WO2021255545A1 - 发光装置、发光方法、光检测装置、光谱检测方法及发光修正方法 - Google Patents

发光装置、发光方法、光检测装置、光谱检测方法及发光修正方法 Download PDF

Info

Publication number
WO2021255545A1
WO2021255545A1 PCT/IB2021/054240 IB2021054240W WO2021255545A1 WO 2021255545 A1 WO2021255545 A1 WO 2021255545A1 IB 2021054240 W IB2021054240 W IB 2021054240W WO 2021255545 A1 WO2021255545 A1 WO 2021255545A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
signal
measured
wavelength
Prior art date
Application number
PCT/IB2021/054240
Other languages
English (en)
French (fr)
Inventor
丁逸圣
陈育宗
Original Assignee
丁逸圣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丁逸圣 filed Critical 丁逸圣
Priority to US17/761,377 priority Critical patent/US11965822B2/en
Priority to EP21825729.3A priority patent/EP4170713A4/en
Priority to CN202180039379.5A priority patent/CN116034493A/zh
Priority to JP2022576109A priority patent/JP7508741B2/ja
Publication of WO2021255545A1 publication Critical patent/WO2021255545A1/zh
Priority to US18/605,163 priority patent/US20240219296A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • G01N2201/0612Laser diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0694Microprocessor controlled supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/125Digital circuitry
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light

Definitions

  • the present invention relates to a light-emitting device, and in particular refers to the ability to select the wavelength range of light emitted by a light-emitting diode and adjacent light emission peak wavelengths (light emission peak wavelengths). peak wavelength) difference range, full-width at half-maximum (FWHM) range, and lighting frequency (lighting frequency) light-emitting device, light-emitting method, light detection device, spectrum detection method, and light-emitting correction method.
  • BACKGROUND A spectrometer can be used to measure the transmitted light penetrating an object or the reflected light from the surface of the object.
  • a traditional spectrophotometer usually includes a light source and a monochromator, where the light source
  • a tungsten lamp filled with halogen gas can be used to generate Vis-near IR (visible light-near infrared light) light with a continuous spectrum with an emission spectrum of about 320nnT2500 nm, and then a prism or grating ( grating)
  • the monochromatic light of a specific wavelength is selected for the absorption or reflection measurement of the sample (or called the test object). This of course also includes continuous scanning within the set wavelength range for testing. Analysis of the absorption spectrum or reflection spectrum.
  • CN205388567U discloses the use of a combination of multiple LEDs and optical fibers to avoid the use of a monochromator.
  • a total reflection mirror is used to increase the measurement optical path to improve the efficiency of testing samples.
  • the technology disclosed in the aforementioned CN205388567U patent can also be cited in the present invention.
  • Chinese Invention Patent Publication No. CN109932335A also discloses a similar technology.
  • the aforementioned third patent uses LED arrays as the light source of spectroscopy (spectroscopy) with a wavelength resolution (usually greater than 10nm) than the traditional halogen
  • the wavelength resolution (usually 1 nm) of the spectrometer of the tungsten lamp and the single optical device is still low, which has led to the doubts in the correct analysis of the spectrogram of the sample in the aforementioned three patents that use the LED array as the light source.
  • Another problem of the aforementioned three patents is that the signal-to-noise ratio (signal-to-noise ratio, SNR or S/N, also known as signal-to-noise ratio) cannot be further improved.
  • SNR signal-to-noise ratio
  • S/N signal-to-noise ratio
  • the LED of the aforementioned three patents The array is only used to replace the tungsten halogen lamp as the light source, in addition to The other operation modes of the light source have not been changed, so it is obvious that there is no improvement in the SNR caused from the light source end, so the aforementioned three patents cannot further improve the SNR.
  • Another problem with the aforementioned three patents is that, because multiple LEDs are arranged in rows or rows or in a predetermined manner to form an LED array on a plane, this restricts the surface of the object to be measured must be present on the plane. Parallel can guarantee the accuracy of measurement; however, in fact, the surface of the object to be measured is usually difficult to maintain parallel to the plane, for example, the surface of the object to be measured is a slightly curved curved surface; or, for some reason, the object to be measured is placed As a result, the surface of the object to be measured cannot be kept parallel to the plane, which leads to misjudgment of the surface composition or internal composition of the entire object to be measured.
  • the main purpose of the present invention is to provide a rotating light emitting device composed of a plurality of LEDs emitting different wavelength ranges from each other and a light detecting device composed of the light emitting device.
  • the light detecting device of the present invention is suitable for The analysis result of the sample is close to the high-resolution result of the traditional tungsten halogen lamp spectrometer, and at the same time, the signal-to-noise ratio in the spectrum of the sample detection result and the correction of the luminous intensity are improved, and the test can be obtained with a single measurement Accurate measurement result of the reflectance spectrum of the surface of the object or the absorption spectrum of the penetrating object.
  • a light-emitting device of the present invention at least includes: a plurality of light-emitting elements each emitting light having at least one luminescence peak wavelength and at least one wavelength range; wherein two adjacent luminescence peak wavelengths correspond to The multiple wavelength ranges of the two light-emitting elements partially overlap to form a continuous wavelength range wider than the wavelength range of each of the multiple light-emitting elements, or two adjacent light-emitting peak wavelengths
  • the multiple wavelength ranges of the two corresponding light-emitting elements do not overlap; the multiple light-emitting elements are supplied with a current density so that the emitted light has a luminous intensity; the multiple current densities are different from each other, or Many of the current densities are partially different.
  • two adjacent luminescence peak wavelengths differ from each other by greater than or equal to 1 nm, and at least a part of the plurality of luminescence peak wavelengths has a wavelength half-width corresponding to the luminescence peak wavelength is It is greater than nm and less than or equal to 60 nm.
  • the light-emitting element is a light-emitting diode, a vertical cavity surface-emitting laser, or a laser diode.
  • a plurality of the light-emitting elements can respectively exhibit a non-continuous light emission with a blinking frequency, and a plurality of the blinking frequencies may be the same or different from each other, or a plurality of the blinking frequencies may be partially the same or partially different.
  • the plurality of the light-emitting elements are at least four of the light-emitting elements, and the four on-off frequencies corresponding to the four light-emitting elements are optionally completely different from each other or at least partially the same as each other.
  • the blinking frequency is between 0.05 times/sec and 50,000 times/sec.
  • the time interval for turning on the light-emitting element in the on-off frequency is between 0.0001 seconds and 10 seconds. In an embodiment of the present invention, the time interval for turning off the light-emitting element in the on-off frequency is between 0.0001 seconds and 10 seconds.
  • two adjacent light-emitting peak wavelengths differ from each other by between 1 nm and 80 nm. In an embodiment of the present invention, two adjacent light-emitting peak wavelengths differ from each other by 5 nm to 80 nm. In an embodiment of the present invention, the wavelength half-maximum width corresponding to each of the emission peak wavelengths is between 15 nm and 50 nm.
  • the wavelength FWHM corresponding to each of the emission peak wavelengths is between 15 nm and 40 nm.
  • the present invention provides a light detection device, which at least includes: a light source controller, a light emitting device, a light detector, and a calculator; the light source controller is electrically connected to the light emitting device, and the light The detector is electrically connected to the calculator, the light detector receives a light emitted from the light-emitting device, and the travel path of the light between the light-emitting device and the light detector forms a light path; wherein, the light-emitting device at least It includes a plurality of light-emitting elements each emitting light having at least one light-emitting peak wavelength and at least one wavelength range; the wavelength ranges of two adjacent two light-emitting elements corresponding to the light-emitting peak wavelength partially overlap to form A continuous wavelength range wider than the wavelength range of each of the plurality of light-emitting elements, or the plurality
  • a mathematical analysis module is provided on the photodetector or the calculator, the mathematical analysis module is electrically or signal connected with the photodetector, or the mathematical analysis module is connected with the calculation
  • the light-emitting device is electrically or signal connected, and the mathematical analysis module is in the form of software or hardware, and the signal collected by the photodetector is transmitted to the mathematical analysis module; the time interval during which the light-emitting element is turned on in the brightness frequency,
  • the signal received by the photodetector is a combination of a spectrum signal of an object to be measured and a background noise; the time interval during which the light-emitting element is turned off in the brightness frequency, the signal received by the photodetector is the background noise;
  • the mathematical analysis module includes a time domain frequency domain conversion unit that converts the time domain signal of the object under test into a frequency domain signal of
  • the time domain frequency domain conversion unit is a Fourier conversion unit for performing Fourier conversion of the DUT time domain signal into the DUT frequency domain signal.
  • the frequency domain signal of the object to be measured is a frequency domain signal including the spectrum signal of the object to be measured and a frequency domain signal of the background noise
  • the mathematical analysis module is capable of detecting the frequency domain of the background noise. The signal is discarded and left to be tested
  • the mathematical analysis module includes a frequency-domain time-domain conversion unit that converts the aforementioned left-behind frequency-domain signal of the object-to-be-measured spectrum signal into a filtered time-domain signal of the object to be measured.
  • the frequency domain time domain conversion unit is capable of performing inverse Fourier conversion of the aforementioned left frequency domain signal of the measured object spectral signal into the filtered time domain signal of the measured object One inverse Fourier transform unit.
  • the present invention further provides a light detection device, which at least includes: a light source controller, a light emitting device, one or more light detectors, and a calculator; the light source controller is electrically connected to the light emitting device The light detector is electrically connected to the calculator, the light detector receives a light emitted from the light-emitting device, and the travel path of the light between the light-emitting device and the light detector forms an optical path; wherein, The light-emitting device includes a plurality of light-emitting elements each emitting light having at least one luminous peak wavelength and at least one wavelength range; an object to be measured is placed in the light path, and the light-emitting device can rotate relative to the object to be measured.
  • a plurality of the light-emitting elements can revolve around a revolving axis.
  • the light emitting device is connected to a rotating device, and the rotating device drives a plurality of the light emitting elements to revolve around the revolving axis of rotation.
  • the rotating device drives a rotating shaft to rotate, one end of the rotating shaft is connected to the light emitting device, and the rotating shaft is the revolving axis of rotation.
  • the rotating device is electrically connected to a microcontroller of the light source controller, and the microcontroller controls the rotating shaft to rotate at a predetermined angle.
  • the object to be measured can rotate on a rotation axis.
  • the present invention also provides a light-emitting method, which sequentially includes the following steps: a step of providing light-emitting elements: providing a plurality of light-emitting elements each emitting light having at least one peak wavelength and at least one wavelength range, and two adjacent light-emitting elements are provided.
  • the multiple wavelength ranges of the two light-emitting elements corresponding to the peak wavelengths partially overlap to form a continuous wavelength range wider than the wavelength range of each of the multiple light-emitting elements, or two adjacent ones
  • the wavelength ranges of the two light-emitting elements corresponding to the luminescence peak wavelength do not overlap; the difference between the two adjacent luminescence peak wavelengths is greater than or equal to 1 nm, and at least a part of the luminescence peak wavelengths
  • the wavelength half-height width corresponding to the luminous peak wavelength is greater than 0nm and less than or equal to 60nm; —light-emitting step: separately control and make a plurality of the light-emitting elements present discontinuous light emission with a blinking frequency, and the blinking frequency is between 0 .
  • the present invention further provides a light-emitting method, which sequentially includes the following steps: a step of providing light-emitting elements: providing a plurality of light-emitting elements each emitting light having at least one emission peak wavelength and at least one wavelength range. A light-emitting step: light-emitting a plurality of the light-emitting elements.
  • a step of obtaining an initial spectral energy distribution curve a plurality of the light-emitting elements are respectively supplied with a current density so that the emitted light has a luminous intensity, and the same current density is provided to a plurality of the light-emitting elements respectively, and an initial Spectral energy distribution curve.
  • a current density adjustment step select a specific value and the corresponding light-emitting element from a plurality of the luminous intensities, and increase or decrease the current corresponding to the light-emitting element that is not selected The density is such that the luminous intensity corresponding to the light-emitting element that is not selected is the same as or close to the luminous intensity corresponding to the light-emitting element that is selected.
  • the wavelength ranges of the two light-emitting elements corresponding to the two adjacent light-emitting peak wavelengths are partially overlapped to form a larger value than each of the light-emitting elements.
  • a continuous wavelength range with a wide wavelength range, or the multiple wavelength ranges of two light-emitting elements corresponding to two adjacent light-emitting peak wavelengths do not overlap; two adjacent light-emitting peak wavelengths differ from each other by more than Or equal to 1 nm, and the wavelength half-height width corresponding to at least a part of the luminescence peak wavelengths among the plurality of luminescence peak wavelengths is greater than nm and less than or equal to 60 nm.
  • a plurality of the light-emitting elements are respectively controlled and made to exhibit discontinuous light emission with a blinking frequency, and the blinking frequency is between 0.05 times/sec and 50,000 times/sec.
  • the time interval for turning on the light-emitting element in the frequency is between 0.000001 seconds and 10 seconds, and the time interval for turning off the light-emitting element in the blinking frequency is between 0.000001 seconds and 10 seconds.
  • the present invention also provides a spectral detection method, which includes the aforementioned luminescence method.
  • the spectral detection method further includes: a filtering step: receiving a spectrum signal of an object to be measured and a background noise, and the time interval during which the light-emitting element is turned on in the brightness frequency ,
  • the received signal is the combination of the spectrum signal of the object to be measured and the background noise, the time interval in which the light-emitting element is turned off in the brightness frequency, the received signal is the background noise, the spectrum signal of the object to be measured, and the Background noise constitutes a time-domain signal of the object to be measured, Fourier transforms the time-domain signal of the object to be measured into a frequency-domain signal of the object to be measured, and the frequency-domain signal of the object to be measured is distinguished as the spectrum signal of the object to be measured The frequency domain signal of the background noise and the frequency domain signal of the background noise are then discarded and the frequency domain signal of the spectrum signal of the object to be measured is left.
  • the spectrum detection method further includes an inverse conversion step, and the inverse conversion step is to perform inverse Fourier conversion of the frequency domain signal of the spectrum signal of the object to be tested left behind into a filter After the time domain signal of the test object.
  • the present invention also provides a luminescence correction method, which sequentially includes the following steps:
  • a step of measuring the forward bias voltage in the time interval when the light-emitting element is turned on, the forward bias voltage of the light-emitting element is measured at the same time.
  • a step of obtaining a proportional relationship compare the measured forward bias voltage with the aforementioned mathematical relationship or correspondence table or graph between the forward bias voltage of the light-emitting element and the junction temperature, and convert the junction temperature to obtain the junction temperature; , The junction temperature obtained by conversion is compared with the aforementioned mathematical relationship or correspondence table or graph of the luminous intensity or relative intensity and the junction temperature, and the luminous intensity or relative intensity is obtained by conversion; then, the luminous intensity or relative intensity is obtained by conversion.
  • the intensity or relative intensity is compared with the mathematical relationship between the luminous intensity or the relative intensity and the junction temperature or the luminous intensity or relative intensity at a specific junction temperature in the graph or figure to obtain a proportional relationship.
  • FIG. 1 is a schematic diagram (1) of an embodiment of the light emitting device and the light detecting device of the present invention.
  • Fig. 2 is an emission spectrum diagram of the light emitting diode according to the first embodiment of the present invention.
  • FIG. 3 is an emission spectrum diagram of a light emitting diode according to a second embodiment of the present invention.
  • Fig. 4 is an emission spectrum diagram of a light emitting diode according to a third embodiment of the present invention.
  • Fig. 5A is a schematic diagram (2) of an embodiment of the light emitting device and the light detecting device of the present invention.
  • Fig. 5B is a schematic diagram (3) of an embodiment of the light emitting device and the light detecting device of the present invention.
  • Fig. 6A is a time-domain signal diagram of the object to be measured measured by the optical detection device of the present invention.
  • FIG. 6B is a diagram of the frequency domain signal of the object under test after the optical detection device of the present invention performs Fourier transform on the time domain signal of the object under test.
  • FIG. 6C is a graph of the filtered time-domain signal of the test object after performing the inverse Fourier transformation on the frequency domain signal of the spectrum signal of the test object left by the optical detection device of the present invention.
  • FIG. 7A is the reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using a conventional spectrometer in Comparative Example 1.
  • FIG. 7B is a reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using the light detection device of the present invention in Application Example 1.
  • FIG. FIG. 7C is a reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using the light detection device of the present invention in Application Example 2.
  • FIG. 7D is a reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using the light detection device of the present invention in Application Example 3.
  • FIG. 7A is the reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using a conventional spectrometer in Comparative Example 1.
  • FIG. 7B is a reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using the light detection device
  • FIG. 8 is a flow chart of the steps of the light emitting method of the present invention.
  • Fig. 9 is a flow chart of the steps of the spectrum detection method of the present invention.
  • FIG. 10A is a schematic diagram of an embodiment in which the light detection device of the present invention includes a current controller.
  • Fig. 10B is a flow chart of the steps of another luminescence method and spectrum detection method of the present invention.
  • Fig. 10C is an initial spectral energy distribution curve of the light-emitting device of the present invention.
  • Fig. 10D is a spectral energy distribution curve after adjusting the first current density according to the present invention.
  • Fig. 10E is the spectral energy distribution curve after adjusting other current densities according to the present invention.
  • FIG. 10A is a schematic diagram of an embodiment in which the light detection device of the present invention includes a current controller.
  • Fig. 10B is a flow chart of the steps of another luminescence method and spectrum detection method of the present invention.
  • FIG. 11A is a flowchart of steps of the luminescence correction method, luminescence method, and spectrum detection method of the present invention.
  • FIG. 11B is a corresponding diagram of the relative intensity and junction temperature of the fourth light-emitting diode of the present invention.
  • 11C is a corresponding diagram of the forward bias voltage and junction temperature of the fourth light-emitting diode of the present invention.
  • 12A is a schematic diagram of the first relative position of the first light emitting diode and the first area of the present invention.
  • 12B is a schematic diagram of the second relative position of the first light emitting diode and the first area of the present invention.
  • FIG. 12C is a schematic diagram of an embodiment in which the object to be measured is rotated by a rotation axis of the present invention.
  • FIG. 12D is a schematic diagram (1) of an embodiment in which the surface of the object under test and the light-emitting device 12 of the present invention cannot be kept parallel.
  • FIG. 12E is a schematic diagram (2) of an embodiment in which the surface of the object to be tested and the light-emitting device 12 of the present invention cannot be kept parallel.
  • Light detection device 11 Light source controller
  • Rotating device 151 Rotating axis A Object to be measured A0 Rotating axis of rotation A1 First area A2 Second area L Light
  • the light detecting device 1 includes a light source controller 11, the light emitting device 12, one or more Light detector 13 and a calculator 14.
  • the light source controller 11 is electrically connected to the light-emitting device 12 and an external power source (not shown in the figure)
  • the light detector 13 is electrically connected to the calculator 14, and the light detector 13 receives data from the light-emitting device 12 A light L emitted, and the traveling path of the light L between the light-emitting device 12 and the photodetector 13 forms an optical path R.
  • the photodetector 13 may be, for example, a photomultiplier tube (photomultiplier) or a photoconductivity detector. Detector (photoconducting detector), Si bolometer.
  • a test object A is placed on the optical path R, the optical path R penetrates the test object A or the optical path R forms a reflection on the surface of the test object A.
  • FIG. 1 it is taken as an example that the optical path R penetrates the object A to be measured to measure the absorption spectrum of the object A to be measured.
  • the reflectance spectrum of the test object A is measured (FIG. 12E ).
  • the light detector 13 converts the light L into a spectrum signal of the object to be measured and transmits the spectrum signal of the object to be measured to the calculator 14.
  • the calculator 14 converts the spectrum signal of the object to be measured to form a spectrum of the object to be measured
  • the calculator 14 is, for example, a personal computer, a notebook computer or a computer server.
  • the light emitting device 12 at least includes: a plurality of light emitting elements each emitting light having at least one light emission peak wavelength and at least one wavelength range, the light emission peak wavelength or the wavelength range is between 300 nm and 2500 nm between, wherein the light emitting element may be a light emitting diode, a vertical cavity surface emitting laser (vertical-cavity surface-emitting laser , VCSEL) or a laser diode (laser diode, LD) 0 the following examples of the light emitting element is a light emitting diode
  • this is for the convenience of illustration, and is not limited to the light-emitting diode exemplified in the present invention.
  • the light-emitting device 12 includes three light-emitting diodes, a first light-emitting diode 121 that emits a first light having a first wavelength range, and a first light-emitting diode 121 that emits a first light having a second wavelength range.
  • the first light emitting diode 121, the second light emitting diode 122, and the third light emitting diode 123 are electrically connected to a circuit board 120 of the light emitting device 12, and the circuit board 120 is electrically connected to the light source controller 11,
  • the light source controller 11 is electrically connected to the first light emitting diode 121, the second light emitting diode 122, and the third light emitting diode 123, and the light source controller 11 can control the first light emitting diode 121 and the third light emitting diode 123, respectively.
  • the second light-emitting diode 122 and the third light-emitting diode 123 are turned on or off (bright or off, energized or not), that is to say, the light source controller 11 can respectively control the on or off of a plurality of the light-emitting diodes (bright or Off).
  • the light source controller 11 can separately control And make the first light-emitting diode 121, the second light-emitting diode 122 and the third light-emitting diode 123 emit light continuously or discontinuously respectively, that is to say, the light source controller 11 can separately control and make the multiple light-emitting diodes respectively Continuous light emission or discontinuous light emission respectively.
  • the light source controller 11 can respectively control and make the first light-emitting diode 121, the second light-emitting diode 122, and the third light-emitting diode 123 respectively exhibit discontinuous light emission with a blinking frequency, that is, the light source controller 11 It is capable of controlling and enabling a plurality of the light-emitting diodes to respectively exhibit discontinuous light emission with a blinking frequency.
  • a plurality of the blinking frequencies may be the same or different from each other, or a plurality of the blinking frequencies may be partly the same or partly different.
  • the light source controller 11 includes a microcontroller (Microcontroller Unit) 111 electrically connected with the external power source and a clock generator (clock generator) 112 electrically connected with the microcontroller 111, and the brightness frequency is After being generated by the clock generator 112, the signal of the blinking frequency is transmitted to the microcontroller 111, and then the microcontroller 111 turns on or off a plurality of electrical connections with the microcontroller 111 according to the blinking frequency.
  • the light-emitting diodes for example, the first light-emitting diode 121, the second light-emitting diode 122, and the third light-emitting diode 123).
  • the clock generator 112 can also be a clock generation module integrated in the microcontroller 111 to generate the on/off frequency.
  • the clock generation module can be in the form of software or hardware, so there is no need to
  • the clock generator 112 is additionally provided outside the microcontroller 111. It is particularly noted that, of course, according to the technical features of the light source controller 11 described above, a plurality of the light-emitting diodes can also be turned on or off at the same time according to actual needs, or only one or a part of the light-emitting diodes can be turned on or off selectively. Turn off, or turn on or turn off a plurality of the light-emitting diodes in sequence, or turn on or off any one of the above methods in the blinking frequency manner.
  • a plurality of the light-emitting diodes are turned on (emits light) at the same time, and the corresponding multiple of the light-emitting diodes are different from each other; preferably, at least four of the light-emitting diodes are turned on at the same time, and the four light-emitting diodes correspond to each other.
  • the four bright and dark frequencies are optionally completely different from each other or at least partially the same as each other. Please refer to FIG.
  • the wavelength ranges of the two light-emitting diodes corresponding to the two adjacent light-emitting peak wavelengths are partially overlapped to form the wavelength range of each of the plurality of light-emitting diodes
  • a wide continuous wavelength range, the continuous wavelength range is between 300nm and 2500nm.
  • there are three luminous peak wavelengths and corresponding wavelength ranges which are the first wavelength range corresponding to the first luminous peak wavelength (734 nm) of the first light, and the second luminescence of the second light.
  • the first emission peak wavelength and the second emission peak wavelength are two adjacent emission peak wavelengths, and similarly, the second emission peak wavelength and the third emission peak wavelength are also two adjacent emission peak wavelengths.
  • the first wavelength range corresponding to the first luminescence peak wavelength is between 660nm and 780nm
  • the second wavelength range corresponding to the second luminescence peak wavelength of the second light is between 710nm and 850nm
  • the The first wavelength range and the second wavelength range partially overlap between 710 nm and 780 nm, so the first wavelength range and the second wavelength range together form the continuous wavelength range between 660 nm and 850 nm.
  • the second wavelength range corresponding to the second luminescence peak wavelength is between 710 nm and 850 nm
  • the third wavelength range corresponding to the third luminescence peak wavelength of the third light is between 780 nm and 940 nm
  • the second wavelength range and the third wavelength range partially overlap between 780 nm and 850 nm, so the second wavelength range and the third wavelength range together form the continuous wavelength range between 710 nm and 940 nm.
  • the two adjacent luminous peak wavelengths are For the overlapping parts of the multiple wavelength ranges of the two corresponding light-emitting diodes, the smaller the overlap, the better.
  • the multiple wavelength ranges of the two light-emitting diodes corresponding to two adjacent light-emitting peak wavelengths may not overlap, which will be described later.
  • the difference between two adjacent light emission peak wavelengths is greater than or equal to 1 nm, preferably between 1 nm and 80 nm, preferably between 5 nm and 80 nm.
  • the adjacent first emission peak wavelength (734 nm) and the second emission peak wavelength (810 nm) differ from each other by 76 nm
  • the adjacent second emission peak wavelength (810 nm) and the third emission peak wavelength are different from each other by 76 nm.
  • the peak wavelengths (882 nm) differ from each other by 72 nm.
  • the limits of the numerical range described in the present invention and the claims always include end values.
  • the difference between the two adjacent luminescence peak wavelengths is between 5nm and 80nm, which means greater than Or equal to 5nm and less than or equal to 80nm.
  • the second embodiment is a derivative embodiment of the first embodiment, and therefore the same parts of the second embodiment and the first embodiment will not be repeated.
  • the difference between the second embodiment and the first embodiment is that the light-emitting device 12 of the second embodiment includes five light-emitting diodes.
  • the fourth wavelength range has a fourth emission peak wavelength (772 nm), and the fifth light has a fifth emission peak wavelength (854 nm) in the fifth wavelength range.
  • the luminous peak wavelengths in descending order are the first luminous peak wavelength (734 nm), the fourth luminous peak wavelength (772 nm), the second luminous peak wavelength (810 nm), and the fifth luminous peak.
  • the wavelength (854nm) and the third emission peak wavelength (882nm), the adjacent first emission peak wavelength (734nm) and the fourth emission peak wavelength (772nm) differ from each other by 38nm, and the adjacent fourth emission peak wavelength
  • the wavelength (772nm) and the second emission peak wavelength (810nm) differ from each other by 38nm, the adjacent second emission peak wavelength (810nm) and the fifth emission peak wavelength (854nm) differ from each other by 44nm, and the adjacent ones
  • the fifth emission peak wavelength (854 nm) and the third emission peak wavelength (882 nm) differ from each other by 28 nm.
  • the third embodiment is a derivative embodiment of the first and second embodiments.
  • the third embodiment is the same as the first and second embodiments. No longer.
  • the third embodiment is different from the first embodiment in that the light-emitting device 12 of the second embodiment includes 12 light-emitting diodes.
  • the peak wavelengths of the 12 light-emitting diodes are 734 nm in order from small to large.
  • the first emission peak wavelength 747nm, 760nm, 772nm (the fourth emission peak wavelength), 785nm, 798nm, 810nm (the second emission peak wavelength), 824nm, 839nm, 854nm (the fifth emission peak wavelength) , 867nm and 882nm (the third peak emission wavelength).
  • two adjacent light-emitting peak wavelengths differ from each other by 13nm, 13nm, 12nm, 13nm, 13nm, 12nm, 14nm, 15nm, 15nm, 13nm, and 15nm, respectively.
  • the difference between two adjacent light-emitting peak wavelengths may be greater than or equal to 1 nm, for example, 1 nm.
  • the wavelength half-height width corresponding to the emission peak wavelength of at least a part of the plurality of emission peak wavelengths is greater than nm and less than or equal to 60 nm.
  • the wavelength half-height width corresponding to each of the emission peak wavelengths is greater than 0nm and less than or equal to 60 nm.
  • the emission peak wavelengths in the foregoing Embodiment 1, Embodiment 2 and Embodiment 3 are in order from small to large 734nm (the first emission peak wavelength), 747nm, 760nm, 772nm (the fourth emission peak wavelength), 785nm, 798nm, 810nm (the second emission peak wavelength), 824nm, 839nm, 854nm (the fifth emission peak wavelength) ), 867nm and 882nm (the third luminescence peak wavelength), the wavelength half-height width corresponding to the first luminescence peak wavelength of the first light, and the wavelength half-height corresponding to the second luminescence peak wavelength of the second light Width, the half-width of the wavelength corresponding to the third luminous peak wavelength of the third light, the half-wavelength of the wavelength corresponding to the fourth luminous peak wavelength
  • the other unspecified 747nm, 760nm, 785nm, 798nm, 824nm, 839nm and 867nm emission peak wavelengths corresponding to the wavelength half-height width ( Figure 4) are also greater than nm and less than or equal to 60nm, preferably between 15nm and 50nm , Preferably between 15nm and 40nm.
  • the wavelength FWHM corresponding to the emission peak wavelength in the foregoing embodiment 1, embodiment 2, and embodiment 3 is 55 nm; if the light-emitting element is a laser diode, each of the emission peak wavelengths corresponds to wavelength FWHM of greater than or equal to 60 nm and less than Onm, for example, two of the plurality of wavelength ranges of the light emitting diode of the adjacent two of the emission peak wavelength corresponding lnm 0 may not overlap, if e.g.
  • the wavelength FWHM corresponding to each luminescence peak wavelength in the foregoing embodiment 1, embodiment 2, and embodiment 3 is 15 nm, and the width of the wavelength range corresponding to each luminescence peak wavelength (that is, the maximum value of the wavelength range and the maximum value of the wavelength range)
  • the difference of the minimum value) is 40 nm, and the difference between two adjacent light emission peak wavelengths is 80 nm.
  • the light-emitting element is a laser diode
  • the half-height width of the wavelength corresponding to each of the luminescence peak wavelengths is 1 nm
  • the width of the wavelength range is 4 nm
  • two adjacent luminescence peak wavelengths differ from each other by 5 nm
  • adjacent The wavelength ranges of the two light-emitting elements (laser diodes) corresponding to the two light-emitting peak wavelengths do not overlap.
  • the light source controller 11 can be controlled separately as described above.
  • the plurality of the bright-off frequencies may be the same or different from each other, or a plurality of the bright-off frequencies may be partly the same or partly different.
  • the time interval of turning on (lighting up) the light-emitting diode in the bright-off frequency is between 0.0001 seconds and 10 seconds, and turning off (turning off) the light-emitting diode in the bright-off frequency )
  • the time interval of the light-emitting diode is between 0.0001 seconds and 10 seconds
  • the period of the light-off frequency refers to the time interval of turning on (lighting up) the light-emitting diode one time and turning off (turning off) the light-emitting diode
  • the sum of the time intervals, the period of the on-off frequency is the reciprocal of the on-off frequency; in other words, the period of the on-off frequency can be understood as the continuous light-on time interval of a plurality of the light-emitting diodes and the continuous extinguishing immediately without interruption.
  • the sum of the light-off time intervals, the light-on time interval is between 0.0001 seconds and 10 seconds, and the light-off time interval is between 0.0001 seconds and 10 seconds.
  • the blinking frequency is between 0.5 times/sec and 50,000 times/sec; preferably, the blinking frequency is between 5 times/sec and 50,000 times/sec.
  • the discontinuous light emission of the plurality of light-emitting diodes can greatly reduce the influence of the test object A by the thermal energy of the light emitted by the light-emitting diodes, and avoid the qualitative change of the test object A containing organisms, so it is especially suitable for thermal energy
  • the sensitive object A is more suitable for the near-infrared light emitted by the light-emitting diode in the wavelength range.
  • a mathematical analysis module M is installed on the photodetector 13 ( Figure 5A) or the calculator 14 ( Figure 5B), and the mathematical analysis module M is electrically or signal connected to the photodetector 13 ( Figure 5A), or The number
  • the scientific analysis module M is electrically or signal connected to the calculator 14 ( Figure 5B), and the mathematical analysis module M can be in the form of software or hardware.
  • the signal collected by the photodetector 13 is transmitted to the Mathematical analysis module M.
  • the spectrometer 1 is operated to detect the test object A to generate the spectrum of the test object, a plurality of the light-emitting diodes can be turned on or off simultaneously at the same brightness frequency, and they are turned on (lit) at the brightness frequency.
  • the time interval of the light-emitting diode, the signal received by the photodetector 13 is a combination of the spectrum signal of the object to be measured and a background noise (or called background noise), and the light-emitting diode is turned off (extinguished) in the brightness frequency During the time interval, the signal received by the photodetector 13 is the background noise.
  • FIG. 6A shows that the spectrometer 1 is operated in the discontinuous luminescence mode of the brightness frequency to detect the object A, the combination of the spectrum signal of the object to be measured and the background noise and the composition of the background noise A time domain signal of the object under test and a graph of the time domain signal of the object under test.
  • the spectral signal of the object to be measured and the background noise collected by the photodetector 13 are transmitted to the mathematical analysis module M.
  • the mathematical analysis module M processes the time-domain signal of the object to be measured to The background noise is discarded.
  • the mathematical analysis module M includes a time domain frequency domain conversion unit M1 (FIG. 5A) that converts the measured object time domain signal into a measured object frequency domain signal.
  • the domain transforming unit M1 may be a Fourier transforming unit for Fourier transforming the time domain signal of the object to be measured into a frequency domain signal of the object to be measured, and the converted frequency domain of the object to be measured Please refer to FIG. 6B for a signal and a frequency domain signal diagram of the object under test.
  • the frequency domain signal of the object under test can be easily distinguished into the frequency domain signal of the spectrum signal of the object under test and the frequency domain signal of the background noise.
  • the frequency domain signal at the peak of 0 Hz or the frequency domain signal less than the bright-out frequency is the frequency domain signal of the background noise; and in Fig. 6B, except for the frequency domain signal at the peak of 0 Hz (the The frequency domain signal of background noise), and the remaining peak signal is the frequency domain signal of the spectrum signal of the object under test.
  • a frequency domain signal greater than or equal to the bright and dark frequency is the frequency domain signal of the spectrum signal of the object to be measured.
  • the mathematical analysis modulus 1 is to discard the frequency domain signal of the background noise and leave the frequency domain signal of the spectrum signal of the object under test to achieve the filtering effect. Since the mathematical analysis module M discards the frequency domain signal of the background noise, the remaining frequency domain signal of the spectrum signal of the object to be measured belongs to the object to be measured and does not contain the background signal, so it is compared with the traditional spectrometer In other words, the light detection device 1 of the present invention not only improves the signal-to-noise ratio of the object to be measured in the spectrum, but the light detection device 1 of the present invention even discards the frequency domain signal of the background noise for filtering, so it can Achieve a spectrum without background noise. Please refer to FIGS.
  • the microcontroller 111 of the light source controller 11 can be electrically or signal connected to the mathematical analysis module M to simultaneously turn on (light up) the brightness frequency and the brightness frequency.
  • the time interval of the light emitting diode and the time interval of turning off (turning off) the light emitting diode in the light-off frequency are transmitted to the mathematical analysis module M, so that the microcontroller 111 turns on (lighting up) according to the light-off frequency and the light-off frequency
  • the mathematical analysis module M can The time interval for turning on (lighting up) the light-emitting diode in the brightness frequency corresponds to the spectrum signal of the object to be measured, and the mathematical analysis module M can turn off (turning off) the light-
  • the discontinuous light-emitting waveforms of the plurality of light-emitting diodes exhibiting the bright-on-off frequency are square waves, sine waves or negative sine waves.
  • the mathematical analysis module M can also analyze the spectral signal of the object to be tested left by the aforementioned filtering effect.
  • the frequency domain signal is processed, and the frequency domain signal of the spectrum signal of the object to be measured is converted into a filtered time domain signal of the object to be measured and a filtered time domain signal diagram of the measured object, wherein the filtered time domain signal of the measured object is Among the time-domain signals of the object to be measured, there is only a filtered spectrum signal of the object to be measured, and there is no background noise.
  • the mathematical analysis module M includes a frequency domain time domain conversion unit M2 (FIG. 5B) that converts the aforementioned frequency domain signal of the measured object spectral signal into a filtered time domain signal of the measured object.
  • the frequency domain time domain conversion unit M2 may be used to perform inverse Fourier Transform (inverse Fourier Transform) on the frequency domain signal of the measured object spectral signal left behind into the filtered time domain signal of the measured object.
  • inverse Fourier transform unit, the converted time-domain signal of the object to be measured after the filtering and the time-domain signal of the object to be measured after the filtering are shown in FIG. 6C. Comparing Fig. 6A and Fig.
  • the filtered DUT time-domain signal in the filtered DUT time-domain signal diagram in Fig. 6C only has the filtered DUT spectral signal and presents It is a square wave, and there is no such background noise in the time-domain signal graph of the object under test after filtering.
  • the background signal in FIG. 6C is zero, so if the value of the spectral signal of the tested object after filtering is divided by the value of the background signal, the signal-to-noise ratio obtained will be infinite; therefore, the present invention improves the sample (Object to be tested) The signal-to-noise ratio in the spectrum of the test result can achieve accurate test results.
  • the mathematical analysis module M, the time domain frequency domain conversion unit M1, and the frequency domain time domain conversion unit M2 may be in software or hardware form, or a combination of the foregoing software or hardware forms; the mathematical analysis The module M, the time domain frequency domain conversion unit M1, and the frequency domain time domain conversion unit M2 are electrically or signal connected to each other.
  • Comparative example 1 is a traditional spectrometer of model SE-2020-050-VNIR with a tungsten halogen lamp as a light source and a grating to obtain 1nm wavelength resolution produced by Taiwan Super Micro Optics Co., Ltd.
  • Application examples 1, 2 and 3 use the light-emitting devices and light detection devices of Examples 1, 2 and 3 respectively.
  • the light-off frequency is about 90.90 times per second, and the time for turning on (lighting up) the light-emitting diode in the light-off frequency The interval is 1 millisecond (1ms), the time interval of turning off (turning off) the light-emitting diode in the light-off frequency is 10 milliseconds (10ms) and using the same light detection as the SE-2020-050-VNIR model of Taiwan Super Micro Optics Co., Ltd.
  • the wavelength resolution characteristics of the light emitting device and the light detecting device of the first, second, and third embodiments are similar to that of a traditional spectrometer. Therefore, the wavelength resolution characteristics of the light-emitting devices and light detection devices of the first, second, and third embodiments used in Application Examples 1, 2, and 3 can replace the wavelength resolution characteristics of traditional spectrometers. Therefore, according to the aforementioned light-emitting device 12 and the light-detecting device 1, please refer to FIG.
  • the step S01 of providing light-emitting elements providing a plurality of light-emitting elements each emitting light having at least one light-emitting peak wavelength and at least one wavelength range, and two adjacent light-emitting elements corresponding to the light-emitting peak wavelengths
  • the wavelength ranges partially overlap to form a continuous wavelength range wider than the wavelength range of each of the plurality of light-emitting elements, or two adjacent light-emitting peak wavelengths corresponding to the two light-emitting elements
  • the multiple wavelength ranges do not overlap; the difference between two adjacent light-emitting peak wavelengths is greater than or equal to 1 nm, and the wavelength half-maximum width corresponding to each of the light-emitting peak wavelengths is greater than nm and less than or equal to 60 nm.
  • the light-emitting element can be a light-emitting diode, a vertical cavity surface-emitting laser or a laser diode.
  • two adjacent light-emitting peak wavelengths differ from each other by 1 nm to 80 nm, and preferably two adjacent light-emitting peak wavelengths differ from each other by 5 nm to 80 nm.
  • the wavelength FWHM corresponding to each of the emission peak wavelengths is between 15 nm and 50 nm, and preferably the wavelength FWHM corresponding to each of the emission peak wavelengths is between 15 nm and 40 nm.
  • the light-emitting step S02 respectively control and make a plurality of the light-emitting elements respectively present a discontinuous light-emitting frequency of a blinking frequency, the blinking frequency is between 0.05 times/sec to 50,000 times/sec, and the blinking frequency is turned on
  • the time interval of the light-emitting element is between 0.000001 seconds and 10 seconds, and the time interval of turning off the light-emitting element in the on-off frequency is between 0.000001 seconds and 10 seconds.
  • the blinking frequency is between 0.5 times/sec and 50,000 times/sec; preferably, the blinking frequency is between 5 times/sec and 50,000 times/sec.
  • the spectrum detection method continues to sequentially include a filtering step S03 and an inverse conversion step S04 after the light-emitting step S02.
  • the filtering step S03 receiving a spectrum signal of the object under test and a background noise, the time interval during which the light-emitting element is turned on (lighted up) in the brightness frequency, and the received signal is the difference between the spectrum signal of the object under test and the background noise
  • the time interval during which the light-emitting element is turned off (extinguished) in the brightness frequency the received signal is the background noise (or called background noise)
  • the spectrum signal of the object under test and the background noise constitute an object under test.
  • Application example 4 is to use the light-emitting device and light detection device of Example 3, the light-off frequency is about 100 times per second, and the time interval for turning on (lighting up) the light-emitting diode in the light-off frequency is 5 milliseconds ( 5ms), the time interval of turning off (turning off) the light-emitting diode in the light-off frequency is 5 milliseconds (5ms), so the cycle of the light-off frequency is 10 milliseconds (10ms).
  • a sheet-shaped PVC board of length, 5 cm width, and 0.2 thickness is used to detect the reflection spectrum signal in accordance with the aforementioned spectrum detection method.
  • the time-domain signal of the object to be measured is Fourier transformed into the frequency-domain signal of the object-under-test and the frequency-domain signal diagram of the object-under-test after the filtering step S03, as shown in Fig. 6B; wherein, the frequency-domain signal of the object to be measured is It is easy to distinguish between the frequency domain signal of the spectrum signal of the object to be measured and the frequency domain signal of the background noise.
  • the frequency domain signal is the frequency domain signal of the spectrum signal of the object to be measured, and the frequency domain signal at 0 Hz or the frequency domain signal less than 100 Hz is the frequency domain signal of the background noise.
  • the background noise Abandon the frequency domain signal and leave the frequency domain signal of the spectrum signal of the object under test.
  • the inverse conversion step S04 performs the inverse Fourier conversion of the frequency domain signal of the spectrum signal of the object to be measured into the filtered time domain signal of the object to be measured (the discontinuous square wave in Fig. 6C) and the The time-domain signal diagram of the test object after filtering is shown in Figure 6C.
  • the background signal does not appear in FIG. 6C (or the background signal can be regarded as zero), so the signal-to-noise ratio will be infinite, thus achieving the effect of accurate testing.
  • a plurality of the light-emitting diodes are respectively supplied with a current density so that the emitted light has a luminous intensity; a plurality of the current densities may be the same or different from each other, or a plurality of the current densities may be partly the same or partly different; and Alternatively, a plurality of the luminous intensities may be the same or different from each other, or a plurality of the luminous intensities may be partly the same or partly different. Preferably, a plurality of the current densities are different from each other, or a plurality of the current densities are partially different. There is another way to improve the signal-to-noise ratio. Please also refer to FIG. 10A.
  • the light source controller 11 also includes a current controller 113 electrically connected to the microcontroller 111, and the current density is determined by the current controller 113. After generation, the current density signal is transmitted to the microcontroller 111, and then the microcontroller 111 provides the corresponding current density to the microcontroller 111 according to the current density signal.
  • One of the light-emitting diodes such as the first light-emitting diode 121, the second light-emitting diode 122, the third light-emitting diode 123, the fourth light-emitting diode 1211, and the fifth light-emitting diode 1221.
  • the current controller 113 can also be a current density module integrated in the microcontroller 111 to generate the current density.
  • the current density module can be in the form of software or hardware, so there is no need to
  • the current controller 113 is additionally provided outside the microcontroller 111.
  • another light-emitting method can be used.
  • the light-emitting method includes the step S01 of providing the light-emitting element and the step S02 of the light-emitting element in sequence, and further includes the step S02 of the light-emitting element in sequence.
  • the initial spectral energy distribution curve obtains step S021 and a current density adjustment step S022, and the aforementioned spectral detection method can be changed to include the filtering step S03 in order after the current density adjustment step S022.
  • the reverse conversion step S04 please refer to Figure 10B.
  • Step S021 of obtaining the initial spectral energy distribution curve firstly provide the same current density to a plurality of the For the light-emitting diode, the initial spectral energy distribution curve of the light-emitting device 12 measured by the light detector 13 and the calculator 14 in the absence of the test object A in FIG. 10A is as shown in FIG. 10C.
  • FIG. 10C In FIG.
  • the first wavelength range corresponding to the first luminous peak wavelength (734 nm) of the first light is shown, and the corresponding first luminous intensity is 6.
  • the fourth light the fourth emission intensity of the fourth emission peak wavelength (772nm) corresponding to the fourth wavelength range, corresponding to 17. 7x107 (au) 0 Since the background noise and the fourth fixed value is greater than the second emission intensity A luminous intensity, so obviously the signal-to-noise ratio of the fourth wavelength range is higher than the signal-to-noise ratio of the first wavelength range.
  • the current density adjustment step S022 Next, select a specific value and the corresponding light-emitting diode from a plurality of the luminous intensities, usually the one with the largest value, for example, the fourth luminous intensity and the corresponding light-emitting diode in FIG. 10C The fourth light-emitting diode 1211. Then, increase or decrease the current density corresponding to the unselected light-emitting diode, so that the luminous intensity corresponding to the unselected light-emitting diode is the same as the luminous intensity corresponding to the selected light-emitting diode Or close.
  • a specific value and the corresponding light-emitting diode from a plurality of the luminous intensities, usually the one with the largest value, for example, the fourth luminous intensity and the corresponding light-emitting diode in FIG. 10C The fourth light-emitting diode 1211. Then, increase or decrease the current density corresponding to the unselected light-emitting diode, so that the
  • the unselected light-emitting diode is the first light-emitting diode 121
  • the first current density corresponding to the first light-emitting diode 121 is enhanced, so that the unselected first light-emitting diode 121 is
  • the corresponding first luminous intensity which is the same as the fourth luminous intensity corresponding to the selected fourth light-emitting diode 1211, is 17. 7x107 (au) or close to 17. 7x107 (au), thus increasing the first wavelength
  • the signal-to-noise ratio of the range please refer to the spectral energy distribution curve after adjusting the first current density as shown in FIG. 10D.
  • the light-emitting intensity corresponding to each light-emitting diode that is not selected is the same as the light-emitting intensity of the selected light-emitting diode.
  • the luminous intensity corresponding to the diode is the same or close to, for example, the fourth luminous intensity corresponding to the selected fourth light-emitting diode 1211 is the same as 17. 7x107 (au) or close to 17.
  • the luminescence correction method sequentially includes a calibration relationship obtaining step P01, a forward bias measurement step P02, a proportional relationship obtaining step P03, and a completing calibration step P04.
  • the luminescence correction method can be continued after the luminescence method, and the filtering step S03 and the inverse conversion step S04 of the aforementioned spectrum detection method are continued after the luminescence correction method, please refer to FIG. 11A.
  • Calibration relationship obtaining step P01 obtaining the mathematical relationship or correspondence table or graph between the luminous intensity or relative intensity of each light-emitting diode and the junction temperature, which is usually provided by the manufacturer of the light-emitting diode.
  • FIG. 11B which is a corresponding diagram of the relative intensity of the fourth light emitting diode 1211 and the junction temperature.
  • the fourth light emission peak wavelength of the fourth light emitting diode 1211 at the junction temperature of 25 degrees Celsius is 772 nm and The relative strength is calculated at 100%.
  • the mathematical relationship or correspondence table or diagram between the forward voltage of each light-emitting diode and the junction temperature is also obtained.
  • the fourth light-emitting diode 1211 is measured at a junction temperature of 25 degrees Celsius.
  • the fourth luminous peak wavelength is 772nm and forward bias is 2 volts.
  • FIG. 11C is a corresponding diagram of the forward bias voltage of the fourth light emitting diode 1211 and the junction temperature.
  • Step P02 of measuring forward bias in the time interval of turning on (lighting up) the light-emitting diode, for example, turning on (lighting up) the light-emitting diode at the blinking frequency, and measuring the forward bias of the light-emitting diode at the same time Pressure.
  • the blinking frequency of the fourth light-emitting diode 1211 is about 90.90 times per second, and the time interval for turning on (lighting up) the light-emitting diode in the blinking frequency is 1 millisecond (lms ), the time interval of turning off (extinguishing) the light emitting diode in the brightness frequency is 10 milliseconds (10ms), and turning on (lighting up) the time interval of the fourth light emitting diode 1211 in the brightness frequency, and measuring the fourth light emitting diode at the same time
  • the forward bias of 1211 is 1.9 volts.
  • the proportional relationship obtaining step P03 compare the measured forward bias voltage with the aforementioned mathematical relationship or correspondence table or graph between the forward bias voltage of the light-emitting diode and the junction temperature, and convert the junction temperature to obtain the junction temperature.
  • the measured forward bias voltage of the fourth light-emitting diode 1211 is 1.9 volts, and the junction temperature is 50 degrees Celsius in comparison with FIG. 11C.
  • the junction temperature obtained by conversion is compared with the aforementioned mathematical relationship or correspondence table or graph of the luminous intensity or relative intensity and the junction temperature, and the luminous intensity or relative intensity is obtained by conversion.
  • the junction temperature obtained by comparison is 50 degrees Celsius
  • the luminous intensity or relative intensity will be converted to obtain the luminous intensity or relative intensity corresponding to the luminous intensity or relative intensity and the mathematical relationship or the corresponding table or the luminous intensity or relative intensity at a specific junction temperature in the figure.
  • the comparison results in a proportional relationship. For example, if the specific junction temperature is 25 degrees Celsius, the relative intensity of the fourth light-emitting diode 1211 at 25 degrees Celsius is 100%, and the relative intensity of the junction temperature at 25 degrees Celsius is 100% divided by 50 degrees Celsius The relative strength of 83%, the ratio is 1. 20 times.
  • the calibration completion step P04 Multiply the luminous intensity of the wavelength range corresponding to the light-emitting diode in the initial spectral energy distribution curve by the proportional relationship to achieve the luminous intensity correction; or, the measured value is related to
  • the spectral signal of the wavelength range corresponding to the light-emitting diode is multiplied by the proportional relationship to achieve the correction of the spectral signal.
  • the spectral signal of the wavelength range may be the aforementioned spectral signal of the object under test and the background noise to form the time domain signal of the object under test.
  • the light detector 13 or the calculator 14 multiplies the fourth luminous intensity corresponding to the fourth light-emitting diode 1211 by the ratio of 17. 7 ⁇ 107 (au) to 1.
  • the resulting luminous intensity can be It is regarded as the luminous intensity of the fourth light-emitting diode 1211 at the specific junction temperature (25 degrees Celsius).
  • the light-emitting diodes, part of the light-emitting diodes, or all of the light-emitting diodes of the plurality of light-emitting diodes of the light-emitting device 12 executes the light-emitting correction method sequentially or simultaneously.
  • all the light-emitting diodes execute the luminescence correction method at the same time, and the spectral energy distribution curve obtained in this way can be regarded as the spectral energy distribution curve at the specific junction temperature (25 degrees Celsius), and obtain Correction page of the spectrum letter (Rules Article 91)
  • the signal can be regarded as the spectral signal at the specific junction temperature (25 degrees Celsius).
  • FIGS. 12A and 12B In order to accurately measure the surface composition or internal composition of the entire test object, please refer to FIGS. 12A and 12B together.
  • the light-emitting device 12 of the light detection device 1 and the test object A can rotate relative to each other.
  • the light-emitting device 12 may also be connected to a rotating device 15, and the rotating device 15 drives a plurality of the light-emitting elements to revolve about a revolution axis, so that the light-emitting device 12 and the waiting device 12
  • the measured object A rotates relatively
  • the revolution axis can be a physical revolution axis or a virtual revolution axis.
  • the light-emitting device 12 can rotate.
  • the rotating device 15 may be the motor electrically connected to the microcontroller 111, the rotating device 15 drives a rotating shaft 151 to rotate, and one end of the rotating shaft 151 is connected to the circuit board 120 of the light emitting device 12 Therefore, the rotating shaft 151 can be regarded as the revolving shaft center.
  • At least some of the light-emitting elements are not in the extending direction of the revolving shaft center, and therefore are not in the extending direction of the revolving shaft center.
  • the light-emitting element revolves around the revolving axis of rotation. If there are slightly different components in multiple areas of the test object A, for example, a first area A1 and a second area A2 of the test object A have slightly different components, when the first light-emitting When the diode 121 forms a first relative position with the first area ⁇ or A1 (FIG.
  • the photodetector 13 which converts the received first light into a spectrum signal of the object to be measured in a first relative position and transmits the spectrum signal of the object to be measured in the first relative position to the Calculator 14. Please refer to FIG. 12B.
  • the first light emitting diode 121 revolves around the revolving axis to form a second relative position with the first area A1, that is to say, the light emitting device 12 and the test object A form the In the second relative position, the first light emitting diode 121 is closer to the second area A2 and farther away from the first area A1, and the first light having the first wavelength range emitted by the first light emitting diode 121 passes through It penetrates the first area A1 and the second area A2 and is received by the photodetector 13.
  • the photodetector 13 converts the received first light into a second relative position of the spectrum signal of the object to be measured and then The spectrum signal of the object to be measured at the two relative positions is transmitted to the calculator 14.
  • the calculator 14 calculates the average value of the spectrum signal of the object to be measured at the first relative position and the spectrum signal of the object to be measured at the second relative position, and uses it as the aforementioned spectrum signal of the object to be measured.
  • the second light emitting diode 122 also revolves from the first relative position to the second relative position with the revolving axis of rotation. In this way, there will be no problem of distortion of the spectrum signal of the test object due to the presence of slightly different components in multiple regions of the test object A.
  • a plurality of the light-emitting diodes can be turned on or off at the same time according to actual needs, or only one or part of the light-emitting diodes can be selectively turned on or off.
  • the light-emitting diode is turned on or off, or a plurality of the light-emitting diodes are turned on or off in sequence, or any one of the above methods is turned on or off in the blinking frequency manner, and the photodetector 13 converts the received light L
  • the spectrum signal of the object to be measured at the first relative position is generated and the spectrum signal of the object to be measured at the first relative position is transmitted to the calculator 14.
  • a plurality of the light-emitting diodes can be turned on or off at the same time according to actual needs, or only one or part of the light-emitting diodes can be selectively turned on or off.
  • the light-emitting diode is turned on or off, or a plurality of the light-emitting diodes are turned on or off in sequence, or any one of the above methods is turned on or off in the bright-flash frequency manner, and the photodetector 13 detects the received light L is converted into the spectrum signal of the object to be measured at the second relative position and the spectrum signal of the object to be measured at the second relative position is transmitted to the calculator 14.
  • the calculator 14 calculates the average value of the spectrum signal of the object to be measured at the first relative position and the spectrum signal of the object to be measured at the second relative position, and uses it as the aforementioned spectrum signal of the object to be measured.
  • the light emitting device 12 and the test object A can form a plurality of relative positions. In each of the relative positions, a plurality of relative positions can be simultaneously adjusted according to actual needs.
  • the light-emitting diodes are turned on or off, or only one or part of the light-emitting diodes are turned on or off selectively, or a plurality of the light-emitting diodes are turned on or off sequentially, or any one of the above methods is in the blinking frequency mode
  • the light detector 13 converts the received light L into a spectrum signal of the object to be measured in the relative position and transmits the spectrum signal of the object to be measured in the relative position to the calculator 14.
  • the calculator 14 calculates the average value of the multiple spectrum signals of the object to be measured at the relative position, and uses it as the aforementioned spectrum signal of the object to be measured.
  • the microcontroller 111 controls the rotation of the rotating shaft 151 of the rotating device 15, so that the light-emitting elements of the light-emitting device 12 rotate at a predetermined angle, for example, every 10 degrees.
  • the angle is the relative position, so there are 36 relative positions in the whole 360-degree revolution.
  • the calculator 14 calculates the average value of the spectrum signals of the 36 relative positions to be used as the aforementioned Spectral signal of the measured object.
  • the test object A is connected to the rotating device 15, and the rotating device 15 drives the test object A to rotate on a rotation axis A0, thereby making the light emitting
  • the device 12 rotates relative to the object A, and the rotation axis A0 can be a physical rotation axis or a virtual rotation axis.
  • the rotating device 15 drives the rotating shaft 151 to rotate.
  • the rotating shaft 151 drives the object A to rotate with gears.
  • the normal to the center of the object A is the virtual axis of rotation. That is, the rotation axis A0 of the autorotation.
  • the micro-controller 111 controls the rotation of the rotating device 15 so that the relative position of the object A to be measured is rotated on the axis of rotation A0 every 10 degrees, so the entire 360-degree rotation has a total of 36 degrees.
  • the calculator 14 calculates the average value of the spectrum signals of the 36 objects to be measured at the relative positions as the aforementioned spectrum signal of the object to be measured.
  • the light emitting device 12 of the present invention can rotate relative to the test object A.
  • the light emitting device 12 and the test object A can form a plurality of relative positions.
  • the received light L is converted into a spectrum signal of the object to be measured in the relative position and the spectrum signal of the object to be measured in the relative position is transmitted to the calculator 14.
  • the calculator 14 calculates the average value of the multiple spectrum signals of the object to be measured at the relative position, and uses it as the aforementioned spectrum signal of the object to be measured. In this way, there is no problem of distortion of the spectrum signal of the object A due to the different distances between the light-emitting elements of the light-emitting device 12 and the object A. Similarly, referring to FIG.
  • the light-emitting device 12 and the light detector 13 are arranged on the same side of the object A, for example, the light-emitting device 12 and the light detector 13 are arranged on the object A
  • the reflectance spectrum signal of the test object A can be measured.
  • the distances between the first light-emitting diode 121 and the second light-emitting diode 122 and the test object A are different. Similarly, this will result in distortion of the spectrum signal of the object under test generated by the first light of the first light-emitting diode 121 and the second light of the second light-emitting diode 122.
  • the light-emitting device 12 of the present invention can rotate relative to the object A, for example, two rotation devices 15 are provided, so that a plurality of the light-emitting elements revolve around the revolution axis (the rotation axis 151), and The test object A rotates on the rotation axis A0.
  • the light-emitting device 12 and the test object A can form a plurality of relative positions, and the light detector 13 converts the received light L into the test object spectral signal of the relative position and the test object of the relative position
  • the spectrum signal is sent to the calculator 14.
  • the calculator 14 calculates an average value of the multiple spectrum signals of the object to be measured at the relative position, and uses it as the aforementioned spectrum signal of the object to be measured.
  • the light-emitting device, light-emitting method, light detection device, spectrum detection method, and light-emitting correction method provided by the present invention are close to the analysis results of the sample. Using the high resolution results of the traditional tungsten halogen lamp spectrometer, and at the same time, the signal-to-noise ratio in the spectrogram of the sample detection result is improved, which can indeed achieve the test accuracy.
  • the light-emitting device, light-emitting method, light detection device, spectrum detection method, and light-emitting correction method of the present invention can achieve the expected use technical effects, and the present invention has not been disclosed before application, and it is fully in compliance with the patent law. Regulations and requirements.
  • the figures and descriptions disclosed above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention; other equivalent changes or modifications made by those skilled in the art based on the characteristic scope of the present invention are all It should be regarded as not departing from the design scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Led Device Packages (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种发光装置(12),发光装置(12)至少包含多个发光元件,多个发光元件是分别由供给一电流密度而使得放射的光线(L)具有一发光强度,多个电流密度是彼此不相同,或多个电流密度是部分不相同。还提供包含至少四个发光元件,且所对应的四个明灭频率是可选择地为彼此完全不同或至少部分彼此相同的光检测装置(1),以及发光装置(12)与待测物(A)能够相对转动的光检测装置(1)。还提供一种发光方法、一种光谱检测方法及一种发光修正方法,能够提高信杂比、修正发光强度或光谱信号,以及将背景噪声的频域信号舍弃并留下待测物(A)光谱信号的频域信号,以达到滤波效果而使得测试精准。

Description

发光装置、 发光方法、 光检测装置、 光谱检测方法及发光修正方法 技术领域 本发 明关于一种发光装置, 尤其是指能够选择发光二极管放射的光的波长范围、 相邻 的发光峰值波长 (light emission peak wavelength)差异范围、波长半高宽 (Full -Width at Half-Maximum, FWHM)的范围及明灭频率 (lighting frequency)的发光装置、 发光方法、 光检测装置、 光谱检测方法及发光修正方法。 背景技术 光谱 仪可以用来测量穿透物体的透射光或测量物体表面的反射光, 而传统的光谱仪 (spectrophotometer, 又可称为分光光度计)通常包含有光源及单光器 (monochromator) , 其中光源可以采用卤素气体充填的钨丝灯 (卤钨灯)以产生发射光谱约在 320nnT2500 nm的 Vis-near IR (可见光 -近红外光)呈连续光谱的光, 接着再由棱镜 (prism)或光栅 (grating) 所构成的单光器选择特定波长的单色光以供试样 (或称待测物)的吸光或反射测定,这当然 也包含可以在设定的波长范围内连续扫描, 以进行试样的吸收光谱或反射光谱的分析。然 而, 就如同中国发明专利授权公告第 CN101236107B号所述钨丝灯的众多问题之外, 由于钨 丝灯发热量大且温度高的因素, 当利用钨丝灯做为光源而进行例如农产品、食品、医药品、 石化产品的有机产品检测时, 高温会对有机试样造成质变, 因而严重影响检测结果。 前述 第 CN101236107B号专利所公开的技术也可为本发明所引用。 前述 第 CN101236107B号专利公开多个发光二极管 (Light-emitting diode, LED)做为 光谱仪的光源, 每个 LED发射不同波长范围的单色光谱, 除了将前述多个 LED组合成连续光 谱之外, 还可以依据设计当只需要某一波长范围的单色光时, 只需要点亮该波长范围所对 应的 LED即可, 所以既可以同时点亮多个 LED合成连续光谱, 也可以依所需扫描的波长范围 而按序点亮所对应的 LED。然而, 前述第 CN101236107B号专利是将多个 LED的发射光线聚焦 在单色器的入射狭缝上, 因此并无法解决单色器造价高昂及系统复杂的问题。 中国实用新 型专利授权公告第 CN205388567U号则是公开使用多个 LED及光纤的组合以避免使用单色 器, 另外又使用全反射镜增加测量光程以提高检测试样的效率。 前述第 CN205388567U号专 利所公开的技术也可为本发明所引用。 另外, 中国发明专利公开第 CN109932335A号也公开 了类似的技术。 前述三篇专利 虽然改善了传统光谱仪的光源发热及单色器昂贵的问题,然而前述第三 篇专利使用 LED阵列做为光源的光谱仪 (spectroscopy)的波长分辨率 (通常大于 10nm)比 传统使用卤钨灯及单光器的光谱仪的波长分辨率 (通常为 lnm)还低, 这导致了使用 LED阵 列做为光源的前述三篇专利在正确解析试样的光谱图上的疑虑。前述三篇专利的另一个问 题是无法进一步提高信噪比 (信号噪音比或信号噪声比, Signal-to-noise ratio, SNR或 S/N, 也称信杂比), 前述三篇专利的 LED阵列只是用来取代卤钨灯做为光源, 除此的外并 没有改变光源的其他操作方式, 因此显然地对于从光源端所导致的 SNR并无改善, 所以前 述三篇专利并无法进一步提高 SNR。 前述三篇专利还存在一个问题是, 由于多个 LED是以 成排成列的方式或者以预定的方式排列而在一平面上构成 LED阵列,这限制了待测物的表 面必须与该平面呈现平行才能够保障测量的准确性; 然而, 实际上待测物的表面通常难以 与该平面保持平行, 例如待测物的表面是稍微弯曲的曲面; 或者, 因为某种原因, 在摆放 待测物的时候导致了待测物的表面无法与该平面保持平行, 因而导致对整个待测物表面组 成或内部组成的误判。 即使可以确保地将待测物的表面与该平面保持平行, 然而当待测物 的表面组成或内部组成在待测物的各个区域呈现不均匀时,单次测量待测物的表面的反射 光谱或穿透待测物的吸收光谱的测量结果,将会导致对整个待测物表面组成或内部组成的 误判。 前述三篇专利也未考虑到 LED的散热问题所导致的发光强度必须校正的问题。 发明内容 本发 明的主要目的即在于提供由彼此发射不同波长范围的多个 LED所构成的一种转动 型发光装置及由该发光装置所构成的一种光检测装置,本发明的光检测装置对于试样的解 析结果接近于使用传统卤钨灯光谱仪的高解析结果,而且同时提高了试样检测结果光谱图 中的信杂比, 以及发光强度的校正, 并且只要单次测量即可得到待测物的表面的反射光谱 或穿透待测物的吸收光谱的精确测量结果。 为达上述 目的, 本发明的一种发光装置, 至少包含: 多个各放射具有至少一发光峰值 波长及至少一波长范围的光的发光元件; 其中, 相邻的两个该发光峰值波长所对应的两个 该发光元件的所述多个波长范围部分重叠 以形成较所述多个发光元件中的各者的该波长 范围宽的一连续波长范围,或者相邻的两个该发光峰值波长所对应的两个该发光元件的所 述多个波长范围不重叠;多个该发光元件是分别由供给一电流密度而使得放射的光线具有 一发光强度; 多个该电流密度是彼此不相同, 或者多个该电流密度是部分不相同。 在本发 明的一实施例中, 相邻的两个该发光峰值波长彼此相差为大于或等于 lnm, 多 个该发光峰值波长之中的至少一部分的该发光峰值波长所对应的波长半高宽为大于 Onm且 小于或等于 60nm。 在本发 明的一实施例中, 该发光元件为发光二极管、 垂直共振腔面射型激光或激光二 极管。 在本发 明的一实施例中, 多个该发光元件能够分别呈现一明灭频率的非连续发光, 多 个该明灭频率可以是彼此相同或彼此不同,或者多个该明灭频率可以是部分相同或部分不 同。 在本发 明的一实施例中, 多个该发光元件是至少四个该发光元件, 且四个该发光元件 所对应的四个该明灭频率是可选择地为彼此完全不同或至少部分彼此相同。 在本发 明的一实施例中, 该明灭频率是介于 0. 05次 /秒至 50000次 /秒之间。 在本发 明的一实施例中, 该明灭频率中开启该发光元件的时间区间为介于 0. 00001秒 至 10秒之间。 在本发 明的一实施例中, 该明灭频率中关闭该发光元件的时间区间为介于 0. 00001秒 至 10秒之间。 在本发 明的一实施例中,相邻的两个该发光峰值波长彼此相差为介于 lnm至 80nm之间。 在本发 明的一实施例中,相邻的两个该发光峰值波长彼此相差为介于 5nm至 80nm之间。 在本发 明的一实施例中,各该发光峰值波长所对应的波长半高宽为介于 15nm至 50nm之 间。 在本发 明的一实施例中,各该发光峰值波长所对应的波长半高宽为介于 15nm至 40nm之 间。 为达上述 目的, 本发明又提供一种光检测装置, 至少包含: 一光源控制器、 一发光装 置、 一光检测器及一计算器; 该光源控制器与该发光装置电性连接, 该光检测器与该计算 器电性连接, 该光检测器接收来自该发光装置发射的一光线, 且该光线在该发光装置与该 光检测器之间的行进路径形成一光路; 其中, 发光装置至少包含多个各放射具有至少一发 光峰值波长及至少一波长范围的光的发光元件;相邻的两个该发光峰值波长所对应的两个 该发光元件的所述多个波长范围部分重叠 以形成较所述多个发光元件中的各者的该波长 范围宽的一连续波长范围,或者相邻的两个该发光峰值波长所对应的两个该发光元件的所 述多个波长范围不重叠; 相邻的两个该发光峰值波长彼此相差为大于或等于 lnm, 多个该 发光峰值波长之中的至少一部分的该发光峰值波长所对应的波长半高宽为大于 Onm且小于 或等于 60nm; 多个该发光元件能够分别呈现一明灭频率的非连续发光, 多个该发光元件是 至少四个该发光元件,且四个该发光元件所对应的四个该明灭频率是可选择地为彼此完全 不同或至少部分彼此相同。 在本发 明的一实施例中, 一数学分析模块是设置于该光检测器或该计算器, 该数学 分析模块是与该光检测器电性或信号连接,或该数学分析模块是与该计算器电性或信号连 接, 而所述该数学分析模块是软件或硬件形态, 该光检测器所收集到的信号是被传送到该 数学分析模块; 该明灭频率中开启该发光元件的时间区间, 该光检测器所接收到的信号为 一待测物光谱信号与一背景噪声的结合; 该明灭频率中关闭该发光元件的时间区间, 该光 检测器所接收到的信号为该背景噪声;该待测物光谱信号及该背景噪声构成一待测物时域 信号,该数学分析模块是包含将该待测物时域信号转换为一待测物频域信号的一时域频域 转换单元。 在本发 明的一实施例中, 该时域频域转换单元是用以将该待测物时域信号进行傅里 叶转换为该待测物频域信号的一傅里叶转换单元。 在本发 明的一实施例中,该待测物频域信号是包含该待测物光谱信号的频域信号及该 背景噪声的频域信号,该数学分析模块是能够将该背景噪声的频域信号舍弃并留下该待测 物光谱信号的频域信号,该数学分析模块是包含将前述所留下的该待测物光谱信号的频域 信号转换为一滤波后待测物时域信号的一频域时域转换单元。 在本发 明的一实施例中,该频域时域转换单元是能够将前述所留下的该待测物光谱信 号的频域信号进行傅里叶反转换为该滤波后待测物时域信号的一傅里叶反转换单元。 为达上述 目的, 本发明又提供一种光检测装置, 至少包含: 一光源控制器、 一发光装 置、 一或多个光检测器及一计算器; 该光源控制器与该发光装置电性连接, 该光检测器与 该计算器电性连接, 该光检测器接收来自该发光装置发射的一光线, 且该光线在该发光装 置与该光检测器之间的行进路径形成一光路; 其中, 该发光装置包含多个各放射具有至少 一发光峰值波长及至少一波长范围的光的发光元件; 一待测物是被置放于该光路, 该发光 装置是与该待测物能够相对转动。 在本发 明的一实施例中, 多个该发光元件能够以一公转旋转轴心进行公转。 在本发 明的一实施例中, 该发光装置与一转动装置连接, 该转动装置带动多个该发光 元件以该公转旋转轴心进行公转。 在本发 明的一实施例中, 该转动装置带动一转动轴进行转动, 该转动轴的一端与该发 光装置连接, 该转动轴为该公转旋转轴心。 在本发 明的一实施例中, 该转动装置与该光源控制器的一微控制器电性连接, 该微控 制器是控制该转动轴进行一预定角度的转动。 在本发 明的一实施例中, 该待测物能够以一自转旋转轴心进行自转。 本发 明又提供一种发光方法, 按序包含以下步骤: 一提供发光元件步骤: 提供多个各 放射具有至少一发光峰值波长及至少一波长范围的光的发光元件,相邻的两个该发光峰值 波长所对应的两个该发光元件的所述多个波长范 围部分重叠以形成较所述多个发光元件 中的各者的该波长范围宽的一连续波长范围,或者相邻的两个该发光峰值波长所对应的两 个该发光元件的所述多个波长范围不重叠;相邻的两个该发光峰值波长彼此相差为大于或 等于 lnm, 多个该发光峰值波长之中的至少一部分的该发光峰值波长所对应的波长半高宽 为大于 Onm且小于或等于 60nm; —发光步骤: 分别控制并使得多个该发光元件分别呈现一 明灭频率的非连续发光, 该明灭频率是介于 0. 05次 /秒至 50000次 /秒之间, 该明灭频率中 开启该发光元件的时间区间为介于 0. 00001秒至 10秒之间, 该明灭频率中关闭该发光元件 的时间区间为介于 0. 00001秒至 10秒之间。 本发 明又提供一种发光方法, 按序包含以下步骤: 一提供发光元件步骤: 提供多个各 放射具有至少一发光峰值波长及至少一波长范围的光的发光元件。 一发光步骤: 使多个该 发光元件发光。一初始光谱能量分布曲线取得步骤: 多个该发光元件是分别由供给一电流 密度而使得放射的光线具有一发光强度 , 以相同的一电流密度分别提供给多个该发光元 件, 测量得到一初始光谱能量分布曲线。 一电流密度调整步骤: 从多个该发光强度中挑选 出特定的数值及所对应的该发光元件,增强或减弱未被挑选的该发光元件所对应的该电流 密度, 以使得未被挑选的该发光元件所对应的该发光强度, 与被挑选的该发光元件所对应 的该发光强度相同或接近。 在本发 明的一实施例中,相邻的两个该发光峰值波长所对应的两个该发光元件的所述 多个波长范围部分重叠以形成较所述多个发光元件 中的各者的该波长范围宽的一连续波 长范围,或者相邻的两个该发光峰值波长所对应的两个该发光元件的所述多个波长范围不 重叠; 相邻的两个该发光峰值波长彼此相差为大于或等于 lnm, 多个该发光峰值波长之中 的至少一部分的该发光峰值波长所对应的波长半高宽为大于 Onm且小于或等于 60nm。 在本发 明的一实施例中,分别控制并使得多个该发光元件分别呈现一明灭频率的非连 续发光, 该明灭频率是介于 0. 05次 /秒至 50000次 /秒之间, 该明灭频率中开启该发光元件 的时间区间为介于 0. 00001秒至 10秒之间, 该明灭频率中关闭该发光元件的时间区间为介 于 0. 00001秒至 10秒之间。 本发 明又提供一种光谱检测方法, 是包含前述发光方法, 该光谱检测方法还包含: 一 滤波步骤: 接收一待测物光谱信号及一背景噪声, 该明灭频率中开启该发光元件的时间区 间, 所接收到的信号为该待测物光谱信号与该背景噪声的结合, 该明灭频率中关闭该发光 元件的时间区间, 所接收到的信号为该背景噪声, 该待测物光谱信号及该背景噪声构成一 待测物时域信号, 将该待测物时域信号进行傅里叶转换为一待测物频域信号, 该待测物频 域信号是被区分为该待测物光谱信号的频域信号及该背景噪声的频域信号,接着将该背景 噪声的频域信号舍弃并留下该待测物光谱信号的频域信号。 在本发 明的一实施例中, 该光谱检测方法还包含一反转换步骤, 该反转换步骤是将前 述所留下的该待测物光谱信号的频域信号进行傅里叶反转换为一滤波后待测物时域信号。 本发 明又提供一种发光修正方法, 按序包含以下步骤: 一校正关系取得步骤: 提供多 个各放射具有至少一发光峰值波长及至少一波长范围的光的发光元件,多个该发光元件是 分别具有一发光强度,取得每一个该发光元件的该发光强度或一相对强度与一接面温度的 数学关系式或对应表或图,也取得每一个该发光元件的一顺向偏压与该接面温度的数学关 系式或对应表或图。 一测量顺向偏压步骤: 于点亮该发光元件的时间区间, 同时测量该发 光元件的该顺向偏压。一比例关系取得步骤: 将所测量到的该顺向偏压对照前述的该发光 元件的顺向偏压与该接面温度的数学关系式或对应表或图, 换算得到该接面温度; 接着, 将换算得到的该接面温度对照前述的该发光强度或相 对强度与该接面温度的数学关系式 或对应表或图, 换算得到该发光强度或相对强度; 再接着, 将换算得到该发光强度或相对 强度,与该发光强度或相对强度与该接面温度的数学关系式或对应表或图中的一特定接面 温度下的发光强度或相对强度相比较得出一比例关系。 一完成校正步骤: 将前述该初始光 谱能量分布曲线中该发光元件所对应的该波长范围的该发光强度乘以该比例关系, 以达到 该发光强度的校正; 或者, 将所测得有关于该发光元件所对应的该波长范围的光谱信号 乘以该比例 关系, 以达到光谱信号的校正。 附图说明 图 1是本发明发光装置及光检测装置的实施方式示意图(一)。 图 2是本发明第一实施例的发光二极管的放射光谱图。 图 3是本发明第二实施例的发光二极管的放射光谱图。 图 4是本发明第三实施例的发光二极管的放射光谱图。 图 5A是本发明发光装置及光检测装置的实施方式示意图(二)。 图 5B是本发明发光装置及光检测装置的实施方式示意图(三)。 图 6A是本发明光检测装置所测得的待测物时域信号图。 图 6B是本发明光检测装置将待测物时域信号进行傅里叶转换后的待测物频域信号图。 图 6C是本发明光检测装置将经过滤波效果后所留下的待测物光谱信号的频域信号进 行傅里叶反转换后的滤波后待测物时域信号图。 图 7A是比较例 1使用传统光谱仪所测得的氧化锌及氧化锌混合氧化铁反射光谱图。 图 7B是应用例 1使用本发明光检测装置所测得的氧化锌及氧化锌混合氧化铁反射光谱 图。 图 7C是应用例 2使用本发明光检测装置所测得的氧化锌及氧化锌混合氧化铁反射光谱 图。 图 7D是应用例 3使用本发明光检测装置所测得的氧化锌及氧化锌混合氧化铁反射光谱 图。 图 8是本发明发光方法的步骤流程图。 图 9是本发明光谱检测方法的步骤流程图。 图 10A是本发明光检测装置包含电流控制器的实施方式示意图。 图 10B是本发明另一种发光方法及光谱检测方法的步骤流程图。 图 10C是本发明发光装置的初始光谱能量分布曲线。 图 10D是本发明调整第一电流密度之后的光谱能量分布曲线。 图 10E是本发明调整其他电流密度之后的光谱能量分布曲线。 图 11A是本发明发光修正方法、 发光方法及光谱检测方法的步骤流程图。 。 图 11B是本发明第四发光二极管的相对强度与接面温度的对应图。 图 11C是本发明第四发光二极管的顺向偏压与接面温度的对应图。 图 12A是本发明第一发光二极管与第一区域形成第一相对位置示意图。 图 12B是本发明第一发光二极管与第一区域形成第二相对位置示意图。 图 12C是本发明待测物以自转旋转轴心进行自转的实施方式示意图。 图 12D是本发明待测物的表面与该发光装置 12无法保持平行的实施方式示意图(一)。 图 12E是本发明待测物的表面与该发光装置 12无法保持平行的实施方式示意图(二)。 附 图说明如下: 光检测装置 11 光源控制器
111 微控制器
112 时钟产生器 113 电流控制器 12 发光装置 120 电路板 121 第一发光二极管 1211 第四发光二极管 122 第二发光二极管 1221 第五发光二极管 123 第三发光二极管
13 光检测器
14 计算器
15 转动装置 151 转动轴 A 待测物 A0 自转旋转轴心 A1 第一区域 A2 第二区域 L 光线
M 数学分析模块
Ml 时域频域转换单元
M2 频域时域转换单元
P01 校正关系取得步骤
P02 测量顺向偏压步骤
P03 比例关系取得步骤
P04 完成校正步骤
R 光路
501 提供发光元件步骤
502 发光步骤
5021 初始光谱能量分布曲线取得步骤
5022 电流密度调整步骤
503 滤波步骤
504 反转换步骤 具体实施方式 为利 了解本发明的技术特征、 内容与优点及其所能实现的技术效果, 兹将本发明配合 附图, 并以实施例的表达形式详细说明如下, 而其中所使用的附图, 其主旨仅为示意及辅 助说明书的用, 未必为本发明实施后的真实比例与精准配置, 故不应就所附的附图的比例 与配置关系解读、 局限本发明于实际实施上的权利要求。 首先 , 请参阅图 1的第一实施例, 本发明的一种发光装置 12是适用于一光检测装置 1, 该光检测装置 1包含一光源控制器 11、 该发光装置 12、 一或多个光检测器 13及一计算器 14。 该光源控制器 11分别与该发光装置 12及一外部电源 (图未绘出)电性连接,该光检测器 13与 该计算器 14电性连接, 该光检测器 13接收来自该发光装置 12发射的一光线 L, 且该光线 L在 该发光装置 12与该光检测器 13之间的行进路径形成一光路 R, 该光检测器 13例如可以是光 电倍增管 (photomultiplier)、 光导电度检测器 (photoconducting detector)、 娃热福射 检测器 (Si bolometer)。 一待测物 A是被置放于该光路 R, 该光路 R是穿透该待测物 A或该光 路 R是在该待测物 A的表面形成反射。 在图 1中, 是以该光路 R是穿透该待测物 A为举例, 以 测得该待测物 A的吸收光谱。 另外, 在该光路 R是在该待测物 A的表面形成反射的实施方式 中, 是测得该待测物 A的反射光谱 (图 12E)。 该光检测器 13将光线 L转换成一待测物光谱信 号并将该待测物光谱信号传送至该计算器 14,该计算器 14是将该待测物光谱信号转换后形 成一待测物光谱图, 该计算器 14例如为个人电脑、 笔记本电脑或电脑服务器。 该发光装置 12,至少包含:多个各放射具有至少一发光峰值波长 (light emission peak wavelength)及至少一波长范围的光的发光元件, 该发光峰值波长或该波长范围是介于 300nm至 2500nm之间, 其中该发光元件可以是发光二极管、 垂直共振腔面射型激 光 (Vertical-Cavity Surface-Emitting Laser, VCSEL)或激光二极管 (Laser Diode, LD) 0 以下实施例的该发光元件是以发光二极管为举例, 这是为了说明方便起见, 而非以本发明 所举例发光二极管为限, 且熟知此技艺者当知道该发光元件的实施方式: 发光二极管、 垂 直共振腔面射型激光或激光二极管在本发明中是可以互相替换,并不会影响本发明的实际 实施。 于图 1的实施例中, 该发光装置 12是包含三个发光二极管, 分别为放射具有一第一 波长范围的一第一光线的一第一发光二极管 121、 放射具有一第二波长范围的一第二光线 的一第二发光二 极管 122及放射具有一第三波长范围的一第三光线的一第三发光二极管 123, 该第一光线在该第一波长范围内具有一第一发光峰值波长, 该第二光线在该第二波 长范围内具有一第二发光峰值波长,该第三光线在该第三波长范围内具有一第三发光峰值 波长。 该第一发光二极管 121、 该第二发光二极管 122及该第三发光二极管 123是与该发光 装置 12的一电路板 120电性连接, 该电路板 120是与该光源控制器 11电性连接, 换言之, 该 光源控制器 11是与该第一发光二极管 121、 该第二发光二极管 122及该第三发光二极管 123 电性连接, 且该光源控制器 11能够分别控制该第一发光二极管 121、 该第二发光二极管 122 及该第三发光二极管 123的开或关 (明或灭, 通电或不通电), 也就是说该光源控制器 11能 够分别控制多个该发光二极管的开或关 (明或灭)。优选地, 该光源控制器 11能够分别控制 并使得该第一发光二极管 121、 该第二发光二极管 122及该第三发光二极管 123分别连续发 光或分别非连续发光,也就是说该光源控制器 11能够分别控制并使得多个该发光二极管分 别连续发光或分别非连续发光。优选地, 该光源控制器 11能够分别控制并使得该第一发光 二极管 121、 该第二发光二极管 122及该第三发光二极管 123分别呈现一明灭频率的非连续 发光,也就是说该光源控制器 11能够分别控制并使得多个该发光二极管能够分别呈现一明 灭频率的非连续发光, 多个该明灭频率可以是彼此相同或彼此不同, 或者多个该明灭频率 可以是部分相同或部分不同。例如, 该光源控制器 11包含与该外部电源电性连接的一微控 制器 (Microcontroller Unit) 111及与该微控制器 111电性连接的一时钟产生器 (clock generator) 112,该明灭频率是由该时钟产生器 112产生后将该明灭频率的信号传送至该微 控制器 111, 再由该微控制器 111依据该明灭频率以开或关与该微控制器 111分别电性连接 的多个该发光二极管 (例如该第一发光二极管 121、 该第二发光二极管 122及该第三发光二 极管 123)。特别说明的是, 该时钟产生器 112也可以是整合于该微控制器 111内的以产生该 明灭频率的一时钟产生模块, 该时钟产生模块可以是软件或硬件形态, 如此便不需要在该 微控制器 111外部另外设置该时钟产生器 112。 特别说明的是, 当然, 依据上述该光源控制 器 11的技术特征, 也可以依据实际需求而同时将多个该发光二极管开或关, 或者依选择地 只将一个或部分的该发光二极管开或关, 或者将多个该发光二极管按序开或关, 或者将上 述方式的任一种以该明灭频率方式开或关。 优选地, 是同时将多个该发光二极管开启 (发 光), 且所对应的多个该明灭频率彼此不同; 优选地, 是同时将至少四个该发光二极管开 启,且四个该发光二极管所对应的四个该明灭频率是可选择地为彼此完全不同或至少部分 彼此相同。 请一并参 阅图 2, 相邻的两个该发光峰值波长所对应的两个该发光二极管的所述多个 波长范围部分重叠以形成较所述多个发光二极管 中的各者的该波长范围宽的一连续波长 范围, 该连续波长范围是介于 300nm至 2500nm之间。在图 2中共有三个发光峰值波长及所对 应的波长范围, 分别为该第一光线的该第一发光峰值波长 (734nm)所对应的该第一波长范 围、 该第二光线的该第二发光峰值波长 (810nm)所对应的该第二波长范围及该第三光线的 该第三发光峰值波长 (882nm)所对应的该第三波长范围。 该第一发光峰值波长与该第二发 光峰值波长是相邻的两个发光峰值波长, 同样地该第二发光峰值波长与该第三发光峰值波 长也是相邻的两个发光峰值波长。 该第一发光峰值波长所对应的该第一波长范围为介于 660nm至 780nm之间, 该第二光线的该第二发光峰值波长所对应的该第二波长范围为介于 710nm至 850nm, 该第一波长范围与该第二波长范围在 710nm至 780nm之间呈现部分重叠, 因 此该第一波长范围与该第二波长范围共同形成 660nm至 850nm之间的该连续波长范围。同样 地, 该第二发光峰值波长所对应的该第二波长范围为介于 710nm至 850nm, 该第三光线的该 第三发光峰值波长所对应的该第三波长范围为介于 780nm至 940nm,该第二波长范围与该第 三波长范围在 780nm至 850nm之间呈现部分重叠, 因此该第二波长范围与该第三波长范围共 同形成 710nm至 940nm之间的该连续波长范围。在本发明中, 相邻的两个该发光峰值波长所 对应的两个该发光二极管的所述多个波长范围的重叠部分, 以重叠愈少则愈佳。 当然, 相 邻的两个该发光峰值波长所对应的两个该发光二极管的所述多个波长范围也可以不重叠, 这将于后文中说明。 相邻 的两个该发光峰值波长彼此相差为大于或等于 lnm, 优选地为介于 lnm至 80nm之 间, 优选地为介于 5nm至 80nm之间。 在图 2中, 相邻的该第一发光峰值波长 (734nm)与该第 二发光峰值波长 (810nm)彼此相差为 76nm,而相邻的该第二发光峰值波长 (810nm)与该第三 发光峰值波长 (882nm)彼此相差为 72nm。 除了有特别说明之外, 本发明及权利要求所述的 数值范围的限定总是包括端值, 例如前述相邻的两个该发光峰值波长彼此相差为介于 5nm 至 80nm之间, 是指大于或等于 5nm而且小于或等于 80nm。 请一并参 阅图 3的第二实施例, 第二实施例是第一实施例的衍生实施例, 因此第二实 施例与第一实施例相同的处就不再赘述。第二实施例与第一实施例不同的处在于第二实施 例的该发光装置 12是包含五个发光二极管, 分别为放射具有该第一发光二极管 121、 放射 具有一第四波长范围的一第四光线的一第四发光二极管 1211、 该第二发光二极管 122、 放 射具有一第五波长范围的一第五光线的一第五发光二极管 1221及该第三发光二极管 123, 该第四光线在该第四波长范围内具有一第四发光峰值波长 (772nm), 该第五光线在该第五 波长范围内具有一第五发光峰值波长 (854nm)。在图 3中, 发光峰值波长由小至大按序为该 第一发光峰值波长 (734nm)、 该第四发光峰值波长 (772nm)、 该第二发光峰值波长 (810nm)、 该第五发光峰值波长 (854nm)及该第三发光峰值波长 (882nm),相邻的该第一发光峰值波长 (734nm)与该第四发光峰值波长 (772nm)彼此相差为 38nm, 相邻的该第四发光峰值波长 (772nm)与该第二发光峰值波长 (810nm)彼此相差为 38nm, 相邻的该第二发光峰值波长 (810nm)与该第五发光峰值波长 (854nm)彼此相差为 44nm, 相邻的该第五发光峰值波长 (854nm)与该第三发光峰值波长 (882nm)彼此相差为 28nm。 请一并参阅图 4的第三实施例,第三实施例是第一实施例及第二实施例的衍生实施例, 因此第三实施例与第一实施例及第二实施例相同的处就不再赘述。第三实施例与第一实施 例不同的处在于第二实施例的该发光装置 12是包含 12个发光二极管, 在图 4中, 12个发光 二极管的发光峰值波 长由小至大按序为 734nm (该第一发光峰值波长)、 747nm、 760nm、 772nm (该第四发光峰值波长)、 785nm、 798nm、 810nm (该第二发光峰值波长)、 824nm、 839nm、 854nm (该第五发光峰值波长)、 867nm及 882nm (该第三发光峰值波长)。 该 12个发光二极管 的发光峰值波长之中,相邻的两个该发光峰值波长彼此相差按序分别为 13nm、 13nm、 12nm、 13nm、 13nm、 12nm、 14nm、 15nm、 15nm、 13nm及 15nm。 如果于实施例一、 实施例二及实施 例三中的该发光元件是改用激光二极管,相邻的两个该发光峰值波长彼此相差可以为大于 或等于 lnm, 例如为 lnm。 多个 该发光峰值波长之中的至少一部分的该发光峰值波长所对应的波长半高宽为大 于 Onm且小于或等于 60nm。优选地, 各该发光峰值波长所对应的波长半高宽为大于 Onm且小 于或等于 60nm, 例如前述实施例一、 实施例二及实施例三中发光峰值波长由小至大按序为 734nm(该第一发光峰值波长)、 747nm、 760nm、 772nm(该第四发光峰值波长)、 785nm、 798nm、 810nm(该第二发光峰值波长)、 824nm、 839nm、 854nm(该第五发光峰值波长)、 867nm及 882nm(该第三发光峰值波长), 该第一光线的该第一发光峰值波长所对应的波长半高宽、 该第二光线的该第二发光峰值波长所对应的波长半高宽、该第三光线的该第三发光峰值波 长所对应的波长半高宽、该第四光线的该第四发光峰值波长所对应的波长半高宽及该第五 光线的该第五发光峰值波长所对应的波长半高宽为大于 Onm且小于或等于 60nm, 优选为介 于 15nm至 50nm之间, 优选为介于 15nm至 40nm之间。 其余未说明的 747nm、 760nm、 785nm、 798nm、 824nm、 839nm及 867nm发光峰值波长所对应的波长半高宽(图 4)也是为大于 Onm且小 于或等于 60nm, 优选为介于 15nm至 50nm之间, 优选为介于 15nm至 40nm之间。 于本发明的实 验操作时, 前述实施例一、 实施例二及实施例三中的发光峰值波长所对应的波长半高宽为 55nm; 如果该发光元件是激光二极管, 各该发光峰值波长所对应的波长半高宽为大于 Onm 且小于或等于 60nm, 例如为 lnm0 前述相 邻的两个该发光峰值波长所对应的两个该发光二极管的所述多个波长范围也 可以不重叠, 例如如果前述实施例一、 实施例二及实施例三中的各发光峰值波长所对应的 波长半高宽为 15nm, 各发光峰值波长所对应的该波长范围的宽度(也就是该波长范围的最 大值与最小值的差)为 40nm, 相邻的两个该发光峰值波长彼此相差为 80nm。 又例如如果该 发光元件是激光二极管, 各该发光峰值波长所对应的波长半高宽为 lnm, 该波长范围的宽 度为 4nm, 相邻的两个该发光峰值波长彼此相差为 5nm, 则相邻的两个该发光峰值波长所对 应的两个该发光元件(激光二极管)的所述多个波长范围不重叠。 优选地, 于实施例一、 实施例二及实施例三操作该谱仪 1进行该待测物 A的检测以产生 该待测物光谱图时,如前所述该光源控制器 11能够分别控制并使得多个该发光二极管分别 呈现该明灭频率的非连续发光, 多个该明灭频率可以是彼此相同或彼此不同, 或者多个该 明灭频率可以是部分相同或部分不同, 前述该明灭频率是介于 0. 05次 /秒至 50000次 /秒之 间, 该明灭频率中开启(点亮)该发光二极管的时间区间为介于 0. 00001秒至 10秒之间, 该 明灭频率中关闭(熄灭)该发光二极管的时间区间为介于 0. 00001秒至 10秒之间, 该明灭频 率的周期是指继续的一次开启 (点亮)该发光二极管的时间区间及关闭(熄灭)该发光二极 管的时间区间的和, 该明灭频率的周期是该明灭频率的倒数; 换言之, 该明灭频率的周期 可以被理解为将多个该发光二极管连续点亮一 点亮时间区间并立即无间断地连续熄灭一 媳灭时间区间的和, 该点亮时间区间为介于 0. 00001秒至 10秒之间, 该熄灭时间区间为介 于 0. 00001秒至 10秒之间。 优选地, 该明灭频率是介于 0. 5次 /秒至 50000次 /秒之间; 优选 地, 该明灭频率是介于 5次 /秒至 50000次 /秒之间。 多个该发光二极管呈现非连续发光的样 态可以大幅降低该待测物 A被该发光二极管所放射的光的热能所影响, 避免含有有机体的 该待测物 A产生质变, 因此尤其适合对于热能敏感的该待测物 A, 更尤其适合于该发光二极 管所放射该波长范围的光为近红外光。 一数学分析模块 M是设置于该光检测器 13(图 5A)或 该计算器 14(图 5B), 该数学分析模块 M是与该光检测器 13(图 5A)电性或信号连接, 或该数 学分析模块 M是与该计算器 14(图 5B)电性或信号连接,而所述该数学分析模块 M可以是软件 或硬件形态, 该光检测器 13所收集到的信号是被传送到该数学分析模块 M。 当操作该谱仪 1 进行该待测物 A的检测以产生该待测物光谱图时, 多个该发光二极管可以以相同的该明灭 频率同时开或关, 该明灭频率中开启(点亮)该发光二极管的时间区间, 该光检测器 13所接 收到的信号为该待测物光谱信号及一背景噪声(或称为背景噪音)的结合,而该明灭频率中 关闭(熄灭)该发光二极管的时间区间, 该光检测器 13所接收到的信号为该背景噪声。请一 并参阅图 6A, 其为以该明灭频率的非连续发光方式操作该谱仪 1进行该待测物 A的检测, 该 待测物光谱信号与该背景噪声的结合及该背景噪声所构成的一待测物时域(time domain) 信号及一待测物时域信号图。该光检测器 13所收集到的前述该待测物光谱信号及该背景噪 声是被传送到该数学分析模块 M,该数学分析模块 M是对于前述该待测物时域信号进行处理 而将该背景噪声舍弃, 例如该数学分析模块 M是包含将该待测物时域信号转换为一待测物 频域(frequency domain)信号的一时域频域转换单元 Ml(图 5A), 该时域频域转换单元 Ml可 以是用以将该待测物时域信号进行傅里叶转换(Fourier transform)为该待测物频域信号 的一傅里叶转换单元, 转换后的该待测物频域信号及一待测物频域信号图请参见图 6B, 该 待测物频域信号是很容易被区分为该待测物光谱信号 的频域信号及该背景噪声的频域信 号。 在图 6B中, 位于 0Hz的峰值的频域信号或小于该明灭频率的频域信号, 即为该背景噪 声的频域信号; 而在图 6B中, 除了位于 0Hz的峰值的频域信号(该背景噪声的频域信号), 其余剩下的峰值的信号即为该待测物光谱信号的频域信号。优选地, 在该待测物频域信号 中, 大于或等于该明灭频率的频域信号即为该待测物光谱信号的频域信号。 该数学分析模 ±夬1是将该背景噪声的频域信号舍弃并留下该待测物光谱信号的频域信号, 以达到滤波效 果。 由于该数学分析模块 M是将该背景噪声的频域信号舍弃, 因此留下的该待测物光谱信 号的频域信号完全是属于该待测物而不包含该背景信号, 所以相对于传统光谱仪而言, 本 发明的该光检测装置 1不仅提高该待测物在光谱中的信杂比,本发明的该光检测装置 1甚至 因为将该背景噪声的频域信号舍弃以进行滤波, 所以可以达到无背景噪声的光谱。请再度 参阅图 5A及图 5B,该光源控制器 11的该微控制器 111是可以与该数学分析模块 M电性或信号 连接, 以同步将该明灭频率、 该明灭频率中开启(点亮)该发光二极管的时间区间及该明灭 频率中关闭(熄灭)该发光二极管的时间区间传送给该数学分析模块 M, 以使得该微控制器 111依据该明灭频率、 该明灭频率中开启(点亮)该发光二极管的时间区间及该明灭频率中 关闭(熄灭)该发光二极管的时间区间以开或关与该微控制器 111分别电性连接的多个该发 光二极管的时, 该数学分析模块 M能够将该明灭频率中开启(点亮)该发光二极管的时间区 间对应为该待测物光谱信号, 以及该数学分析模块 M能够将该明灭频率中关闭(媳灭)该发 光二极管的时间区间对应为该背景噪声。 特别说明的是, 多个该发光二极管呈现该明灭频率的非连续发光的波形为方波、 正弦 波或负弦波。 另外 , 该数学分析模块 M也可以对于前述经过滤波效果所留下的该待测物光谱信号的 频域信号进行处理,而将前述所留下的该待测物光谱信号的频域信号转换为一滤波后待测 物时域信号及一滤波后待测物时域信号图,其中该滤波后待测物时域信号之中只存在一滤 波后待测物光谱信号, 而不存在该背景噪声。 例如, 该数学分析模块 M是包含将前述所留 下的该待测物光谱信号的频域信号转换为一滤波后待测物时域信号 的一频域时域转换单 元 M2(图 5B),该频域时域转换单元 M2可以是用以将前述所留下的该待测物光谱信号的频域 信号进行傅里叶反转换(inverse Fourier Transform)为该滤波后待测物时域信号的一傅 里叶反转换单元,转换后的该滤波后待测物时域信号及该滤波后待测物时域信号图请参见 图 6C。 比较图 6A及图 6C可以显然地看出, 在图 6C中该滤波后待测物时域信号图之中的该滤 波后待测物时域信号只存在该滤波后待测物光谱信号而且呈现为方形波,而且该滤波后待 测物时域信号图之中已经不存在任何该背景噪声。 换言之, 在图 6C中背景信号为零, 所以 如果将该滤波后待测物光谱信号的值除以背景信号的值, 所得到的信杂比将呈现无限大; 因此,本发明提高了试样(待测物)检测结果光谱图中的信杂比,可以达到测试精准的效果。 特别说明的是, 所述该数学分析模块 M、 该时域频域转换单元 Ml及该频域时域转换单元 M2 可以分别是软件或硬件形态, 或上述软件或硬件形态的组合; 该数学分析模块 M、 该时域 频域转换单元 Ml及该频域时域转换单元 M2彼此以电性或信号连接。
【比较例与应用例的波长分辨率测试】 比较例 1是使用台湾超微光学公司所生产以卤钨灯为光源并以光栅得到 lnm波长分辨 率的 SE-2020-050-VNIR型号的传统光谱仪,对表面涂布有氧化锌涂料的 5cm长、 5cm宽、 0. 2 厚的片状 PVC(聚氯乙稀, Polyvinyl Chloride)板及表面涂布有氧化锌混合氧化铁涂料的 5cm长、 5cm宽、 0. 2厚的片状 PVC板两种不同物质进行氧化锌涂料及氧化锌混合氧化铁涂料 反射光谱信号的检测, 然后依据取得的光谱影像数据, 运用相似(差异)性处理分析技术, 亦即光谱角度匹配(Spectral Angle Match或 Spectral Angle Mapping, 简称 SAM) 处理 分析技术, 来进行氧化锌及氧化锌混合氧化铁两种不同物质的相似度分析, 经 SAM分析结 果为 96. 00%(图 7A)。 应用例 1、 2及 3分别是使用实施例一、 二及三的发光装置及光检测装置, 明灭频率约 为 90. 90次 /秒、 该明灭频率中开启(点亮)该发光二极管的时间区间为 1毫秒(1ms)、 该明灭 频率中关闭(熄灭)该发光二极管的时间区间为 10毫秒(10ms)及使用与前述台湾超微光学 公司的 SE-2020-050-VNIR型号相同的光检测器,分别对涂布有氧化锌涂料的 5cm长、 5cm宽、 0. 2厚的片状 PVC板及涂布有氧化锌混合氧化铁涂料的 5cm长、 5cm宽、 0. 2厚的片状 PVC板两 种不同物质进行氧化锌涂料及氧化锌混合氧化铁涂料反射光谱信号的检测,然后依据取得 的光谱影像数据, 用 SAM处理分析技术, 来进行氧化锌及氧化锌混合氧化铁两种不同物质 的相似度分析, 经 SAM分析结果分别为 97. 69%(图 7B)、 97. 48%(图 7C)及 96. 54%(图 7D), 皆 接近于比较例 1传统光谱仪的 96. 00%, 因此实施例一、 二及三的发光装置及光检测装置的 波长分辨率的特性相近于传统光谱仪。 所以, 应用例 1、 2及 3所使用实施例一、 二及三的 发光装置及光检测装置在波长分辨率的特性, 能够取代传统光谱仪在波长分辨率的特性。 因此, 依据前述该发光装置 12及该光检测装置 1, 请参阅图 8, 本发明提供一种发光方 法, 按序包含以下一提供发光元件步骤 S01及一发光步骤 S02。 该提供发光元件步骤 S01 : 提供多个各放射具有至少一发光峰值波长及至少一波长范 围的光的发光元件,相邻的两个该发光峰值波长所对应的两个该发光元件的所述多个波长 范围部分重叠以形成较所述多个发光元件中的各者的该波长范围宽的一连续波长范围,或 者相邻的两个该发光峰值波长所对应的两个该发光元件的所述多个波长范围不重叠;相邻 的两个该发光峰值波长彼此相差为大于或等于 lnm, 各该发光峰值波长所对应的波长半高 宽为大于 Onm且小于或等于 60nm。 该发光元件可以为发光二极管、 垂直共振腔面射型激光 或激光二极管。 优选地相邻的两个该发光峰值波长彼此相差为介于 lnm至 80nm之间, 优选 地相邻的两个该发光峰值波长彼此相差为介于 5nm至 80nm之间。 优选地各该发光峰值波长 戶对应的波长半高宽为介于 15nm至 50nm之间,优选地各该发光峰值波长所对应的波长半高 宽为介于 15nm至 40nm之间。 该发光步骤 S02:分别控制并使得多个该发光元件分别呈现一明灭频率的非连续发光, 该明灭频率是介于 0. 05次 /秒至 50000次 /秒之间, 该明灭频率中开启该发光元件的时间区 间为介于 0. 00001秒至 10秒之间,该明灭频率中关闭该发光元件的时间区间为介于 0. 00001 秒至 10秒之间。 优选地, 该明灭频率是介于 0. 5次 /秒至 50000次 /秒之间; 优选地, 该明灭 频率是介于 5次 /秒至 50000次 /秒之间。 又依据前述该发光装置 12、 该光检测装置 1及该发光方法, 请一并参阅图 9, 本发明提 供一种光谱检测方法, 除了按序包含该发光方法的该提供发光元件步骤 S01及该发光步骤 S02之外, 该光谱检测方法在该发光步骤 S02之后还继续按序包含了一滤波步骤 S03及一反 转换步骤 S04。 该滤波步骤 S03: 接收一待测物光谱信号及一背景噪声, 该明灭频率中开启(点亮)该 发光元件的时间区间, 所接收到的信号为该待测物光谱信号与该背景噪声的结合, 该明灭 频率中关闭(熄灭)该发光元件的时间区间, 所接收到的信号为该背景噪声(或称为背景噪 音), 该待测物光谱信号及该背景噪声构成一待测物时域(time domain)信号, 将该待测物 时域信号进行傅里叶转换(Fourier transform)为一待测物频域信号, 该待测物频域信号 是被区分为该待测物光谱信号的频域信号及该背景噪声的频域信号,接着将该背景噪声的 频域信号舍弃并留下该待测物光谱信号的频域信号, 以达到滤波效果。 该反转换步骤 S04: 将前述所留下的该待测物光谱信号的频域信号进行傅里叶反转换 (inverse Fourier Transform)为一滤波后待测物时域信号。
【信杂比测试】 应用例 4是使用实施例三的发光装置及光检测装置, 明灭频率约为 100次 /秒、 该明灭 频率中开启(点亮)该发光二极管的时间区间为 5毫秒(5ms)、该明灭频率中关闭(熄灭)该发 光二极管的时间区间为 5毫秒(5ms), 所以该明灭频率的周期为 10毫秒(10ms), 以及使用与 前述台湾超微光学公司的 SE-2020-050-VNIR型号相同的光检测器, 对涂布有氧化锌的 5cm 长、 5cm宽、 0. 2厚的片状 PVC板依照前述该光谱检测方法进行反射光谱信号的检测。 该待 测物光谱信号及该背景噪声所构成的该待测物时域信号及该待测物时域信号图, 如图 6A, 其中多个该发光二极管呈现该明灭频率的非连续发光的波形为方波。接着该待测物时域信 号经过该滤波步骤 S03的傅里叶转换为该待测物频域信号及该待测物频域信号图,如图 6B; 其中,该待测物频域信号是很容易被区分为该待测物光谱信号的频域信号及该背景噪声的 频域信号, 例如该明灭频率的周期为 10ms, 因此对应频率为 100Hz, 所以在图 6B中频率大 于或等于 100Hz的频域信号即为该待测物光谱信号的频域信号,而位于 0Hz的频域信号或小 于 100Hz的频域信号, 即为该背景噪声的频域信号, 该滤波步骤 S03并将该背景噪声的频域 信号舍弃并留下该待测物光谱信号的频域信号。 接着该反转换步骤 S04将前述所留下的该 待测物光谱信号的频域信号进行傅里叶反转换为该滤波后待测物时域信号(图 6C中的不连 续方波)及该滤波后待测物时域信号图, 如图 6C。 显然地在图 6C中并未出现背景信号(或者 背景信号可以视为零), 所以信杂比将呈现无限大, 因此达到测试精准的效果。 多个该发光二极管是分别由供给一电流密度而使得放射的光线具有一发光强度; 多个 该电流密度可以是彼此相同或彼此不 同, 或者多个该电流密度可以是部分相同或部分不 同; 又或者, 多个该发光强度可以是彼此相同或彼此不同, 或者多个该发光强度可以是部 分相同或部分不同。 优选地, 多个该电流密度是彼此不相同, 或者多个该电流密度是部分 不相同。 提高信杂比还有另外一种方式, 请一并参阅图 10A, 该光源控制器 11还包含该微 控制器 111电性连接的一电流控制器 113, 该电流密度是由该电流控制器 113产生后将该电 流密度的信号传送至该微控制器 111,再由该微控制器 111依据该电流密度的信号以提供相 对应的该电流密度给与该微控制器 111分别电性连接的多个该发光二极管, 例如该第一发 光二极管 121、 该第二发光二极管 122、 该第三发光二极管 123、 该第四发光二极管 1211及 该第五发光二极管 1221。 又例如, 供给一第一电流密度而使得该第一发光二极管 121放射 的该第一光线具有一第一发光强度; 供给一第二电流密度而使得该第二发光二极管 122放 射的该第二光线具有一第二发光强度; 供给一第三电流密度而使得该第三发光二极管 123 放射的该第三光线具有一第三发光强度 ; 供给一第四电流密度而使得该第四发光二极管 1211放射的该第四光线具有一第四发光强度;供给一第五电流密度而使得该第五发光二极 管 1221放射的该第五光线具有一第五发光强度。 特别说明的是, 该电流控制器 113也可以 是整合于该微控制器 111内的以产生该电流密度的一电流密度模块, 该电流密度模块可以 是软件或硬件形态, 如此便不需要在该微控制器 111外部另外设置该电流控制器 113。 于实际操作时, 可以用另一种发光方法来进行, 该发光方法除了按序包含前述的该提 供发光元件步骤 S01及该发光步骤 S02之外, 在该发光步骤 S02之后还继续按序包含一初始 光谱能量分布曲线(Relative spectral energy distribution curve)取得步骤 S021及一 电流密度调整步骤 S022,而前述的该光谱检测方法可以变更为在电流密度调整步骤 S022之 后还可以继续按序包含该滤波步骤 S03及该反转换步骤 S04, 请参阅图 10B。 该初始光谱能量分布曲线取得步骤 S021 :首先以相同的该电流密度分别提供给多个该 发光二极管,于图 10A中在该待测物 A不存在的情况下以该光检测器 13及该计算器 14测量得 到该发光装置 12的初始光谱能量分布曲线如图 10C所示。在图 10C中显示了该第一光线的该 第一发 光峰值波长 (734nm)所对应的该第一波长范围, 所对应的该第一发光强度为 6. 8x106 (a. u. ) ; 该第四光线的该第四发光峰值波长 (772nm)所对应的该第四波长范围, 所 对应的该第四发光强度为 17. 7x107 (a. u. ) 0由于该背景噪声为固定值且该第四发光强度大 于该第一发光强度, 因此显然地该第四波长范围的信杂比高于该第一波长范围的信杂比。 该 电流密度调整步骤 S022: 接着, 从多个该发光强度中挑选出特定的数值及所对应的 该发光二极管, 通常是挑选数值最大者, 例如在图 10C中的该第四发光强度及所对应的该 第四发光二极管 1211。再接着,增强或减弱未被挑选的该发光二极管所对应的该电流密度, 以使得未被挑选的该发光二极管所对应的该发光强度,与被挑选的该发光二极管所对应的 该发光强度相同或接近。 在图 10C中, 例如未被挑选的该发光二极管为该第一发光二极管 121, 增强该第一发光二极管 121所对应的该第一电流密度, 以使得未被挑选的该第一发光 二极管 121所对应的该第一发光强度, 与被挑选的该第四发光二极管 1211所对应的该第四 发光强度相同为 17. 7x107 (a. u. )或接近 17. 7x107 (a. u. ) , 因此提高了该第一波长范围的信 杂比, 请参阅图 10D所示调整该第一电流密度之后的光谱能量分布曲线。 当然, 也可以增 强或减弱其他全部未被挑选的多个该发光二极管所各自对应的该电流密度, 以使得未被挑 选的每一个该发光二极管所对应的该发光强度,与被挑选的该发光二极管所对应的该发光 强度相同或接近,例如与被挑选的该第四发光二极管 1211所对应的该第四发光强度相同为 17. 7x107 (a. u. )或接近 17. 7x107 (a. u. ) , 因此提高了未被挑选的每一个该发光二极管所对 应的该波长范围的信杂比, 并使得多个该波长范围的信杂比接近一致, 请参阅图 10E所示 调整其他全部未被挑选的多个该发光二极管所 各自对应的该电流密度之后的光谱能量分 布曲线。 由于每一个该发光二极管的该发光强度与其接面温度 (junction temperature)是呈反 向关系, 以及该发光二极管的散热问题, 该发光二极管于该电流密度运行下历经持续操作 时间的增加, 则会增加该接面温度而导致该发光强度减少, 因此有必要以一种发光修正方 法进行该发光强度的校正。 该发光修正方法是按序包含一校正关系取得步骤 P01、 一测量 顺向偏压步骤 P02、 一比例关系取得步骤 P03及一完成校正步骤 P04。 该发光修正方法是可 以继续于该发光方法之后,前述的该光谱检测方法的该滤波步骤 S03及该反转换步骤 S04是 继续于该发光修正方法之后, 请参见图 11A。 校正关系取得步骤 P01: 取得每一个该发光二极管的该发光强度或相对强度与该接面 温度的数学关系式或对应表或图, 通常由该发光二极管的制造厂商所提供。请参阅图 11B, 为该第四发光二极管 1211的相对强度与该接面温度的对应图,该第四发光二极管 1211于该 接面温度为摄氏 25度下的该第四发光峰值波长为 772nm且相对强度是以 100%计算。 另外, 也取得每一个该发光二极管的顺向偏压 (forward voltage)与该接面温度的数学关系式或 对应表或图,该第四发光二极管 1211于该接面温度为摄氏 25度下的该第四发光峰值波长为 772nm且顺向偏压为 2伏特。 请参阅图 11C, 为该第四发光二极管 1211的顺向偏压与该接面 温度的对应图。该发光强度或相对强度与该接面温度的数学关系式或对应表或图, 以及该 发光二极管的该顺向偏压与该接面温度的数学关系式或对应表或图,两者的取得方式可以 参阅 【科学与工程技术期刊 第三卷 第四期 2007年, 99〜103页, 发光二极管接面温度的 自动量测系统】 ( Journal of Science and Engineering Technology, Vol. 3, No. 4, pp. 99-103 (2007)), 以及中国台湾发明专利公开第 200818363号所公开的方式进行, 因此不 在此赘述。 该测量顺向偏压步骤 P02: 于开启(点亮)该发光二极管的时间区间, 例如于该明灭频 率中开启(点亮)该发光二极管的时间区间, 同时测量该发光二极管的该顺向偏压。例如于 前述实施例二及三之中, 该第四发光二极管 1211的该明灭频率约为 90. 90次 /秒、 该明灭频 率中开启(点亮)该发光二极管的时间区间为 1毫秒(lms)、该明灭频率中关闭(熄灭)该发光 二极管的时间区间为 10毫秒(10ms), 于该明灭频率中开启(点亮) 该第四发光二极管 1211 的时间区间, 同时测量该第四发光二极管 1211的该顺向偏压为 1. 9伏特。 该比例关系取得步骤 P03: 将所测量到的该顺向偏压对照前述的该发光二极管的顺向 偏压与该接面温度的数学关系式或对应表或图, 换算得到该接面温度。 例如, 将测量到的 该第四发光二极管 1211的该顺向偏压为 1. 9伏特, 对照图 11C而得出该接面温度为摄氏 50 度。接着, 将换算得到的该接面温度对照前述的该发光强度或相对强度与该接面温度的数 学关系式或对应表或图, 换算得到该发光强度或相对强度。 例如, 将对照得出的该接面温 度为摄氏 50度, 对照图 11B而得出该第四发光二极管 1211的相对强度为 83%。 再继续地, 将 换算得到该发光强度或相对强度,与该发光强度或相对强度与该接面温度的数学关系式或 对应表或图中的一特定接面温度下的发光强度或相对强度相比较得出一比例关系。 例如, 该特定接面温度为摄氏 25度, 摄氏 25度的该第四发光二极管 1211的相对强度是 100%, 将该 接面温度为摄氏 25度的相对强度是 100%除以摄氏 50度时的相对强度 83%, 得出该比例关为 1. 20倍。 该完成校正步骤 P04: 将前述该初始光谱能量分布曲线中该发光二极管所对应的该波 长范围的该发光强度乘以该比例关系, 以达到该发光强度的校正; 或者, 将所测得有关于 该发光二极管所对应的该波长范围的光谱信号乘以该比例关系, 以达到光谱信号的校正。 所述该波长范围的光谱信号可以为前述的该待测物光谱信号及该背景噪声构成该待测物 时域信号。例如, 该光检测器 13或该计算器 14将该第四发光二极管 1211所对应的该第四发 光强度 17. 7x107(a. u.)乘以该比例关为 1. 20倍,所得出的发光强度可以视为该第四发光二 极管 1211在该特定接面温度(摄氏 25度)的发光强度。 特别说明的是,本发明是将该发光装置 12的多个该发光二极管的至少其中的一该发光 二极管、 部分的该发光二极管或全部的该发光二极管, 按序或同时执行该发光修正方法。 优选地, 本发明是将全部的该发光二极管同时执行该发光修正方法, 如此得出的光谱能量 分布曲线可以视为在该特定接面温度(摄氏 25度)的光谱能量分布曲线, 以及得出的光谱信 更正页 (细则第 91条) 号可以视为在该特定接面温度(摄氏 25度)的光谱信号。 为 了对整个待测物表面组成或内部组成的精准测量, 请一并参阅图 12A及图 12B, 该光 检测装置 1的该发光装置 12是与该待测物 A能够相对转动。 请参阅图 12A, 该发光装置 12还 可以与一转动装置 15连接,该转动装置 15是带动多个该发光元件以一公转旋转轴心进行公 转(revolution) , 因而使得该发光装置 12与该待测物 A相对转动, 该公转旋转轴心可以是 实体的公转旋转轴心或虚拟的公转旋转轴心。 换言之, 该发光装置 12是能够进行自转。 例 如该转动装置 15可以是与该微控制器 111电性连接的该一马达, 该转动装置 15带动一转动 轴 151进行转动, 该转动轴 151的一端与该发光装置 12的该电路板 120连接, 因此该转动轴 151是可视为该公转旋转轴心, 至少有部分的多个该发光元件不在该公转旋转轴心的延伸 方向上, 因此不在该公转旋转轴心的延伸方向上的多个该发光元件是以该公转旋转轴心进 行公转。 如果该待测物 A的多个区域是存在些微不同的成分, 举例来说, 该待测物 A的一 第一区域 A1及一第二区域 A2是存在些微不同的成分, 当该第一发光二极管 121与该第一区 ±或八1形成一第一相对位置时(图 12A),也就是说该发光装置 12与该待测物 A形成该第一相对 位置, 该第一发光二极管 121与该第一区域 A1较为接近而与该第二区域 A2较为远离, 该第 一发光二极管 121所放射具有该第一波长范围的该第一光线是穿透该第一区域 A1及该第二 区域 A2并由该光检测器 13接收,该光检测器 13将所接收的该第一光线转换成一第一相对位 置的待测物光谱信号并将该第一相对位置的待测物光谱信号传送至该计算器 14。 请参阅 图 12B, 当该第一发光二极管 121以该公转旋转轴心进行公转而与该第一区域 A1形成一第二 相对位置时, 也就是说该发光装置 12与该待测物 A形成该第二相对位置, 该第一发光二极 管 121与该第二区域 A2较为接近而与该第一区域 A1较为远离,该第一发光二极管 121所放射 具有该第一波长范围的该第一光线是穿透该第一 区域 A1及该第二区域 A2并由该光检测器 13接收,该光检测器 13将所接收的该第一光线转换成一第二相对位置的待测物光谱信号并 将该第二相对位置的待测物光谱信号传送至该计算器 14。该计算器 14是将该第一相对位置 的待测物光谱信号及该第二相对位置的待测物光谱信号进行计算平均值, 以作为前述的该 待测物光谱信号。 类似地, 该第二发光二极管 122也是由该第一相对位置以该公转旋转轴 心进行公转至该第二相对位置。 如此, 就不会有因为该待测物 A的多个区域是存在些微不 同的成分, 而所导致待测物光谱信号失真的问题。 当该发光装置 12与该待测物 A形成该第一相对位置时, 如前所述, 可以依据实际需求 而同时将多个该发光二极管开或关, 或者依选择地只将一个或部分的该发光二极管开或 关, 或者将多个该发光二极管按序开或关, 或者将上述方式的任一种以该明灭频率方式开 或关, 该光检测器 13将所接收的该光线 L转换成该第一相对位置的待测物光谱信号并将该 第一相对位置的待测物光谱信号传送至该计算器 14。 接着, 当该发光装置 12与该待测物 A 形成该第二相对位置时, 同样地, 可以依据实际需求而同时将多个该发光二极管开或关, 或者依选择地只将一个或部分的该发光二极管开或关,或者将多个该发光二极管按序开或 关, 或者将上述方式的任一种以该明灭频率方式开或关, 该光检测器 13将所接收的该光线 L转换成该第二相对位置的待测物光谱信号并将该第二相对位置的待测物光谱信号传送至 该计算器 14。该计算器 14是将该第一相对位置的待测物光谱信号及该第二相对位置的待测 物光谱信号进行计算平均值, 以作为前述的该待测物光谱信号。 为 了更精确地测量该待测物 A, 因此于实际运用时, 该发光装置 12与该待测物 A是能够 形成多个相对位置,于每一个该相对位置可以依据实际需求而同时将多个该发光二极管开 或关, 或者依选择地只将一个或部分的该发光二极管开或关, 或者将多个该发光二极管按 序开或关, 或者将上述方式的任一种以该明灭频率方式开或关, 该光检测器 13将所接收的 该光线 L转换成该相对位置的待测物光谱信号并将该相对位置的待测物光谱信号传送至该 计算器 14。该计算器 14是将多个该相对位置的待测物光谱信号进行计算平均值, 以作为前 述的该待测物光谱信号。 例如该微控制器 111是控制该转动装置 15的该转动轴 151的转动, 使得该发光装置 12的多个该发光元件以该公转旋转轴心进行一预定角度的转动,例如转动 每 10度的角度为一个该相对位置, 因此整个 360度的公转一周总共有 36个该相对位置, 该 计算器 14是将 36个该相对位置的待测物光谱信号进行计算平均值, 以作为前述的该待测物 光谱信号。 类似地, 请一并参阅图 12C, 也可以是该待测物 A与该转动装置 15连接, 该转动装置 15 是带动该待测物 A以一自转旋转轴心 A0进行自转, 因而使得该发光装置 12与该待测物 A相对 转动, 该自转旋转轴心 A0可以是实体的自转旋转轴心或虚拟的自转旋转轴心。 在图 12C中 该转动装置 15带动该转动轴 151进行转动, 该转动轴 151以齿轮带动该待测物 A进行自转, 该待测物 A的中心的法线即为虚拟的自转旋转轴心, 也就是该自转旋转轴心 A0。 类似地, 例如该微控制器 111是控制该转动装置 15的转动,使得该待测物 A以自转旋转轴心 A0进行每 10度为一个该相对位置, 因此整个 360度的自转一周总共有 36个该相对位置, 该计算器 14 是将 36个该相对位置的待测物光谱信号进行计算平均值, 以作为前述的该待测物光谱信 号。 即使该待测物 A的多个区域是存在相同的成分,然而如果当该待测物 A的表面无法与该 发光装置 12保持平行, 该第一发光二极管 121及该第二发光二极管 122分别与该待测物 A的 距离将不相同,这会导致该第一发光二极管 121的该第一光线及该第二发光二极管 122的该 第二光线所产生的待测物光谱信号失真。 请一并参阅图 12D, 本发明的该发光装置 12是与 该待测物 A能够相对转动, 该发光装置 12与该待测物 A是能够形成多个相对位置, 该光检测 器 13将所接收的该光线 L转换成该相对位置的待测物光谱信号并将该相对位置的待测物光 谱信号传送至该计算器 14。该计算器 14是将多个该相对位置的待测物光谱信号进行计算平 均值, 以作为前述的该待测物光谱信号。 如此, 就不会有因为该发光装置 12的多个该发光 元件分别与该待测物 A的距离不相同, 而所导致待测物光谱信号失真的问题。 类似地, 请一并参阅图 12E, 该发光装置 12与该光检测器 13是设置于该待测物 A的同一 侧, 例如该发光装置 12与该光检测器 13是设置于该待测物 A的上方侧, 以测得该待测物 A的 反射光谱信号。 该第一发光二极管 121及该第二发光二极管 122分别与该待测物 A的距离不 相同,这会导致该第一发光二极管 121的该第一光线及该第二发光二极管 122的该第二光线 所产生的待测物光谱信号失真。 本发明的该发光装置 12是与该待测物 A能够相对转动, 例 如设置两个该转动装置 15, 使得多个该发光元件以该公转旋转轴心(该转动轴 151)进行公 转, 以及使得该待测物 A以该自转旋转轴心 A0进行自转。 该发光装置 12与该待测物 A是能够 形成多个相对位置, 该光检测器 13将所接收的该光线 L转换成该相对位置的待测物光谱信 号并将该相对位置的待测物光谱信号传送至该计算器 14。该计算器 14是将多个该相对位置 的待测物光谱信号进行计算平均值, 以作为前述的该待测物光谱信号。 如此, 就不会因为 有该发光装置 12的多个该发光元件分别与该待测物 A的距离不相同, 而所导致待测物光谱 信号失真的问题。 由上述的说明可知, 本发明与现有技术与产品相较之下, 本发明所提供的发光装置、 发光方法、 光检测装置、 光谱检测方法及发光修正方法, 对于试样的解析结果接近于使用 传统卤钨灯光谱仪的高解析结果, 而且同时提高了试样检测结果光谱图中的信杂比, 确实 能够达到测试精准的效果。 综上所述, 本发明的发光装置、 发光方法、 光检测装置、 光谱检测方法及发光修正方 法, 能达到所预期的使用技术效果, 且本发明亦未曾公开于申请前, 已完全符合专利法的 规定与要求。 而, 上述所公开的图示及说明, 仅为本发明的优选实施例, 非为限定本发明 的保护范围; 本领域技术人员依本发明的特征范围, 所作的其它等效变化或修饰, 皆 应视为不脱离本 发明的设计范围。

Claims

权利要求
1. 一种发光装置, 至少包含: 多个各放射具有至少一发光峰值波长及至少一波长范 围的光的发光元件;其中,相邻的两个该发光峰值波长所对应的两个该发光元件的所述多 个波长范围部分重叠以形成较所述多个发光元件 中的各者的该波长范围宽的一连续波长 范围,或者相邻的两个该发光峰值波长所对应的两个该发光元件的所述多个波长范围不重 叠;多个该发光元件是分别由供给一电流密度而使得放射的光线具有一发光强度; 多个该 电流密度是彼此不相同, 或者多个该电流密度是部分不相同。
2. 如权利要求 1所述发光装置, 其中, 相邻的两个该发光峰值波长彼此相差为大于 或等于 lnm, 多个该发光峰值波长之中的至少一部分的该发光峰值波长所对应的波长半高 宽为大于 Onm且小于或等于 60nm。
3. 如权利要求 2所述发光装置, 其中, 该发光元件为发光二极管、 垂直共振腔面射 型激光或激光二极管。
4. 如权利要求 3所述发光装置, 其中, 多个该发光元件能够分别呈现一明灭频率的 非连续发光,多个该明灭频率可以是彼此相同或彼此不同,或者多个该明灭频率可以是部 分相同或部分不同。
5. 如权利要求 4所述发光装置, 其中, 多个该发光元件是至少四个该发光元件, 且 四个该发光元件所对应的四个该明灭频率是可选择地为彼此完全不同或至少部分彼此相 同。
6. 如权利要求 4所述发光装置, 其中, 该明灭频率是介于 0. 05次 /秒至 50000次 /秒之 间。
7. 如权利要求 6所述发光装置, 其中, 该明灭频率中开启该发光元件的时间区间为 介于 0. 00001秒至 10秒之间。
8. 如权利要求 7所述发光装置, 其中, 该明灭频率中关闭该发光元件的时间区间为 介于 0. 00001秒至 10秒之间。
9. 如权利要求 8所述发光装置, 其中, 相邻的两个该发光峰值波长彼此相差为介于 lnm至 80nm之间。
10. 如权利要求 9所述发光装置, 其中, 相邻的两个该发光峰值波长彼此相差为介于 5nm至 80nm之间。
11. 如权利要求 10所述发光装置, 其中, 各该发光峰值波长所对应的波长半高宽为 介于 15nm至 50nm之间。
12. 如权利要求 11所述发光装置, 其中, 各该发光峰值波长所对应的波长半高宽为 介于 15nm至 40nm之间。
13. 一种光检测装置, 至少包含: 一光源控制器(11)、 一发光装置(12)、 一光检测 器(13)及一计算器(14);该光源控制器(11)与该发光装置(12)电性连接,该光检测器(13) 与该计算器 (14)电性连接, 该光检测器 (13)接收来自该发光装置 (12)发射的一光线 (L), 且该光线 (L)在该发光装置 (12)与该光检测器 (13)之间的行进路径形成一光路 (R) ; 其中, 该发光装置 (12)至少包含多个各放射具有至少一发光峰值波长及至少一波长范围的光的 发光元件;相邻的两个该发光峰值波长所对应的两个该发光元件的所述多个波长范围部分 重叠以形成较所述多个发光元件中的各者的该波长范围宽的一连续波长范围,或者相邻的 两个该发光峰值波长所对应的两个该发光元件的所述多个波长范围不重叠;相邻的两个该 发光峰值波长彼此相差为大于或等于 lnm, 多个该发光峰值波长之中的至少一部分的该发 光峰值波长所对应的波长半高宽为大于 Onm且小于或等于 60nm; 多个该发光元件能够分别 呈现一明灭频率的非连续发光, 多个该发光元件是至少四个该发光元件; 且, 四个该发光 元件所对应的四个该明灭频率是可选择地为彼此完全不同或至少部分彼此相同。
14. 如权利要求 13所述光检测装置, 其中, 一数学分析模块 (M)是设置于该光检测器 (13)或该计算器 (14), 该数学分析模块 (M)是与该光检测器 (13)电性或信号连接, 或该数 学分析模块 (M)是与该计算器 (14)电性或信号连接,而所述该数学分析模块 (M)是软件或硬 件形态, 该光检测器 (13)所收集到的信号是被传送到该数学分析模块 (M) ; 该明灭频率中 开启该发光元件的时间区间,该光检测器 (13)所接收到的信号为一待测物光谱信号与一背 景噪声的结合;该明灭频率中关闭该发光元件的时间区间,该光检测器 (13)所接收到的信 号为该背景噪声;该待测物光谱信号及该背景噪声构成一待测物时域信号,该数学分析模 ±夬 (M)是包含将该待测物时域信号转换为一待测物频域信号的一时域频域转换单元 (Ml)。
15. 如权利要求 14所述光检测装置, 其中, 该时域频域转换单元 (Ml)是用以将该待 测物时域信号进行傅里叶转换为该待测物频域信号的一傅里叶转换单元。
16. 如权利要求 14所述光检测装置, 其中, 该待测物频域信号是包含该待测物光谱 信号的频域信号及该背景噪声的频域信号, 该数学分析模块 (M)是能够将该背景噪声的频 域信号舍弃并留下该待测物光谱信号的频域信号, 该数学分析模块 (M)是包含将所留下的 该待测物光谱信 号的频域信号转换为一滤波后待测物时域信号 的一频域时域转换单元 (M2) 0
17. 如权利要求 16所述光检测装置, 其中, 该频域时域转换单元 (M2)是能够将前述 所留下的该待测物光谱信号的频域信号进行傅里叶反转换为该滤波后待测物时域信号的 一傅里叶反转换单元。
18. —种光检测装置, 至少包含: 一光源控制器 (11)、 一发光装置 (12)、 一或多个 光检测器 (13)及一计算器 (14) ;该光源控制器 (11)与该发光装置 (12)电性连接,该光检测 器 (13)与该计算器 (14)电性连接,该光检测器 (13)接收来自该发光装置 (12)发射的一光线 (L), 且该光线 (L)在该发光装置 (12)与该光检测器 (13)之间的行进路径形成一光路 (R) ; 其中,该发光装置 (12)包含多个各放射具有至少一发光峰值波长及至少一波长范围的光的 发光元件; 一待测物 (A)是被置放于该光路 (R), 该发光装置 (12)是与该待测物 (A)能够相 对转动。
19. 如权利要求 18所述光检测装置, 其中, 多个该发光元件能够以一公转旋转轴心 进行公转。
20. 如权利要求 19所述光检测装置, 其中, 该发光装置 (12)与一转动装置 (15)连接, 该转动装置 (15)带动多个该发光元件以该公转旋转轴心进行公转。
21. 如权利要求 20所述光检测装置, 其中, 该转动装置 (15)带动一转动轴 (151)进行 转动, 该转动轴 (151)的一端与该发光装置 (12)连接, 该转动轴 (151)为该公转旋转轴心。
22. 如权利要求 21所述光检测装置, 其中, 该转动装置 (15)与该光源控制器 (11)的 一微控制器 (111)电性连接, 该微控制器 (111)是控制该转动轴 (151)进行一预定角度的转 云力。
23. 如权利要求 18所述光检测装置, 其中, 该待测物 (A)能够以一自转旋转轴心 (A0) 进行自转。
24. 一种发光方法, 按序包含以下步骤: 一提供发光元件步骤 (S01) :提供多个各放射具有至少一发光峰值波长及至少一波长 范围的光的发光元件; 一发光步骤 (S02) : 使多个该发光元件发光; 一初始光谱能量分布曲线取得步骤 (S021) : 多个该发光元件是分别由供给一电流密 度而使得放射的光线具有一发光强度, 以相同的一电流密度分别提供给多个该发光元件, 测量得到一初始光谱能量分布曲线; 一电流密度调整步骤 (S022) : 从多个该发光强度中挑选出特定的数值及所对应的该 发光元件,增强或减弱未被挑选的该发光元件所对应的该电流密度, 以使得未被挑选的该 发光元件所对应的该发光强度, 与被挑选的该发光元件所对应的该发光强度相同或接近。
25. 如权利要求 24所述发光方法, 其中, 相邻的两个该发光峰值波长所对应的两个 该发光元件的所述多个波长范围部分重叠 以形成较所述多个发光元件中的各者的该波长 范围宽的一连续波长范围,或者相邻的两个该发光峰值波长所对应的两个该发光元件的所 述多个波长范围不重叠; 相邻的两个该发光峰值波长彼此相差为大于或等于 lnm, 多个该 发光峰值波长之中的至少一部分的该发光峰值波长所对应的波长半高宽为大于 Onm且小于 或等于 60nm。
26. 如权利要求 24所述发光方法, 其中, 分别控制并使得多个该发光元件分别呈现 一明灭频率的非连续发光, 该明灭频率是介于 0. 05次 /秒至 50000次 /秒之间, 该明灭频率 中开启该发光元件的时间区间为介于 0. 00001秒至 10秒之间, 该明灭频率中关闭该发光元 件的时间区间为介于 0. 00001秒至 10秒之间。
27. 一种光谱检测方法, 是包含一如权利要求 24所述发光方法, 该光谱检测方法还 包含: 一滤波步骤 (S03) : 接收一待测物光谱信号及一背景噪声, 一明灭频率中开启该发光 元件的时间区间,所接收到的信号为该待测物光谱信号与该背景噪声的结合,该明灭频率 中关闭该发光元件的时间区间,所接收到的信号为该背景噪声,该待测物光谱信号及该背 景噪声构成一待测物时域信号, 将该待测物时域信号进行傅里叶转换为一待测物频域信 号, 该待测物频域信号是被区分为该待测物光谱信号的频域信号及该背景噪声的频域信 号, 接着将该背景噪声的频域信号舍弃并留下该待测物光谱信号的频域信号。
28. 如权利要求 27所述光谱检测方法, 其中, 该光谱检测方法还包含一反转换步骤
(S04),该反转换步骤 (S04)是将所留下的该待测物光谱信号的频域信号进行傅里叶反转换 为一滤波后待测物时域信号。
29. 一种发光修正方法, 按序包含以下步骤: 一校正关系取得步骤 (P01) :提供多个各放射具有至少一发光峰值波长及至少一波长 范围的光的发光元件,多个该发光元件是分别具有一发光强度,取得每一个该发光元件的 该发光强度或一相对强度与一接面温度的数学关系式或对应表或图,也取得每一个该发光 元件的一顺向偏压与该接面温度的数学关系式或对应表或图; 一测量顺向偏压步骤 (P02) : 于点亮该发光元件的时间区间, 同时测量该发光元件的 该顺向偏压; 一比例关系取得步骤 (P03) :将所测量到的该顺向偏压对照前述的该发光元件的顺向 偏压与该接面温度的数学关系式或对应表或图, 换算得到该接面温度; 接着, 将换算得到 的该接面温度对照前述的该发光强度或相对强度与该接面温度 的数学关系式或对应表或 图, 换算得到该发光强度或相对强度; 再接着, 将换算得到该发光强度或相对强度, 与该 发光强度或相对强度与该接面温度的数学关系式或对应表或 图中的一特定接面温度下的 发光强度或相对强度相比较得出一比例关系; 一完成校正步骤 (P04) :将一初始光谱能量分布曲线中该发光元件所对应的该波长范 围的该发光强度乘以该比例关系, 以达到该发光强度的校正; 或者, 将所测得有关于该发 光元件所对应的该波长范围的光谱信号乘以该比例关系 , 以达到光谱信号的校正。
PCT/IB2021/054240 2020-06-20 2021-05-18 发光装置、发光方法、光检测装置、光谱检测方法及发光修正方法 WO2021255545A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/761,377 US11965822B2 (en) 2020-06-20 2021-05-18 Light emitting apparatus, light emitting method, light detection apparatus, spectrum detection method and lighting correction method
EP21825729.3A EP4170713A4 (en) 2020-06-20 2021-05-18 LIGHT EMITTING DEVICE, LIGHT EMITTING METHOD, LIGHT DETECTION DEVICE, SPECTRUM DETECTION METHOD, AND LIGHT EMITTING CORRECTION METHOD
CN202180039379.5A CN116034493A (zh) 2020-06-20 2021-05-18 发光装置、发光方法、光检测装置、光谱检测方法及发光修正方法
JP2022576109A JP7508741B2 (ja) 2020-06-20 2021-05-18 発光装置、発光方法、光検出装置、スペクトル検出方法及び発光補正方法
US18/605,163 US20240219296A1 (en) 2020-06-20 2024-03-14 Light emitting apparatus, light emitting method, light detection apparatus and spectrum detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109120982A TWI750706B (zh) 2020-06-20 2020-06-20 發光裝置、發光方法、光檢測裝置、光譜檢測方法及發光修正方法
TW109120982 2020-06-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/761,377 A-371-Of-International US11965822B2 (en) 2020-06-20 2021-05-18 Light emitting apparatus, light emitting method, light detection apparatus, spectrum detection method and lighting correction method
US18/605,163 Continuation US20240219296A1 (en) 2020-06-20 2024-03-14 Light emitting apparatus, light emitting method, light detection apparatus and spectrum detection method

Publications (1)

Publication Number Publication Date
WO2021255545A1 true WO2021255545A1 (zh) 2021-12-23

Family

ID=79268622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/054240 WO2021255545A1 (zh) 2020-06-20 2021-05-18 发光装置、发光方法、光检测装置、光谱检测方法及发光修正方法

Country Status (6)

Country Link
US (2) US11965822B2 (zh)
EP (1) EP4170713A4 (zh)
JP (1) JP7508741B2 (zh)
CN (1) CN116034493A (zh)
TW (1) TWI750706B (zh)
WO (1) WO2021255545A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117120815A (zh) * 2021-11-18 2023-11-24 大连兆晶生物科技有限公司 光学分析系统及其光学分析仪

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200818363A (en) 2006-10-11 2008-04-16 Poworld Electronic Co Ltd Apparatus and method for measuring semiconductor junction temperature
CN101236107A (zh) 2007-01-29 2008-08-06 长春吉大·小天鹅仪器有限公司 一种可见分光光度计的光源
CN101701854A (zh) * 2009-11-18 2010-05-05 中国科学院上海技术物理研究所 一种检测led灯具芯片结温的方法
CN203981304U (zh) * 2012-10-09 2014-12-03 豪雅冠得股份有限公司 发光二极管结温测量装置和光照射装置
CN205388567U (zh) 2016-03-10 2016-07-20 深圳先进技术研究院 分光光度计
CN107202782A (zh) * 2017-06-23 2017-09-26 中国科学院长春光学精密机械与物理研究所 一种白光led灯结温的测量方法
CN109932335A (zh) 2017-12-15 2019-06-25 北京化工大学 一种用于植物中天然橡胶含量测定的方法及测定用led近红外光谱仪
CN110546772A (zh) * 2018-03-27 2019-12-06 首尔半导体株式会社 发光装置
CN111987079A (zh) * 2020-02-20 2020-11-24 大连兆晶生物科技有限公司 发光装置、发光方法、光谱仪及光谱检测方法
US20210080386A1 (en) * 2019-09-18 2021-03-18 Yi-Sheng Ting Light emitting apparatus, light emitting method, spectrometer and spectrum detection method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047697A (ja) 1998-07-30 2000-02-18 Nec Eng Ltd ノイズキャンセラ
MXPA04002498A (es) 2001-09-19 2005-04-11 Joule Microsystems Canada Inc Un espectrometro que incorpora filtrado ajustado de senal.
EP1528380A4 (en) * 2002-07-26 2009-12-09 Olympus Corp IMAGE PROCESSING SYSTEM
CA2552683C (en) * 2003-12-11 2011-05-03 Color Kinetics Incorporated Thermal management methods and apparatus for lighting devices
JP2006017689A (ja) 2004-07-04 2006-01-19 Ccs Inc 光源装置
JP4514770B2 (ja) 2007-05-10 2010-07-28 日本テキサス・インスツルメンツ株式会社 バックライト装置
WO2009050081A2 (de) * 2007-10-11 2009-04-23 Basf Se Spektrometer mit led-array
CN102405538A (zh) * 2009-08-26 2012-04-04 三菱化学株式会社 白色半导体发光装置
CN111048679B (zh) * 2011-02-16 2023-04-07 株式会社半导体能源研究所 发光元件
TWI774347B (zh) * 2011-08-25 2022-08-11 日商半導體能源研究所股份有限公司 發光元件,發光裝置,電子裝置,照明裝置以及新穎有機化合物
CN104969058B (zh) * 2012-12-07 2017-08-08 Sp3H公司 用于分析热力发动机中的流体的机载设备和方法
JP2015069988A (ja) * 2013-09-26 2015-04-13 キヤノン株式会社 スーパールミネッセントダイオード、それを光源として備える光干渉断層撮像装置
TWI654775B (zh) * 2013-10-16 2019-03-21 日商半導體能源研究所股份有限公司 發光元件、發光裝置、電子裝置及照明裝置
TWI742416B (zh) * 2014-02-21 2021-10-11 日商半導體能源研究所股份有限公司 發光元件、發光裝置、電子裝置、及照明裝置
EP2924742A1 (en) * 2014-03-27 2015-09-30 Canon Kabushiki Kaisha Light source system and optical coherence tomography apparatus using the light source system
CN109742262B (zh) * 2014-08-08 2022-11-22 株式会社半导体能源研究所 发光装置、电子设备以及照明装置
KR20220109476A (ko) * 2016-01-29 2022-08-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP2018107449A (ja) * 2016-12-27 2018-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
US10371325B1 (en) 2018-06-25 2019-08-06 Intematix Corporation Full spectrum white light emitting devices

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200818363A (en) 2006-10-11 2008-04-16 Poworld Electronic Co Ltd Apparatus and method for measuring semiconductor junction temperature
CN101236107A (zh) 2007-01-29 2008-08-06 长春吉大·小天鹅仪器有限公司 一种可见分光光度计的光源
CN101701854A (zh) * 2009-11-18 2010-05-05 中国科学院上海技术物理研究所 一种检测led灯具芯片结温的方法
CN203981304U (zh) * 2012-10-09 2014-12-03 豪雅冠得股份有限公司 发光二极管结温测量装置和光照射装置
CN205388567U (zh) 2016-03-10 2016-07-20 深圳先进技术研究院 分光光度计
CN107202782A (zh) * 2017-06-23 2017-09-26 中国科学院长春光学精密机械与物理研究所 一种白光led灯结温的测量方法
CN109932335A (zh) 2017-12-15 2019-06-25 北京化工大学 一种用于植物中天然橡胶含量测定的方法及测定用led近红外光谱仪
CN110546772A (zh) * 2018-03-27 2019-12-06 首尔半导体株式会社 发光装置
US20210080386A1 (en) * 2019-09-18 2021-03-18 Yi-Sheng Ting Light emitting apparatus, light emitting method, spectrometer and spectrum detection method
CN111987079A (zh) * 2020-02-20 2020-11-24 大连兆晶生物科技有限公司 发光装置、发光方法、光谱仪及光谱检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"An Automatic Measurement System for Junction Temperatures of Light-Emitting Diodes", JOURNAL OF SCIENCE AND ENGINEERING TECHNOLOGY, vol. 3, no. 4, 2007, pages 99 - 103
See also references of EP4170713A4

Also Published As

Publication number Publication date
US20240219296A1 (en) 2024-07-04
TW202201717A (zh) 2022-01-01
EP4170713A1 (en) 2023-04-26
US11965822B2 (en) 2024-04-23
CN116034493A (zh) 2023-04-28
TWI750706B (zh) 2021-12-21
JP2023532630A (ja) 2023-07-31
US20220373453A1 (en) 2022-11-24
JP7508741B2 (ja) 2024-07-02
EP4170713A4 (en) 2024-09-11

Similar Documents

Publication Publication Date Title
WO2021164719A1 (zh) 发光装置、发光方法、光谱仪及光谱检测方法
US20240219296A1 (en) Light emitting apparatus, light emitting method, light detection apparatus and spectrum detection method
JP2005502895A (ja) 信号整合フィルタリングを組み込んだ分光計
US8102530B2 (en) Colour measuring unit
TWI779266B (zh) 光譜儀
JP2006030204A (ja) 光表面特性の測角検査装置
US6541287B2 (en) Temperature measuring method and apparatus, measuring method for the thickness of the formed film, measuring apparatus for the thickness of the formed film thermometer for wafers
US6780657B2 (en) Temperature measuring method and apparatus, measuring method for the thickness of the formed film, measuring apparatus for the thickness of the formed film thermometer for wafers
US8184302B2 (en) Measuring system for optical monitoring of coating processes
Serdyukov et al. New features of an FT spectrometer using LED sources
WO2002075290A1 (fr) Procede et dispositif de mesure et procede et dispositif d'imagerie
TWI825999B (zh) 光譜儀及光譜檢測方法
CN214622270U (zh) 一种外球式漫反射光谱测量装置
WO2011103414A2 (en) Reverse interferometric method and apparatus for measuring layer thickness
US20220252508A1 (en) Light emitting apparatus, light emitting method, spectrometer and spectrum detection method
TWI795988B (zh) 成像裝置及手持式成像裝置
TWI765384B (zh) 成像裝置及手持式成像裝置
JP2004125712A (ja) 分光分析装置
EP1800109A1 (en) Method and sensor for infrared measurement of gas
CN116818708A (zh) 成像装置及手持式成像装置
TWI795000B (zh) 光學分析儀及其光學分析系統
WO2004010094A1 (en) Emissivity corrected radiation pyrometer integral with a reflectometer and roughness sensor for remote measuring of true surface temperatures
JPWO2020201484A5 (zh)
JP2011022011A (ja) シート類の判別方法及び判別装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576109

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021825729

Country of ref document: EP

Effective date: 20230120

NENP Non-entry into the national phase

Ref country code: DE