation of stress loaded steel samples | |
JP2024084466A (ja) | 材料データ処理装置及び方法 | |
Li et al. | Classification of non-magnetic metals based on eddy current array sensors | |
JP2024084465A (ja) | 材料データ処理装置及び方法 | |
Schreiber et al. | Pre-crack fatigue life assessment of relevant aircraft materials using fractal analysis of eddy current test data | |
CA3137689A1 (en) | Metal structure evaluator for rolled steel sheets, method for evaluating metal structure of rolled steel sheet, production facility of steel product, method for manufacturing steel product, and method of quality management of steel product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |