WO2021164719A1 - 发光装置、发光方法、光谱仪及光谱检测方法 - Google Patents

发光装置、发光方法、光谱仪及光谱检测方法 Download PDF

Info

Publication number
WO2021164719A1
WO2021164719A1 PCT/CN2021/076802 CN2021076802W WO2021164719A1 WO 2021164719 A1 WO2021164719 A1 WO 2021164719A1 CN 2021076802 W CN2021076802 W CN 2021076802W WO 2021164719 A1 WO2021164719 A1 WO 2021164719A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
signal
frequency
domain signal
Prior art date
Application number
PCT/CN2021/076802
Other languages
English (en)
French (fr)
Inventor
丁逸圣
陈育宗
陈柏淞
Original Assignee
丁逸圣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丁逸圣 filed Critical 丁逸圣
Priority to AU2021224704A priority Critical patent/AU2021224704B2/en
Publication of WO2021164719A1 publication Critical patent/WO2021164719A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Definitions

  • the present invention relates to a light-emitting device, in particular, it can select the wavelength range of light emitted by the light-emitting diode, the difference range of adjacent light emission peak wavelength, and the full-width at half-maximum of the wavelength. FWHM) range and lighting frequency (lighting frequency) light-emitting device, light-emitting method, spectrometer and spectrum detection method.
  • the spectrometer can be used to measure the transmitted light penetrating the object or the reflected light from the surface of the object
  • the traditional spectrophotometer also known as spectrophotometer
  • the traditional spectrophotometer usually includes a light source and a monochromator, where the light source can be used Tungsten filament lamp (halogen lamp) filled with halogen gas produces Vis-nearIR (visible light-near infrared light) light with a continuous spectrum with an emission spectrum of about 320nm ⁇ 2500nm, and then a prism or grating is used.
  • the constituted single-optical device selects monochromatic light of a specific wavelength for the absorption or reflection measurement of the sample (or called the test object). Of course, this also includes continuous scanning within the set wavelength range to perform sample measurement.
  • the aforementioned CN101236107B patent discloses that a plurality of light-emitting diodes (LEDs) are used as the light source of a spectrometer, and each LED emits a monochromatic spectrum in a different wavelength range.
  • LEDs light-emitting diodes
  • each LED emits a monochromatic spectrum in a different wavelength range.
  • the design when only a certain wavelength range of monochromatic light is needed, only the LED corresponding to the wavelength range needs to be lighted. Therefore, multiple LEDs can be lighted at the same time to synthesize a continuous spectrum, or it can be scanned as required. According to the wavelength range, the corresponding LEDs are sequentially lit.
  • CN101236107B focuses the emitted light of a plurality of LEDs on the incident slit of the monochromator, and therefore cannot solve the problems of high cost and complex system of the monochromator.
  • China Utility Model Patent Authorization Announcement No. CN205388567U discloses the use of multiple LEDs and optical fiber combinations to avoid the use of a monochromator, and the use of a total reflection mirror to increase the measurement optical path to improve the efficiency of testing samples.
  • the technology disclosed in the aforementioned Patent No. CN101236107B can also be cited in the present invention.
  • China Invention Patent Publication No. CN109932335A also discloses a similar technology.
  • the wavelength resolution (usually greater than 10nm) of the spectroscopy (spectroscopy) that uses the LED array as the light source is higher than that of the traditional halogen.
  • the wavelength resolution (usually 1nm) of the spectrometer of the tungsten lamp and the single optical device is still low, which has led to the doubts about correctly analyzing the spectrogram of the sample in the aforementioned three patents using the LED array as the light source.
  • the main purpose of the present invention is to provide a light-emitting device composed of a plurality of LEDs emitting different wavelength ranges from each other and a spectrometer composed of the light-emitting device.
  • the high resolution results of the traditional tungsten halogen lamp spectrometer, and at the same time, the signal-to-noise ratio in the spectrogram of the sample detection result is improved to achieve the effect of accurate testing.
  • a light emitting device of the present invention at least includes: a plurality of light emitting elements each emitting light having a peak emission wavelength and a wavelength range; wherein two adjacent two corresponding to the peak emission wavelength The wavelength ranges of the light-emitting elements partially overlap to form a continuous wavelength range wider than the wavelength range of each of the light-emitting elements, or two adjacent light-emitting elements corresponding to the peak wavelength of the light-emitting The wavelength ranges of the element do not overlap; the difference between the two adjacent luminescence peak wavelengths is greater than or equal to 1 nm, and the wavelength half-maximum width corresponding to each of the luminescence peak wavelengths is greater than 0 nm and less than or equal to 60 nm.
  • the light-emitting element is a light-emitting diode, a vertical cavity surface-emitting laser or a laser diode.
  • a plurality of the light-emitting elements can respectively exhibit a non-continuous light emission with a blinking frequency, and the plurality of the blinking frequencies may be the same or different from each other, or the plurality of the blinking frequencies may be partly the same or partly different.
  • the blinking frequency is between 0.05 times/sec and 500 times/sec.
  • the time interval for turning on the light-emitting element in the on-off frequency is between 0.001 second and 10 seconds.
  • the time interval for turning off the light-emitting element in the on-off frequency is between 0.001 second and 10 seconds.
  • the difference between two adjacent light-emitting peak wavelengths is between 1 nm and 80 nm.
  • the difference between two adjacent light-emitting peak wavelengths is between 5 nm and 80 nm.
  • the wavelength FWHM corresponding to each of the emission peak wavelengths is between 15 nm and 50 nm.
  • the wavelength half-maximum width corresponding to each of the emission peak wavelengths is between 15 nm and 40 nm.
  • the present invention provides a spectrometer at least including a light source controller, the aforementioned light emitting device, a light detector, and a calculator; the light source controller is electrically connected to the light emitting device, and the light detector The detector is electrically connected with the calculator, the light detector receives a light emitted from the light emitting device, and the traveling path of the light between the light emitting device and the light detector forms a light path.
  • a mathematical analysis module is disposed on the photodetector or the calculator, the mathematical analysis module is electrically or signal connected to the photodetector, or the mathematical analysis module is connected to the photodetector.
  • the calculator is electrically or signal connected, and the mathematical analysis module is a software or hardware type, the signal collected by the photodetector is transmitted to the mathematical analysis module; the brightness frequency is turned on The time interval of the light-emitting element, the signal received by the light detector is a combination of a spectrum signal of the object to be measured and a background noise; the time interval when the light-emitting element is turned off in the brightness frequency, the light detector receives The received signal is the background noise; the DUT spectral signal and the background noise constitute a DUT time-domain signal, and the mathematical analysis module includes converting the DUT time-domain signal into a DUT frequency A time-domain frequency-domain conversion unit for signals in the domain.
  • the time domain frequency domain conversion unit is a Fourier conversion unit for performing Fourier conversion of the DUT time domain signal into the DUT frequency domain signal.
  • the frequency domain signal of the object under test includes the frequency domain signal of the spectrum signal of the object under test and the frequency domain signal of the background noise
  • the mathematical analysis module can determine the frequency of the background noise. Abandon and leave the frequency domain signal of the spectrum signal of the object under test.
  • the mathematical analysis module includes converting the left frequency domain signal of the spectrum signal of the object under test into a filtered time domain signal of the object under test A frequency domain time domain conversion unit.
  • the frequency domain time domain conversion unit is capable of performing inverse Fourier conversion of the aforementioned left frequency domain signal of the measured object spectral signal into a part of the filtered measured object time domain signal Inverse Fourier transformation unit.
  • the present invention also provides a light-emitting method, which sequentially includes the following steps: a step of providing light-emitting elements: providing a plurality of light-emitting elements each emitting light having a peak emission wavelength and a wavelength range, and two adjacent ones of the peak emission wavelengths The wavelength ranges of the two corresponding light-emitting elements partially overlap to form a continuous wavelength range wider than the wavelength range of each of the light-emitting elements, or two adjacent light-emitting peak wavelengths corresponding to The wavelength ranges of the two light-emitting elements do not overlap; the difference between the two adjacent light-emitting peak wavelengths is greater than or equal to 1nm, and the wavelength half-maximum width corresponding to each of the light-emitting peak wavelengths is greater than 0nm and less than or equal to 60nm ; A light-emitting step: respectively control and make a plurality of the light-emitting elements respectively present a discontinuous light-off frequency, the light-off frequency is between 0.05 times/
  • the present invention also provides a spectral detection method, including the aforementioned luminescence method, the spectral detection method further includes a filtering step, receiving a spectrum signal of an object to be measured and a background noise, the time interval for turning on the light-emitting element in the brightness frequency,
  • the received signal is the combination of the spectrum signal of the object under test and the background noise, the time interval during which the light-emitting element is turned off in the brightness frequency, the received signal is the background noise, the spectrum signal of the object under test, and
  • the background noise constitutes a time-domain signal of the object to be measured. Fourier transforms the time-domain signal of the object to be measured into a frequency-domain signal of the object to be measured.
  • the frequency-domain signal of the object to be measured is divided into the spectral signal The frequency domain signal and the frequency domain signal of the background noise, and then the frequency domain signal of the background noise is discarded and the frequency domain signal of the spectrum signal of the object under test is left.
  • the spectrum detection method further includes an inverse conversion step, and the inverse conversion step is to perform inverse Fourier conversion of the frequency domain signal of the spectrum signal of the test object left behind into a filtered waiting Measured object time domain signal.
  • the present invention uses a plurality of light-emitting elements to make the two adjacent light-emitting peak wavelengths differ from each other by greater than or equal to 1 nm, and utilizes the wavelength half-height corresponding to each of the light-emitting peak wavelengths to be greater than 0 nm and less than or equal to 60 nm,
  • a plurality of the light-emitting elements can respectively present discontinuous light emission with a bright-on-off frequency, Fourier transforms the DUT time domain signal into the DUT frequency domain signal, and distinguishes the DUT frequency domain signal as the DUT frequency domain signal.
  • the accuracy and the wavelength resolution characteristics of the light-emitting device and the spectrometer of the present invention can replace the wavelength resolution characteristics of the traditional spectrometer.
  • Fig. 1 is a schematic diagram (1) of an embodiment of the light-emitting device and spectrometer of the present invention.
  • Fig. 2 is an emission spectrum diagram of the light emitting diode according to the first embodiment of the present invention.
  • Fig. 3 is an emission spectrum diagram of a light emitting diode according to a second embodiment of the present invention.
  • Fig. 4 is an emission spectrum diagram of a light-emitting diode according to a third embodiment of the present invention.
  • Fig. 5A is a schematic diagram (1) of an embodiment of the light-emitting device and spectrometer of the present invention.
  • Fig. 5B is a schematic diagram (2) of an embodiment of the light-emitting device and spectrometer of the present invention.
  • Fig. 6A is a time-domain signal diagram of the object under test measured by the spectrometer of the present invention.
  • FIG. 6B is a diagram of the frequency domain signal of the object under test after the time domain signal of the object under test is Fourier transformed by the spectrometer of the present invention.
  • FIG. 6C is a graph of the filtered time-domain signal of the object under test after performing inverse Fourier conversion on the frequency domain signal of the spectrum signal of the object under test left by the spectrometer of the present invention.
  • FIG. 7A is the reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by a conventional spectrometer in Comparative Example 1.
  • FIG. 7A is the reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by a conventional spectrometer in Comparative Example 1.
  • FIG. 7B is the reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using the spectrometer of the present invention in Application Example 1.
  • FIG. 7B is the reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using the spectrometer of the present invention in Application Example 1.
  • FIG. 7C is the reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using the spectrometer of the present invention in Application Example 2.
  • FIG. 7C is the reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using the spectrometer of the present invention in Application Example 2.
  • FIG. 7D is a reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using the spectrometer of the present invention in Application Example 3.
  • FIG. 7D is a reflection spectrum of zinc oxide and zinc oxide mixed iron oxide measured by using the spectrometer of the present invention in Application Example 3.
  • Fig. 8 is a flow chart of the steps of the light emitting method of the present invention.
  • Fig. 9 is a flow chart of the steps of the spectrum detection method of the present invention.
  • a light-emitting device 12 of the present invention is applicable to a spectrometer 1.
  • the spectrometer 1 includes a light source controller 11, the light-emitting device 12, a light detector 13 and a computing device. ⁇ 14.
  • the light source controller 11 is electrically connected to the light emitting device 12 and an external power source (not shown in the figure), the light detector 13 is electrically connected to the calculator 14, and the light detector 13 receives the light from the light source.
  • a light L emitted by the device 12, and the traveling path of the light L between the light emitting device 12 and the light detector 13 forms a light path R.
  • the light detector 13 may be, for example, a photomultiplier tube (photomultiplier), Photoconducting detector (photoconducting detector), silicon thermal radiation detector (Si bolometer).
  • An object A to be tested is placed on the optical path R, the optical path R penetrates the object A to be tested or the optical path R forms a reflection on the surface of the object A to be tested.
  • the optical path R penetrates the object A to be measured as an example, to measure the absorption spectrum of the object A to be measured.
  • the reflectance spectrum of the test object A is measured.
  • the light detector 13 converts the light L into a spectrum signal of the object to be measured and transmits the spectrum signal of the object to be measured to the calculator 14.
  • the calculator 14 converts the spectrum signal of the object to be measured to form a spectrum of the object to be measured
  • the calculator 14 is, for example, a personal computer, a notebook computer or a computer server.
  • the light-emitting device 12 includes at least a plurality of light-emitting elements each emitting light having a light emission peak wavelength and a wavelength range, and the light emission peak wavelength or the wavelength range is between 300 nm and 2500 nm,
  • the light-emitting element may be a light-emitting diode, a vertical-cavity surface-emitting laser (VCSEL) or a laser diode (LD).
  • VCSEL vertical-cavity surface-emitting laser
  • LD laser diode
  • the light-emitting element in the following embodiments is an example of a light-emitting diode. This is for the convenience of description and is not limited to the light-emitting diode exemplified in the present invention.
  • the light-emitting device 12 includes three light-emitting diodes, a first light-emitting diode 121 that emits a first light having a first wavelength range, and a first light-emitting diode 121 that emits a second wavelength range.
  • the first light emitting diode 121, the second light emitting diode 122, and the third light emitting diode 123 are electrically connected to a circuit board 120 of the light emitting device 12, and the circuit board 120 is electrically connected to the light source controller 11, in other words,
  • the light source controller 11 is electrically connected to the first light emitting diode 121, the second light emitting diode 122, and the third light emitting diode 123, and the light source controller 11 can control the first light emitting diode 121 and the second light emitting diode, respectively.
  • the on or off (bright or off, energized or not) of the diode 122 and the third light-emitting diode 123 means that the light source controller 11 can respectively control the on or off (bright or off) of a plurality of the light-emitting diodes.
  • the light source controller 11 can respectively control and make the first light emitting diode 121, the second light emitting diode 122 and the third light emitting diode 123 emit light continuously or discontinuously respectively, that is, the light source controller 11 11 can respectively control and cause a plurality of the light-emitting diodes to emit light continuously or discontinuously respectively.
  • the light source controller 11 can respectively control and make the first light-emitting diode 121, the second light-emitting diode 122, and the third light-emitting diode 123 each exhibit a discontinuous light-emitting frequency with a blinking frequency, that is, the light source control
  • the device 11 can respectively control and enable a plurality of the light-emitting diodes to respectively exhibit a discontinuous light-off frequency.
  • the plurality of the light-off frequencies may be the same or different from each other, or the plurality of the light-off frequencies may be partly the same or partly different.
  • the light source controller 11 includes a microcontroller (Microcontroller Unit) 111 electrically connected to the external power source and a clock generator (Clock Generator) 112 electrically connected to the microcontroller 111, and the blinking frequency is determined by After being generated by the clock generator 112, the signal of the blinking frequency is sent to the microcontroller 111, and then the microcontroller 111 turns on or off a plurality of electrical connections with the microcontroller 111 according to the blinking frequency.
  • the light-emitting diodes for example, the first light-emitting diode 121, the second light-emitting diode 122, and the third light-emitting diode 123).
  • the clock generator 112 can also be a clock generation module integrated in the microcontroller 111 to generate the blinking frequency, and the clock generation module can be a software or hardware type. In this way, there is no need to additionally provide the clock generator 112 outside the microcontroller 111.
  • a plurality of the light-emitting diodes can also be turned on or off at the same time according to actual needs, or only one or a part of the light-emitting diodes can be turned on or off selectively. Turn off, or turn on or turn off a plurality of the light-emitting diodes in sequence, or turn on or off any of the above methods in the blinking frequency mode.
  • the wavelength ranges of two adjacent light-emitting diodes corresponding to the peak wavelength of the light-emitting diodes partially overlap to form a continuum that is wider than the wavelength range of each of the light-emitting diodes
  • the wavelength range, the continuous wavelength range is between 300nm and 2500nm.
  • there are three peak emission wavelengths and corresponding wavelength ranges which are the first wavelength range corresponding to the first emission peak wavelength (734 nm) of the first light, and the second emission of the second light.
  • the second wavelength range corresponding to the peak wavelength (810 nm) and the third wavelength range corresponding to the third emission peak wavelength (882 nm) of the third light are the first wavelength range corresponding to the first emission peak wavelength (734 nm) of the first light, and the second emission of the second light.
  • the first luminescence peak wavelength and the second luminescence peak wavelength are two adjacent luminescence peak wavelengths.
  • the second luminescence peak wavelength and the third luminescence peak wavelength are also two adjacent luminescence peak wavelengths.
  • the first wavelength range corresponding to the first luminescence peak wavelength is between 660nm and 780nm
  • the second wavelength range corresponding to the second luminescence peak wavelength of the second light is between 710nm and 850nm
  • the The first wavelength range and the second wavelength range partially overlap between 710 nm and 780 nm, so the first wavelength range and the second wavelength range together form the continuous wavelength range between 660 nm and 850 nm.
  • the second wavelength range corresponding to the second luminescence peak wavelength is between 710 nm and 850 nm
  • the third wavelength range corresponding to the third luminescence peak wavelength of the third light is between 780 nm and 940 nm
  • the second wavelength range and the third wavelength range partially overlap between 780 nm and 850 nm, so the second wavelength range and the third wavelength range together form the continuous wavelength range between 710 nm and 940 nm.
  • the overlapping parts of the wavelength ranges of the two adjacent light emitting diodes corresponding to the emission peak wavelengths are less overlapped, the better.
  • the wavelength ranges of the two light-emitting diodes corresponding to the two adjacent light-emitting peak wavelengths may not overlap, which will be described later.
  • the difference between two adjacent light-emitting peak wavelengths is greater than or equal to 1 nm, preferably between 1 nm and 80 nm, and more preferably between 5 nm and 80 nm.
  • the adjacent first luminescence peak wavelength (734nm) and the second luminescence peak wavelength (810nm) differ from each other by 76nm
  • the peak wavelengths (882 nm) differ from each other by 72 nm.
  • the limits of the numerical range stated in the present invention and the scope of the patent always include end values.
  • the difference between the two adjacent peak wavelengths of the light emission is between 5nm and 80nm, which means greater than Or equal to 5nm and less than or equal to 80nm.
  • the second embodiment is a derivative embodiment of the first embodiment. Therefore, the similarities between the second embodiment and the first embodiment will not be repeated.
  • the difference between the second embodiment and the first embodiment is that the light-emitting device 12 of the second embodiment includes five light-emitting diodes.
  • the fifth light has a fifth luminous peak wavelength (854 nm) in the fifth wavelength range.
  • the luminous peak wavelength from small to large is the first luminous peak wavelength (734 nm), the fourth luminous peak wavelength (772 nm), the second luminous peak wavelength (810 nm), and the fifth luminous peak wavelength.
  • the wavelength (854nm) and the third emission peak wavelength (882nm), the adjacent first emission peak wavelength (734nm) and the fourth emission peak wavelength (772nm) differ from each other by 38nm, and the adjacent fourth emission peak wavelength
  • the wavelength (772nm) and the second emission peak wavelength (810nm) differ from each other by 38nm, the adjacent second emission peak wavelength (810nm) and the fifth emission peak wavelength (854nm) differ from each other by 44nm, and the adjacent ones
  • the fifth emission peak wavelength (854 nm) and the third emission peak wavelength (882 nm) differ from each other by 28 nm.
  • the third embodiment is a derivative embodiment of the first and second embodiments. Therefore, the third embodiment is similar to the first and second embodiments. No longer.
  • the third embodiment is different from the first embodiment in that the light-emitting device 12 of the second embodiment includes 12 light-emitting diodes.
  • the peak wavelengths of the 12 light-emitting diodes are 734nm ( The first emission peak wavelength), 747nm, 760nm, 772nm (the fourth emission peak wavelength), 785nm, 798nm, 810nm (the second emission peak wavelength), 824nm, 839nm, 854nm (the fifth emission peak wavelength), 867nm and 882nm (the third emission peak wavelength).
  • the light-emitting peak wavelengths of the two adjacent light-emitting diodes are 13nm, 13nm, 12nm, 13nm, 13nm, 12nm, 14nm, 15nm, 15nm, 13nm, and 15nm, respectively. If the light-emitting element in the first, second, and third embodiments is replaced by a laser diode, the difference between the peak wavelengths of the two adjacent luminescence peaks can be greater than or equal to 1 nm, for example, 1 nm.
  • the wavelength FWHM corresponding to each of the luminescence peak wavelengths is greater than 0 nm and less than or equal to 60 nm.
  • the luminescence peak wavelengths in the foregoing embodiment 1, embodiment 2, and embodiment 3 are 734 nm in order from small to large (the first Luminescence peak wavelength), 747nm, 760nm, 772nm (the fourth luminescence peak wavelength), 785nm, 798nm, 810nm (the second luminescence peak wavelength), 824nm, 839nm, 854nm (the fifth luminescence peak wavelength), 867nm and 882nm (The third luminescence peak wavelength), the wavelength half-height width corresponding to the first luminescence peak wavelength of the first light, the wavelength half-height width corresponding to the second luminescence peak wavelength of the second light, and the third The wavelength half-height width corresponding to the third light emission peak wavelength of the light, the wavelength half-height width corresponding to the fourth light emission peak wavelength of the fourth light, and
  • the other unexplained 747nm, 760nm, 785nm, 798nm, 824nm, 839nm and 867nm luminescence peak wavelengths corresponding to the wavelength half-width ( Figure 4) are also greater than 0nm and less than or equal to 60nm, preferably between 15nm and 50nm It is more preferably between 15 nm and 40 nm.
  • the wavelength FWHM corresponding to the emission peak wavelength in the foregoing Example 1, Example 2, and Example 3 is 55 nm; if the light-emitting element is a laser diode, each of the emission peak wavelengths is The corresponding wavelength half-height width is greater than 0 nm and less than or equal to 60 nm, for example, 1 nm.
  • the wavelength ranges of the two light-emitting diodes corresponding to the two adjacent light-emitting peak wavelengths may not overlap.
  • the light-emitting peak wavelengths in the first, second, and third embodiments described above correspond to The half-width of the wavelength is 15nm
  • the width of the wavelength range corresponding to each luminous peak wavelength (that is, the difference between the maximum and minimum of the wavelength range) is 40nm
  • the difference between two adjacent luminous peak wavelengths is 80nm.
  • the light-emitting element is a laser diode
  • the half-height width of the wavelength corresponding to each of the luminescence peak wavelengths is 1 nm
  • the width of the wavelength range is 4 nm
  • the difference between the two adjacent luminescence peak wavelengths is 5 nm.
  • the wavelength ranges of the two light-emitting elements (laser diodes) corresponding to the two adjacent light-emitting peak wavelengths do not overlap.
  • the light source controller 11 when operating the spectrometer 1 in the first, second, and third embodiments to detect the object A to generate the spectrum of the object, the light source controller 11 can be controlled separately as described above And make a plurality of the light-emitting diodes respectively present the discontinuous light emission of the bright-off frequency, the plurality of the bright-off frequencies may be the same or different from each other, or the plurality of the bright-off frequencies may be partly the same or partly different.
  • the time interval of turning on (lighting up) the light-emitting diode in the light-off frequency is between 0.001 seconds and 10 seconds, and turning off (turning off) the light-emitting diode in the light-off frequency
  • the time interval is between 0.001 seconds and 10 seconds.
  • the cycle of the light-off frequency refers to the sum of the time interval of turning on (lighting up) the light-emitting diode and turning off (turning off) the light-emitting diode.
  • the cycle of the light-off frequency is the reciprocal of the frequency; in other words, the cycle of the light-off frequency can be understood as the sum of a plurality of light-emitting diodes that are continuously lit for a time interval and immediately and continuously extinguished without interruption.
  • the lighting time interval is between 0.001 second and 10 seconds
  • the turning off time interval is between 0.001 second and 10 seconds.
  • the blinking frequency is between 0.5 times/sec and 500 times/sec; more preferably, the blinking frequency is between 5 times/sec and 500 times/sec.
  • a plurality of the light-emitting diodes exhibiting discontinuous light emission can greatly reduce the influence of the test object A by the heat energy of the light emitted by the light-emitting diode, and avoid the qualitative change of the test object A containing an organic tube, so it is especially suitable for
  • the heat-sensitive object A is more particularly suitable for the light in the wavelength range emitted by the light-emitting diode to be near-infrared light.
  • a mathematical analysis module M is disposed on the light detector 13 (FIG. 5A) or the calculator 14 (FIG. 5B), and the mathematical analysis module M is electrically or signal connected to the light detector 13 (FIG. 5A) , Or the mathematical analysis module M is electrically or signally connected to the calculator 14 (FIG.
  • the mathematical analysis module M can be in the form of software or hardware, and the light detector 13 collects The signal of is sent to the mathematical analysis module M.
  • the spectrometer 1 is operated to detect the test object A to generate the spectrum of the test object, a plurality of the light-emitting diodes can be turned on or off at the same time at the same frequency, and the light-emitting diodes are turned on (lighted up) in the frequency.
  • the signal received by the photodetector 13 is a combination of the spectrum signal of the object under test and a background noise (or called background noise), and the light is turned off (extinguished) in the brightness frequency
  • the signal received by the photodetector 13 is the background noise.
  • FIG. 6A shows the operation of the spectrometer 1 in the discontinuous luminescence mode of the brightness frequency to detect the object A, the combination of the spectrum signal of the object to be measured and the background noise and the effect of the background noise It constitutes a time domain signal of the object under test and a graph of the time domain signal of the object under test.
  • the mathematical analysis module M includes a time domain frequency domain conversion unit M1 (FIG. 5A) that converts the DUT time domain signal into a DUT frequency domain signal.
  • the time-domain frequency-domain conversion unit M1 may be a Fourier conversion unit for Fourier transforming the time-domain signal of the object under test into the frequency-domain signal of the object under test, and the converted frequency-domain signal of the object under test Please refer to FIG. 6B for a frequency domain signal diagram of the object under test.
  • the frequency domain signal of the object under test can be easily distinguished into the frequency domain signal of the spectrum signal of the object under test and the frequency domain signal of the background noise.
  • the frequency domain signal at the peak of 0Hz or the frequency domain signal less than the bright and dark frequency is the frequency domain signal of the background noise; and in Figure 6B, except for the frequency domain signal at the 0Hz peak ( The frequency domain signal of the background noise), and the remaining peak signal is the frequency domain signal of the spectrum signal of the object under test.
  • the frequency-domain signal greater than or equal to the bright-out frequency is the frequency-domain signal of the spectrum signal of the object under test.
  • the mathematical analysis module M discards the frequency domain signal of the background noise and leaves the frequency domain signal of the spectrum signal of the object to be measured to achieve a filtering effect. Since the mathematical analysis module M discards the frequency domain signal of the background noise, the left frequency domain signal of the spectrum signal of the object under test belongs to the object under test and does not contain the background signal, so it is compared with the traditional As far as spectrometers are concerned, the spectrometer 1 of the present invention not only improves the signal-to-noise ratio of the object to be measured in the spectrum, but also because the spectrometer 1 of the present invention discards the frequency domain signal of the background noise for filtering, it can achieve no The spectrum of background noise. Please refer to FIGS.
  • the microcontroller 111 of the light source controller 11 can be electrically or signally connected to the mathematical analysis module M to simultaneously turn on (light up) the brightness frequency and the brightness frequency.
  • the time interval of the light-emitting diode and the time interval of turning off (extinguishing) the light-emitting diode in the light-off frequency are transmitted to the mathematical analysis module M, so that the microcontroller 111 turns on (lighting up) according to the light-off frequency and the light-off frequency.
  • the mathematical analysis module M can turn on (light up) the light-emitting diode in the brightness frequency corresponding to the spectrum signal of the object, and the mathematical analysis module M can turn off (turn off) the light-emitting diode in the brightness frequency Corresponds to the background noise.
  • discontinuous light-emitting waveforms of the plurality of light-emitting diodes exhibiting the brightness and extinguishing frequency are square waves, sine waves or negative sine waves.
  • the mathematical analysis module M can also process the frequency domain signal of the spectrum signal of the object to be measured that is left after the filtering effect, and convert the frequency domain signal of the spectrum signal of the object to be measured that is left behind. It is a filtered time-domain signal of the object under test and a graph of the filtered time-domain signal of the object under test. Among the filtered time-domain signals of the object under test, there is only a filtered spectrum signal of the object under test, and the background does not exist. Noise.
  • the mathematical analysis module M includes a frequency domain time domain conversion unit M2 (FIG. 5B) that converts the frequency domain signal of the measured object spectral signal left behind into a filtered time domain signal of the measured object signal.
  • the frequency-domain time-domain conversion unit M2 may be used to perform inverse Fourier Transform on the frequency-domain signal of the spectrum signal of the object under test that has been left behind, into a Fourier transform of the filtered time-domain signal of the object under test.
  • the reverse conversion unit please refer to FIG. 6C for the converted time-domain signal of the object under test after filtering and the time-domain signal of the object under test after filtering. Comparing Fig. 6A and Fig. 6C, it can be clearly seen that the filtered DUT time-domain signal in the filtered DUT time-domain signal diagram in Fig.
  • the mathematical analysis module M, the time domain frequency domain conversion unit M1, and the frequency domain time domain conversion unit M2 may be of software or hardware type, or of the above-mentioned software or hardware type. Combination; the mathematical analysis module M, the time domain frequency domain conversion unit M1 and the frequency domain time domain conversion unit M2 are connected to each other by electrical or signal.
  • Comparative example 1 uses a traditional spectrometer of model SE-2020-050-VNIR with a tungsten halogen lamp as a light source and a grating to obtain a wavelength resolution of 1 nm produced by Taiwan Super Micro Optics Co., Ltd., and a 5 cm long surface coated with zinc oxide coating , 5cm wide, 0.2 thick sheet-shaped PVC (Polyvinyl Chloride) board and 5cm long, 5cm wide and 0.2 thick sheet-shaped PVC board coated with zinc oxide mixed iron oxide coating on the surface for oxidation Zinc paint and zinc oxide mixed iron oxide paint reflectance spectrum signal detection, and then based on the obtained spectral image data, use similar (difference) processing analysis technology, that is, spectral angle matching (Spectral Angle Match or Spectral Angle Mapping, referred to as SAM) Processing analysis technology to carry out similarity analysis of two different substances of zinc oxide and zinc oxide mixed iron oxide, the result of SAM analysis was 96.00% ( Figure 7A).
  • SAM Spectral
  • Application examples 1, 2 and 3 use the light-emitting devices and spectrometers of examples 1, 2 and 3 respectively.
  • the light-off frequency is about 90.90 times per second, and the time interval for turning on (lighting up) the light-emitting diode in the light-off frequency is 1 millisecond (1ms), the time interval of turning off (turning off) the light-emitting diode in the bright-off frequency is 10 milliseconds (10ms) and using the same light detector as the SE-2020-050-VNIR model of the aforementioned Taiwan Supermicro Optics Company, respectively
  • the SAM analysis results were respectively 97.69% (Figure 7B), 97.48% (Figure 7C) and 96.54% (Figure 7D), which were all close to 96.00% of the traditional spectrometer of Comparative Example 1. Therefore, the light-emitting devices and the light-emitting devices of Examples 1, 2 and 3
  • the wavelength resolution of the spectrometer is similar to that of the traditional spectrometer. Therefore, the wavelength resolution characteristics of the light-emitting devices and spectrometers of Examples 1, 2 and 3 used in Application Examples 1, 2 and 3 can replace the wavelength resolution characteristics of traditional spectrometers.
  • the step S01 of providing light-emitting elements providing a plurality of light-emitting elements each emitting light having a light-emitting peak wavelength and a wavelength range, and two adjacent light-emitting elements corresponding to the light-emitting peak wavelengths have the wavelength ranges of the two light-emitting elements Overlap to form a continuous wavelength range wider than the wavelength range of each of the light-emitting elements, or the wavelength ranges of two light-emitting elements corresponding to two adjacent light-emitting peak wavelengths do not overlap;
  • the difference between two adjacent luminescence peak wavelengths is greater than or equal to 1 nm, and the wavelength half-height width corresponding to each of the luminescence peak wavelengths is greater than 0 nm and less than or equal to 60 nm.
  • the light-emitting element can be a light-emitting diode, a vertical cavity surface-emitting laser or a laser diode.
  • two adjacent light-emitting peak wavelengths differ from each other by 1 nm to 80 nm, and more preferably two adjacent light-emitting peak wavelengths differ from each other by 5 nm to 80 nm.
  • the wavelength FWHM corresponding to each of the emission peak wavelengths is between 15 nm and 50 nm, and more preferably, the wavelength FWHM corresponding to each of the emission peak wavelengths is between 15 nm and 40 nm.
  • the light-emitting step S02 respectively control and make a plurality of the light-emitting elements respectively present a discontinuous light-emitting with a blinking frequency, the blinking frequency is between 0.05 times/sec to 500 times/sec, and the light-emitting element is turned on at the blinking frequency
  • the time interval of is between 0.001 second and 10 seconds, and the time interval of turning off the light-emitting element in the brightness frequency is between 0.001 second and 10 seconds.
  • the blinking frequency is between 0.5 times/sec and 500 times/sec; more preferably, the blinking frequency is between 5 times/sec and 500 times/sec.
  • the spectrum detection method successively includes a filtering step S03 and an inverse conversion step S04 after the light-emitting step S02.
  • the filtering step S03 receiving a spectrum signal of the object to be measured and a background noise, the time interval for turning on (lighting up) the light-emitting element in the brightness frequency, the received signal is the spectrum signal of the object to be measured and the background noise
  • the combination of signals, the time interval during which the light-emitting element is turned off (extinguished) in the brightness frequency, the received signal is the background noise (or called background noise)
  • the spectrum signal of the object under test and the background noise constitute a
  • the time domain signal of the object under test Fourier transforms the time domain signal of the object under test into a frequency domain signal of the object under test, and the frequency domain signal of the object under test is divided into the spectrum of the object under test
  • the frequency domain signal of the signal and the frequency domain signal of the background noise, and then the frequency domain signal of the background noise is discarded and the frequency domain signal of the spectrum signal of the object under test is left to achieve the filtering effect.
  • the inverse conversion step S04 Inverse Fourier Transform is performed on the frequency domain signal of the spectrum signal of the object under test that was left behind into a filtered time domain signal of the object under test.
  • Application example 4 is to use the light-emitting device and spectrometer of the third embodiment, the light-off frequency is about 100 times/second, the time interval of turning on (lighting up) the light-emitting diode at the light-off frequency is 5 milliseconds (5ms), and the light-emitting diode is off at the light-off frequency (Extinguish)
  • the time interval of the light-emitting diode is 5 milliseconds (5ms)
  • the cycle of the light-off frequency is 10 milliseconds (10ms)
  • the same light as the SE-2020-050-VNIR model of Taiwan Super Micro Optics Co., Ltd. is used.
  • the detector detects the reflection spectrum signal according to the aforementioned spectral detection method on a sheet-shaped PVC sheet of 5 cm long, 5 cm wide and 0.2 thick coated with zinc oxide.
  • the test object time-domain signal and the test object time-domain signal diagram formed by the spectrum signal of the object under test and the background noise, as shown in FIG.
  • the waveform is a square wave.
  • the time domain signal of the object under test undergoes the Fourier conversion of the filtering step into the frequency domain signal of the object under test and the frequency domain signal diagram of the object under test, as shown in Figure 6B; wherein, the frequency domain signal of the object under test can be easily distinguished It is the frequency domain signal of the spectrum signal of the object under test and the frequency domain signal of the background noise.
  • the period of the brightness frequency is 10ms, so the corresponding frequency is 100Hz, so the frequency domain signal with frequency greater than or equal to 100Hz in Figure 6B It is the frequency domain signal of the spectrum signal of the object under test, and the frequency domain signal at 0 Hz or the frequency domain signal less than 100 Hz is the frequency domain signal of the background noise.
  • the filtering step combines the frequency domain signal of the background noise The domain signal is discarded and the frequency domain signal of the spectrum signal of the object under test is left.
  • the inverse conversion step performs the inverse Fourier conversion of the frequency domain signal of the measured object spectral signal left behind into the filtered time domain signal of the measured object (the discontinuous square wave in FIG. 6C) and the filtered waiting signal.
  • the light-emitting device, light-emitting method, spectrometer and spectral detection method provided by the present invention are close to the analysis results of the sample using a traditional tungsten halogen lamp spectrometer.
  • the high-resolution results of the sample, and at the same time, the signal-to-noise ratio in the spectrum of the sample detection result is improved, which can indeed achieve the effect of testing accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明提供一种光谱仪及其所使用的一种发光装置,发光装置至少包含:复数个各放射具有一发光峰值波长及一波长范围的光的发光元件,相邻的二个发光峰值波长所对应的二个发光元件的波长范围部分重叠,或者相邻的二个发光峰值波长所对应的二个发光元件的波长范围不重叠;并且复数个发光元件能够分别呈现一明灭频率的非连续发光。本发明还依据前述的发光装置及光谱仪,提供一种发光方法及一种光谱检测方法,能够将背景杂讯的频域讯号舍弃并留下待测物光谱讯号的频域讯号,以达到滤波效果而使得测试精准,以及取代传统光谱仪在波长解析度的特性。

Description

发光装置、发光方法、光谱仪及光谱检测方法 技术领域
本发明关于一种发光装置,尤其是指能够选择发光二极管放射的光的波长范围、相邻的发光峰值波长(light emission peak wavelength)差异范围、波长半高宽(Full-Width at Half-Maximum,FWHM)的范围及明灭频率(lighting frequency)的发光装置、发光方法、光谱仪及光谱检测方法。
背景技术
光谱仪可以用来测量穿透物体的透射光或测量物体表面的反射光,而传统的光谱仪(spectrophotometer,又可称为分光光度计)通常包含有光源及单光器(monochromator),其中光源可以采用卤素气体充填的钨丝灯(卤钨灯)以产生发射光谱约在320nm~2500nm的Vis-nearIR(可见光-近红外光)呈连续光谱的光,接着再由棱镜(prism)或光栅(grating)所构成的单光器选择特定波长的单色光以供试样(或称待测物)的吸光或反射测定,这当然也包含可以在设定的波长范围内连续扫描,以进行试样的吸收光谱或反射光谱的分析。然而,就如同中国发明专利授权公告第CN101236107B号所述钨丝灯的众多问题之外,由于钨丝灯发热量大且温度高的因素,当利用钨丝灯做为光源而进行例如农产品、食品、医药品、石化产品的有机产品检测时,高温会对有机试样造成质变,因而严重影响检测结果。前述第CN101236107B号专利所揭示的技术也可为本发明所引用。
前述第CN101236107B号专利揭露复数个发光二极管(Light-emitting diode,LED)做为光谱仪的光源,每个LED发射不同波长范围的单色光谱,除了将前述复数个LED组合成连续光谱之外,还可以依据设计当只需要某一波长范围的单色光时,只需要点亮该波长范围所对应的LED即可,所以既可以同时点亮复数个LED合成连续光谱,也可以依所需扫描的波长范围而依序点亮所对应的LED。然而,前述第CN101236107B号专利是将复数个LED的发射光线聚焦在单色器的入射狭缝上,因此并无法解决单色器造价高昂及系统复杂的问题。中国实用新型专利授权公告第CN205388567U号则是揭露使用复数个LED及光纤的组合以避免使用单色器,另外又使用全反射镜增加测量光程以提高检测试样的效率。前述第 CN101236107B号专利所揭示的技术也可为本发明所引用。另外,中国发明专利公开第CN109932335A号也揭露了类似的技术。
前述三篇专利虽然改善了传统光谱仪的光源发热及单色器昂贵的问题,然而前述第三篇专利使用LED阵列做为光源的光谱仪(spectroscopy)的波长解析度(通常大于10nm)比传统使用卤钨灯及单光器的光谱仪的波长解析度(通常为1nm)还低,这导致了使用LED阵列做为光源的前述三篇专利在正确解析试样的光谱图上的疑虑。前述三篇专利的另一个问题是无法进一步提高讯噪比(讯号噪音比或讯号杂讯比,Signal-to-noise ratio,SNR或S/N,也称讯杂比),前述三篇专利的LED阵列只是用来取代卤钨灯做为光源,除此之外并没有改变光源的其他操作方式,因此显然地对于从光源端所导致的SNR并无改善,所以前述三篇专利并无法进一步提高SNR。
发明内容
本发明的主要目的即在于提供由彼此发射不同波长范围的复数个LED所构成的一种发光装置及由该发光装置所构成的一种光谱仪,本发明的光谱仪对于试样的解析结果接近于使用传统卤钨灯光谱仪的高解析结果,而且同时提高了试样检测结果光谱图中的讯杂比,以达到测试精准的效果。
本发明所采用的技术手段如下所述。
为达上述目的,本发明的一种发光装置,至少包含:复数个各放射具有一发光峰值波长及一波长范围的光的发光元件;其中,相邻的二个该发光峰值波长所对应的二个该发光元件的该等波长范围部分重叠以形成较该等发光元件中的各者的该波长范围宽的一连续波长范围,或者相邻的二个该发光峰值波长所对应的二个该发光元件的该等波长范围不重叠;相邻的二个该发光峰值波长彼此相差为大于或等于1nm,各该发光峰值波长所对应的波长半高宽为大于0nm且小于或等于60nm。
在本发明的一实施例中,该发光元件为发光二极管、垂直共振腔面射型雷射或雷射二极管。
在本发明的一实施例中,复数个该发光元件能够分别呈现一明灭频率的非连续发光,复数个该明灭频率可以是彼此相同或彼此不同,或者复数个该明灭频率可以是部分相同或部分不同。
在本发明的一实施例中,该明灭频率是介于0.05次/秒至500次/秒之间。
在本发明的一实施例中,该明灭频率中开启该发光元件的时间区间为介于0.001秒至10秒之间。
在本发明的一实施例中,该明灭频率中关闭该发光元件的时间区间为介于0.001秒至10秒之间。
在本发明的一实施例中,相邻的二个该发光峰值波长彼此相差为介于1nm至80nm之间。
在本发明的一实施例中,相邻的二个该发光峰值波长彼此相差为介于5nm至80nm之间。
在本发明的一实施例中,各该发光峰值波长所对应的波长半高宽为介于15nm至50nm之间。
在本发明的一实施例中,各该发光峰值波长所对应的波长半高宽为介于15nm至40nm之间。
为达上述目的,本发明又提供一种光谱仪,至少包含一光源控制器、前述该发光装置、一光侦测器及一计算器;该光源控制器与该发光装置电性连接,该光侦测器与该计算器电性连接,该光侦测器接收来自该发光装置发射的一光线,且该光线在该发光装置与该光侦测器之间的行进路径形成一光路。
在本发明的一实施例中,一数学分析模组设置于该光侦测器或该计算器,该数学分析模组与该光侦测器电性或讯号连接,或该数学分析模组与该计算器电性或讯号连接,而所述该数学分析模组是软体或硬体型态,该光侦测器所收集到的讯号被传送到该数学分析模组;该明灭频率中开启该发光元件的时间区间,该光侦测器所接收到的讯号为一待测物光谱讯号与一背景杂讯的结合;该明灭频率中关闭该发光元件的时间区间,该光侦测器所接收到的讯号为该背景杂讯;该待测物光谱讯号及该背景杂讯构成一待测物时域讯号,该数学分析模组包含将该待测物时域讯号转换为一待测物频域讯号的一时域频域转换单元。
在本发明的一实施例中,该时域频域转换单元是用以将该待测物时域讯号进行傅立叶转换为该待测物频域讯号的一傅立叶转换单元。
在本发明的一实施例中,该待测物频域讯号包含该待测物光谱讯号的频域讯号及该背景杂讯的频域讯号,该数学分析模组能够将该背景杂讯的频域讯号舍弃并留下该待测物光谱讯号的频域讯号,该数学分析模组包含将前述所留下的该待测物光谱讯号的频域讯号转换为一滤波后待测物时域讯号的一频域时域转换单 元。
在本发明的一实施例中,该频域时域转换单元是能够将前述所留下的该待测物光谱讯号的频域讯号进行傅立叶反转换为该滤波后待测物时域讯号的一傅立叶反转换单元。
本发明又提供一种发光方法,依序包含以下步骤:一提供发光元件步骤:提供复数个各放射具有一发光峰值波长及一波长范围的光的发光元件,相邻的二个该发光峰值波长所对应的二个该发光元件的该等波长范围部分重叠以形成较该等发光元件中的各者的该波长范围宽的一连续波长范围,或者相邻的二个该发光峰值波长所对应的二个该发光元件的该等波长范围不重叠;相邻的二个该发光峰值波长彼此相差为大于或等于1nm,各该发光峰值波长所对应的波长半高宽为大于0nm且小于或等于60nm;一发光步骤:分别控制并使得复数个该发光元件分别呈现一明灭频率的非连续发光,该明灭频率是介于0.05次/秒至500次/秒之间,该明灭频率中开启该发光元件的时间区间为介于0.001秒至10秒之间,该明灭频率中关闭该发光元件的时间区间为介于0.001秒至10秒之间。
本发明又提供一种光谱检测方法,包含前述发光方法,该光谱检测方法更包含一滤波步骤,接收一待测物光谱讯号及一背景杂讯,该明灭频率中开启该发光元件的时间区间,所接收到的讯号为该待测物光谱讯号与该背景杂讯的结合,该明灭频率中关闭该发光元件的时间区间,所接收到的讯号为该背景杂讯,该待测物光谱讯号及该背景杂讯构成一待测物时域讯号,将该待测物时域讯号进行傅立叶转换为一待测物频域讯号,该待测物频域讯号被区分为该待测物光谱讯号的频域讯号及该背景杂讯的频域讯号,接着将该背景杂讯的频域讯号舍弃并留下该待测物光谱讯号的频域讯号。
在本发明的一实施例中,该光谱检测方法更包含一反转换步骤,该反转换步骤是将前述所留下的该待测物光谱讯号的频域讯号进行傅立叶反转换为一滤波后待测物时域讯号。
本发明运用复数个发光元件,使其相邻的二个该发光峰值波长彼此相差为大于或等于1nm,以及利用各该发光峰值波长所对应的波长半高宽为大于0nm且小于或等于60nm,并且复数个该发光元件能够分别呈现一明灭频率的非连续发光,将该待测物时域讯号进行傅立叶转换为该待测物频域讯号,并将该待测物频域讯号区分为该待测物光谱讯号的频域讯号及该背景杂讯的频域讯号,接着将该背景杂讯的频域讯号舍弃并留下该待测物光谱讯号的频域讯号,以达到滤波效果而使得 测试精准,以及达到本发明的发光装置及光谱仪在波长解析度的特性能够取代传统光谱仪在波长解析度的特性。
附图说明
图1是本发明发光装置及光谱仪的实施方式示意图(一)。
图2是本发明第一实施例的发光二极管的放射光谱图。
图3是本发明第二实施例的发光二极管的放射光谱图。
图4是本发明第三实施例的发光二极管的放射光谱图。
图5A是本发明发光装置及光谱仪的实施方式示意图(一)。
图5B是本发明发光装置及光谱仪的实施方式示意图(二)。
图6A是本发明光谱仪所测得的待测物时域讯号图。
图6B是本发明光谱仪将待测物时域讯号进行傅立叶转换后的待测物频域讯号图。
图6C是本发明光谱仪将经过滤波效果后所留下的待测物光谱讯号的频域讯号进行傅立叶反转换后的滤波后待测物时域讯号图。
图7A是比较例1使用传统光谱仪所测得的氧化锌及氧化锌混合氧化铁反射光谱图。
图7B是应用例1使用本发明光谱仪所测得的氧化锌及氧化锌混合氧化铁反射光谱图。
图7C是应用例2使用本发明光谱仪所测得的氧化锌及氧化锌混合氧化铁反射光谱图。
图7D是应用例3使用本发明光谱仪所测得的氧化锌及氧化锌混合氧化铁反射光谱图。
图8是本发明发光方法的步骤流程图。
图9是本发明光谱检测方法的步骤流程图。
图号说明:
1    光谱仪
11   光源控制器
111  微控制器
112   时脉产生器
12    发光装置
120   电路板
121   第一发光二极管
1211  第四发光二极管
122   第二发光二极管
1221  第五发光二极管
123   第三发光二极管
13    光侦测器
14    计算器
A     待测物
L     光线
M     数学分析模组
M1    时域频域转换单元
M2    频域时域转换单元
R     光路
S01   提供发光元件步骤
S02   发光步骤
S03   滤波步骤
S04   反转换步骤。
具体实施方式
首先,请参阅图1的第一实施例,本发明的一种发光装置12适用于一光谱仪1,该光谱仪1包含一光源控制器11、该发光装置12、一光侦测器13及一计算器14。该光源控制器11分别与该发光装置12及一外部电源(图未绘出)电性连接,该光侦测器13与该计算器14电性连接,该光侦测器13接收来自该发光装置12发射的一光线L,且该光线L在该发光装置12与该光侦测器13之间的行进路径形成一光路R,该光侦测器13例如可以是光电倍增管(photomultiplier)、光导电度侦测器(photoconducting detector)、硅热辐射侦测器(Si bolometer)。一待测物A是被置放于该光路R,该光路 R穿透该待测物A或该光路R在该待测物A的表面形成反射。在图1中,是以该光路R穿透该待测物A为举例,以测得该待测物A的吸收光谱。另外,在该光路R在该待测物A的表面形成反射的实施态样中,是测得该待测物A的反射光谱。该光侦测器13将光线L转换成一待测物光谱讯号并将该待测物光谱讯号传送至该计算器14,该计算器14将该待测物光谱讯号转换后形成一待测物光谱图,该计算器14例如为个人电脑、笔记型电脑或电脑伺服器。
该发光装置12,至少包含:复数个各放射具有一发光峰值波长(light emission peak wavelength)及一波长范围的光的发光元件,该发光峰值波长或该波长范围是介于300nm至2500nm之间,其中该发光元件可以是发光二极管、垂直共振腔面射型雷射(Vertical-Cavity Surface-Emitting Laser,VCSEL)或雷射二极管(Laser Diode,LD)。以下实施例的该发光元件是以发光二极管为举例,这是为了说明方便起见,而非以本发明所举例发光二极管为限,且熟知此技艺者当知道该发光元件的态样:发光二极管、垂直共振腔面射型雷射或雷射二极管在本发明中是可以互相替换,并不会影响本发明的实际实施。于图1的实施例中,该发光装置12包含三个发光二极管,分别为放射具有一第一波长范围的一第一光线的一第一发光二极管121、放射具有一第二波长范围的一第二光线的一第二发光二极管122及放射具有一第三波长范围的一第三光线的一第三发光二极管123,该第一光线在该第一波长范围内具有一第一发光峰值波长,该第二光线在该第二波长范围内具有一第二发光峰值波长,该第三光线在该第三波长范围内具有一第三发光峰值波长。该第一发光二极管121、该第二发光二极管122及该第三发光二极管123与该发光装置12的一电路板120电性连接,该电路板120与该光源控制器11电性连接,换言之,该光源控制器11与该第一发光二极管121、该第二发光二极管122及该第三发光二极管123电性连接,且该光源控制器11能够分别控制该第一发光二极管121、该第二发光二极管122及该第三发光二极管123的开或关(明或灭,通电或不通电),也就是说该光源控制器11能够分别控制复数个该发光二极管的开或关(明或灭)。较佳地,该光源控制器11能够分别控制并使得该第一发光二极管121、该第二发光二极管122及该第三发光二极管123分别连续发光或分别非连续发光,也就是说该光源控制器11能够分别控制并使得复数个该发光二极管分别连续发光或分别非连续发光。更佳地,该光源控制器11能够分别控制并使得该第一发光二极管121、该第二发光二极管122及该第三发光二极管123分别呈现一明灭频率的非连续发光,也就是说该光源控制 器11能够分别控制并使得复数个该发光二极管能够分别呈现一明灭频率的非连续发光,复数个该明灭频率可以是彼此相同或彼此不同,或者复数个该明灭频率可以是部分相同或部分不同。例如,该光源控制器11包含与该外部电源电性连接的一微控制器(Microcontroller Unit)111及与该微控制器111电性连接的一时脉产生器(clock generator)112,该明灭频率由该时脉产生器112产生后将该明灭频率的讯号传送至该微控制器111,再由该微控制器111依据该明灭频率以开或关与该微控制器111分别电性连接的复数个该发光二极管(例如该第一发光二极管121、该第二发光二极管122及该第三发光二极管123)。特别说明的是,该时脉产生器112也可以是整合于该微控制器111内的以产生该明灭频率的一时脉产生模组,该时脉产生模组可以是软体或硬体型态,如此便不需要在该微控制器111外部另外设置该时脉产生器112。特别说明的是,当然,依据上述该光源控制器11的技术特征,也可以依据实际需求而同时将复数个该发光二极管开或关,或者依选择地只将一个或部分的该发光二极管开或关,或者将复数个该发光二极管依序开或关,或者将上述方式的任一种以该明灭频率方式开或关。
请一并参阅图2,相邻的二个该发光峰值波长所对应的二个该发光二极管的该等波长范围部分重叠以形成较该等发光二极管中的各者的该波长范围宽的一连续波长范围,该连续波长范围是介于300nm至2500nm之间。在图2中共有三个发光峰值波长及所对应的波长范围,分别为该第一光线的该第一发光峰值波长(734nm)所对应的该第一波长范围、该第二光线的该第二发光峰值波长(810nm)所对应的该第二波长范围及该第三光线的该第三发光峰值波长(882nm)所对应的该第三波长范围。该第一发光峰值波长与该第二发光峰值波长是相邻的二个发光峰值波长,同样地该第二发光峰值波长与该第三发光峰值波长也是相邻的二个发光峰值波长。该第一发光峰值波长所对应的该第一波长范围为介于660nm至780nm之间,该第二光线的该第二发光峰值波长所对应的该第二波长范围为介于710nm至850nm,该第一波长范围与该第二波长范围在710nm至780nm之间呈现部分重叠,因此该第一波长范围与该第二波长范围共同形成660nm至850nm之间的该连续波长范围。同样地,该第二发光峰值波长所对应的该第二波长范围为介于710nm至850nm,该第三光线的该第三发光峰值波长所对应的该第三波长范围为介于780nm至940nm,该第二波长范围与该第三波长范围在780nm至850nm之间呈现部分重叠,因此该第二波长范围与该第三波长范围共同形成710nm至940nm之间的该连续波长范围。在本发 明中,相邻的二个该发光峰值波长所对应的二个该发光二极管的该等波长范围的重叠部分,以重叠愈少则愈佳。当然,相邻的二个该发光峰值波长所对应的二个该发光二极管的该等波长范围也可以不重叠,这将于后文中说明。
相邻的二个该发光峰值波长彼此相差为大于或等于1nm,较佳地为介于1nm至80nm之间,更佳地为介于5nm至80nm之间。在图2中,相邻的该第一发光峰值波长(734nm)与该第二发光峰值波长(810nm)彼此相差为76nm,而相邻的该第二发光峰值波长(810nm)与该第三发光峰值波长(882nm)彼此相差为72nm。除了有特别说明之外,本发明及专利范围所述的数值范围的限定总是包括端值,例如前述相邻的二个该发光峰值波长彼此相差为介于5nm至80nm之间,是指大于或等于5nm而且小于或等于80nm。
请一并参阅图3的第二实施例,第二实施例是第一实施例的衍生实施例,因此第二实施例与第一实施例相同之处就不再赘述。第二实施例与第一实施例不同之处在于第二实施例的该发光装置12包含五个发光二极管,分别为放射具有该第一发光二极管121、放射具有一第四波长范围的一第四光线的一第四发光二极管1211、该第二发光二极管122、放射具有一第五波长范围的一第五光线的一第五发光二极管1221及该第三发光二极管123,该第四光线在该第四波长范围内具有一第四发光峰值波长(772nm),该第五光线在该第五波长范围内具有一第五发光峰值波长(854nm)。在图3中,发光峰值波长由小至大依序为该第一发光峰值波长(734nm)、该第四发光峰值波长(772nm)、该第二发光峰值波长(810nm)、该第五发光峰值波长(854nm)及该第三发光峰值波长(882nm),相邻的该第一发光峰值波长(734nm)与该第四发光峰值波长(772nm)彼此相差为38nm,相邻的该第四发光峰值波长(772nm)与该第二发光峰值波长(810nm)彼此相差为38nm,相邻的该第二发光峰值波长(810nm)与该第五发光峰值波长(854nm)彼此相差为44nm,相邻的该第五发光峰值波长(854nm)与该第三发光峰值波长(882nm)彼此相差为28nm。
请一并参阅图4的第三实施例,第三实施例是第一实施例及第二实施例的衍生实施例,因此第三实施例与第一实施例及第二实施例相同之处就不再赘述。第三实施例与第一实施例不同之处在于第二实施例的该发光装置12包含12个发光二极管,在图4中,12个发光二极管的发光峰值波长由小至大依序为734nm(该第一发光峰值波长)、747nm、760nm、772nm(该第四发光峰值波长)、785nm、798nm、810nm(该第二发光峰值波长)、824nm、839nm、854nm(该第五发光峰值波长)、867nm及 882nm(该第三发光峰值波长)。该12个发光二极管的发光峰值波长之中,相邻的二个该发光峰值波长彼此相差依序分别为13nm、13nm、12nm、13nm、13nm、12nm、14nm、15nm、15nm、13nm及15nm。如果于实施例一、实施例二及实施例三中的该发光元件是改用雷射二极管,相邻的二个该发光峰值波长彼此相差可以为大于或等于1nm,例如为1nm。
各该发光峰值波长所对应的波长半高宽为大于0nm且小于或等于60nm,例如前述实施例一、实施例二及实施例三中发光峰值波长由小至大依序为734nm(该第一发光峰值波长)、747nm、760nm、772nm(该第四发光峰值波长)、785nm、798nm、810nm(该第二发光峰值波长)、824nm、839nm、854nm(该第五发光峰值波长)、867nm及882nm(该第三发光峰值波长),该第一光线的该第一发光峰值波长所对应的波长半高宽、该第二光线的该第二发光峰值波长所对应的波长半高宽、该第三光线的该第三发光峰值波长所对应的波长半高宽、该第四光线的该第四发光峰值波长所对应的波长半高宽及该第五光线的该第五发光峰值波长所对应的波长半高宽为大于0nm且小于或等于60nm,较佳为介于15nm至50nm之间,更佳为介于15nm至40nm之间。其余未说明的747nm、760nm、785nm、798nm、824nm、839nm及867nm发光峰值波长所对应的波长半高宽(图4)也是为大于0nm且小于或等于60nm,较佳为介于15nm至50nm之间,更佳为介于15nm至40nm之间。于本发明的实验操作时,前述实施例一、实施例二及实施例三中的发光峰值波长所对应的波长半高宽为55nm;如果该发光元件是雷射二极管,各该发光峰值波长所对应的波长半高宽为大于0nm且小于或等于60nm,例如为1nm。
前述相邻的二个该发光峰值波长所对应的二个该发光二极管的该等波长范围也可以不重叠,例如如果前述实施例一、实施例二及实施例三中的各发光峰值波长所对应的波长半高宽为15nm,各发光峰值波长所对应的该波长范围的宽度(也就是该波长范围的最大值与最小值的差)为40nm,相邻的二个该发光峰值波长彼此相差为80nm。又例如如果该发光元件是雷射二极管,各该发光峰值波长所对应的波长半高宽为1nm,该波长范围的宽度为4nm,相邻的二个该发光峰值波长彼此相差为5nm,则相邻的二个该发光峰值波长所对应的二个该发光元件(雷射二极管)的该等波长范围不重叠。
较佳地,于实施例一、实施例二及实施例三操作该光谱仪1进行该待测物A的检测以产生该待测物光谱图时,如前所述该光源控制器11能够分别控制并使得复 数个该发光二极管分别呈现该明灭频率的非连续发光,复数个该明灭频率可以是彼此相同或彼此不同,或者复数个该明灭频率可以是部分相同或部分不同,前述该明灭频率是介于0.05次/秒至500次/秒之间,该明灭频率中开启(点亮)该发光二极管的时间区间为介于0.001秒至10秒之间,该明灭频率中关闭(熄灭)该发光二极管的时间区间为介于0.001秒至10秒之间,该明灭频率的周期是指接续的一次开启(点亮)该发光二极管的时间区间及关闭(熄灭)该发光二极管的时间区间的和,该明灭频率的周期是该明灭频率的倒数;换言之,该明灭频率的周期可以被理解为将复数个该发光二极管连续点亮一点亮时间区间并立即无间断地连续熄灭一熄灭时间区间的和,该点亮时间区间为介于0.001秒至10秒之间,该熄灭时间区间为介于0.001秒至10秒之间。较佳地,该明灭频率是介于0.5次/秒至500次/秒之间;更佳地,该明灭频率是介于5次/秒至500次/秒之间。复数个该发光二极管呈现非连续发光的样态可以大幅降低该待测物A被该发光二极管所放射的光的热能所影响,避免含有有机管的该待测物A产生质变,因此尤其适合对于热能敏感的该待测物A,更尤其适合于该发光二极管所放射该波长范围的光为近红外光。一数学分析模组M设置于该光侦测器13(图5A)或该计算器14(图5B),该数学分析模组M与该光侦测器13(图5A)电性或讯号连接,或该数学分析模组M与该计算器14(图5B)电性或讯号连接,而所述该数学分析模组M可以是软体或硬体型态,该光侦测器13所收集到的讯号系被传送到该数学分析模组M。当操作该光谱仪1进行该待测物A的检测以产生该待测物光谱图时,复数个该发光二极管可以以相同的该明灭频率同时开或关,该明灭频率中开启(点亮)该发光二极管的时间区间,该光侦测器13所接收到的讯号为该待测物光谱讯号及一背景杂讯(或称为背景噪音)的结合,而该明灭频率中关闭(熄灭)该发光二极管的时间区间,该光侦测器13所接收到的讯号为该背景杂讯。请一并参阅图6A,其为以该明灭频率的非连续发光方式操作该光谱仪1进行该待测物A的检测,该待测物光谱讯号与该背景杂讯的结合及该背景杂讯所构成的一待测物时域(time domain)讯号及一待测物时域讯号图。该光侦测器13所收集到的前述该待测物光谱讯号及该背景杂讯被传送到该数学分析模组M,该数学分析模组M对于前述该待测物时域讯号进行处理而将该背景杂讯舍弃,例如该数学分析模组M包含将该待测物时域讯号转换为一待测物频域(frequency domain)讯号的一时域频域转换单元M1(图5A),该时域频域转换单元M1可以是用以将该待测物时域讯号进行傅立叶转换(Fourier transform)为该待测物频域讯号的一傅立叶转换单元,转换后的该待测物 频域讯号及一待测物频域讯号图请参见图6B,该待测物频域讯号很容易被区分为该待测物光谱讯号的频域讯号及该背景杂讯的频域讯号。在图6B中,位于0Hz的峰值的频域讯号或小于该明灭频率的频域讯号,即为该背景杂讯的频域讯号;而在图6B中,除了位于0Hz的峰值的频域讯号(该背景杂讯的频域讯号),其余剩下的峰值的讯号即为该待测物光谱讯号的频域讯号。较佳地,在该待测物频域讯号中,大于或等于该明灭频率的频域讯号即为该待测物光谱讯号的频域讯号。该数学分析模组M将该背景杂讯的频域讯号舍弃并留下该待测物光谱讯号的频域讯号,以达到滤波效果。由于该数学分析模组M将该背景杂讯的频域讯号舍弃,因此留下的该待测物光谱讯号的频域讯号完全是属于该待测物而不包含该背景讯号,所以相对于传统光谱仪而言,本发明的该光谱仪1不仅提高该待测物在光谱中的讯杂比,本发明的该光谱仪1甚至因为将该背景杂讯的频域讯号舍弃以进行滤波,所以可以达到无背景杂讯的光谱。请再度参阅图5A及图5B,该光源控制器11的该微控制器111可以与该数学分析模组M电性或讯号连接,以同步将该明灭频率、该明灭频率中开启(点亮)该发光二极管的时间区间及该明灭频率中关闭(熄灭)该发光二极管的时间区间传送给该数学分析模组M,以使得该微控制器111依据该明灭频率、该明灭频率中开启(点亮)该发光二极管的时间区间及该明灭频率中关闭(熄灭)该发光二极管的时间区间以开或关与该微控制器111分别电性连接的复数个该发光二极管之时,该数学分析模组M能够将该明灭频率中开启(点亮)该发光二极管的时间区间对应为该待测物光谱讯号,以及该数学分析模组M能够将该明灭频率中关闭(熄灭)该发光二极管的时间区间对应为该背景杂讯。
特别说明的是,复数个该发光二极管呈现该明灭频率的非连续发光的波形为方波、正弦波或负弦波。
另外,该数学分析模组M也可以对于前述经过滤波效果所留下的该待测物光谱讯号的频域讯号进行处理,而将前述所留下的该待测物光谱讯号的频域讯号转换为一滤波后待测物时域讯号及一滤波后待测物时域讯号图,其中该滤波后待测物时域讯号之中只存在一滤波后待测物光谱讯号,而不存在该背景杂讯。例如,该数学分析模组M包含将前述所留下的该待测物光谱讯号的频域讯号转换为一滤波后待测物时域讯号的一频域时域转换单元M2(图5B),该频域时域转换单元M2可以是用以将前述所留下的该待测物光谱讯号的频域讯号进行傅立叶反转换(inverse Fourier Transform)为该滤波后待测物时域讯号的一傅立叶反转换单元,转换后的该 滤波后待测物时域讯号及该滤波后待测物时域讯号图请参见图6C。比较图6A及图6C可以显然地看出,在图6C中该滤波后待测物时域讯号图之中的该滤波后待测物时域讯号只存在该滤波后待测物光谱讯号而且呈现为方形波,而且该滤波后待测物时域讯号图之中已经不存在任何该背景杂讯。换言之,在图6C中背景讯号为零,所以如果将该滤波后待测物光谱讯号的值除以背景讯号的值,所得到的讯杂比将呈现无限大;因此,本发明提高了试样(待测物)检测结果光谱图中的讯杂比,可以达到测试精准的效果。特别说明的是,所述该数学分析模组M、该时域频域转换单元M1及该频域时域转换单元M2可以分别是软体或硬体型态,或上述软体或硬体型态的组合;该数学分析模组M、该时域频域转换单元M1及该频域时域转换单元M2彼此以电性或讯号连接。
[比较例与应用例的波长解析度测试]
比较例1是使用台湾超微光学公司所生产以卤钨灯为光源并以光栅得到1nm波长解析度的SE-2020-050-VNIR型号的传统光谱仪,对表面涂布有氧化锌涂料的5cm长、5cm宽、0.2厚的片状PVC(聚氯乙烯,Polyvinyl Chloride)板及表面涂布有氧化锌混合氧化铁涂料的5cm长、5cm宽、0.2厚的片状PVC板两种不同物质进行氧化锌涂料及氧化锌混合氧化铁涂料反射光谱讯号的检测,然后依据取得的光谱影像资料,运用相似(差异)性处理分析技术,亦即光谱角度匹配(Spectral Angle Match或Spectral Angle Mapping,简称SAM)处理分析技术,来进行氧化锌及氧化锌混合氧化铁两种不同物质的相似度分析,经SAM分析结果为96.00%(图7A)。
应用例1、2及3分别是使用实施例一、二及三的发光装置及光谱仪,明灭频率约为90.90次/秒、该明灭频率中开启(点亮)该发光二极管的时间区间为1毫秒(1ms)、该明灭频率中关闭(熄灭)该发光二极管的时间区间为10毫秒(10ms)及使用与前述台湾超微光学公司的SE-2020-050-VNIR型号相同的光侦测器,分别对涂布有氧化锌涂料的5cm长、5cm宽、0.2厚的片状PVC板及涂布有氧化锌混合氧化铁涂料的5cm长、5cm宽、0.2厚的片状PVC板两种不同物质进行氧化锌涂料及氧化锌混合氧化铁涂料反射光谱讯号的检测,然后依据取得的光谱影像资料,用SAM处理分析技术,来进行氧化锌及氧化锌混合氧化铁两种不同物质的相似度分析,经SAM分析结果分别为97.69%(图7B)、97.48%(图7C)及96.54%(图7D),皆接近于比较例1传统光谱仪的96.00%,因此实施例一、二及三的发光装置及光谱仪的波长解析度的特性相近于传统光谱仪。所以,应用例1、2及3所使用实施例一、二及三的发光装置及光 谱仪在波长解析度的特性,能够取代传统光谱仪在波长解析度的特性。
因此,依据前述该发光装置12及该光谱仪1,请参阅图8,本发明提供一种发光方法,依序包含以下一提供发光元件步骤S01及一发光步骤S02。
该提供发光元件步骤S01:提供复数个各放射具有一发光峰值波长及一波长范围的光的发光元件,相邻的二个该发光峰值波长所对应的二个该发光元件的该等波长范围部分重叠以形成较该等发光元件中的各者的该波长范围宽的一连续波长范围,或者相邻的二个该发光峰值波长所对应的二个该发光元件的该等波长范围不重叠;相邻的二个该发光峰值波长彼此相差为大于或等于1nm,各该发光峰值波长所对应的波长半高宽为大于0nm且小于或等于60nm。该发光元件可以为发光二极管、垂直共振腔面射型雷射或雷射二极管。较佳地相邻的二个该发光峰值波长彼此相差为介于1nm至80nm之间,更佳地相邻的二个该发光峰值波长彼此相差为介于5nm至80nm之间。较佳地各该发光峰值波长所对应的波长半高宽为介于15nm至50nm之间,更佳地各该发光峰值波长所对应的波长半高宽为介于15nm至40nm之间。
该发光步骤S02:分别控制并使得复数个该发光元件分别呈现一明灭频率的非连续发光,该明灭频率是介于0.05次/秒至500次/秒之间,该明灭频率中开启该发光元件的时间区间为介于0.001秒至10秒之间,该明灭频率中关闭该发光元件的时间区间为介于0.001秒至10秒之间。较佳地,该明灭频率是介于0.5次/秒至500次/秒之间;更佳地,该明灭频率是介于5次/秒至500次/秒之间。
又依据前述该发光装置12、该光谱仪1及该发光方法,请一并参阅图9,本发明提供一种光谱检测方法,除了依序包含该发光方法的该提供发光元件步骤S01及该发光步骤S02之外,该光谱检测方法在该发光步骤S02之后还接续依序包含了一滤波步骤S03及一反转换步骤S04。
该滤波步骤S03:接收一待测物光谱讯号及一背景杂讯,该明灭频率中开启(点亮)该发光元件的时间区间,所接收到的讯号为该待测物光谱讯号与该背景杂讯的结合,该明灭频率中关闭(熄灭)该发光元件的时间区间,所接收到的讯号为该背景杂讯(或称为背景噪音),该待测物光谱讯号及该背景杂讯构成一待测物时域(time domain)讯号,将该待测物时域讯号进行傅立叶转换(Fourier transform)为一待测物频域讯号,该待测物频域讯号被区分为该待测物光谱讯号的频域讯号及该背景杂讯的频域讯号,接着将该背景杂讯的频域讯号舍弃并留下该待测物光谱讯号的频 域讯号,以达到滤波效果。
该反转换步骤S04:将前述所留下的该待测物光谱讯号的频域讯号进行傅立叶反转换(inverse Fourier Transform)为一滤波后待测物时域讯号。
[讯杂比测试]
应用例4是使用实施例三的发光装置及光谱仪,明灭频率约为100次/秒、该明灭频率中开启(点亮)该发光二极管的时间区间为5毫秒(5ms)、该明灭频率中关闭(熄灭)该发光二极管的时间区间为5毫秒(5ms),所以该明灭频率的周期为10毫秒(10ms),以及使用与前述台湾超微光学公司的SE-2020-050-VNIR型号相同的光侦测器,对涂布有氧化锌的5cm长、5cm宽、0.2厚的片状PVC板依照前述该光谱检测方法进行反射光谱讯号的检测。该待测物光谱讯号及该背景杂讯所构成的该待测物时域讯号及该待测物时域讯号图,如图6A,其中复数个该发光二极管呈现该明灭频率的非连续发光的波形为方波。接着该待测物时域讯号经过该滤波步骤的傅立叶转换为该待测物频域讯号及该待测物频域讯号图,如图6B;其中,该待测物频域讯号很容易被区分为该待测物光谱讯号的频域讯号及该背景杂讯的频域讯号,例如该明灭频率的周期为10ms,因此对应频率为100Hz,所以在图6B中频率大于或等于100Hz的频域讯号即为该待测物光谱讯号的频域讯号,而位于0Hz的频域讯号或小于100Hz的频域讯号,即为该背景杂讯的频域讯号,该滤波步骤并将该背景杂讯的频域讯号舍弃并留下该待测物光谱讯号的频域讯号。接着该反转换步骤将前述所留下的该待测物光谱讯号的频域讯号进行傅立叶反转换为该滤波后待测物时域讯号(图6C中的不连续方波)及该滤波后待测物时域讯号图,如图6C。显然地在图6C中并未出现背景讯号(或者背景讯号可以视为零),所以讯杂比将呈现无限大,因此达到测试精准的效果。
由上述的说明可知,本发明与现有技术与产品相较之下,本发明所提供的发光装置、发光方法、光谱仪及光谱检测方法,对于试样的解析结果接近于使用传统卤钨灯光谱仪的高解析结果,而且同时提高了试样检测结果光谱图中的讯杂比,确实能够达到测试精准的效果。

Claims (18)

  1. 一种发光装置,其特征在于,至少包含:复数个各放射具有一发光峰值波长及一波长范围的光的发光元件;其中,相邻的二个该发光峰值波长所对应的二个该发光元件的该等波长范围部分重叠以形成较该等发光元件中的各该波长范围宽的一连续波长范围,或者相邻的二个该发光峰值波长所对应的二个该发光元件的该等波长范围不重叠;相邻的二个该发光峰值波长彼此相差为大于或等于1nm,各该发光峰值波长所对应的波长半高宽为大于0nm且小于或等于60nm。
  2. 如权利要求1所述发光装置,其特征在于,该发光元件为发光二极管、垂直共振腔面射型雷射或雷射二极管。
  3. 如权利要求2所述发光装置,其特征在于,复数个该发光元件能够分别呈现一明灭频率的非连续发光,复数个该明灭频率是彼此相同或彼此不同,或者复数个该明灭频率是部分相同或部分不同。
  4. 如权利要求3所述发光装置,其特征在于,该明灭频率是介于0.05次/秒至500次/秒之间。
  5. 如权利要求4所述发光装置,其特征在于,该明灭频率中开启该发光元件的时间区间为介于0.001秒至10秒之间。
  6. 如权利要求5所述发光装置,其特征在于,该明灭频率中关闭该发光元件的时间区间为介于0.001秒至10秒之间。
  7. 如权利要求6所述发光装置,其特征在于,相邻的二个该发光峰值波长彼此相差为介于1nm至80nm之间。
  8. 如权利要求7所述发光装置,其特征在于,相邻的二个该发光峰值波长彼此相差为介于5nm至80nm之间。
  9. 如权利要求6所述发光装置,其特征在于,各该发光峰值波长所对应的波长半高宽为介于15nm至50nm之间。
  10. 如权利要求9所述发光装置,其特征在于,各该发光峰值波长所对应的波长半高宽为介于15nm至40nm之间。
  11. 一种光谱仪,其特征在于,至少包含:一光源控制器(11)、一如权利要求1所述发光装置(12)、一光侦测器(13)及一计算器(14);该光源控制器(11)与该发光装置(12)电性连接,该光侦测器(13)与该计算器(14)电性连接,该光侦测器(13)接收来自该发光装置(12)发射的一光线(L),且该光线(L)在该发光装置(12)与该光侦 测器(13)之间的行进路径形成一光路(R)。
  12. 如权利要求11所述光谱仪,其特征在于,一数学分析模组(M)设置于该光侦测器(13)或该计算器(14),该数学分析模组(M)与该光侦测器(13)电性或讯号连接,或该数学分析模组(M)与该计算器(14)电性或讯号连接,而所述该数学分析模组(M)是软体或硬体型态,该光侦测器(13)所收集到的讯号被传送到该数学分析模组(M);该明灭频率中开启该发光元件的时间区间,该光侦测器(13)所接收到的讯号为一待测物光谱讯号与一背景杂讯的结合;该明灭频率中关闭该发光元件的时间区间,该光侦测器(13)所接收到的讯号为该背景杂讯;该待测物光谱讯号及该背景杂讯构成一待测物时域讯号,该数学分析模组(M)包含将该待测物时域讯号转换为一待测物频域讯号的一时域频域转换单元(M1)。
  13. 如权利要求12所述光谱仪,其特征在于,该时域频域转换单元(M1)是用以将该待测物时域讯号进行傅立叶转换为该待测物频域讯号的一傅立叶转换单元。
  14. 如权利要求12所述光谱仪,其特征在于,该待测物频域讯号包含该待测物光谱讯号的频域讯号及该背景杂讯的频域讯号,该数学分析模组(M)能够将该背景杂讯的频域讯号舍弃并留下该待测物光谱讯号的频域讯号,该数学分析模组(M)包含将前述所留下的该待测物光谱讯号的频域讯号转换为一滤波后待测物时域讯号的一频域时域转换单元(M2)。
  15. 如权利要求14所述光谱仪,其特征在于,该频域时域转换单元(M2)是能够将前述所留下的该待测物光谱讯号的频域讯号进行傅立叶反转换为该滤波后待测物时域讯号的一傅立叶反转换单元。
  16. 一种发光方法,其特征在于,依序包含以下步骤:
    一提供发光元件步骤(S01):提供复数个各放射具有一发光峰值波长及一波长范围的光的发光元件,相邻的二个该发光峰值波长所对应的二个该发光元件的该等波长范围部分重叠以形成较该等发光元件中的各者的该波长范围宽的一连续波长范围,或者相邻的二个该发光峰值波长所对应的二个该发光元件的该等波长范围不重叠;相邻的二个该发光峰值波长彼此相差为大于或等于1nm,各该发光峰值波长所对应的波长半高宽为大于0nm且小于或等于60nm;
    一发光步骤(S02):分别控制并使得复数个该发光元件分别呈现一明灭频率的非连续发光,该明灭频率是介于0.05次/秒至500次/秒之间,该明灭频率中开启该发 光元件的时间区间为介于0.001秒至10秒之间,该明灭频率中关闭该发光元件的时间区间为介于0.001秒至10秒之间。
  17. 一种光谱检测方法,其特征在于,包含一如权利要求16所述发光方法,该光谱检测方法包含:
    一滤波步骤(S03):接收一待测物光谱讯号及一背景杂讯,该明灭频率中开启该发光元件的时间区间,所接收到的讯号为该待测物光谱讯号与该背景杂讯的结合,该明灭频率中关闭该发光元件的时间区间,所接收到的讯号为该背景杂讯,该待测物光谱讯号及该背景杂讯构成一待测物时域讯号,将该待测物时域讯号进行傅立叶转换为一待测物频域讯号,该待测物频域讯号被区分为该待测物光谱讯号的频域讯号及该背景杂讯的频域讯号,接着将该背景杂讯的频域讯号舍弃并留下该待测物光谱讯号的频域讯号。
  18. 如权利要求17所述光谱检测方法,其特征在于,该光谱检测方法包含一反转换步骤(S04),该反转换步骤(S04)是将前述所留下的该待测物光谱讯号的频域讯号进行傅立叶反转换为一滤波后待测物时域讯号。
PCT/CN2021/076802 2020-02-20 2021-02-19 发光装置、发光方法、光谱仪及光谱检测方法 WO2021164719A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021224704A AU2021224704B2 (en) 2020-02-20 2021-02-19 Light-emitting device, light-emitting method, spectrophotometer, and spectrum measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010103763.4A CN111987079B (zh) 2020-02-20 2020-02-20 发光装置、发光方法、光谱仪及光谱检测方法
CN202010103763.4 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021164719A1 true WO2021164719A1 (zh) 2021-08-26

Family

ID=73441764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076802 WO2021164719A1 (zh) 2020-02-20 2021-02-19 发光装置、发光方法、光谱仪及光谱检测方法

Country Status (3)

Country Link
CN (1) CN111987079B (zh)
AU (1) AU2021224704B2 (zh)
WO (1) WO2021164719A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987079B (zh) * 2020-02-20 2023-03-28 大连兆晶生物科技有限公司 发光装置、发光方法、光谱仪及光谱检测方法
TWI750706B (zh) * 2020-06-20 2021-12-21 丁逸聖 發光裝置、發光方法、光檢測裝置、光譜檢測方法及發光修正方法
TWI795000B (zh) * 2021-09-29 2023-03-01 新加坡商兆晶生物科技股份有限公司(新加坡) 光學分析儀及其光學分析系統
WO2023089545A1 (zh) * 2021-11-18 2023-05-25 大连兆晶生物科技有限公司 光学分析系统及其光学分析仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257086A (en) * 1992-06-09 1993-10-26 D.O.M. Associates Int'l Optical spectrophotometer having a multi-element light source
CN101236107A (zh) * 2007-01-29 2008-08-06 长春吉大·小天鹅仪器有限公司 一种可见分光光度计的光源
CN101259010A (zh) * 2002-07-26 2008-09-10 奥林巴斯株式会社 图像处理系统
US20100097613A1 (en) * 2007-01-26 2010-04-22 Valtion Teknillinen Tutkimuskeskus Spectrometer and a method for controlling the spectrometer
CN111987079A (zh) * 2020-02-20 2020-11-24 大连兆晶生物科技有限公司 发光装置、发光方法、光谱仪及光谱检测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406872C (zh) * 2002-11-04 2008-07-30 天津市先石光学技术有限公司 复合光谱测量方法及其光谱检测仪器
JP2006071589A (ja) * 2004-09-06 2006-03-16 Univ Kansai 色測定装置及び光源装置
NZ554781A (en) * 2004-12-21 2010-01-29 Foss Analytical As A method for standardising a spectrometer
KR101240492B1 (ko) * 2008-04-30 2013-03-11 쩌지앙 메인룩스 라이팅 씨오., 엘티디. 백색 발광다이오드 및 백색 발광다이오드 램프
DE102011005614B3 (de) * 2011-03-16 2012-09-13 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Erkennung von Störsignalen in Magnetresonanzspektroskopie-Signalen, Computerprogrammprodukt und Datenträger
TWI487888B (zh) * 2013-09-30 2015-06-11 Ind Tech Res Inst 掃描式光柵光譜儀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257086A (en) * 1992-06-09 1993-10-26 D.O.M. Associates Int'l Optical spectrophotometer having a multi-element light source
CN101259010A (zh) * 2002-07-26 2008-09-10 奥林巴斯株式会社 图像处理系统
US20100097613A1 (en) * 2007-01-26 2010-04-22 Valtion Teknillinen Tutkimuskeskus Spectrometer and a method for controlling the spectrometer
CN101236107A (zh) * 2007-01-29 2008-08-06 长春吉大·小天鹅仪器有限公司 一种可见分光光度计的光源
CN111987079A (zh) * 2020-02-20 2020-11-24 大连兆晶生物科技有限公司 发光装置、发光方法、光谱仪及光谱检测方法

Also Published As

Publication number Publication date
CN111987079A (zh) 2020-11-24
AU2021224704B2 (en) 2023-06-08
CN111987079B (zh) 2023-03-28
AU2021224704A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2021164719A1 (zh) 发光装置、发光方法、光谱仪及光谱检测方法
TWI779266B (zh) 光譜儀
JP2005502895A (ja) 信号整合フィルタリングを組み込んだ分光計
CN114047136B (zh) 一种高灵敏度组合光源式光声光谱气体检测系统及方法
EP1859240A2 (en) Spectrophotometer with light emitting diode illuminator
Serdyukov et al. New features of an FT spectrometer using LED sources
CN111562252A (zh) 一种基于同轴双波长消荧光的拉曼检测系统
TWI750706B (zh) 發光裝置、發光方法、光檢測裝置、光譜檢測方法及發光修正方法
TWI825999B (zh) 光譜儀及光譜檢測方法
CN111189781A (zh) 一种光声光谱气体传感器
US20220252508A1 (en) Light emitting apparatus, light emitting method, spectrometer and spectrum detection method
TWI795988B (zh) 成像裝置及手持式成像裝置
TWI765384B (zh) 成像裝置及手持式成像裝置
JP7508741B2 (ja) 発光装置、発光方法、光検出装置、スペクトル検出方法及び発光補正方法
JP2000131230A (ja) 近赤外分光分析方法
CN214622270U (zh) 一种外球式漫反射光谱测量装置
US20240219296A1 (en) Light emitting apparatus, light emitting method, light detection apparatus and spectrum detection method
CN116818708A (zh) 成像装置及手持式成像装置
EP1800109A1 (en) Method and sensor for infrared measurement of gas
TWI795000B (zh) 光學分析儀及其光學分析系統
Travis et al. UV/visible Fourier transform spectroscopy using an inductively-coupled plasma: dual-channel noise cancellation
Cozzolino Fourier transform spectroscopy
TWI815724B (zh) 光學分析系統及其光學分析儀
TWI716247B (zh) 吸收光譜偏移偵測方法
Olaizola et al. White-Light Photothermal Mirror Spectrophotometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021224704

Country of ref document: AU

Date of ref document: 20210219

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757120

Country of ref document: EP

Kind code of ref document: A1