WO2021255930A1 - 内燃機関用点火装置 - Google Patents

内燃機関用点火装置 Download PDF

Info

Publication number
WO2021255930A1
WO2021255930A1 PCT/JP2020/024217 JP2020024217W WO2021255930A1 WO 2021255930 A1 WO2021255930 A1 WO 2021255930A1 JP 2020024217 W JP2020024217 W JP 2020024217W WO 2021255930 A1 WO2021255930 A1 WO 2021255930A1
Authority
WO
WIPO (PCT)
Prior art keywords
igniter
ignition
protection operation
protection
reading
Prior art date
Application number
PCT/JP2020/024217
Other languages
English (en)
French (fr)
Inventor
純一 小谷
Original Assignee
日立Astemo阪神株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo阪神株式会社 filed Critical 日立Astemo阪神株式会社
Priority to PCT/JP2020/024217 priority Critical patent/WO2021255930A1/ja
Priority to JP2022531230A priority patent/JPWO2021255930A1/ja
Publication of WO2021255930A1 publication Critical patent/WO2021255930A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/12Ignition, e.g. for IC engines

Definitions

  • the present invention relates to an ignition device for an internal combustion engine mounted on an automatic vehicle or the like, and more particularly to an improvement of an ignition device for an internal combustion engine including an ignition coil and an igniter.
  • the ignition device for an internal combustion engine includes an ignition coil that generates a high voltage in the secondary coil by controlling the energization / shutoff of the primary coil and an igniter that controls the energization / shutoff of the primary coil, and ignites at an appropriate timing of the ignition cycle. It operates based on an ignition signal supplied from a control unit (for example, an ECU). That is, when an ignition signal is supplied to the igniter from the ignition control unit that comprehensively manages the ignition cycle of the internal combustion engine, the igniter controls energization and disconnection of the primary coil, and a high voltage is generated in the secondary coil.
  • the high voltage generated in the secondary coil causes a spark discharge between the discharge gaps of the spark plug, ignites the combustion gas in the cylinder, and obtains the force to move the cylinder in the cylinder.
  • the igniter is equipped with a switching element (power transistor, IGBT, etc.) that opens and closes the energization path to the primary coil, and a control element that controls energization and cutoff to the primary coil by controlling the opening and closing of this switching element.
  • a switching element power transistor, IGBT, etc.
  • a control element that controls energization and cutoff to the primary coil by controlling the opening and closing of this switching element.
  • the operation of the igniter protection function is managed by the ECU, and the igniter itself does not have an operation history of the igniter protection function. Even if it is disassembled, it is not easy to investigate the cause of the failure. For example, if it is easy to know that the igniter protection function was operating due to the occurrence of a specific abnormal condition, the cause of the abnormal condition is estimated, and improvements are made to avoid the occurrence of the abnormal condition, contributing to quality improvement. There is a possibility that it can be done.
  • an object of the present invention is to provide an ignition device for an internal combustion engine capable of recording the operation history of the igniter protection function inside the igniter.
  • the present invention includes a mutually inducible primary coil and a secondary coil, and ignites the ignition plug connected to the secondary coil by energizing / shutting off the primary coil.
  • an ignition device for an internal combustion engine including a coil and an igniter that controls energization / shutoff of the primary coil based on an ignition signal from an ignition control unit, the igniter opens and closes a feeding path of the primary coil.
  • a switching element and an ignition control element that turns the switching element on and off based on the ignition signal are provided, and the ignition control element is a switch control means that outputs a drive signal that turns the switching element on and off.
  • An igniter protection means that operates to protect the igniter itself from an igniter abnormality that occurs inside the igniter, and a protection operation history recording means that records igniter protection operation information that is a history of the operation of the igniter protection means. It is characterized by being prepared.
  • the protective operation history recording means has a non-volatile property that does not lose the stored contents even if the power supply to the igniter is cut off, and a dangerous temperature rise that may occur in the igniter.
  • a memory element having high heat resistance that can stably hold the stored contents in the region may be used.
  • the igniter may be provided with a protection operation history reading terminal for reading the igniter protection operation information from the protection operation history recording means.
  • the igniter is a molded semiconductor device in which the ignition control element and the switching element are attached to a lead frame structure composed of a plurality of lead frames and integrally packaged with resin, and the protection operation is performed.
  • the history reading terminal has a lead remaining portion in which a lead frame having no outer lead portion serving as an external connection terminal is exposed from the mold resin and / or the outer lead portion of the lead frame not used for communication with the ignition control unit. May be used.
  • the history of operation of the igniter protection means that operates to protect the igniter itself from the igniter abnormality that occurs inside the igniter is recorded in the protection operation history recording means as igniter protection operation information. I can leave it. Therefore, if the igniter protection operation information is read from the igniter protection operation history recording means collected by disposal, the details of the igniter abnormality that occurred during the operation of the ignition device for the internal combustion engine can be known, and the quality can be improved. It will be useful information for.
  • FIG. 1 It is a schematic block diagram of the ignition device for an internal combustion engine which concerns on this embodiment.
  • A is a plan view of the igniter.
  • B is a plan view of the igniter in which the mold resin is peeled off to expose the lead frame and the like.
  • C is a plan view of a lead frame strip in which a lead frame structure used for an igniter is continuously formed.
  • It is a waveform diagram which shows the signal waveform of the main part in the ignition device for an internal combustion engine.
  • the ignition device 1 for an internal combustion engine shown in FIG. 1 uses an igniter 10 to control energization of an ignition coil 2 including a primary coil 2a and a secondary coil 2b that can be mutually induced. Ignition connected to the secondary coil 2b by opening and closing the power supply path from the DC power supply 3 of the vehicle battery or the like via the primary coil 2a to the ground GND and controlling the energization / shutoff of the primary coil 2a by the igniter 10. Discharge energy is applied to the plug 4, and a discharge spark is generated in the spark plug 4.
  • the igniter 10 controls energization / disconnection of the primary coil 2a based on the ignition signal Si supplied from the ECU 5 as an ignition control unit.
  • the ignition coil 2 and the igniter 10 have a unit structure housed in a case having a required shape, and are provided for each cylinder of an internal combustion engine, for example.
  • the igniter 10 includes at least a coil connection terminal 21, an ignition signal input terminal 22, a ground terminal 23, and a power supply terminal 24 in order to connect to the outside.
  • One end of the primary coil 2a and the switching element 30 in the igniter 10 are connected via the coil connection terminal 21.
  • the ignition signal Si is supplied from the ECU 5 to the ASIC 40, which is an ignition control element in the igniter 10, via the ignition signal input terminal 22.
  • the ground terminal 23 is connected to a ground GND having an appropriate reference potential.
  • a sense resistor 50 for current detection is provided in the energization path between the switching element 30 and the ground terminal 23.
  • the power supply terminal 24 is connected to the DC power supply 3 and receives power to the igniter 10.
  • the igniter 10 is, for example, a mold-type semiconductor device having an appearance as shown in FIG. 2 (A), in which six long terminal pieces project substantially in parallel from one side edge of a substantially square mold resin 60. Four of these terminal pieces function as a coil connection terminal 21, an ignition signal input terminal 22, a ground terminal 23, and a power supply terminal 24. These long terminal pieces are not directly connected to each part, but are joined to the connector terminal of the wire harness connection connector (not shown) by welding, etc., and the connection to each part is realized via the connector or wire harness. Will be done.
  • the igniter 10 is provided with, for example, five terminals for reading the protection operation history as a terminal group used for a purpose different from the ignition control for the ignition coil 2 (reading the history of the igniter protection operation described later).
  • the protection operation history reading terminal is a general term for a group of terminals used for reading the igniter protection operation information described later from the ASIC 40.
  • the five protection operation history reading terminals shown in the present embodiment are a mode switching signal input terminal 25, a reading power supply terminal 26, a reading clock input terminal 27, a history data output terminal 28, and an effective bit length indicating terminal 29. .. Since the configuration related to the igniter protection operation history reading function in the ASIC 40 is omitted in FIG. 1, the input / output signal via the protection operation history reading terminal is also omitted.
  • protection operation history reading terminals are a group of terminals used to read the protection operation history from the igniter 10 collected by disposal or the like, and when the protection operation history reading device or the like and the igniter 10 are connected, a simple connector structure is provided. It is convenient if it is provided. However, providing such a connector connection structure in all the igniters 10 is a factor that hinders the miniaturization of the igniters 10 and leads to an increase in cost. Therefore, as the protection operation history reading terminal provided in the igniter 10, for example, a vacant long terminal piece or a metal piece slightly exposed from the side portion of the mold resin 60 is used (FIG. 2A). See).
  • the ASIC 40 is a custom IC incorporating necessary functions, and has a protection operation history recording function and a protection operation history reading function, which will be described later, in addition to a general ignition control function for a vehicle engine.
  • the direct current supplied from the direct current power supply 3 to the ASIC 40 is supplied to the regulator 402 via the surge protection means 401, a stable constant voltage Vcc is generated, and the direct current is supplied to each part.
  • Vcc constant voltage supplied to the reference voltage generation means 403
  • Vref the reference voltage Vref is generated and supplied to each part.
  • the power supply terminal 24 connected to the DC power supply 3 is connected to the first pad 451 of the ASIC 40, and the power supply overvoltage detecting means 404 determines the power potential of the energizing line connecting the first pad 451 and the surge protection means 401. Monitor. Then, when it is detected that the power supply voltage from the first pad 451 has reached a predetermined overvoltage value, the surge protection means 401 is operated to protect the regulator 402 from the overvoltage.
  • the power supply overvoltage impairs the internal function of the igniter 10 to cause an igniter abnormality
  • the power supply overvoltage detecting means 404 and the surge protecting means 401 that operate to protect the igniter 10 itself from the igniter abnormality are the first.
  • the power supply overvoltage detecting means 404 outputs information (first igniter protection operation information) that the power supply overvoltage surge protection function has been activated when the surge protection means 401 is operated.
  • the first igniter protection means is not limited to the one composed of the power supply overvoltage detecting means 404 and the surge protecting means 401.
  • a surge protection device such as a varistor may be provided in the protection branch path for branching from the energizing line connecting the first pad 451 and the regulator 402 to the ground GND to serve as the first igniter protection means.
  • the ignition signal Si supplied from the ECU 5 is input from the ignition signal input terminal 22 into the ASIC 40 via the second pad 452.
  • the ignition signal Si is input to the non-inverting Schmitt trigger circuit 406 via the surge protection means 405, and outputs a drive signal according to ON / OFF of the input ignition signal Si.
  • the drive signal output from the Schmitt trigger circuit 406 is input to the gate of the IGBT (Insulated Gate Bipolar Transistor) 31 in the switching element 30 via the output control means 407 and the third pad 453.
  • the collector of the IGBT 31 is connected to the low voltage side of the primary coil 2a (the side not connected to the DC power supply 3) via the coil connection terminal 21, and the emitter of the IGBT 31 is connected to the ground GND via the sense resistor 50 and the ground terminal 23. Will be done. Therefore, when a drive signal is input to the gate of the IGBT 31 and the IGBT 31 is turned on, the primary current I1 flows through the primary coil 2a. On the other hand, when the drive signal is turned off, the IGBT 31 is also turned off, and the primary current I1 flowing through the primary coil 2a is cut off.
  • the Schmitt trigger circuit 406 that generates a drive signal based on the ignition signal Si from the ECU 5 functions as a switch control means for turning on / off the switching element 30.
  • the output control means 407 has a function of adjusting the output level of the drive signal and a function of forcibly stopping (shut off) the drive signal.
  • the ignition signal Si which is the source of the above-mentioned drive signal, is important, but there is a possibility that dangerous surge noise may be mixed into the cable from the ECU 5 to the igniter 10. Therefore, the signal potential of the energizing line connecting the second pad 452 to which the ignition signal Si is input and the surge protection means 405 is monitored by the ignition signal overvoltage detecting means 408, and the signal voltage reaches a predetermined overvoltage value. When detected, the surge protection means 405 is activated to protect the Schmitt trigger circuit 406 from overvoltage.
  • the ignition signal overvoltage impairs the internal function of the igniter 10 to cause an igniter abnormality
  • the ignition signal overvoltage detecting means 408 and the surge protecting means 405 operating to protect the igniter 10 itself from the igniter abnormality are It functions as a second igniter protection measure.
  • the ignition signal overvoltage detecting means 408 outputs information (second igniter protection operation information) that the ignition signal overvoltage surge protection function has been activated when the surge protection means 405 is operated.
  • the second igniter protection means is not limited to the one composed of the ignition signal overvoltage detecting means 408 and the surge protecting means 405, and the protection for branching from the energized line connecting the second pad 452 and the Schmitt trigger circuit 406 to the ground GND.
  • a surge protection device such as a varistor may be provided on the branch path.
  • an ignition signal over-energization detecting means 409 for monitoring the signal potential of the energizing line connecting the Schmitt trigger circuit 406 and the output control means 407 is provided.
  • the ignition signal over-energization detecting means 409 measures the elapsed time from the output of the drive signal, and when the ignition signal abnormality determination time Td exceeding the standard ignition signal normal output time Tn is reached, the output control means 407 is instructed. The output of the drive signal is forcibly cut off.
  • the ignition signal over-energization detecting means 409 measures the input time of the ignition signal Si at the timing when the ignition signal Si is input (the signal level of the drive signal is converted from L to H1). do. If the on-time of the ignition signal Si is about the ignition signal normal output time Tn, the risk of abnormal heat generation of the IGBT 31 can be ignored, so that the ignition signal over-energization detecting means 409 does not operate. Therefore, the IGBT 31 keeps the closed state until the ignition signal Si stops (the signal level of the drive signal is converted from H1 to L), during which the primary current I1 flows.
  • the ignition signal over-energization detecting means 409 detects that the on state of the ignition signal Si continues beyond the ignition signal normal output time Tn and the on time of the IGBT 31 reaches the ignition signal abnormality determination time Td, the output is controlled.
  • the means 407 shuts off the drive signal to regulate the operation of the IGBT 31.
  • the ignition signal over-energization impairs the internal function of the igniter 10 to cause an igniter abnormality
  • the ignition signal over-energization detecting means 409 and the output control means 407 that operate to protect the igniter 10 itself from the igniter abnormality. Functions as a third igniter protective measure.
  • the ignition signal over-energization detecting means 409 outputs information (third igniter protection operation information) that the ignition signal over-energization protection function is activated when the output control means 407 is operated.
  • the switching element 30 has a built-in heat-sensitive element 32 such as a thermal diode or an NTC thermistor, and the detection information of the heat-sensitive element 32 is transmitted to the IGBT overheat detection means 410 of the ASIC 40 via the fourth pad 454 and the fifth pad 455. Entered.
  • the IGBT overheat detection means 410 detects that the temperature of the IGBT 31 has reached the dangerous temperature based on the detection information from the heat sensitive element 32, the output control means 407 is instructed to forcibly shut off the output of the drive signal. ..
  • the overheating of the IGBT 31 impairs the internal function of the igniter 10 to cause an igniter abnormality, and the IGBT overheating detecting means 410 and the output control means 407 operating to protect the igniter 10 itself from the igniter abnormality , Acts as a fourth igniter protection measure. Further, the IGBT overheating detecting means 410 outputs information (fourth igniter protection operation information) that the IGBT overheating protection function has been activated when the output control means 407 is operated.
  • the ASIC 40 is provided with a current limiting means 411 that limits the primary current I1 so as not to exceed a predetermined reference value.
  • the current limiting means 411 acquires the voltage across the sense resistor 50 from the sixth pad 456 and the seventh pad 457 to obtain the primary current I1, and when the primary current I1 exceeds the reference value, instructs the output control means 407. To lower the output level of the drive signal. As a result, the collector-emitter current of the IGBT 31 is reduced to approach the reference value.
  • the current limiting means 411 instructs the output control means 407 to raise the output level of the drive signal and increase the collector-emitter current of the IGBT 31 to approach the reference value.
  • the current limiting operation by the current limiting means 411 and the output control means 407 is not treated as the igniter protection operation, but this is not treated as the igniter protection operation. It may be included in the protective operation.
  • the above-mentioned first to fourth igniter protection operation information is supplied to the writing means 412, and is written to the protection operation history recording means 413 by the operation of the writing means 412 each time.
  • the data structure when writing to the protection operation history recording means 413 is not particularly limited, and only the types of the igniter protection operation may be recorded in the order of occurrence, or the number of occurrences may be accumulated and recorded for each type of the igniter protection operation. You can do it.
  • the storage capacity of the protection operation history recording means 413 is not particularly limited, and may be a storage capacity that allows for the number of times that the igniter protection operation is likely to be executed before the standard life of the igniter 10 has elapsed.
  • a ring buffer structure may be used in which the first stored content is overwritten when the capacity is exceeded. Further, if the date and time information can be handled inside the igniter 10, the execution date and time of the igniter protection operation can be included in the igniter protection operation information and recorded.
  • the protection operation history recording means 413 is a non-volatile memory element that does not lose the stored contents even if the power supply to the igniter 10 is cut off, and the igniter protection operation is performed for a necessary and sufficient period even after the igniter 10 is discarded. Information can be retained.
  • the protective operation history recording means 413 is housed in the same case as the ignition coil 2, by using a memory element having high heat resistance, a dangerous temperature rise range (dangerous temperature rise range) that may occur in the igniter 10 ( For example, it is desirable that the stored contents can be stably maintained even at 100 ° C to 150 ° C).
  • the first to fourth igniter protection operation information written in the protection operation history recording means 413 is not only stored inside the igniter 10, but also useful information for ignition control if it can be notified to the ECU 5. It becomes. However, in order to output the igniter protection operation information from the igniter 10 to the ECU 5, it is necessary to provide a dedicated signal line between the igniter 10 and the ECU 5, and the connector portion needs to be redesigned, the wire harness needs to be replaced, and the like. It will be necessary and the cost will increase. Therefore, the ASIC 40 is provided with a function that can transmit the igniter protection operation information by diverting the signal line that has already connected the igniter 10 and the ECU 5.
  • the reading means 414 of the ASIC 40 monitors whether or not new igniter protection operation information is written in the protection operation history recording means 413, and when new igniter protection operation information is written, the timing of the reference clock from the oscillation means 415. Read the igniter protection operation information with. Then, the reading means 414 passes the igniter protection operation information read from the protection operation history recording means 413 to the impedance adjusting means 417 via the interface means 416 before the next ignition cycle is started. Since the impedance adjusting means 417 that has received the igniter protection operation information knows that the igniter protection operation has been executed in the previous ignition cycle, it can prepare for the next ignition cycle.
  • the impedance adjusting means 417 has a function of varying the input impedance of the ignition signal input terminal 22 (second pad 452) into which the ignition signal Si is input to lower the voltage of the ignition signal Si. That is, when notifying the igniter protection operation information to the ECU 5, the impedance adjusting means 417 changes the on voltage of the ignition signal Si from the normal voltage (signal level H1 in the ignition signal waveform of FIG. 3) to the igniter protection operation notification voltage (FIG. 3). It is lowered to the signal level H2) in the ignition signal waveform. However, the igniter protection operation notification voltage is set to a voltage value that does not cause a problem in generating the drive signal by the Schmitt trigger circuit 406. On the other hand, by providing the ECU 5 with a function of detecting that the voltage of the output ignition signal Si has dropped to the igniter protection operation notification voltage, it can be detected as notification of the igniter protection operation by the igniter 10.
  • the igniter protection operation information can be notified from the igniter 10 to the ECU 5 using the ignition signal Si, it is not necessary to provide a dedicated signal line for transmitting the igniter protection operation information from the igniter 10 to the ECU 5.
  • the first igniter protection operation information is assigned to the signal level H2a
  • the second igniter protection operation information is assigned to the signal level H2b
  • the third igniter protection operation information is assigned to the signal level H2c
  • the fourth igniter protection operation information is assigned to the signal level H2d.
  • the signal potential of the ignition signal Si is changed. In this way, the type of the igniter protection function operated in the previous ignition cycle can also be reported from the igniter 10 to the ECU 5.
  • the igniter protection operation information recorded in the protection operation history recording means 413 may be notified to the ECU 5 with a delay of one ignition cycle. can.
  • the ASIC 40 is provided with a function for reading the igniter protection operation information recorded in the protection operation history recording means 413 from the igniter 10 that has been removed because the internal combustion engine ignition device 1 has stopped operating.
  • the 8th pad 458 of the ASIC 40 is used for the mode switching signal input terminal 25, the 9th pad 459 is used for the reading power supply terminal 26, the 10th pad 460 is used for the reading clock input terminal 27, and the 11th pad 461 is used for the history data output terminal 28.
  • the twelfth pad 462 is connected to the effective bit length indicating terminal 29, respectively.
  • the igniter protection of the ASIC 40 is performed by using the mode switching signal input terminal 25 exposed on the surface of the igniter 10, the power supply terminal 26 for reading, the clock input terminal 27 for reading, the history data output terminal 28, and the effective bit length indicating terminal 29. You can access the operation information reading function.
  • the mold resin 60 may be peeled off from the igniter 10 to expose the ASIC40, and the 8th to 12th pads 458 to 462 of the ASIC40 may be probed to access the igniter protection operation information reading function of the ASIC40. ..
  • FIG. 2 (B) The details of the terminal group provided in the igniter 10 are shown in FIG. 2 (B).
  • a control circuit formed by connecting electronic components (switching element 30, ASIC 40, etc.) to a lead frame structure 70 in which a thin plate-shaped lead frame is integrally connected is integrally packaged with a mold resin 60. It is a product.
  • the lead frame structure 70 is formed by processing a metal material such as a copper cake into a metal plate having a certain thickness, and punching and forming the metal plate with a punching die or etching. For example, as in the lead frame strip 80 shown in FIG. 2C, various processing steps are performed while the plurality of lead frame structures 70 are being sent out in an aligned arrangement, and the igniter 10 is individually separated. Will be.
  • the first main lead frame 71 also serves as a base pad on which the switching element 30 is mounted, and includes an outer lead portion 71a that serves as an external connection terminal (coil connection terminal 21).
  • the second main lead frame 72 includes an outer lead portion 72a that serves as an external connection terminal (ignition signal input terminal 22).
  • the third main lead frame 73 includes an outer lead portion 73a, but the outer lead portion 73a is not used as an external connection terminal.
  • the fourth main lead frame 74 also serves as a base pad on which the ASIC 40 is mounted, and includes an outer lead portion 74a that serves as an external connection terminal (ground terminal 23).
  • a bonding wire that functions as a sense resistor 50 is provided between the third main lead frame 73 and the fourth main lead frame 74, and the potential difference between the third main lead frame 73 and the fourth main lead frame 74.
  • the primary current I1 is obtained from.
  • the fifth main lead frame 75 includes an outer lead portion 75a that serves as an external connection terminal (power supply terminal 24).
  • the sixth main lead frame 76 includes an outer lead portion 76a, but the outer lead portion 76a is not used as an external connection terminal and is assigned to a protection operation history reading terminal (history data output terminal 28).
  • the lead frame structure 70 includes, in addition to the above-mentioned first to sixth main lead frames 71 to 76, a sub lead frame having no outer lead portion as an external connection terminal.
  • the first sub-lead frame 771 includes two connecting portions that are connected to the frame outer frame 78, and each connecting portion is separated from the frame outer frame 78 after resin molding, so that the lead remaining portions 771b1 and 771b2 are molded. It is in a state of being exposed to the outside from the resin 60. The remaining leads 771b1 and 771b2 of the first sub lead frame 771 are not used as terminals for reading the protection operation history.
  • the second sub-lead frame 772 includes one connecting portion to be connected to the frame outer frame 78, and the connecting portion is separated from the frame outer frame 78 after the resin molding process, so that the lead remaining portion 772b is formed from the mold resin 60. It will be exposed to the outside.
  • the lead remaining portion 772b of the second sub lead frame 772 is used as a protection operation history reading terminal (mode switching signal input terminal 25).
  • the third sub-lead frame 773 is provided with two connecting portions that are connected to the frame outer frame 78, and the connecting portions are separated from the frame outer frame 78 after resin molding, so that the lead remaining portions 773b1 and 773b2 are molded resin. It will be exposed to the outside from 60.
  • the lead remaining portions 773b1 and 773b2 of the third sub-lead frame 773 are used as the protection operation history reading terminal (reading power supply terminal 26). It is arbitrary which of the lead remaining portions 773b1 and 773b2 in the third sub-lead frame 773 is used as the read feeding terminal 26.
  • the fourth sub-lead frame 774 includes three connecting portions that are connected to the frame outer frame 78, and the connecting portions are separated from the frame outer frame 78 after resin molding, so that the lead remaining portions 774b1, 774b2, 774b3 are formed. It is in a state of being exposed to the outside from the mold resin 60.
  • the lead remaining portion 774b1, 774b2, 774b3 of the fourth sub-lead frame 774 is used as a protection operation history reading terminal (reading clock input terminal 27). It is arbitrary which of the lead remaining portions 774b1, 774b2, 774b3 in the fourth sub read frame 774 is used as the read clock input terminal 27.
  • the fifth sub-lead frame 775 includes two connecting portions that are connected to the frame outer frame 78, and the connecting portions are separated from the frame outer frame 78 after resin molding, so that the lead remaining portions 775b1 and 775b2 are molded resin. It will be exposed to the outside from 60.
  • the remaining leads 775b1 and 775b2 of the fifth sub-lead frame 775 are used as terminals for reading the protection operation history (effective bit length indicating terminal 29). It is arbitrary which of the remaining leads 775b1 and 775b2 in the fifth sub-lead frame 775 is used as the effective bit length indicating terminal 29.
  • the outer lead portions 71a to 76a are connected to the frame outer frame 78 via the dam bar 79. Further, the first main lead frame 71 includes one connecting portion connected to the frame outer frame 78 on the opposite side of the outer lead portion 71a, and the connecting portion is separated from the frame outer frame 78 after resin molding. As a result, the remaining lead portion 71b is exposed to the outside from the mold resin 60. However, since the first main lead frame 71 uses the outer lead portion 71a as the coil connection terminal 21, the lead remaining portion 71b is not used as a terminal for reading the protection operation history.
  • the second to fifth sub-lead frames 772 to 775 having no outer lead portion protect the lead remaining portions 772b, 773b1, 773b2, 774b1 to 774b3, 775b1, 775b2 exposed from the mold resin 60.
  • compatibility with the existing igniter 10 can be maintained.
  • the outer lead portion 76a of the sixth main lead frame 76 which is not used for external connection of the ECU 5 or the DC power supply 3, is used as a terminal for reading the protection operation history, compatibility with the existing igniter 10 can be maintained.
  • all the protection operation history reading terminals may be configured by the outer lead portion of the empty frame.
  • all the terminals for reading the protection operation history may be configured by the reed portion where the reed frame without the outer reed portion is exposed from the mold resin.
  • the igniter protection operation history reading function of the ASIC 40 will be described with reference to FIGS. 4 and 5. Although omitted in FIG. 1, the internal function of the ASIC 40 connected via the protection operation history reading terminal is related to the igniter protection operation history reading operation.
  • FIG. 4 shows when the ASIC 40 is in the normal operation mode, and has five protection operation history reading terminals (mode switching signal input terminal 25, reading power supply terminal 26, reading clock input terminal 27, history data output terminal 28, and so on. There is no input / output via the effective bit length indicator terminal 29). Since the mode switching signal is not input to the ASIC 40 via the mode switching signal input terminal 25, the ASIC 40 maintains a normal operation mode for controlling on / off of the switching element 30.
  • the protection operation history recording means 413, the reading means 414, and the interface means 416 are provided with a normally closed (b-contact type) first changeover switch 421 in the power supply path for supplying Vcc from the regulator 402.
  • the first changeover switch 421 is opened by inputting a mode changeover signal, and cuts off the power supply path from the regulator 402 to the protection operation history recording means 413, the read means 414, and the interface means 416.
  • a feed line for a read power supply is connected to a suitable place on the low voltage side of the first changeover switch 421 via a read feed terminal 26 and an eighth pad 458.
  • the first changeover switch 421 remains closed, and the read power supply terminal 26 does not supply the read power. Therefore, the protection operation history recording means 413, the reading means 414, and the interface means 416 operate by receiving the Vcc supply from the regulator 402.
  • the clock supply line that supplies the reference clock from the oscillating means 415 to the reading means 414 is provided with a two-contact alternative type (C-contact type) second changeover switch 422.
  • the normally closed b-contact side of the second changeover switch 422 is connected to the oscillating means 415, and the normally-open a-contact side is for reading to which a reading clock is supplied via the reading clock input terminal 27 and the 10th pad 460.
  • the clock supply line is connected.
  • the second changeover switch 422 is closed to the a contact side when a mode changeover signal is input, and the read clock is supplied to the read means 414 via the read clock input terminal 27 and the tenth pad 460. Become. In the normal operation mode of the ASIC 40, the second changeover switch 422 is closed on the b contact side, and the reference clock from the oscillating means 415 is supplied to the reading means 414.
  • a third changeover switch 423 of a two-contact alternative type (C-contact type) is provided in a transmission path for transmitting igniter protection operation information from the interface means 416 to the impedance adjusting means 417.
  • the normally closed b-contact side of the third changeover switch 423 is connected to the impedance adjusting means 417, and the normally-open a-contact side is a history data output line that outputs history data via the 11th pad 461 and the history data output terminal 28. Is connected.
  • the third changeover switch 423 is closed to the a contact side when a mode changeover signal is input, and history data is output to the outside of the igniter 10 via the eleventh pad 461 and the history data output terminal 28. ..
  • the third changeover switch 423 In the normal operation mode of the ASIC 40, the third changeover switch 423 is closed on the b contact side, and the igniter protection operation information from the interface means 416 is supplied to the impedance adjusting means 417.
  • An effective bit length indicating signal is input to the interface means 416 via the effective bit length indicating terminal 29 and the 12th pad 462.
  • the interface means 416 is in the default state, and a signal for notifying the igniter protection operation information can be transmitted to the impedance adjusting means 417. It is in a state.
  • the impedance adjusting means 417 can notify the ECU 5 of the igniter protection operation information at the signal level of the ignition signal Si in the latest ignition cycle when some igniter protection operation function is activated during the previous ignition cycle. , No need for past history information.
  • the reading means 414 operating in the normal operation mode by receiving the Vcc from the regulator 402 and the reference clock from the oscillating means 415 is only when the igniter protection operation information is newly stored in the protection operation history recording means 413.
  • the latest read igniter history information may be output.
  • the reading means 414 operates in the reading mode the function is changed so as to read all the stored information (all igniter protection operation information) of the protection operation history recording means 413.
  • FIG. 5 shows when the ASIC 40 is in the read mode, and has five protection operation history read terminals (mode switching signal input terminal 25, read power supply terminal 26, read clock input terminal 27, history data output terminal 28, valid. Input / output is performed via the bit length indicating terminal 29).
  • the reading device includes at least a mode switching signal output means for generating and outputting a mode switching signal, a power supply means for supplying power for reading, a reading clock output means for generating and outputting a reading clock, and a reading history.
  • a historical data storage means for storing data and an effective bit length indicating means for instructing the effective bit length of data output are provided.
  • a function for organizing, aggregating, and processing the history data stored in the history data storage means and a function for visually displaying the data may be provided.
  • a more convenient reading device is provided. Will be.
  • the reading device is not limited to reading the history data from the igniter 10, and may be a device that directly reads the history data from the ASIC 40 taken out by peeling off the mold resin 60 of the igniter 10.
  • the mode switching signal is input to the ASIC 40 via the mode switching signal input terminal 25 and the eighth pad 458.
  • the first changeover switch 421 is opened, and the connection destination of the second changeover switch 422 and the third changeover switch 423 is switched from the b contact to the a contact.
  • the reading power is supplied via the reading power supply terminal 26 and the ninth pad 459. Therefore, the protection operation history recording means 413, the reading means 414, and the interface means 416 are the reading power supplies. Will work with.
  • the connection destination of the second changeover switch 422 is changed to the a contact side, the read clock is supplied to the read means 414 via the read clock input terminal 27 and the tenth pad 460.
  • the connection destination of the third changeover switch 423 changes to the a contact side, history data can be output to the outside via the eleventh pad 461 and the history data output terminal 28.
  • the reading means 414 which operates by receiving the reading power supply and the reading clock, reads out all the stored information (all igniter protection operation information) of the protection operation history recording means 413 according to a predetermined procedure, and sequentially passes them to the interface means 416. ..
  • the interface means 416 is a protocol having a frame structure corresponding to the instructed effective bit length. Switch to output igniter protection operation information. Since the igniter protection operation information recorded in the protection operation history recording means 413 may have a huge amount of data, the data amount of the history data to be read by instructing the interface means 416 to have an effective bit length. Can be controlled.
  • the history of the operation of the igniter protection means so as to protect the igniter 10 itself from the igniter abnormality occurring inside the igniter 10 is protected as the igniter protection operation information. It can be recorded in the operation history recording means 413. Therefore, by reading the igniter protection operation information from the protection operation history recording means 413 of the igniter 10 collected by disposal or the like, it is possible to know the details of the igniter abnormality that occurred during the operation of the ignition device 1 for the internal combustion engine. It will be useful information for quality improvement.
  • Ignition system for internal combustion engine Ignition coil 2a Primary coil 2b Secondary coil 3 DC power supply 4 Spark plug 5 ECU 10 Igniter 30 Switch element 40 ASIC 401
  • Surge protection means 404
  • Power supply overvoltage detection means 405
  • Surge protection means 406
  • Schmitt trigger circuit 407
  • Output control means 408
  • Ignition signal overvoltage detection means 409
  • Ignition signal overvoltage detection means IGBT Overheat detection means 413 Protection operation history recording means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

イグナイタ保護機能の動作履歴をイグナイタ内部に記録しておくことが可能な内燃機関用点火装置を提供する。 内燃機関用点火装置1のイグナイタ10は、直流電源3からの電圧が異常に高くなる電源過電圧、ECU5から供給される点火信号Siの電圧が異常に高くなる点火信号過電圧、点火信号Siの入力時間が異常に長くなる点火信号過通電、IGBT31を含むスイッチング素子30が異常に発熱するIGBT過発熱といったイグナイタ異常から自身を保護すると、その履歴をASIC40の保護動作履歴記録手段413に記録する。

Description

内燃機関用点火装置
 本発明は、自動車両等に搭載される内燃機関用の点火装置に関し、特に、点火コイルとイグナイタを含む内燃機関用点火装置の改良に関する。
 内燃機関用点火装置は、一次コイルへの通電・遮断制御によって二次コイルに高電圧を発生させる点火コイルと一次コイルへの通電・遮断を制御するイグナイタを含み、点火サイクルの適宜なタイミングで点火制御部(例えば、ECU)から供給される点火信号に基づいて動作する。すなわち、内燃機関の点火サイクルを統括的に管理する点火制御部から点火信号がイグナイタへ供給されると、イグナイタが一次コイルへの通電および遮断を制御し、二次コイルに高電圧が発生させる。二次コイルに発生した高電圧により、点火プラグの放電ギャップ間に火花放電を生じさせ、気筒内の燃焼ガスに着火し、気筒内のシリンダを動かす力を得るのである。
 イグナイタは、一次コイルへの通電路を開閉するスイッチング素子(パワートランジスタやIGBT等)と、このスイッチング素子の開閉を制御することで、一次コイルへの通電・遮断を制御する制御素子を備える。イグナイタの内部動作が不安定になるような異常状態が発生すると、点火制御を中断するなどしてイグナイタ自身を保護するイグナイタ保護機能を備えると共に、イグナイタ保護機能が動作したことをECUへ通知できる内燃機関用点火装置が提案されている(例えば、特許文献1を参照)。
特開2010-265886号公報
 しかしながら、特許文献1に記載された発明では、イグナイタ保護機能の動作履歴をイグナイタからECUへ送信するための信号線が別途必要になる。加えて、イグナイタからの保護動作履歴情報を受信し、記録できる仕様のECUを開発して該当車両に搭載しなければならないため、相応のコストアップが発生してしまう。
 また、特許文献1に記載の発明では、イグナイタ保護機能が動作したことをECUにて管理しており、イグナイタ自身にはイグナイタ保護機能の動作履歴が残らないため、故障などで廃棄されたイグナイタを分解しても、故障の原因の究明は容易でない。例えば、特定の異常状態の発生でイグナイタ保護機能が動作していたことが簡単に分かれば、その異常状態の発生要因を推定し、異常状態の発生を回避する改良を施して、品質向上に寄与できる可能性がある。
 そこで、本発明は、イグナイタ保護機能の動作履歴をイグナイタ内部に記録しておくことが可能な内燃機関用点火装置の提供を目的とする。
 上記課題を解決するために、本発明は、相互誘導可能な一次コイルと二次コイルを備え、前記一次コイルへの通電・遮断により前記二次コイルに接続された点火プラグに放電エネルギーを与える点火コイルと、点火制御部からの点火信号に基づいて、前記一次コイルへの通電・遮断を制御するイグナイタと、を含む内燃機関用点火装置において、前記イグナイタは、前記一次コイルの給電経路を開閉するスイッチング素子と、前記スイッチング素子のオン・オフを前記点火信号に基づいて行う点火制御素子と、を備え、前記点火制御素子は、前記スイッチング素子をオン・オフさせる駆動信号を出力するスイッチ制御手段と、前記イグナイタ内部で生ずるイグナイタ異常から、前記イグナイタ自身を保護するように動作するイグナイタ保護手段と、前記イグナイタ保護手段が動作した履歴であるイグナイタ保護動作情報を記録する保護動作履歴記録手段と、を備えることを特徴とする。
 また、上記構成において、前記保護動作履歴記録手段には、前記イグナイタへの給電が断たれても記憶内容を失わない不揮発性を有し、且つ、前記イグナイタに生じる可能性のある危険な昇温域で記憶内容を安定的に保持できる高耐熱性を備えたメモリ素子を用いるようにしてもよい。
 また、上記構成において、前記イグナイタには、前記保護動作履歴記録手段から前記イグナイタ保護動作情報を読み出すための保護動作履歴読出用端子を設けてもよい。
 また、上記構成において、前記イグナイタは、複数のリードフレームにより構成したリードフレーム構造体に前記点火制御素子や前記スイッチング素子を取り付けて樹脂で一体にパッケージ化したモールド型の半導体装置とし、前記保護動作履歴読出用端子には、外部接続用端子となるアウターリード部の無いリードフレームがモールド樹脂から露出するリード残部および/または前記点火制御部との通信に使われていないリードフレームの前記アウターリード部を用いるようにしてもよい。
 上記構成の内燃機関用点火装置によれば、イグナイタ内部で生ずるイグナイタ異常からイグナイタ自身を保護するように動作するイグナイタ保護手段が動作した履歴を、イグナイタ保護動作情報として保護動作履歴記録手段に記録しておける。よって、廃棄などで回収されたイグナイタの保護動作履歴記録手段からイグナイタ保護動作情報を読み出せば、内燃機関用点火装置の稼働中に生じていたイグナイタ異常の詳細を知ることができ、品質向上のための有用な情報となる。
本実施形態に係る内燃機関用点火装置の概略構成図である。 (A)はイグナイタの平面図である。(B)はモールド樹脂を剥がしてリードフレーム等を露出させたイグナイタの平面図である。(C)はイグナイタに使用するリードフレーム構造体が連続形成されたリードフレームストリップの平面図である。 内燃機関用点火装置における要部の信号波形を示す波形図である。 保護動作履歴の記録および読出に関する一部機能のみを示した制御素子が通常動作モードにあるときの概略構成図である。 保護動作履歴の記録および読出に関する一部機能のみを示した制御素子が読出モードに切り替わったときの概略構成図である。
 次に、本実施形態に係る内燃機関用点火装置1を、添付図面に基づいて詳細に説明する。
 図1に示す内燃機関用点火装置1は、相互誘導可能な一次コイル2aと二次コイル2bを備える点火コイル2に対する通電制御をイグナイタ10によって行うものである。車両バッテリ等の直流電源3から一次コイル2aを経て接地GNDに至る給電経路を開閉して、一次コイル2aへの通電・遮断をイグナイタ10が制御することにより、二次コイル2bに接続された点火プラグ4に放電エネルギーを与え、この点火プラグ4に放電火花を発生させる。イグナイタ10は、点火制御部としてのECU5から供給される点火信号Siに基づいて、一次コイル2aへの通電・遮断を制御する。なお、点火コイル2とイグナイタ10は、所要形状のケースに収納されたユニット構造で、例えば、内燃機関の気筒毎に設けるものである。
 イグナイタ10は、外部と接続するために、少なくとも、コイル接続端子21、点火信号入力端子22、接地端子23および電源端子24を備える。コイル接続端子21を介して、一次コイル2aの一方端とイグナイタ10内のスイッチング素子30が接続される。点火信号入力端子22を介して、ECU5から点火信号Siがイグナイタ10内の点火制御素子であるASIC40に供給される。接地端子23は、適宜な基準電位となる接地GNDに接続される。なお、スイッチング素子30と接地端子23との間の通電路中には、電流検出用のセンス抵抗50を設けてある。電源端子24は直流電源3と接続され、イグナイタ10への給電を受ける。
 イグナイタ10は、例えば図2(A)に示すような外観のモールド型半導体装置で、略四角形状のモールド樹脂60の一側縁から6つの長尺な端子片が略平行に突出する。これら端子片のうちの4つが、コイル接続端子21、点火信号入力端子22、接地端子23、電源端子24として機能する。これら長尺な端子片は、各部と直接接続されるのではなく、図示を省略したワイヤハーネス接続用コネクタのコネクタ端子と溶接等で接合され、コネクタやワイヤハーネスを介して各部との接続が実現される。
 また、イグナイタ10には、点火コイル2に対する点火制御とは異なる目的(後述するイグナイタ保護動作の履歴読出)に用いる端子群として、例えば、5つの保護動作履歴読出用端子を設けてある。この保護動作履歴読出用端子とは、後述するイグナイタ保護動作情報をASIC40から読み出すために用いる端子群を総称したものである。本実施形態にて示す5つの保護動作履歴読出用端子は、モード切替信号入力端子25、読出用給電端子26、読出用クロック入力端子27、履歴データ出力端子28、有効ビット長指示端子29である。なお、図1では、ASIC40内のイグナイタ保護動作履歴読出機能に関する構成を省略しているので、保護動作履歴読出用端子を介した入出力信号についても省略してある。
 これらの保護動作履歴読出端子は、廃棄等で回収されたイグナイタ10から保護動作履歴を読み出すために用いる端子群であり、保護動作履歴読出装置等とイグナイタ10を接続するとき、簡易なコネクタ構造が設けてあれば便利である。しかしながら、そのようなコネクタ接続構造を全てのイグナイタ10に設けるのは、イグナイタ10の小型化を阻害する要因となるし、コストアップにも繋がる。そこで、イグナイタ10に設ける保護動作履歴読出端子として、例えば、空いている長尺な端子片や、モールド樹脂60の側部から若干露出している金属片を用いるものとした(図2(A)を参照)。
 次に、ASIC40について説明する。ASIC40は、必要な機能を盛り込んだカスタムICで、車両エンジンに対する一般的な点火制御機能に加えて、後述する保護動作履歴の記録機能と保護動作履歴の読出機能を備える。
 直流電源3からASIC40に供給された直流は、サージ保護手段401を介してレギュレータ402に供給され、安定した定電圧Vccが生成され、各部に供給される。この定電圧Vccが基準電圧生成手段403へ供給されると、基準電圧Vrefが生成されて各部へ供給される。なお、直流電源3と接続される電源端子24は、ASIC40の第1パッド451と接続され、この第1パッド451とサージ保護手段401とを接続する通電線の電源電位を電源過電圧検出手段404がモニタする。そして、第1パッド451からの電源電圧が予め定めた過電圧値に達したことを検出すると、サージ保護手段401を作動させて、レギュレータ402を過電圧から保護する。
 このように、電源過電圧はイグナイタ10の内部機能を害してイグナイタ異常を生ずるものであり、イグナイタ異常からイグナイタ10自身を保護するように動作する電源過電圧検出手段404およびサージ保護手段401は、第1イグナイタ保護手段として機能する。また、電源過電圧検出手段404は、サージ保護手段401を動作させたとき、電源過電圧サージ保護機能が働いたという情報(第1イグナイタ保護動作情報)を出力する。なお、第1イグナイタ保護手段は、電源過電圧検出手段404とサージ保護手段401で構成するものに限らない。例えば、第1パッド451とレギュレータ402とを接続する通電線から接地GNDへ分岐させる保護分岐路にバリスタ等のサージ保護デバイスを設けて第1イグナイタ保護手段としても良い。
 ECU5から供給される点火信号Siは、点火信号入力端子22から第2パッド452を介してASIC40内に入力される。点火信号Siは、サージ保護手段405を介して非反転型のシュミットトリガ回路406へ入力され、入力された点火信号SiのON/OFFに応じた駆動信号を出力する。シュミットトリガ回路406より出力された駆動信号は出力制御手段407および第3パッド453を介して、スイッチング素子30におけるIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)31のゲートへ入力される。
 IGBT31のコレクタはコイル接続端子21を介して一次コイル2aの低圧側(直流電源3と接続されていない側)に接続され、IGBT31のエミッタはセンス抵抗50および接地端子23を介して接地GNDに接続される。よって、IGBT31のゲートに駆動信号が入力されてIGBT31がオンになると、一次コイル2aに一次電流I1が流れる。一方、駆動信号がオフになるとIGBT31もオフとなり、一次コイル2aを流れていた一次電流I1が遮断される。すなわち、ECU5からの点火信号Siに基づいて駆動信号を生成するシュミットトリガ回路406が、スイッチング素子30をON・オフさせるスイッチ制御手段として機能する。なお、出力制御手段407は、駆動信号の出力レベルを調整する機能と、駆動信号を強制停止(シャットオフ)させる機能を備える。
 上述した駆動信号を生成する元となる点火信号Siは重要であるが、ECU5からイグナイタ10までのケーブルに危険なサージノイズが混入してしまう可能性がある。そこで、点火信号Siが入力される第2パッド452とサージ保護手段405とを接続する通電線の信号電位を点火信号過電圧検出手段408によってモニタし、信号電圧が予め定めた過電圧値に達したことを検出すると、サージ保護手段405を作動させて、シュミットトリガ回路406を過電圧から保護する。
 このように、点火信号過電圧はイグナイタ10の内部機能を害してイグナイタ異常を生ずるものであり、イグナイタ異常からイグナイタ10自身を保護するように動作する点火信号過電圧検出手段408およびサージ保護手段405は、第2イグナイタ保護手段として機能する。また、点火信号過電圧検出手段408は、サージ保護手段405を動作させたとき、点火信号過電圧サージ保護機能が働いたという情報(第2イグナイタ保護動作情報)を出力する。なお、第2イグナイタ保護手段も、点火信号過電圧検出手段408とサージ保護手段405で構成するものに限らず、第2パッド452とシュミットトリガ回路406とを接続する通電線から接地GNDへ分岐させる保護分岐路にバリスタ等のサージ保護デバイスを設けても良い。
 また、点火制御において重要な点火信号Siが異常に長く入力されると、IGBT31のゲートに入力される駆動信号も長くなるため、IGBT31がコレクタ-エミッタ間飽和電圧に達した状態で一次電流I1が流れ続けるため、異常発熱で損傷する危険性がある。そこで、シュミットトリガ回路406と出力制御手段407とを接続する通電線の信号電位をモニタする点火信号過通電検出手段409を設ける。この点火信号過通電検出手段409は、駆動信号が出力されてからの経過時間を計り、標準的な点火信号正常出力時間Tnを上回る点火信号異常判定時間Tdに達すると、出力制御手段407に指示して駆動信号の出力を強制的に遮断させる。
 図3の波形図に示すように、点火信号過通電検出手段409は、点火信号Siが入力(駆動信号の信号レベルがLからH1へ変換)されたタイミングで、点火信号Siの入力時間を計時する。点火信号Siのオン時間が点火信号正常出力時間Tn程度であれば、IGBT31が異常発熱する危険性は無視できるので、点火信号過通電検出手段409が動作することはない。よって、点火信号Siが停止(駆動信号の信号レベルがH1からLへ変換)するまでIGBT31は閉状態を保持し、その間、一次電流I1が流れる。
 しかしながら、点火信号Siのオン時間が点火信号正常出力時間Tnを超える点火信号異常判定時間Tdに達すると、IGBT31が異常発熱している可能性が高く、イグナイタ10が故障する危険性がある。そこで、点火信号Siのオン状態が点火信号正常出力時間Tnを越えて継続し、IGBT31のオン時間が点火信号異常判定時間Tdに達したことを点火信号過通電検出手段409が検出すると、出力制御手段407が駆動信号を遮断してIGBT31の動作を規制する。これにより、点火信号Siがオン状態のままでも、一次コイル2aへの通電は強制的に遮断されて一次電流I1が流れなくなり、IGBT31の更なる昇温が抑制され、イグナイタ10の故障を回避できる。
 このように、点火信号過通電はイグナイタ10の内部機能を害してイグナイタ異常を生ずるものであり、イグナイタ異常からイグナイタ10自身を保護するように動作する点火信号過通電検出手段409および出力制御手段407は、第3イグナイタ保護手段として機能する。また、点火信号過通電検出手段409は、出力制御手段407を動作させたとき、点火信号過通電保護機能が働いたという情報(第3イグナイタ保護動作情報)を出力する。
 上述したように、IGBT31の異常発熱は適正な点火制御に支障を来すおそれがあるので、IGBT31の温度監視は重要である。スイッチング素子30は、サーマルダイオードやNTCサーミスタ等の感熱素子32を内蔵しており、感熱素子32の検出情報は、第4パッド454および第5パッド455を介してASIC40のIGBT過発熱検出手段410に入力される。感熱素子32からの検出情報に基づいて、IGBT31の温度が危険温度に達したことをIGBT過発熱検出手段410が検出すると、出力制御手段407に指示して駆動信号の出力を強制的に遮断させる。これにより、点火信号Siがオン状態のままでも、一次コイル2aへの通電は強制的に遮断されて一次電流I1が流れなくなり、IGBT31の更なる昇温が抑制され、イグナイタ10の故障を回避できる。
 このように、IGBT31の過発熱はイグナイタ10の内部機能を害してイグナイタ異常を生ずるものであり、イグナイタ異常からイグナイタ10自身を保護するように動作するIGBT過発熱検出手段410および出力制御手段407は、第4イグナイタ保護手段として機能する。また、IGBT過発熱検出手段410は、出力制御手段407を動作させたとき、IGBT過発熱保護機能が働いたという情報(第4イグナイタ保護動作情報)を出力する。
 また、ASIC40には一次電流I1が所定の基準値を超えないように制限する電流制限手段411を設けてある。この電流制限手段411は、センス抵抗50の両端電圧を第6パッド456および第7パッド457より取得して一次電流I1を求め、一次電流I1が基準値を超えると、出力制御手段407に指示して駆動信号の出力レベルを下げさせる。これにより、IGBT31のコレクタ-エミッタ間電流を低減させて基準値へ近づける。一方、一次電流I1が基準値を下回ると、電流制限手段411は出力制御手段407に指示して駆動信号の出力レベルを上げさせ、IGBT31のコレクタ-エミッタ間電流を増加させて基準値へ近づける。なお、イグナイタ10におけるIGBT電流制限動作は標準的に行われるものであるから、本実施形態では、電流制限手段411および出力制御手段407による電流制限動作をイグナイタ保護動作として扱わないが、これをイグナイタ保護動作に含めても構わない。
 上述した第1~第4イグナイタ保護動作情報は、書込手段412へ供給され、その都度、書込手段412の動作により保護動作履歴記録手段413に書き込まれる。保護動作履歴記録手段413に書き込むときのデータ構造は特に限定されず、イグナイタ保護動作の種別のみを発生順に記録するだけでも良いし、イグナイタ保護動作の種別毎に発生回数を積算して記録するようにしても良い。保護動作履歴記録手段413の記憶容量も特に限定されず、イグナイタ10の標準的な寿命が経過するまでにイグナイタ保護動作が実行される可能性の高い回数を見込んだ記憶容量としても良いし、記憶容量を超えると最初の記憶内容に上書きしてゆくリングバッファ構造としても良い。また、イグナイタ10の内部で日時情報を扱えるようにすれば、イグナイタ保護動作の実行日時をイグナイタ保護動作情報に含めて記録することが可能になる。
 保護動作履歴記録手段413は、イグナイタ10への給電が断たれても記憶内容を失わない不揮発性を有するメモリ素子であり、イグナイタ10が廃棄された後も必要十分な期間に亘ってイグナイタ保護動作情報を保持できる。加えて、保護動作履歴記録手段413は、点火コイル2と同じケース内に収納されるため、高耐熱性を備えるメモリ素子を用いることで、イグナイタ10に生じる可能性のある危険な昇温域(例えば、100℃~150℃)でも記憶内容を安定的に保持できることが望ましい。
 保護動作履歴記録手段413に書き込まれた第1~第4イグナイタ保護動作情報は、イグナイタ10内部で記憶しておくだけでなく、ECU5へ報せることができれば、点火制御を行う上で有用な情報となる。しかしながら、イグナイタ保護動作情報をイグナイタ10からECU5へ出力するためには、専用の信号線をイグナイタ10とECU5との間に設けておく必要があり、コネクタ部の再設計、ワイヤハーネスの取り替え等が必要となり、コストアップとなる。そこで、既にイグナイタ10とECU5とを接続している信号線を流用してイグナイタ保護動作情報を送信できる機能をASIC40に設けた。
 ASIC40の読出手段414は、保護動作履歴記録手段413に新たなイグナイタ保護動作情報が書き込まれたかをモニタしており、新たなイグナイタ保護動作情報が書き込まれると、発振手段415からの基準クロックのタイミングでイグナイタ保護動作情報を読み出す。そして、読出手段414は、保護動作履歴記録手段413から読み出したイグナイタ保護動作情報を、次の点火サイクルが開始される前に、インタフェース手段416を介してインピーダンス調整手段417へ渡す。イグナイタ保護動作情報を受けたインピーダンス調整手段417は、前回の点火サイクルにおいてイグナイタ保護動作が実行されてことが分かるので、次回の点火サイクルに備えることができる。
 インピーダンス調整手段417は、点火信号Siが入力される点火信号入力端子22(第2パッド452)の入力インピーダンスを変動させて、点火信号Siの電圧を低下させる機能を有する。すなわち、イグナイタ保護動作情報をECU5へ報知するとき、インピーダンス調整手段417は、点火信号Siのオン電圧を正規電圧(図3の点火信号波形における信号レベルH1)からイグナイタ保護動作報知電圧(図3の点火信号波形における信号レベルH2)まで低下させる。ただし、イグナイタ保護動作報知電圧は、シュミットトリガ回路406が駆動信号を生成するのに不具合が生じない程度の電圧値に設定しておく。一方、ECU5には、出力した点火信号Siの電圧がイグナイタ保護動作報知電圧に低下したことを検知する機能を設けておくことで、イグナイタ10によるイグナイタ保護動作の報知として検出できる。
 点火信号Siを使ってイグナイタ10からECU5へイグナイタ保護動作情報を報知できるようにすれば、イグナイタ10からECU5へイグナイタ保護動作情報を送信する専用信号線を設ける必要が無い。しかしながら、点火信号Siの信号レベルをH1からH2に低下させるだけでは、前回の点火サイクル内でイグナイタ保護機能が働いたことしか分からず、前回の点火サイクルで動作したイグナイタ保護機能の種別まで報せることはできない。そこで、信号レベルの分解能が十分であれば、信号レベルH1から信号レベルH2の間を比較的小さな電圧幅で信号レベルH2a、H2b、H2c、H2d(=H2)の4段階に分ける。例えば、第1イグナイタ保護動作情報を信号レベルH2a、第2イグナイタ保護動作情報を信号レベルH2b、第3イグナイタ保護動作情報を信号レベルH2c、第4イグナイタ保護動作情報を信号レベルH2dに夫々割り当てて、点火信号Siの信号電位を変化させる。斯くすれば、前回の点火サイクルにて動作したイグナイタ保護機能の種別も併せて、イグナイタ10からECU5に報せることができる。
 上述したように、本実施形態の内燃機関用点火装置1が通常稼働しているとき、保護動作履歴記録手段413に記録されたイグナイタ保護動作情報は、1点火サイクル遅れでECU5に報せることができる。これに加え、内燃機関用点火装置1が稼動しなくなって取り外されたイグナイタ10から、保護動作履歴記録手段413に記録されたイグナイタ保護動作情報を読み出すための機能をASIC40に設けてある。ASIC40の第8パッド458はモード切替信号入力端子25に、第9パッド459は読出用給電端子26に、第10パッド460は読出用クロック入力端子27に、第11パッド461は履歴データ出力端子28に、第12パッド462は有効ビット長指示端子29に夫々接続する。これにより、イグナイタ10の表面に露出するモード切替信号入力端子25、読出用給電端子26、読出用クロック入力端子27、履歴データ出力端子28、有効ビット長指示端子29を使って、ASIC40のイグナイタ保護動作情報読出機能にアクセスできる。なお、イグナイタ10からモールド樹脂60を剥がしてASIC40を露出させ、ASIC40の第8~第12パッド458~462をプロービングすることで、ASIC40のイグナイタ保護動作情報読出機能にアクセスするようにしても構わない。
 イグナイタ10に設ける端子群の詳細を図2(B)に示す。モールド樹脂型の半導体装置は、薄板状のリードフレームが一体に繋がったリードフレーム構造体70に電子部品(スイッチング素子30やASIC40等)を接続して成る制御回路を、モールド樹脂60で一体にパッケージ化したものである。なお、リードフレーム構造体70は、銅ケーク等の金属材料を一定厚の金属板に加工し、抜き金型で金属板を打ち抜き形成、或いはエッチング加工したものである。例えば、図2(c)に示すリードフレームストリップ80のように、複数のリードフレーム構造体70が整列配置された状態で送り出されながら、種々の加工工程が行われ、個別に切り離されてイグナイタ10となる。
 第1主リードフレーム71は、スイッチング素子30を搭載する台パッドを兼ねており、外部接続用端子(コイル接続端子21)となるアウターリード部71aを備える。第2主リードフレーム72は、外部接続用端子(点火信号入力端子22)となるアウターリード部72aを備える。第3主リードフレーム73は、アウターリード部73aを備えるが、このアウターリード部73aは外部接続用端子として使われない。第4主リードフレーム74は、ASIC40を搭載する台パッドを兼ねており、外部接続用端子(接地端子23)となるアウターリード部74aを備える。なお、第3主リードフレーム73と第4主リードフレーム74との間には、センス抵抗50として機能するボンディングワイヤが設けてあり、第3主リードフレーム73と第4主リードフレーム74との電位差から一次電流I1を求められる。第5主リードフレーム75は、外部接続用端子(電源端子24)となるアウターリード部75aを備える。第6主リードフレーム76は、アウターリード部76aを備えるが、このアウターリード部76aは外部接続用端子として使われておらず、保護動作履歴読出用端子(履歴データ出力端子28)に割り当てる。
 リードフレーム構造体70は、上述した第1~第6主リードフレーム71~76のほかに、外部接続用端子となるアウターリード部の無い副リードフレームを備える。
 第1副リードフレーム771は、フレーム外枠78と連結される2箇所の連結部を備え、樹脂モールド加工の後に各連結部がフレーム外枠78から切り離されることで、リード残部771b1,771b2がモールド樹脂60より外部に露出する状態となる。なお、第1副リードフレーム771のリード残部771b1,771b2は、保護動作履歴読出用端子として用いない。
 第2副リードフレーム772は、フレーム外枠78と連結される1箇所の連結部を備え、樹脂モールド加工の後に連結部がフレーム外枠78から切り離されることで、リード残部772bがモールド樹脂60より外部に露出する状態となる。この第2副リードフレーム772のリード残部772bを、保護動作履歴読出用端子(モード切替信号入力端子25)として用いる。
 第3副リードフレーム773は、フレーム外枠78と連結される2箇所の連結部を備え、樹脂モールド加工の後に連結部がフレーム外枠78から切り離されることで、リード残部773b1,773b2がモールド樹脂60より外部に露出する状態となる。この第3副リードフレーム773のリード残部773b1,773b2を、保護動作履歴読出用端子(読出用給電端子26)として用いる。なお、第3副リードフレーム773におけるリード残部773b1,773b2の何れを読出用給電端子26とするかは任意である。
 第4副リードフレーム774は、フレーム外枠78と連結される3箇所の連結部を備え、樹脂モールド加工の後に連結部がフレーム外枠78から切り離されることで、リード残部774b1,774b2,774b3がモールド樹脂60より外部に露出する状態となる。この第4副リードフレーム774のリード残部774b1,774b2,774b3を、保護動作履歴読出用端子(読出用クロック入力端子27)として用いる。なお、第4副リードフレーム774におけるリード残部774b1,774b2,774b3の何れを読出用クロック入力端子27とするかは任意である。
 第5副リードフレーム775は、フレーム外枠78と連結される2箇所の連結部を備え、樹脂モールド加工の後に連結部がフレーム外枠78から切り離されることで、リード残部775b1,775b2がモールド樹脂60より外部に露出する状態となる。この第5副リードフレーム775のリード残部775b1,775b2を、保護動作履歴読出用端子(有効ビット長指示端子29)として用いる。なお、第5副リードフレーム775におけるリード残部775b1,775b2の何れを有効ビット長指示端子29とするかは任意である。
 なお、第1~第6主リードフレーム71~76は、ダムバー79を介してアウターリード部71a~76aがフレーム外枠78と連結されている。また、第1主リードフレーム71は、アウターリード部71aの反対側にてフレーム外枠78と連結される1箇所の連結部を備え、樹脂モールド加工の後に連結部がフレーム外枠78から切り離されることで、リード残部71bがモールド樹脂60より外部に露出する状態となる。しかし、第1主リードフレーム71は、アウターリード部71aをコイル接続端子21として用いているので、リード残部71bは保護動作履歴読出用端子として利用しない。
 以上のように、アウターリード部の無い第2~第5副リードフレーム772~775がモールド樹脂60から露出するリード残部772b,773b1,773b2,774b1~774b3,775b1,775b2を保護動作履歴読出用端子として用いれば、既存のイグナイタ10と互換性を保てる。また、ECU5や直流電源3等の外部接続に使われていない第6主リードフレーム76のアウターリード部76aを保護動作履歴読出用端子として用いても、既存のイグナイタ10と互換性を保てる。なお、外部接続に使われていない空きフレームが十分な数だけあれば、全ての保護動作履歴読出用端子を空きフレームのアウターリード部で構成しても構わない。無論、全ての保護動作履歴読出用端子を、アウターリード部の無いリードフレームがモールド樹脂から露出するリード残部で構成しても構わない。
 次に、ASIC40のイグナイタ保護動作履歴読出機能について、図4および図5を参照して説明する。図1では省略したが、保護動作履歴読出用端子を介して接続されるASIC40の内部機能が、イグナイタ保護動作履歴の読出動作に関わるものである。
 図4は、ASIC40が通常動作モードにあるときを示し、5つの保護動作履歴読出用端子(モード切替信号入力端子25、読出用給電端子26、読出用クロック入力端子27、履歴データ出力端子28、有効ビット長指示端子29)を介した入出力は無い。モード切替信号入力端子25を介してモード切替信号がASIC40に入力されないことで、ASIC40はスイッチング素子30のオン・オフ制御を行う通常動作モードを保持するのである。
 少なくとも、保護動作履歴記録手段413、読出手段414、インタフェース手段416に対して、レギュレータ402よりVccを供給する給電路中に常閉(b接点式)の第1切替スイッチ421を設けてある。この第1切替スイッチ421は、モード切替信号が入力されることで開成し、レギュレータ402から保護動作履歴記録手段413、読出手段414、インタフェース手段416への給電路を断つ。第1切替スイッチ421よりも低圧側の適所には、読出用給電端子26および第8パッド458を介して読出用電源の給電線が接続されている。ASIC40の通常動作モードにおいては、第1切替スイッチ421が閉じたままであり、読出用給電端子26から読出用電源が供給されることもない。よって、保護動作履歴記録手段413、読出手段414、インタフェース手段416は、レギュレータ402からのVcc供給を受けて動作する。
 発振手段415から読出手段414へ基準クロックを供給するクロック供給線路には、2接点択一式(C接点式)の第2切替スイッチ422を設けてある。第2切替スイッチ422における常閉のb接点側は発振手段415と接続され、常開のa接点側は読出用クロック入力端子27および第10パッド460を介して読出用クロックが供給される読出用クロック供給線が接続されている。この第2切替スイッチ422は、モード切替信号が入力されることでa接点側に閉じ、読出用クロック入力端子27および第10パッド460を介して読出用クロックが読出手段414へ供給されるようになる。ASIC40の通常動作モードにおいては、第2切替スイッチ422がb接点側に閉じており、発振手段415からの基準クロックが読出手段414へ供給されている。
 インタフェース手段416からインピーダンス調整手段417へイグナイタ保護動作情報を送信する送信路には、2接点択一式(C接点式)の第3切替スイッチ423を設けてある。第3切替スイッチ423における常閉のb接点側はインピーダンス調整手段417と接続され、常開のa接点側は第11パッド461および履歴データ出力端子28を介して履歴データを出力する履歴データ出力線が接続されている。この第3切替スイッチ423は、モード切替信号が入力されることでa接点側に閉じ、第11パッド461および履歴データ出力端子28を介して履歴データがイグナイタ10の外部へ出力されるようになる。ASIC40の通常動作モードにおいては、第3切替スイッチ423がb接点側に閉じており、インタフェース手段416からのイグナイタ保護動作情報がインピーダンス調整手段417へ供給される状態となっている。
 インタフェース手段416には、有効ビット長指示端子29および第12パッド462を介して有効ビット長指示信号が入力される。ASIC40の通常動作モードにおいては、インタフェース手段416に有効ビット長指示信号が入力されていないので、インタフェース手段416はデフォルト状態にあり、インピーダンス調整手段417にイグナイタ保護動作情報を報せる信号を送信可能な状態となっている。なお、インピーダンス調整手段417は、前回の点火サイクル中に何らかのイグナイタ保護動作機能が働いていたとき、最新の点火サイクルにおける点火信号Siの信号レベルでイグナイタ保護動作情報をECU5に報せるものであるから、過去の履歴情報は必要ない。よって、レギュレータ402からのVccおよび発振手段415からの基準クロックを受けて通常動作モードで動作している読出手段414は、保護動作履歴記録手段413にイグナイタ保護動作情報が新たに記憶されたときのみ、読み出した最新のイグナイタ履歴情報を出力すればよい。しかしながら、読出手段414が読出モードで動作するようになると、保護動作履歴記録手段413の全記憶情報(全てのイグナイタ保護動作情報)を読み出すように機能が変わる。
 図5は、ASIC40が読出モードにあるときを示し、5つの保護動作履歴読出用端子(モード切替信号入力端子25、読出用給電端子26、読出用クロック入力端子27、履歴データ出力端子28、有効ビット長指示端子29)を介した入出力が行われる。なお、内燃機関用点火装置1からイグナイタ10が取り外されていると、直流電源3からの直流およびECU5からの点火信号Siがイグナイタ10へ供給されることは無い。
 イグナイタ10のASIC40を読出モードに切り替えて、保護動作履歴記録手段413に記録されたイグナイタ保護動作情報を読み出すために、専用の読出装置を用いれば便利である。読出装置には、少なくとも、モード切替信号を生成して出力するモード切替信号出力手段、読出用の電源を供給する給電手段、読出用クロックを生成して出力する読出用クロック出力手段、読み出した履歴データを記憶する履歴データ記憶手段、データ出力の有効ビット長を指示する有効ビット長指示手段を設ける。
 このほか、履歴データ記憶手段に記憶した履歴データを整理・集計・加工する機能や可視表示する機能を設けても良い。加えて、内燃機関用点火装置1からイグナイタ10をセットすることで、イグナイタ10の保護動作履歴読出用端子との導通が可能になるイグナイタセット部を設けておけば、一層利便性の高い読出装置となる。なお、内燃機関用点火装置1からイグナイタ10が取り外されると、接地端子23が接地GNDと接続されなくなるので、接地電位が浮いて、動作が不安定になる可能性がある。そこで、読出装置には、接地端子23を接地する機能を設けておくことが望ましい。また、読出装置はイグナイタ10から履歴データを読み出すものに限らず、イグナイタ10のモールド樹脂60を剥がして取り出したASIC40から履歴データを直接読み出すものでも構わない。
 ASIC40を読出モードに切り替える場合、先ず、モード切替信号入力端子25および第8パッド458を介してモード切替信号をASIC40へ入力する。これにより、第1切替スイッチ421は開成し、第2切替スイッチ422および第3切替スイッチ423は接続先がb接点からa接点に切り替わる。
 第1切替スイッチ421が開くと共に、読出用給電端子26および第9パッド459を介して読出用電源が供給されるので、保護動作履歴記録手段413、読出手段414、インタフェース手段416は、読出用電源で動作するようになる。第2切替スイッチ422の接続先がa接点側に変わると、読出用クロック入力端子27および第10パッド460を介して読出用クロックが読出手段414へ供給されるようになる。第3切替スイッチ423の接続先がa接点側に変わると、第11パッド461および履歴データ出力端子28を介して外部へ履歴データを出力可能になる。読出用電源と読出用クロックを受けて動作する読出手段414は、保護動作履歴記録手段413の全記憶情報(全てのイグナイタ保護動作情報)を所定の手順で読み出し、インタフェース手段416へ順次渡してゆく。
 また、有効ビット長指示端子29および第12パッド462を介して有効ビット長指示信号がインタフェース手段416に入力されると、インタフェース手段416は、指示された有効ビット長に応じたフレーム構造のプロトコルでイグナイタ保護動作情報を出力するように切り替わる。保護動作履歴記録手段413に記録されているイグナイタ保護動作情報は、膨大なデータ量となっている可能性があるので、インタフェース手段416に有効ビット長を指示することで、読み出す履歴データのデータ量をコントロールできる。
 このように、本実施形態の内燃機関用点火装置1によれば、イグナイタ10の内部で生ずるイグナイタ異常からイグナイタ10自身を保護するようにイグナイタ保護手段が動作した履歴を、イグナイタ保護動作情報として保護動作履歴記録手段413に記録しておける。よって、廃棄などで回収されたイグナイタ10の保護動作履歴記録手段413からイグナイタ保護動作情報を読み出せば、内燃機関用点火装置1の稼働中に生じていたイグナイタ異常の詳細を知ることができ、品質向上のための有用な情報となる。
 以上、本発明に係る内燃機関用点火装置の実施形態を添付図面に基づいて説明したが、本発明は、この実施形態に限定されるものではなく、請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。
  1   内燃機関用点火装置
  2   点火コイル
  2a  一次コイル
  2b  二次コイル
  3   直流電源
  4   点火プラグ
  5   ECU
 10   イグナイタ
 30   スイッチ素子
 40   ASIC
 401  サージ保護手段
 404  電源過電圧検出手段
 405  サージ保護手段
 406  シュミットトリガ回路
 407  出力制御手段
 408  点火信号過電圧検出手段
 409  点火信号過通電検出手段
 410  IGBT過発熱検出手段
 413  保護動作履歴記録手段

Claims (4)

  1.  相互誘導可能な一次コイルと二次コイルを備え、前記一次コイルへの通電・遮断により前記二次コイルに接続された点火プラグに放電エネルギーを与える点火コイルと、
     点火制御部からの点火信号に基づいて、前記一次コイルへの通電・遮断を制御するイグナイタと、
     を含む内燃機関用点火装置において、
     前記イグナイタは、
     前記一次コイルの給電経路を開閉するスイッチング素子と、
     前記スイッチング素子のオン・オフを前記点火信号に基づいて行う点火制御素子と、
     を備え、
     前記点火制御素子は、
     前記スイッチング素子をオン・オフさせる駆動信号を出力するスイッチ制御手段と、
     前記イグナイタ内部で生ずるイグナイタ異常から、前記イグナイタ自身を保護するように動作するイグナイタ保護手段と、
     前記イグナイタ保護手段が動作した履歴であるイグナイタ保護動作情報を記録する保護動作履歴記録手段と、
     を備えることを特徴とする内燃機関用点火装置。
  2.  前記保護動作履歴記録手段には、前記イグナイタへの給電が断たれても記憶内容を失わない不揮発性を有し、且つ、前記イグナイタに生じる可能性のある危険な昇温域で記憶内容を安定的に保持できる高耐熱性を備えたメモリ素子を用いるようにしたことを特徴とする請求項1に記載の内燃機関用点火装置。
  3.  前記イグナイタには、前記保護動作履歴記録手段から前記イグナイタ保護動作情報を読み出すための保護動作履歴読出用端子を設けたことを特徴とする請求項1又は請求項2に記載の内燃機関用点火装置。
  4.  前記イグナイタは、複数のリードフレームにより構成したリードフレーム構造体に前記点火制御素子や前記スイッチング素子を取り付けて樹脂で一体にパッケージ化したモールド型の半導体装置とし、
     前記保護動作履歴読出用端子には、外部接続用端子となるアウターリード部の無いリードフレームがモールド樹脂から露出するリード残部および/または外部接続に使われていないリードフレームの前記アウターリード部を用いるようにしたことを特徴とする請求項3に記載の内燃機関用点火装置。
PCT/JP2020/024217 2020-06-19 2020-06-19 内燃機関用点火装置 WO2021255930A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/024217 WO2021255930A1 (ja) 2020-06-19 2020-06-19 内燃機関用点火装置
JP2022531230A JPWO2021255930A1 (ja) 2020-06-19 2020-06-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024217 WO2021255930A1 (ja) 2020-06-19 2020-06-19 内燃機関用点火装置

Publications (1)

Publication Number Publication Date
WO2021255930A1 true WO2021255930A1 (ja) 2021-12-23

Family

ID=79267738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024217 WO2021255930A1 (ja) 2020-06-19 2020-06-19 内燃機関用点火装置

Country Status (2)

Country Link
JP (1) JPWO2021255930A1 (ja)
WO (1) WO2021255930A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125024A (ja) * 1994-10-19 1996-05-17 Fujitsu Ltd オンチップram試験システム
US6006156A (en) * 1997-12-11 1999-12-21 Cummins Engine Company, Inc. Apparatus and method for diagnosing and controlling an ignition system of an internal combustion engine
JP2003092871A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 電力半導体モジュール及び電力変換装置
JP2008309061A (ja) * 2007-06-14 2008-12-25 Hanshin Electric Co Ltd イグナイタ
JP2018145844A (ja) * 2017-03-03 2018-09-20 株式会社デンソー 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125024A (ja) * 1994-10-19 1996-05-17 Fujitsu Ltd オンチップram試験システム
US6006156A (en) * 1997-12-11 1999-12-21 Cummins Engine Company, Inc. Apparatus and method for diagnosing and controlling an ignition system of an internal combustion engine
JP2003092871A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 電力半導体モジュール及び電力変換装置
JP2008309061A (ja) * 2007-06-14 2008-12-25 Hanshin Electric Co Ltd イグナイタ
JP2018145844A (ja) * 2017-03-03 2018-09-20 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
JPWO2021255930A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
US4520419A (en) Polarity and overload protective circuit for electric consumers
US4709296A (en) Protection arrangement for a telephone subscriber line interface circuit
EP0757177B1 (en) Ignition system of internal combustion engine
US7664150B2 (en) Diode laser electrical isolation system
JP2004036438A (ja) 点火装置等の内燃機関用の電子装置
RU2267646C2 (ru) Устройство и способ регулирования количества энергии, расходуемой на зажигание рабочей смеси в двигателе внутреннего сгорания
WO2021255930A1 (ja) 内燃機関用点火装置
US20050231168A1 (en) Mobile communication device having protection circuit on handset side
JP2012501061A (ja) 蓄電池パック
US4306184A (en) Generation control appparatus for vehicle generators
KR20010020604A (ko) 고체상태 과부하 릴레이
US3362388A (en) Safety ignition system
JPWO2014109067A1 (ja) 内燃機関用点火装置
US7705549B2 (en) Series resistor assembly for an electric motor, circuit arrangement comprising a series resistor assembly for operating an electric motor and use of said assembly
US7369383B2 (en) Protective circuit
JP3689280B2 (ja) 半導体リレーシステムの保護方法
JP2021169799A (ja) 内燃機関の点火装置
JP2020204284A (ja) 内燃機関用点火システム
JP5605785B2 (ja) 内燃機関用点火装置
JP2007236103A (ja) 給電装置
JP5605786B2 (ja) 内燃機関用点火装置
US5023471A (en) Testable input/output circuit for a load decoupled by a transformer
JP2007104488A (ja) 電力供給制御装置
JPH11297173A (ja) 過電流検出機能を持った抵抗素子とこれを使用した過電流保護回路
JP4379258B2 (ja) 内燃機関用点火装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941130

Country of ref document: EP

Kind code of ref document: A1