WO2023089545A1 - 光学分析系统及其光学分析仪 - Google Patents

光学分析系统及其光学分析仪 Download PDF

Info

Publication number
WO2023089545A1
WO2023089545A1 PCT/IB2022/061126 IB2022061126W WO2023089545A1 WO 2023089545 A1 WO2023089545 A1 WO 2023089545A1 IB 2022061126 W IB2022061126 W IB 2022061126W WO 2023089545 A1 WO2023089545 A1 WO 2023089545A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
intensity
emitting
emitting components
Prior art date
Application number
PCT/IB2022/061126
Other languages
English (en)
French (fr)
Inventor
丁逸圣
陈育宗
Original Assignee
大连兆晶生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW111143042A external-priority patent/TWI815724B/zh
Application filed by 大连兆晶生物科技有限公司 filed Critical 大连兆晶生物科技有限公司
Priority to CN202280021875.2A priority Critical patent/CN117120815A/zh
Publication of WO2023089545A1 publication Critical patent/WO2023089545A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/13Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L33/00

Definitions

  • the present invention relates to the technical field of penetrating optical analysis, in particular to an optical analysis that uses two optical receivers to respectively receive the light from the light source to determine whether the luminous intensity of the light source has declined system and its optical analyzer.
  • Background Art Existing optical analyzers can be divided into single-beam spectrometer and double-beam spectrometer. The rotation of the light cutter is to adjust the two detection rays to pass through the liquid to be tested in the absorption pool respectively. The liquid to be tested will absorb the detection light of different wavelengths due to its different components.
  • the single-beam spectrometer switches the detection light of different frequencies through the mirror rotation of the optical chopper, and when the rotation speed of the mirror is slow, the wavelength cannot be switched quickly, and if the object to be measured is a fast-flowing fluid, it cannot be measured in real time.
  • the two detection rays will first pass through the absorption cell and then be received by the detector, so it is impossible to monitor the light intensity of the original detection light, and it is difficult to know whether the light source intensity has attenuated in real time.
  • the detection principle is to use the light source 1 to emit light and pass through the beam splitter 21 so that the path of the light is divided into the detection light path P1 and the comparison light path P2.
  • the detection light path P1 The light passes through the liquid to be measured in the absorption cell 3, the liquid to be measured absorbs light of different wavelengths due to its different components, the light passing through the absorption cell 3 is received by the first detector 4, and the absorption spectrum of the liquid to be measured is obtained,
  • the comparison light path P2 light can be directly received by the second detector 5 to form a comparison spectrum, and finally the physical or chemical properties of the liquid to be tested are analyzed and detected by comparing the absorption spectrum with the comparison spectrum.
  • the optical chopper R2 is added to change the direction of the contrast light path P2, and the mirrors need to be more airtight to prevent dust, and because the number of configured mirrors increases, the existing Some optical analyzers have relatively large volumes and cannot be made into portable products.
  • the light intensity is too low after the light is split by the beam splitter R1, if the liquid to be tested has a large absorption of light, the spectrum cannot be formed.
  • the angle of the beam splitter R1 changes It also affects the change in light intensity.
  • the present invention explains how to effectively improve the above-mentioned problems of existing single-beam spectrometers and double-beam spectrometers through innovative hardware design. It is still necessary for developers and researchers in related industries to continue to work hard to overcome the problems associated with The problem to be solved.
  • the object of the present invention is to provide an optical analysis system and its optical analyzer, which has a plurality of light-emitting components, which can sequentially emit light in different wavelength ranges, and by setting two optical receivers, compare The difference between the light received by the two optical receivers is used to determine whether the light intensity of the light emitted by the light-emitting component is attenuated.
  • the optical analyzer in the embodiment of the present invention includes a solid-state light source transmitter, a uniform mixing or splitting component, a first optical receiver, and a second optical receiver.
  • the solid-state light source transmitter includes a light source
  • the light source includes a plurality of light-emitting components each emitting light having at least one luminous peak wavelength and at least one wavelength range
  • the plurality of light-emitting components are light-emitting diodes, vertical cavity surface-emitting lasers or laser diodes
  • the plurality of light emitting components can respectively exhibit discontinuous light with on-off frequency, and the plurality of on-off frequencies may be the same or different from each other, or the plurality of on-off frequencies may be partly the same or partly different.
  • the light emitted by the plurality of light-emitting components passes through the uniform mixing or splitting component to form the first light and the second light, and the second light passes through the fluid object to be tested and is not absorbed by the fluid object to be tested to obtain the detection light.
  • the first optical receiver receives the first light.
  • the second optical receiver receives the detection light.
  • the first light has a standard light intensity
  • the light intensity of the second light is in a specific ratio to the working light intensity, the ratio of the detection light to the working light intensity is the working transmittance of the fluid to be tested, and the standard light Intensity is not the same as working light intensity.
  • the comparison result between the standard penetration rate and the working penetration rate can be used to judge the composition change of the fluid to be tested.
  • the first optical receiver when the first light has a standard light intensity, receives the first light and generates a standard light intensity signal, and when the first light has an attenuated light intensity, the first optical receiver receives The first light generates an attenuated light intensity signal, and the variation between the standard light intensity signal and the attenuated light intensity signal is compared, and the light splitting component adjusts the light intensity of the first light according to the variation.
  • the uniform mixing or splitting component is an optical integrating sphere
  • the optical integrating sphere includes a light entrance, a first light exit, and a second light exit
  • the first optical receiver is aligned with the first light exit
  • the second optical receiving The device is aligned with the second light outlet, multiple light rays emitted by the plurality of light-emitting components enter the optical integrating sphere through the light inlet, the first light rays are emitted from the first light outlet, and the second light rays are emitted from the second light outlet.
  • first light exit and the light entrance are separated by a central angle of 90 degrees relative to the center of the optical integrating sphere
  • the second light exit is separated from the light entrance by a central angle of 90 degrees relative to the center of the optical integrating sphere
  • first light exit and the second light exit are separated by a central angle of 180 degrees relative to the center of the optical integrating sphere.
  • the uniform mixing or light splitting component is a shielding plate with a through hole
  • the first optical receiver is arranged on the shielding plate and opposite to the multiple light emitting components, and the light emitted by the multiple light emitting components becomes The first light is received by the first optical receiver, and another part of the light emitted by the light-emitting components passes through the through hole to become the second light.
  • multiple wavelength ranges of two light-emitting components corresponding to two adjacent light-emitting peak wavelengths partially overlap to form a continuous wavelength range wider than the wavelength range of each of the multiple light-emitting components, or Multiple wavelength ranges of two light emitting components corresponding to two adjacent light emitting peak wavelengths do not overlap.
  • the solid-state light source emitter further includes a substrate, which measures the constant current bias value of multiple light-emitting components when they are working, and uses the constant current bias value of multiple light-emitting components and the temperature of the PN junction of the solid-state light source
  • the PN junction temperature of the solid-state light source is obtained by converting the mathematical relationship or the corresponding table or graph, and then the luminescence of the multiple light-emitting components is obtained through the mathematical relationship or the corresponding table or graph between the light intensity of the multiple light-emitting components and the PN junction temperature Intensity ratio, and correct the light intensity values emitted by the plurality of light-emitting components measured by the first optical receiver according to the judgment result.
  • the optical analyzer of the present invention further includes a first processor and a first display device, the solid-state light source transmitter, the first optical receiver and the second optical receiver are connected to the first processor, the first The processor controls the solid-state light source emitter to sequentially emit a plurality of light rays, and the light intensity signals received by the first optical receiver and the second optical receiver are displayed on the first display device.
  • the optical analyzer of the present invention further includes a first wireless communication module, which is connected to the first processor, and the light intensity signals received by the first optical receiver and the second optical receiver can be transmitted via the first wireless communication module. The communication module transmits to the external electronic device or receives control signals from the external electronic device.
  • the flickering frequency is between 0.05 times/second and 50000 times/second.
  • the time interval for turning on the light-emitting component in the flickering frequency is between 0.00001 second and 10 seconds.
  • the time interval for turning off the light-emitting component in the flickering frequency is between 0.00001 second and 10 seconds.
  • the difference between two adjacent luminescence peak wavelengths is between 1 nm and 80 nm.
  • the difference between two adjacent luminous peak wavelengths is between 5 nm and 80 nm.
  • the full width at half maximum wavelength corresponding to each luminous peak wavelength is between 15 nm and 50 nm.
  • the full width at half maximum wavelength corresponding to each luminous peak wavelength is between 15 nm and 40 nm.
  • the difference between two adjacent luminescence peak wavelengths is greater than or equal to 0.5 nm .
  • the difference between two adjacent luminescence peak wavelengths is between 1 nm and 80 nm.
  • at least a part of the multiple luminescence peak wavelengths has a wavelength half maximum width corresponding to more than 0 nm and less than or equal to 60 nm.
  • An optical analyzer includes a solid-state light source transmitter, a first optical receiver, and a second optical receiver.
  • the solid-state light source transmitter includes a light source, the light source includes a plurality of light-emitting components each emitting light having at least one luminous peak wavelength and at least one wavelength range, and the plurality of light-emitting components are light-emitting diodes, vertical cavity surface-emitting lasers or laser diodes, and The plurality of light emitting components can respectively exhibit discontinuous light with on-off frequency, and the plurality of on-off frequencies may be the same or different from each other, or the plurality of on-off frequencies may be partly the same or partly different.
  • the light emitted by a plurality of light-emitting components forms the first light and the second light, and the second light passes through the fluid test object to form the detection light (that is, the part of the second light that is not absorbed by the fluid test object when it passes through the fluid test object form the detection light).
  • the first optical receiver receives the first light.
  • the second optical receiver receives the detection light.
  • the first light has a standard light intensity
  • the first When the light has working light intensity the light intensity of the second light is in a specific ratio to the working light intensity
  • the ratio of the detection light to the working light intensity is the working penetration rate of the fluid to be tested
  • the standard light intensity is different from the working light intensity .
  • the comparison result between the standard penetration rate and the working penetration rate can be used to judge the composition change of the fluid to be tested.
  • the present invention provides an optical analysis system, which includes an optical analyzer and a liquid delivery member, the liquid to be measured is delivered in the liquid delivery member, the first optical receiver and the second optical receiver are arranged on both sides of the liquid delivery member, and the second The two light rays pass through the liquid conveying member and form detection light to be received by the second optical receiver.
  • the light source has a plurality of light-emitting components that emit light in different wavelength ranges and emits light one by one, without the need for a monochromator in the prior art, and can greatly reduce the volume of the optical analyzer.
  • FIG. 1 is a schematic diagram of an optical analyzer in the prior art.
  • Fig. 2 is a schematic diagram of an embodiment of the optical analyzer of the present invention.
  • FIG. 3 is a cross-sectional view of the optical analyzer of FIG. 2 .
  • Fig. 4 is a schematic diagram of another embodiment of the optical analyzer of the present invention.
  • FIG. 5 is an emission spectrum diagram of the light-emitting diode of the first embodiment of the solid-state light source emitter of the optical analyzer of the present invention.
  • FIG. 1 is a schematic diagram of an optical analyzer in the prior art.
  • Fig. 2 is a schematic diagram of an embodiment of the optical analyzer of the present invention.
  • FIG. 3 is a cross-sectional view of the optical analyzer of FIG. 2 .
  • Fig. 4 is a schematic diagram of another embodiment of the optical analyzer of the present invention.
  • FIG. 5 is an emission spectrum diagram of the light-emitting diode of the first embodiment of the solid-state
  • FIG. 6 is an emission spectrum diagram of the light-emitting diode of the second embodiment of the solid-state light source emitter of the optical analyzer of the present invention.
  • FIG. 7 is an emission spectrum diagram of the light-emitting diode of the third embodiment of the solid-state light source emitter of the optical analyzer of the present invention.
  • Figure 8 is a schematic diagram of one embodiment of a solid state light source emitter for an optical analyzer of the present invention.
  • FIG. 9A is a flow chart of a method for correcting the luminous intensity of a luminous component by measuring temperature.
  • FIG. 9B is a corresponding graph of the relative intensity and the junction temperature of the fourth light-emitting diode of the present invention.
  • FIG. 9C is a corresponding graph of forward bias voltage and junction temperature of the fourth light emitting diode of the present invention.
  • FIG. 10 is a schematic diagram of an embodiment of the optical analysis system of the present invention.
  • FIG. 11 is a system block diagram of an embodiment of the optical analyzer of the present invention.
  • FIG. 12 is a system block diagram of an electronic device signally connected to the optical analyzer of the present invention.
  • Fig. 13 is a schematic diagram of another embodiment of the optical analyzer of the present invention. Description of figure number:
  • R1 Optical splitter
  • Substrate 12 Temperature sensor
  • the optical analyzer 100 of this embodiment includes a solid-state light source transmitter 10, a uniform mixing or splitting component 20, a first optical receiver 30, and a second light source Learning receiver 40.
  • the solid-state light source transmitter 10 includes a light source, and the light source includes a plurality of light-emitting components 13 each emitting light having at least one luminous peak wavelength and at least one wavelength range.
  • the multiple light-emitting components 13 are light-emitting diodes, vertical resonant cavity surface-emitting lasers, or lasers. Diodes, and a plurality of light-emitting components 13 can respectively exhibit discontinuous light with on-off frequency.
  • the multiple on-off frequencies may be the same or different from each other, or the multiple on-off frequencies may be partly the same or partly different.
  • the light emitted by the plurality of light emitting components 13 passes through the uniform mixing or splitting component 20 to form the first light L1 and the second light L2, and the second light L2 passes through the fluid object to be tested. After that, the detection light L3 is formed. In short, the second light L2 passes through the fluid object to be tested. When , some of will be absorbed by the fluid analyte O, and some will not be absorbed by the fluid analyte. The other part of the second light L2 that is not absorbed by the fluid analyte O forms the detection light L3 o
  • the first optical receiver 30 receives the first light L1.
  • the second optical receiver 40 receives the detection light L3.
  • the light intensity of the second light L2 has a specific ratio to the standard light intensity (that is, the standard light intensity of the first light L1 divided by the light intensity of the second light L2 The ratio is a specific ratio)
  • the ratio of the detection light L3 to the standard light intensity is the standard transmittance of the fluid analyte O
  • the light intensity of the second light L2 is the same as the working light
  • the ratio of the intensity of the detection light L3 to the intensity of the working light is the fluid to be tested.
  • the working penetration rate, the standard light intensity is not the same as the working light intensity.
  • the fluid to be tested can be judged according to the comparison result.
  • Composition changes for example, fluid analytes. It can be used as a working chemical solution required by printed circuit board (PCB), semiconductor, petrochemical industry or food processing industry, and the standard penetration rate means that the fluid to be tested O has the composition ratio and concentration required for normal work.
  • PCB printed circuit board
  • the standard penetration rate means that the fluid to be tested O has the composition ratio and concentration required for normal work.
  • the composition still meets the needs of the user, and when the standard penetration rate and the working penetration rate are not the same and the difference is within an intolerable range, it can be judged that the composition ratio and concentration of the fluid to be tested O has changed, resulting in an abnormal The working liquid needed for normal work, but the current working liquid needs to be replaced or adjusted.
  • the first optical receiver 30 that receives the first light L1 can receive the fluid to be tested.
  • the second optical receiver 40 of the detection light L3 is used to monitor in real time or dynamically and continuously record whether the current penetration rate of the fluid analyte O and its composition ratio and concentration meet the quality required for normal work, or further calculation service life, and make preparations for replacement or adjustment of the fluid to be tested O in advance.
  • the above specific ratio may be determined by the uniform mixing or light splitting component 20, for example, when the specific ratio is 50%, it means that when the first light L1 has a standard light intensity, the light intensity of the second light L2 is the same as the standard light intensity, And it means that when the first light L1 has the working light intensity, the light intensity of the second light L2 is the same as the working light intensity.
  • the present invention is not limited to a specific ratio of 50%, but is preferably between 25% and 75%, so as to ensure that the power of the solid-state light source emitter 10 does not need to be adjusted too high.
  • the detection light L3 is the second light L2 passing through the fluid object to be tested.
  • L3_intensity L2_intensity*kl
  • L3_intensity is the light intensity of the detection light L3
  • L2_intensity is the light intensity of the second light L2
  • kl is a value less than or equal to 1
  • L3_intensity/Ll_mtensity (defined as the penetration rate of the fluid analyte O in the present invention), that is, between the penetration rate of the fluid analyte O and a specific ratio k2
  • L3_mtensity/Ll_mtensity defined as the penetration rate of the fluid analyte O in the present invention
  • the first light L1 Even if the light intensity of the second ray L2 is not equal to the light intensity, it can be successfully measured whether the penetration rate of the fluid analyte O changes (that is, whether the composition of the fluid analyte O changes).
  • the light emitted by the light-emitting component 13 passes through the uniform mixing or splitting component 20 to form the first light L1 and the second light L2, and the second light L2 passes through the fluid object O to form the detection light L3 .
  • the first optical receiver 30 receives the first light.
  • the second optical receiver 40 receives the detection light L3.
  • the first optical receiver 30 receives the first light L1 and generates a standard light intensity signal, and when the first light L1 has a standard light intensity
  • the first optical receiver 30 receives the first light L1 and generates an attenuated light intensity signal, compares the variation between the standard light intensity signal and the attenuated light intensity signal, and adjusts the uniform mixing or splitting component 20 according to the variation
  • the light intensity of the first light L1 obtains the measurement system of constant range light intensity.
  • the present invention can monitor whether the light intensity of the light source of the solid-state light source transmitter 10 is attenuated by receiving the first optical receiver 30 of the first light L1 in real time, and The attenuation of the light intensity signal changes, and further adjust or replace the light source of the solid-state light source transmitter 10.
  • the light intensity of the first light L1 is too low, the light intensity of the detection light L3 will also be too low, so that the measured The transmittance of the fluid test object O is inaccurate. Therefore, it is necessary to maintain the light intensity of the first light L1 within a specific range through the above-mentioned method, so that the measured transmittance of the fluid test object O can be maintained at a certain level.
  • the uniform mixing or splitting component 20 of this embodiment is an optical integrating sphere
  • the optical integrating sphere includes a light entrance 21, a first light exit 22 and a second light exit 23, and the first optical receiver 30 is aimed at the first light Outlet 22, the second optical receiver 40 is aligned with the second light outlet 23, and a plurality of light rays emitted by the plurality of light emitting components 13 enter the optical integrating sphere through the light inlet 21,
  • the first light L1 is emitted from the first light outlet 22
  • the second light L2 is emitted from the second light outlet 23 .
  • the first light outlet 22 and the light inlet 21 are separated by a central angle of 90 degrees relative to the center of the optical integrating sphere
  • the second light outlet 23 is separated by 90 degrees from the light inlet 21 relative to the center of the optical integrating sphere
  • the first light outlet 22 and the second light outlet 23 are separated by a central angle of 180 degrees relative to the center of the optical integrating sphere.
  • the optical integrating sphere of the uniform mixing or splitting component 20 of this embodiment is arranged in the housing 6, the solid-state light source transmitter 10 and the first optical receiver 30 are respectively arranged on the side walls of the housing 6, and the housing
  • the body 6 has an opening 61, and the opening 61 is aligned with the second light outlet 23, so that the second light L2 can be emitted from the accommodating housing 6 through the opening 61.
  • Fig. 4 represents another embodiment of the optical analyzer of the present invention. Part of the structure of this embodiment is the same as that of the embodiment of FIG. 2, so the same components are given the same symbols and their descriptions are omitted.
  • the uniform mixing or splitting component 20' of this embodiment is a shielding plate with a through hole 24, the first optical receiver 30 is arranged on the shielding plate and facing the multiple light emitting components 13, and the multiple light rays emitted by the multiple light emitting components 13 Part of it becomes the first light L1 and is received by the first optical receiver 30, and the other part of the light emitted by the plurality of light emitting components 13 passes through the through hole 24 and becomes the second light L2 .
  • the second light L2 passes through the fluid to be tested. After O, the detection light L3 is formed and received by the second optical receiver 40.
  • the intensity of the first light L1 is the same as that of the detection light L3, and the light intensity of the multiple light beams emitted by the multiple light emitting components 13 is adjusted according to the comparison result.
  • the multiple wavelength ranges of the two light-emitting components 13 corresponding to the two adjacent luminous peak wavelengths partially overlap to form a relatively
  • Each of the plurality of light-emitting components 13 has a wide continuous wavelength range, or the multiple wavelength ranges of two light-emitting components 13 corresponding to two adjacent emission peak wavelengths do not overlap. Please refer to FIG.
  • the multiple wavelength ranges of the two light-emitting diodes corresponding to two adjacent luminous peak wavelengths partially overlap to form a continuous wavelength range wider than the wavelength range of each of the multiple light-emitting diodes.
  • the continuous wavelength range It is between 180nm and 2500nm.
  • there are three luminous peak wavelengths and corresponding wavelength ranges which are respectively the first wavelength range corresponding to the first luminous peak wavelength (734nm) of the first light, and the second luminous peak wavelength (810nm) of the second light.
  • the corresponding second wavelength range and the third wavelength range corresponding to the third luminous peak wavelength (882nm) of the third light are respectively the first wavelength range corresponding to the first luminous peak wavelength (734nm) of the first light, and the second luminous peak wavelength (810nm) of the second light.
  • the first luminescence peak wavelength and the second luminescence peak wavelength are two adjacent luminescence peak wavelengths, and similarly, the second luminescence peak wavelength and the third luminescence peak wavelength are also two adjacent luminescence peak wavelengths.
  • the first wavelength range corresponding to the first luminescence peak wavelength is between 660nm and 780nm
  • the second wavelength range corresponding to the second luminescence peak wavelength of the second light is between 710nm and 850nm
  • the first wavelength range and the second wavelength range The two wavelength ranges partially overlap between 710nm and 780nm, so the first wavelength range and the second wavelength range together form a wavelength range of 660nm to 850nm
  • the second wavelength range corresponding to the second luminescence peak wavelength is between 710nm and 850nm
  • the third wavelength range corresponding to the third luminescence peak wavelength of the third light is between 780nm and 940nm
  • the second wavelength range and The third wavelength range partially overlaps between 780nm and 850nm, so the second wavelength range and the third wavelength range jointly form a continuous wavelength range between 710nm and 940nm.
  • the overlapping parts of multiple wavelength ranges of two light emitting diodes corresponding to two adjacent luminous peak wavelengths the less the overlap, the better.
  • multiple wavelength ranges of two light emitting diodes corresponding to two adjacent luminous peak wavelengths may not overlap, which will be described later.
  • the difference between two adjacent luminous peak wavelengths is greater than or equal to 0.5 nm, preferably between 1 nm and 80 nm, more preferably between 5 nm and 80 nm.
  • the adjacent first luminous peak wavelength (734nm) and the second luminous peak wavelength (810nm) differ from each other by 76nm
  • the adjacent second luminous peak wavelength (810nm) and the third luminous peak wavelength (882nm ) differ from each other by 72nm.
  • the limitation of the numerical range described in the present invention and the scope of the patent always includes the end value, for example, the difference between the aforementioned two adjacent luminous peak wavelengths is between 5nm and 80nm, which means greater than or Equal to 5nm and less than or equal to 80nm.
  • the second embodiment in FIG. 6 is a derivative embodiment of the first embodiment, so the similarities between the second embodiment and the first embodiment will not be repeated here.
  • the light source of the second embodiment includes five light-emitting diodes, which are respectively emitting a first light-emitting diode, a fourth light-emitting diode emitting fourth light with a fourth wavelength range,
  • the second light-emitting diode, the fifth light-emitting diode and the third light-emitting diode that emit fifth light in the fifth wavelength range, the fourth light has a fourth luminous peak wavelength (772nm) in the fourth wavelength range, and the fifth light is in the fifth There is a fifth luminous peak wavelength (854nm) in the wavelength range.
  • the luminescence peak wavelengths from small to large are the first luminescence peak wavelength (734nm), the fourth luminescence peak wavelength (772nm), the second luminescence peak wavelength (810nm), and the fifth luminescence peak wavelength (854nm)
  • the difference between the first luminescence peak wavelength (734nm) and the fourth luminescence peak wavelength (772nm) adjacent to the third luminescence peak wavelength (882nm) is 38nm, and the adjacent fourth luminescence peak wavelength (772nm) and the second luminescence peak wavelength
  • the difference between the wavelengths (810nm) is 38nm
  • the difference between the adjacent second luminescence peak wavelength (810nm) and the fifth luminescence peak wavelength (854nm) is 44nm
  • the wavelengths (882 nm) differ from each other by 28 nm.
  • the third embodiment is a derivative embodiment of the first embodiment and the second embodiment, so the third embodiment is the same as the first embodiment and the second embodiment. No longer.
  • the difference between the third embodiment and the first embodiment is that the light source of the third embodiment includes 12 light-emitting diodes.
  • peak wavelength 747nm, 760nm, 772nm (the fourth luminescence peak wavelength), 785nm, 798nm, 810nm (the second luminescence peak wavelength), 824nm, 839nm, 854nm (the fifth luminescence peak wavelength), 867nm and 882nm (the third luminescence peak wavelength).
  • the difference between two adjacent luminescence peak wavelengths is 13nm, 13nm, 12nm, 13nm, 13nm, 12nm, 14nm, 15nm, 15nm, 13nm and 15nm respectively.
  • the difference between two adjacent light-emitting peak wavelengths can be greater than or equal to 0.5 nm, for example, 1 nm.
  • the wavelength half maximum width corresponding to at least a part of the plurality of luminescence peak wavelengths is greater than 0 nm and less than or equal to 60 nm.
  • the wavelength half maximum width corresponding to each luminescence peak wavelength is greater than 0 nm and less than or equal to 60 nm, for example, in the aforementioned first embodiment, second embodiment and third embodiment, the luminescence peak wavelengths are in order from small to large 734nm (first luminescence peak wavelength), 747nm, 760nm, 772nm (fourth luminescence peak wavelength), 785nm, 798nm, 810nm (second luminescence peak wavelength), 824nm, 839nm, 854nm (fifth luminescence peak wavelength), 867nm and 882nm (the third luminous peak wavelength), the wavelength half maximum width corresponding to the first luminous peak wavelength of the first ray, the wavelength half maximum width corresponding to the second luminous peak wavelength of the second ray, and the third luminous width of the third ray.
  • the FWHM wavelengths ( Figure 4) corresponding to the other unexplained 747nm, 760nm, 785nm, 798nm, 824nm, 839nm and 867nm luminous peak wavelengths are also greater than Onm and less than or equal to 60nm, preferably between 15nm and 50nm Between, more preferably between 15nm to 40nm.
  • the wavelength half maximum width corresponding to the luminous peak wavelength in the first embodiment, the second embodiment and the third embodiment is 55nm; if the light emitting component 13 is a laser diode, each luminous peak wavelength
  • the corresponding wavelength half maximum width is greater than 0 nm and less than or equal to 60 nm, for example, 1 nm.
  • the multiple wavelength ranges of the two light-emitting diodes corresponding to the aforementioned two adjacent luminous peak wavelengths may not overlap, for example, if the luminous peak wavelengths in the first embodiment, the second embodiment, and the third embodiment
  • the corresponding wavelength half maximum width is 15nm
  • the width of the wavelength range corresponding to each luminescence peak wavelength (that is, the difference between the maximum value and the minimum value of the wavelength range) is 40nm
  • the difference between two adjacent luminescence peak wavelengths is 80nm.
  • the imaging device is operated to detect the analyte to When generating the spectrogram of the object to be tested, the imaging device is a mobile phone or a tablet computer.
  • the solid-state light source transmitter 10 can separately control and make a plurality of light-emitting diodes respectively present discontinuous light with on-off frequency, and the multiple on-off frequencies can be mutually The same or different from each other, or a plurality of flickering frequencies can be partly the same or partly different, the aforementioned flickering frequency is between 0.05 times per second and 50000 times per second, and the time interval for turning on (lighting) the light-emitting diode in the flickering frequency is Between 0.00001 second and 10 seconds, the time interval for turning off (extinguishing) the light-emitting diode in the light-off frequency is between 0.00001 second and 10 seconds, and the cycle of the light-off frequency refers to the period of turning on (lighting) the light-emitting diode once in a row
  • the sum of the time interval and the time interval for turning off (extinguishing) LEDs, the period of the on-off frequency is the reciprocal of the on-off frequency; The sum of
  • the blinking frequency is between 0.5 times/second and 50000 times/second; more preferably, the blinking frequency is between 5 times/second and 50000 times/second.
  • the discontinuous light emission of multiple light-emitting diodes can greatly reduce the influence of the heat energy of the light emitted by the light-emitting diodes on the analyte (A), and avoid the qualitative change of the analyte (A) containing organisms, so it is especially suitable for thermal energy
  • the sensitive analyte (A) is more especially suitable for the light in the wavelength range emitted by the light-emitting diode to be near-infrared light.
  • a plurality of light-emitting components 13 emit light in sequence.
  • the aforementioned sequential light-emitting means that multiple light-emitting components 13 in different positions emit light in the same wavelength range.
  • the multiple light-emitting components 13 do not emit light at the same time;
  • the aforesaid partial light emission at the same time refers to making a part of the plurality of light emitting components 13 emit light at the same time and emit light in different wavelength ranges at the same time.
  • multiple light emitting components 13 in different wavelength ranges emit light at different times.
  • the six light-emitting components 13 will emit light at different times, so as to ensure that the light in two adjacent wavelength ranges will not interfere with each other.
  • FIG. 8 shows an embodiment of the solid state light source emitter of the present invention.
  • the solid-state light source transmitter 10 of this embodiment includes a substrate 11, a temperature sensor 12, and a plurality of light-emitting components 13 o Multiple light-emitting components 13 and temperature sensors 12 are arranged on the junction surface 111 of the substrate 11, and the bias voltage values of the multiple light-emitting components are measured , and the junction temperature of the junction 111 is obtained by converting the mathematical relationship between the bias voltage values of the multiple light emitting components 13 and the junction temperature or the corresponding table or figure, and then through the light intensity and the junction temperature of the multiple light emitting components 13 Mathematical relational expressions or corresponding tables or diagrams to obtain the luminous intensity of multiple light-emitting components 13, to determine whether the luminous intensity of multiple light-emitting components 13 changes, and adjust the light of multiple light rays emitted by multiple light-emitting components 13 according to the judgment results strength.
  • the solid-state light source emitter 10 also includes a substrate 11, and measures the work of multiple light-emitting components 13
  • the constant current bias value of the solid-state light source emitter 10 can be obtained by converting the constant current bias value of the plurality of light-emitting components 13 and the PN junction temperature of the solid-state light source emitter 10 or the corresponding table or figure. PN junction temperature, and then through the mathematical relationship or corresponding table or figure between the light intensity of multiple light emitting components 13 and the PN junction temperature, the ratio of luminous intensity of multiple light emitting components 13 is obtained, and the first optical The light intensity values emitted by the plurality of light emitting components 13 are measured by the receiver 30 .
  • the light emission correction method sequentially includes the step P01 of obtaining the calibration relationship, the step P02 of measuring the forward bias voltage, the step P03 of obtaining the proportional relationship, and the step P04 of completing the calibration.
  • the luminescence correction method can be followed by the luminescence method.
  • the filter step S03 and the inverse conversion step S04 of the aforementioned spectral detection method are followed by the luminescence correction method. Please refer to FIG .
  • FIG. 9B is a corresponding diagram of the relative intensity of the fourth light emitting diode and the junction temperature.
  • the fourth light emission peak wavelength of the fourth light emitting diode at the junction temperature of 25 degrees Celsius is 772nm and the relative intensity is 100 %calculate.
  • a mathematical relationship or a corresponding table or graph between the forward voltage and the junction temperature of each light emitting diode is also obtained, and the fourth light emission peak wavelength of the fourth light emitting diode when the junction temperature is 25 degrees Celsius is 772nm and has a forward bias of 2 volts.
  • FIG. 9B is a corresponding diagram of the relative intensity of the fourth light emitting diode and the junction temperature.
  • the fourth light emission peak wavelength of the fourth light emitting diode at the junction temperature of 25 degrees Celsius is 772nm and has a forward bias of 2 volts.
  • Measuring the forward bias voltage step P02 measure the forward bias voltage of the LED during the time interval of turning on (lighting up) the LED, for example, during the time interval of turning on (lighting up) the LED in the flickering frequency.
  • the flickering frequency of the fourth light-emitting diode is about 90.90 times per second
  • the time interval for turning on (lighting) the light-emitting diode in the flickering frequency is 1 millisecond (1 ms)
  • the flickering frequency is off ( Turn off) the time interval of the light-emitting diode is 10 milliseconds (10ms)
  • turn on (light up) the time interval of the fourth light-emitting diode in the light-off frequency and measure the forward bias voltage of the fourth light-emitting diode to be 1.9 volts.
  • Proportional relationship obtaining step P03 The measured forward bias voltage is compared with the aforementioned mathematical relationship formula or corresponding table or graph between the forward bias voltage of the LED and the junction temperature to obtain the junction temperature.
  • the measured forward bias voltage of the fourth light-emitting diode is 1.9 volts
  • the junction temperature is 50 degrees Celsius according to FIG. 9C.
  • the converted junction temperature is compared with the aforementioned mathematical relational formula or corresponding table or figure between the luminous intensity or relative intensity and the junction temperature to obtain the luminous intensity or relative intensity through conversion.
  • the junction temperature obtained by comparison is 50 degrees Celsius
  • the relative intensity of the fourth light-emitting diode is 83% by comparison with FIG. 9B.
  • the converted luminous intensity or relative intensity with the mathematical relationship between luminous intensity or relative intensity and the junction temperature or the corresponding table or the luminous intensity or relative intensity at a specific junction temperature in the figure to obtain a ratio relation. For example, if the specific junction temperature is 25 degrees Celsius, the relative intensity of the fourth LED at 25 degrees Celsius is 100%, and the relative intensity at the junction temperature of 25 degrees Celsius is 100% divided by the relative intensity at 50 degrees Celsius 83 %, the proportional relationship is 1.20 times.
  • Complete the correction step P04 multiply the luminous intensity of the wavelength range corresponding to the light-emitting diode in the initial spectral energy distribution curve by the proportional relationship to achieve the correction of the luminous intensity; or, the measured wavelength range corresponding to the light-emitting diode
  • the spectral signal is multiplied by the proportional relationship to achieve the correction of the spectral signal.
  • the spectral signal in the wavelength range may be the aforesaid spectral signal of the analyte and background noise to form a time-domain signal of the analyte.
  • the photodetector or calculator multiplies the fourth luminous intensity corresponding to the fourth light-emitting diode 17.7xl07 (au) by a proportional relationship of 1.20 times, and the obtained luminous intensity can be regarded as the fourth light-emitting diode at a specific junction temperature (25 degrees Celsius) luminous intensity.
  • at least one of the light emitting diodes, some of the light emitting diodes or all of the light emitting diodes of the light source executes the light emission correction method sequentially or simultaneously.
  • the present invention implements the luminescence correction method for all light-emitting diodes at the same time, and the spectral energy distribution curve obtained in this way can be regarded as the spectral energy distribution curve at a specific junction temperature (25 degrees Celsius), and the obtained spectral signal It can be regarded as a spectral signal at a specific junction temperature (25 degrees Celsius).
  • FIG. 10 shows an embodiment of the optical analysis system of the present invention.
  • the optical analysis system of this embodiment also includes a liquid delivery member 200 and a fluid object to be tested.
  • the uniform mixing or light splitting component 20 and the second optical receiver 40 are arranged on both sides of the liquid conveying element 200, the second light L2 passes through the liquid conveying element 200 and forms a detection light L3 which is transmitted by the second The optical receiver 40 receives it.
  • the optical analysis system shown in FIG. 10 includes the optical analyzer 100 shown in FIG. 2, the present invention is not limited thereto, and the optical analyzer shown in FIG. 4 is also applicable to the optical analysis system of the present invention.
  • FIG. 11 shows a system block diagram of an embodiment of the optical analyzer of the present invention.
  • the optical analyzer of this embodiment includes In addition to the device 30 and the second optical receiver 40, the optical analyzer of this embodiment also includes a first processor 50, a first display device 60 and a first wireless communication module 70 o a solid-state light source transmitter 10, a first optical receiver 30 and the second optical receiver 40 are connected to the first processor 50, the first processor 50 controls the solid-state light source transmitter 10 to emit a plurality of light rays in sequence, and the light received by the first optical receiver 30 and the second optical receiver 40
  • the intensity signal is displayed on the first display device 60, that is, the first display device 60 displays the absorption spectrum of the detection light L3 generated after the second light L2 passes through the object to be tested.
  • the first wireless communication module 70 is connected to the first processor 50, and the light intensity signals received by the first optical receiver 30 and the second optical receiver 40 can be transmitted to an external electronic device through the first wireless communication module 70, or received from Control signals for external electronic devices.
  • FIG. 12 shows a system block diagram of the electronic device for signal connection of the optical analyzer of the present invention.
  • the external electronic device may be, for example, a mobile device or a computer device.
  • the external electronic device E includes a second processor 110, a second setting unit 120, a second display device 130 and a second wireless communication module 140.
  • the second setting unit 120, the second display device 130 and a second wireless communication module 140 are connected to the second processor 110 .
  • the second wireless communication module 140 forms a signal connection with the first wireless communication module 70, and the light intensity signals received by the first optical receiver 30 and the second optical receiver 40 can pass through the first wireless communication module 70 and the second wireless communication module 140.
  • transmitted to the external electronic device E transmitted to the second display device 130 via the second processor 110 and displayed on the second display device 130 o
  • the set value or instruction (control signal) input by the second setting unit 120 is also passed through the second display device 130
  • the second processor 110 is transmitted from the second wireless communication module 140 to the first wireless communication module 70, and then to the first processor 50 to control the solid-state light source transmitter 10o.
  • optical analysis can The instrument is used to compare the standard penetration rate and the working penetration rate, and judge the fluid to be tested according to the comparison result.
  • FIG. 13 of the present invention is a schematic diagram of another embodiment of the optical analyzer of the present invention. 5, it does not have a uniform mixing or splitting component 20' (that is, it does not have a shielding plate with a through hole 24.
  • the light emitted by the solid-state light source emitter 10 includes the first light L1 and the second light L1
  • the first optical receiver 30 and the second optical receiver 40 are located on different sides of the fluid belt object O
  • the first optical receiver 30 is located in the traveling direction of the first light L1 emitted by the solid-state light source transmitter 10 , but not in the traveling direction of the second light L2 emitted by the solid-state light source emitter 10
  • the second optical receiver 40 is located in the traveling direction of the third light L3 formed by the first light L1 passing through the fluid belt analyte O.
  • the light intensity of the second light L2 has a specific ratio to the standard light intensity
  • the ratio of the detection light L3 to the standard light intensity is the standard transmittance of the fluid object O to be tested.
  • the light intensity of the second light L2 has a specific ratio to the working light intensity
  • the ratio of the detection light L3 to the working light intensity is the fluid object to be tested.
  • the working penetration rate, and the standard light intensity is not the same as the working light intensity. In this way, the comparison result between the standard penetration rate and the working penetration rate is used to judge the composition change of the fluid analyte O.
  • An object of the present invention is to use the light source to have multiple light-emitting components that emit light in different wavelength ranges and emit light one by one, so that the optical analyzer does not need to be equipped with a monochromator in the prior art, so the volume of the optical analyzer can be greatly reduced.
  • the optical analyzer of the present invention is provided with a first optical receiver and a second optical receiver, which can detect the attenuation state of the light intensity of the light-emitting component.
  • An object of the present invention is to use the technical feature of an optical integrating sphere for uniform mixing or light splitting components, because the volume of the optical integrating sphere is small, so it can be used to solve the problem of large volume and inconvenient portability caused by the use of light cutters in the past, and then Or, the optical integrating sphere can make the light evenly mixed and exit from the specific first light outlet and second light outlet, and further solve the influence of light intensity that may be caused by the change of the angle of the beam splitter when using the beam splitter in the past.
  • An object of the present invention is to use the uniform mixing or splitting component as the technical feature of the shielding plate, because the through holes and the configuration relationship of the shielding plate can solve the problems of large volume and inconvenient portability caused by the use of light cutters in the past , so part of the light can also pass through the through hole, so as to further solve the influence of light intensity that may be caused by changes in the angle of the beam splitter when using the beam splitter in the past.
  • An object of the present invention is to monitor in real time or dynamically and continuously record the current penetration of the fluid object to be tested through the first optical receiver receiving the first light and the second optical receiver receiving the detection light passing through the fluid object to be tested.
  • An object of the present invention is to further adjust or replace the solid-state light source transmitter by monitoring in real time whether the light intensity of the light source of the solid-state light source transmitter has attenuated or not, and the change amount of light intensity signal attenuation through the first optical receiver receiving the first light. light source.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种光学分析系统及其光学分析仪(100)。光学分析仪(100)包括固态光源发射器(10)、均匀混和或分光组件(20,20')、第一光学接收器(30)以及第二光学接收器(40)。固态光源发射器(10)包括光源(1),光源(1)包括多个各放射具有至少一发光峰值波长及至少一波长范围的光的发光组件(13),多个发光组件(13)发出的光线通过均匀混和或分光组件(20,20')后形成第一光线(L1)以及第二光线(L2),第二光线(L2)通过流体待测物(O)后形成检测光线(L3)(即,第二光线(L2)通过流体待测物(O)后,第二光线(L2)未被流体待测物(O)所吸收的一部分形成检测光线(L3))。第一光学接收器(30)接收第一光线(L1)。第二光学接收器(40)接收检测光线(L3)。

Description

光学分析系统及其光学分析仪 技术领域 本发 明涉及一种穿透式光学分析的技术领域,尤其涉及一种以两个光学接收器分别接 收光源的光线来判定光源的发光强度是否衰退的光学分析系统及其光学分析仪。 背景技术 现有 的光学分析仪中可分为单光束光谱仪与双光束分光光谱仪, 在单光束光谱仪中, 其检测原理是使光源发出两道检测光线并分别通过对应的单色器后,再经由切光器的旋转 以调整两道检测光线分别通过位于吸收池中的待测液体,待测液体由于其成分不同而会吸 收不同波长的检测光线, 通过吸收池的检测光线被检测器接收后, 而得到待测液体的吸收 光谱, 由此检测出待测液体的物理或化学性质。然而单光束光谱仪是通过切光器的镜面旋 转来达到切换不同频率的检测光线, 而当镜面旋转的速度慢, 无法快速切换波长时, 若待 测物是快速流动的流体, 则无法实时地测得完整的吸收光谱, 再者, 两道检测光线皆会先 通过吸收池而后被检测器接收, 因此也无法监控原始检测光线的光强度, 而难以实时得知 光源强度是否有衰减的情形。 而在双光束分光光谱仪 中, 如图 1所示, 其检测原理是使用光源 1发出光线并通过分 光器 21使光线的路径分成检测光路径 P1与对比光路径 P2, 在检测光路径 P1中, 光线通 过位于吸收池 3中的待测液体, 待测液体由于其成分不同而会吸收不同波长的光线, 通过 吸收池 3的光线被第一检测器 4接收, 而得到待测液体的吸收光谱, 而在对比光路径 P2 中, 光线可直接被第二检测器 5所接收而形成对比光谱, 最后通过上述吸收光谱与对比光 谱进行比对并分析检测出待测液体的物理或化学性质。 然而, 如果使用多个镜面, 如图 1 所示,增加切光器 R2来改变对比光路径 P2的方向,则镜面除需要加强密闭以防止灰尘外, 也由于配置的镜面数量增加, 也使现有的光学分析仪具有较大的体积, 而无法制作成便携 式产品。 另外, 当光线经过分光器 R1分光后而导致光强度过低的情况时, 若待测液体对 光的吸收度较大, 则无法形成光谱, 另一方面, 若分光器 R1的角度一旦产生改变也会影 响到光强度的变化。 因此, 本发明即在阐述如何通过创新的硬件设计, 有效改善现有的单光束光谱仪与双 光束分光光谱仪所具有的上述等问题,仍是相关产业的开发业者与相关研究人员需持续努 力克服与解决的课题。 发明内容 有鉴于此 , 本发明的目的在于提供一种光学分析系统及其光学分析仪, 其具有多个发 光组件, 可依序发出不同波长范围的光线, 并且通过设置两个光学接收器, 比较两个光学 接收器接收的光线的差异来判定发光组件发出的光线的光强度是否衰减。 本发 明实施例的光学分析仪包括固态光源发射器、 均匀混和或分光组件、 第一光学接 收器以及第二光学接收器。 固态光源发射器包括光源, 光源包括多个各放射具有至少一发 光峰值波长及至少一波长范围的光的发光组件, 多个发光组件为发光二极管、 垂直共振腔 面射型激光或激光二极管, 且多个发光组件能够分别呈现明灭频率的非连续发光, 多个明 灭频率可以是彼此相同或彼此不同, 或者多个明灭频率可以是部分相同或部分不同。 多个 发光组件发出的光线通过均匀混和或分光组件后形成第一光线以及第二光线,第二光线通 过流体待测物后未被流体待测物吸收而得到检测光线。第一光学接收器接收第一光线。第 二光学接收器接收检测光线。 在另一个实施例 中, 当第一光线具有标准光强度时, 第二光线的光强度与标准光强度 之间呈现特定比例, 且检测光线与标准光强度的比值为流体待测物的标准穿透率; 而当第 一光线具有工作光强度时, 第二光线的光强度与工作光强度呈现特定比例, 检测光线与工 作光强度的比值为流体待测物的工作穿透率, 且标准光强度与工作光强度不相同。标准穿 透率与工作穿透率之间的比对结果可被用于判断流体待测物的组成分变化。 在另一个实施例 中, 当第一光线具有标准光强度时, 第一光学接收器接收第一光线并 产生标准光强度信号, 而当第一光线具有衰减光强度时, 第一光学接收器接收第一光线并 产生衰减光强度信号, 比较标准光强度信号与衰减光强度信号间的变化量, 分光组件根据 变化量调整第一光线的光强度。 在另一个实施例 中, 均匀混和或分光组件为光学积分球, 光学积分球包括光入口、 第 一光出口以及第二光出口, 第一光学接收器对准第一光出口, 第二光学接收器对准第二光 出口, 多个发光组件发出的多个光线由光入口进入光学积分球, 第一光线从第一光出口出 射, 第二光线从第二光出口出射。 在另一个实施例 中, 第一光出口与光入口相对于光学积分球的球心相隔 90度的圆心 角, 第二光出口与光入口相对于光学积分球的球心相隔 90度的圆心角, 且第一光出口与 第二光出口相对于光学积分球的球心相隔 180度的圆心角。 在另一个实施例 中, 均匀混和或分光组件为具有通孔的遮蔽板, 第一光学接收器设置 于遮蔽板且与多个发光组件相向设置,多个发光组件发出的多个光线的部分成为第一光线 并由第一光学接收器接收,多个发光组件发出的多个光线的另一部分通过通孔而成为第二 光线。 在另一个实施例 中,相邻的二个发光峰值波长所对应的二个发光组件的多个波长范围 部分重叠以形成较多个发光组件中的各者的波长范围宽的连续波长范围,或者相邻的二个 发光峰值波长所对应的二个发光组件的多个波长范围不重叠。 在另一个实施例 中, 不同的多个波长范围的多个发光组件 (13)在不同时间发光。 在另一个实施例 中, 固态光源发射器还包括基板, 测量多个发光组件工作时的定电流 偏压值, 并通过多个发光组件的定电流偏压值与固态光源的 PN接面温度的数学关系式或 对应表或图换算得到固态光源的 PN接面温度, 而后再通过多个发光组件的光强度与 PN 接面温度的数学关系式或对应表或图, 得到多个发光组件的发光强度比例, 并根据判断结 果修正第一光学接收器所测量多个发光组件发出的光强度数值。 在另一个实施例 中, 本发明的光学分析仪还包括第一处理器以及第一显示设备, 固态 光源发射器、 第一光学接收器以及第二光学接收器连接于第一处理器, 第一处理器控制固 态光源发射器依序发出多个光线,第一光学接收器以及第二光学接收器接收的光强度信号 显示于第一显示设备。 在另一个实施例 中, 本发明的光学分析仪还包括第一无线通信模块, 其连接于第一处 理器,第一光学接收器以及第二光学接收器接收的光强度信号可经由第一无线通信模块传 送至外部的电子装置, 或接收来自外部的电子装置的控制信号。 在另一个实施例 中, 明灭频率是介于 0.05次 /秒至 50000次 /秒之间。 在另一个实施例 中, 明灭频率中开启发光组件的时间区间为介于 0.00001秒至 10秒 之间。 在另一个实施例 中, 明灭频率中关闭发光组件的时间区间为介于 0.00001秒至 10秒 之间。 在另一个实施例 中, 相邻的二个发光峰值波长彼此相差为介于 Inm至 80nm之间。 在另一个实施例 中, 相邻的二个发光峰值波长彼此相差为介于 5nm至 80nm之间。 在另一个实施例 中,各发光峰值波长所对应的波长半高宽为介于 15nm至 50nm之间。 在另一个实施例 中,各发光峰值波长所对应的波长半高宽为介于 15nm至 40nm之间。 在另一个实施例 中, 相邻的二个发光峰值波长彼此相差为大于或等于 0.5nmo 在另一个实施例 中, 相邻的二个发光峰值波长彼此相差为介于 Inm至 80nm之间。 在另一个实施例 中,多个发光峰值波长之中的至少一部分的发光峰值波长所对应的波 长半高宽为大于 Onm且小于或等于 60nm。 本发 明实施例的光学分析仪包括固态光源发射器、第一光学接收器以及第二光学接收 器。 固态光源发射器包括光源, 光源包括多个各放射具有至少一发光峰值波长及至少一波 长范围的光的发光组件, 多个发光组件为发光二极管、 垂直共振腔面射型激光或激光二极 管, 且多个发光组件能够分别呈现明灭频率的非连续发光, 多个明灭频率可以是彼此相同 或彼此不同, 或者多个明灭频率可以是部分相同或部分不同。 多个发光组件发出的光线形 成第一光线以及第二光线, 第二光线通过流体待测物后形成检测光线(即, 第二光线通过 流体待测物时未被流体待测物吸收的那一部分形成检测光 线)。 第一光学接收器接收第一 光线。 第二光学接收器接收检测光线。 当第一光线具有标准光强度时, 第二光线的光强度 与标准光强度之间呈现特定比例,且检测光线与标准光强度的比值为流体待测物的标准穿 透率; 而当第一光线具有工作光强度时, 第二光线的光强度与工作光强度呈现特定比例, 检测光线与工作光强度的比值为流体待测物的工作穿透率,且标准光强度与工作光强度不 相同。 标准穿透率与工作穿透率之间的比对结果可被用于判断流体待测物的组成分变化。 本发 明提供一种光学分析系统, 其包括光学分析仪以及液体输送件, 待测液体于液体 输送件内输送, 第一光学接收器与第二光学接收器设置于液体输送件的两侧, 第二光线穿 过液体输送件并形成检测光线而由第二光学接收器接收。 本发 明的光学分析系统及光学分析仪,通过光源具有多个发出不同波长范围的光线的 发光组件而且逐一发光,不需要设置现有技术的单色器,可以大幅降低光学分析仪的体积。 而且本发明的光学分析仪设有第一光学接收器以及第二光学接收器,可以检测得知发光组 件光强度衰减的状态。 附图说明 图 1为现有技术的光学分析仪的示意图。 图 2为本发明的光学分析仪的一个实施例的示意图。 图 3为图 2的光学分析仪的剖视图。 图 4为本发明的光学分析仪的另一个实施例的示意图。 图 5 为本发明的光学分析仪的固态光源发射器的第一实施例的发光二极管的放射光 谱图。 图 6为本发明的光学分析仪的固态光源发射器的第二实施例的发光二极管的放射光 谱图。 图 7 为本发明的光学分析仪的固态光源发射器的第三实施例的发光二极管的放射光 谱图。 图 8为本发明的光学分析仪的固态光源发射器的一个实施例的示意图。 图 9A为通过测量温度校正发光组件的发光强度校正的方法的流程图。 图 9B是本发明第四发光二极管的相对强度与接面温度的对应图。 图 9C是本发明第四发光二极管的顺向偏压与接面温度的对应图。 图 10为本发明的光学分析系统的一个实施例的示意图。 图 11为本发明的光学分析仪的一个实施例的系统方块图。 图 12为与本发明的光学分析仪信号连接的电子装置的系统方块图。 图 13为本发明的光学分析仪的又一个实施例的示意图。 图号说明:
1: 光源
R1: 分光器
R2: 切光器
3: 吸收池
4: 第一检测器
5: 第二检测器
P1:检测光路径
P2:对比光路径
6: 容置壳体
10: 固态光源发射器
11: 基板 12: 温度传感器
13: 发光组件
20、 20' : 均匀混和或分光组件
21: 光入口
22: 第一光出口
23: 第二光出口
24 : 通孔
30: 第一光学接收器
40: 第二光学接收器
50: 第一处理器
60: 第一显示设备
61: 开口
70: 第一无线通信模块
100: 光学分析仪
110: 第二处理器
111 : 接面
120: 第二设定单元
130: 第二显示设备
140: 第二无线通信模块
200: 液体输送件
L1: 第一光线
L2: 第二光线
L3: 检测光线
O : 流体待测物
E : 电子装置 具体实施方式 请参 阅图 2及图 3 , 其表示本发明的光学分析仪的一个实施例。 本实施例的光学分析 仪 100包括固态光源发射器 10、均匀混和或分光组件 20、第一光学接收器 30以及第二光 学接收器 40。 固态光源发射器 10包括光源, 光源包括多个各放射具有至少一发光峰值波 长及至少一波长范围的光的发光组件 13, 多个发光组件 13为发光二极管、 垂直共振腔面 射型激光或激光二极管, 且多个发光组件 13能够分别呈现明灭频率的非连续发光, 多个 明灭频率可以是彼此相同或彼此不同, 或者多个明灭频率可以是部分相同或部分不同。 多个发光组件 13发出的光线通过均匀混和或分光组件 20后形成第一光线 L1以及第 二光线 L2, 第二光线 L2通过流体待测物。后形成检测光线 L3, 简单地说, 第二光线 L2 通过流体待测物 。时, 会有一部分被流体待测物 O吸收, 且会有未被流体待测物。吸收 的另一部分, 而第二光线 L2中未被被流体待测物 O吸收的另一部分则形成上述检测光线 L3 o 第一光学接收器 30接收第一光线 L1。 第二光学接收器 40接收检测光线 L3。 其中, 当第一光线 L1具有标准光强度时,第二光线 L2的光强度与标准光强度之间呈现特定比例 (也就是第一光线 L1的标准光强度除以第二光线 L2的光强度的比值为特定比例), 检测光 线 L3与标准光强度的比值为的流体待测物 O的标准穿透率, 而当第一光线 L1具有工作 光强度时,第二光线 L2的光强度与工作光强度之间呈现特定比例,检测光线 L3与工作光 强度的比值为流体待测物。 的工作穿透率,标准光强度与工作光强度不相同。通过比对标 准穿透率与工作穿透率, 可以根据比对结果判断流体待测物。的组成分变化,例如,流体 待测物。可作为 印刷电路板 (PCB)、 半导体、 石化业或食品加工业所需的工作药液, 而标 准穿透率代表流体待测物 O具有正常工作时所需的组成分比例及浓度,当标准穿透率与工 作穿透率为相同或其差异在可容忍范围时,可以判断流体待测物。的组成仍符合使用者的 需求, 而标准穿透率与工作穿透率为不相同且其差异在不可容忍范围时, 可以判断流体待 测物 O的组成分比例及浓度发生改变而导致成为非正常工作时所需的工作药液,而需要将 目前的工作药液进行更换或调整。本发明可通过接收第一光线 L1的第一光学接收器 30与 接收通过流体待测物。 的检测光线 L3的第二光学接收器 40,以实时地监控或动态连续纪 录目前的流体待测物 O的穿透率与其组成分比例及浓度是否符合正常工作时所需的质量, 或者进一步推算使用寿命, 而预先做好更换或调整流体待测物 O的准备作业。 上述特定 比例可以是由均匀混和或分光组件 20所决定, 例如当特定比例是 50%时, 则表示当第一光线 L1具有标准光强度时,第二光线 L2的光强度相同于标准光强度, 以及 表示当第一光线 L1具有工作光强度时, 第二光线 L2的光强度相同于工作光强度。 然而, 本发明不以特定比例是 50%为限制, 但较佳的是介于 25%至 75%之间, 以确保无需将固 态光源发射器 10的功率调升地过高。 进一步地说 , 检测光线 L3是由第二光线 L2通过流体待测物。所产生, 可以表示成 L3_intensity=L2_intensity*kl, 其中 L3_intensity是检测光线 L3的光强度, L2_intensity是 第二光线 L2的光强度, kl是小于等于 1数值, 且 kl与流体待测物 O的穿透率有关。 在 第一 光线 L1 的光强度与第 二光 线 L2 的光强度呈 现特 定比例 时, 则表示 Ll_intensity=L2_intensity*k2, 其中 Ll_intensity是第一光线 L1的光强度, k2是特定比例。 因此, 可以推导出 k2/kl=L3_intensity/Ll_mtensity(L3_mtensity/Ll_mtensity(在本发明中定 义为流体待测物 O的穿透率), 也就是在流体待测物 O的穿透率与特定比例 k2未有改变 时,第一光线 L1的光强度与检测光线 L3的光强度之间呈现比例关系。换言之, 当第一光 线 L1的光强度从标准光强度变成工作光强度时,且特定比例 k2未有改变时, 只要流体待 测物 O的穿透率未有改变, 则第一光线 L1的光强度与检测光线 L3的光强度之间的比例 也不会改变, 一旦流体待测物。的穿透率有改变, 则相应地, 第一光线 L1的光强度与检 测光线 L3的光强度之间的比例也会有改变, 且 kl也会跟着改变。通过这样子的方式, 第 一光线 L1的光强度与第二光线 L2的光强度即使不相等,也可以顺利地测得流体待测物 O 的穿透率是否有改变(即, 流体待测物 O的组成是否有改变)。 多个发光组件 13发出的光线通过均匀混和或分光组件 20后形成第一光线 L1以及第 二光线 L2,第二光线 L2通过流体待测物 O后形成检测光线 L3O第一光学接收器 30接收 第一光线 L1。 第二光学接收器 40接收检测光线 L3。 其中, 当第一光线 L1具有标准光强 度时, 第一光学接收器 30接收第一光线 L1并产生标准光强度信号, 而当第一光线 L1具 有衰减光强度时,第一光学接收器 30接收第一光线 L1并产生衰减光强度信号, 比较标准 光强度信号与衰减光强度信号间的变化量, 均匀混和或分光组件 20根据变化量调整第一 光线 L1的光强度,而得恒定范围光强度的测量系统。本发明可通过接收第一光线 L1的第 一光学接收器 30实时监控固态光源发射器 10的光源的光强度是否衰减,与光强度信号衰 减的变化量,而进一步调整或更换固态光源发射器 10的光源。 由于第一光线 L1的光强度 若太低, 会导致检测光线 L3的光强度也跟着太低, 使得测量出来的流体待测物 O的穿透 率不准确, 因此, 需要通过上述做法, 让第一光线 L1的光强度维持在特定范围, 就可以 使得测量出来的流体待测物 O的穿透率维持在一定的准确度。 本实施例 的均匀混和或分光组件 20为光学积分球, 光学积分球包括光入口 21、 第一 光出口 22以及第二光出口 23, 第一光学接收器 30对准第一光出口 22, 第二光学接收器 40对准第二光出口 23, 多个发光组件 13发出的多个光线由光入口 21进入光学积分球, 第一光线 L1从第一光出口 22出射,第二光线 L2从第二光出口 23出射。如图 2所示,第 一光出口 22与光入口 21相对于光学积分球的球心相隔 90度的圆心角,第二光出口 23与 光入口 21相对于光学积分球的球心相隔 90度的圆心角, 且第一光出口 22与第二光出口 23相对于光学积分球的球心相隔 180度的圆心角。 本实施例 的均匀混和或分光组件 20的光学积分球设置于容置壳体 6内, 固态光源发 射器 10及第一光学接收器 30分别设置于容置壳体 6的侧壁, 容置壳体 6具有开口 61 , 开口 61对准第二光出口 23, 使得第二光线 L2可经由开口 61从容置壳体 6射出。 请参 阅图 4, 其表示本发明的光学分析仪的另一个实施例。 本实施例的部分结构与图 2的实施例相同, 因此相同的组件给予相同的符号并省略其说明。 本实施例的均匀混和或 分光组件 20' 为具有通孔 24的遮蔽板, 第一光学接收器 30设置于遮蔽板且与多个发光 组件 13相向设置, 多个发光组件 13发出的多个光线的部分成为第一光线 L1并由第一光 学接收器 30接收, 多个发光组件 13发出的多个光线的另一部分通过通孔 24而成为第二 光线 L2O第二光线 L2通过流体待测物 O后形成检测光线 L3, 并由第二光学接收器 40接 收。 同样地, 比较第一光线 L1与检测光线 L3的强度是否相同, 并根据比较的结果调整多 个发光组件 13发出的多个光线的光强度。 另外 , 于本发明的固态光源发射器 10的光源的发光组件 13所发出的光线中, 其相邻 的二个发光峰值波长所对应的二个发光组件 13的多个波长范围部分重叠以形成较多个发 光组件 13中的各者的波长范围宽的连续波长范围, 或者相邻的二个发光峰值波长所对应 的二个发光组件 13的多个波长范围不重叠。 请参 阅图 5, 相邻的二个发光峰值波长所对应的二个发光二极管的多个波长范围部分 重叠以形成较多个发光二极管中的各者的波长范围宽的连续波长范围,连续波长范围是介 于 180nm至 2500nm之间。在图 2中共有三个发光峰值波长及所对应的波长范围, 分别为 第一光线的第一发光峰值波长 (734nm)所对应的第一波长范围、 第二光线的第二发光峰值 波长 (810nm)所对应的第二波长范围及第三光线的第三发光峰值波长 (882nm)所对应的第 三波长范围。第一发光峰值波长与第二发光峰值波长是相邻的二个发光峰值波长, 同样地 第二发光峰值波长与第三发光峰值波长也是相邻的二个发光峰值波长。第一发光峰值波长 所对应的第一波长范围为介于 660nm至 780nm之间, 第二光线的第二发光峰值波长所对 应的第二波长范围为介于 710nm至 850nm, 第一波长范围与第二波长范围在 710nm至 780nm之间呈现部分重叠, 因此第一波长范围与第二波长范围共同形成 660nm至 850nm 之间的连续波长范围。 同样地, 第二发光峰值波长所对应的第二波长范围为介于 710nm 至 850nm, 第三光线的第三发光峰值波长所对应的第三波长范围为介于 780nm至 940nm, 第二波长范围与第三波长范围在 780nm至 850nm之间呈现部分重叠, 因此第二波长范围 与第三波长范围共同形成 710nm至 940nm之间的连续波长范围。 在本发明中, 相邻的二 个发光峰值波长所对应 的二个发光二极管的多个波长范围的重叠部分, 以重叠愈少则愈 佳。 当然, 相邻的二个发光峰值波长所对应的二个发光二极管的多个波长范围也可以不重 叠, 这将于后文中说明。 相邻 的二个发光峰值波长彼此相差为大于或等于 0.5nm, 较佳地为介于 Inm至 80nm 之间, 更佳地为介于 5nm至 80nm之间。 在图 2中, 相邻的第一发光峰值波长 (734nm)与 第二发光峰值波长 (810nm)彼此相差为 76nm, 而相邻的第二发光峰值波长 (810nm)与第三 发光峰值波长 (882nm)彼此相差为 72nm。 除了有特别说明之外, 本发明及专利范围所述的 数值范围的限定总是包括端值, 例如前述相邻的二个发光峰值波长彼此相差为介于 5nm 至 80nm之间, 是指大于或等于 5nm而且小于或等于 80nm。 请一并参 阅图 6的第二实施例, 第二实施例是第一实施例的衍生实施例, 因此第二实 施例与第一实施例相同的地方就不再赘述。第二实施例与第一实施例不同的地方在于第二 实施例的光源包含五个发光二极管, 分别为放射具有第一发光二极管、 放射具有第四波长 范围的第四光线的第四发光二极管、第二发光二极管、 放射具有第五波长范围第五光线的 第五发光二极管及第三发光二极管 , 第四光线在第四波长范围内具有第四发光峰值波长 (772nm), 第五光线在第五波长范围内具有第五发光峰值波长 (854nm)。 在图 3中, 发光峰 值波长由小至大依序为第一发光峰值波长 (734nm)、 第四发光峰值波长 (772nm)、 第二发光 峰值波长 (810nm)、 第五发光峰值波长 (854nm)及第三发光峰值波长 (882nm)相邻的第一发 光峰值波长 (734nm)与第四发光峰值波长 (772nm)彼此相差为 38nm, 相邻的第四发光峰值 波长 (772nm)与第二发光峰值波长 (810nm)彼此相差为 38nm, 相邻的第二发光峰值波长 (810nm)与第五发光峰值波长 (854nm)彼此相差为 44nm, 相邻的第五发光峰值波长 (854nm) 与第三发光峰值波长 (882nm)彼此相差为 28nm。 请一并参 阅图 7 的第三实施例, 第三实施例是第一实施例及第二实施例的衍生实施 例, 因此第三实施例与第一实施例及第二实施例相同的地方就不再赘述。第三实施例与第 一实施例不同的地方在于第三实施例的光源包含 12个发光二极管, 在图 8中, 12个发光 二极管的发光峰值 波长由小至大依序为 734nm(第一发光峰值波长)、 747nm、 760nm、 772nm(第四发光峰值波长)、 785nm、 798nm、 810nm(第二发光峰值波长)、 824nm、 839nm、 854nm(第五发光峰值波长)、 867nm及 882nm(第三发光峰值波长)。 12个发光二极管的发 光峰值波长之中,相邻的二个发光峰值波长彼此相差依序分别为 13nm、 13nm、 12nm、 13nm、 13nm、 12nm、 14nm、 15nm、 15nm、 13nm及 15nm。 如果于第一实施例、 第二实施例及 第三实施例中的发光组件 13是改用激光二极管, 相邻的二个发光峰值波长彼此相差可以 为大于或等于 0.5nm, 例如为 Inm。 多个 发光峰值波长之中的至少 一部分的发光峰值波长所对 应的波长半高宽为大于 Onm且小于或等于 60nm。 较佳地, 各发光峰值波长所对应的波长半高宽为大于 Onm且小 于或等于 60nm, 例如前述第一实施例、 第二实施例及第三实施例中发光峰值波长由小至 大依序为 734nm(第一发光峰值波长)、 747nm、 760nm、 772nm(第四发光峰值波长)、 785nm、 798nm、 810nm(第二发光峰值波长)、 824nm、 839nm、 854nm(第五发光峰值波长)、 867nm 及 882nm(第三发光峰值波长), 第一光线的第一发光峰值波长所对应的波长半高宽、 第二 光线的第二发光峰值波长所对应的波长半高宽、第三光线的第三发光峰值波长所对应的波 长半高宽、第四光线的第四发光峰值波长所对应的波长半高宽及第五光线的第五发光峰值 波长所对应的波长半高宽为大于 Onm且小于或等于 60nm, 较佳为介于 15nm至 5 Onm之 间,更佳为介于 15nm至 40nm之间。其余未说明的 747nm、 760nm、 785nm、 798nm、 824nm、 839nm及 867nm发光峰值波长所对应的波长半高宽(图 4)也是为大于 Onm且小于或等于 60nm, 较佳为介于 15nm至 50nm之间, 更佳为介于 15nm至 40nm之间。 于本发明的实 验操作时, 前述第一实施例、 第二实施例及第三实施例中的发光峰值波长所对应的波长半 高宽为 55nm; 如果发光组件 13是激光二极管, 各发光峰值波长所对应的波长半高宽为大 于 Onm且小于或等于 60nm, 例如为 Inm。 前述相 邻的二个发光峰值波长所对应的二个发光二极管的多个波长范 围也可以不重 叠, 例如如果前述第一实施例、 第二实施例及第三实施例中的各发光峰值波长所对应的波 长半高宽为 15nm, 各发光峰值波长所对应的波长范围的宽度(也就是波长范围的最大值与 最小值的差)为 40nm, 相邻的二个发光峰值波长彼此相差为 80nm。 又例如如果发光组件 13是激光二极管, 各发光峰值波长所对应的波长半高宽为 Inm, 波长范围的宽度为 4nm, 相邻的二个发光峰值波长彼此相差为 5nm,则相邻的二个发光峰值波长所对应的二个发光 组件(激光二极管)的多个波长范围不重叠。 较佳地 , 于第一实施例、 第二实施例及第三实施例操作成像装置进行待测物的检测以 产生待测物光谱图时, 成像装置为手机或平板计算机, 如前所述固态光源发射器 10能够 分别控制并使得多个发光二极管分别呈现明灭频率的非连续发光,多个明灭频率可以是彼 此相同或彼此不同, 或者多个明灭频率可以是部分相同或部分不同, 前述明灭频率是介于 0.05次 /秒至 50000次 /秒之间,明灭频率中开启(点亮)发光二极管的时间区间为介于 0.00001 秒至 10秒之间, 明灭频率中关闭(熄灭)发光二极管的时间区间为介于 0.00001秒至 10秒 之间, 明灭频率的周期是指接续的一次开启(点亮)发光二极管的时间区间及关闭(熄灭)发 光二极管的时间区间的和, 明灭频率的周期是明灭频率的倒数; 换言之, 明灭频率的周期 可以被理解为将多个发光二 极管连续点亮点亮时间区间并立即无间断地连续熄灭熄灭时 间区间的和, 点亮时间区间为介于 0.00001秒至 10秒之间, 熄灭时间区间为介于 0.00001 秒至 10秒之间。 较佳地, 明灭频率是介于 0.5次 /秒至 50000次 /秒之间; 更佳地, 明灭频 率是介于 5次 /秒至 50000次 /秒之间。 多个发光二极管呈现非连续发光的样态可以大幅降 低待测物(A)被发光二极管所放射的光的热能所影响, 避免含有有机体的待测物(A)产生质 变, 因此尤其适合对于热能敏感的待测物(A), 更尤其适合于发光二极管所放射波长范围 的光为近红外光。 另外 , 多个发光组件 13依序发光, 前述依序发光指于不同位置的多个发光组件 13放 射相同波长范围的光的多个发光组件 13不同时发光; 或者, 多个发光组件 13部分同时发 光, 前述部分同时发光指的是将多个发光组件 13, 使其中一部分同时发光而同时放射不 同波长范围的光。另外,为了使得光谱是连续的,且不要让相邻两波长范围的光彼此干扰, 在另一个较佳的实施例中, 将不同波长范围的多个发光组件 13在不同时间发光。 举例来 说, 若六个发光组件 13分别有不同的六个波长范围, 这六个发光组件 13将在不同时间发 光, 以确保相邻两波长范围的光不会彼此干扰。 请参 阅图 8, 其表示本发明的固态光源发射器的一个实施例。 本实施例的固态光源发 射器 10包括基板 11、 温度传感器 12以及多个发光组件 13 o 多个发光组件 13及温度传感 器 12设置于基板 11 的接面 111 , 测量多个发光组件的偏压值, 并通过多个发光组件 13 的偏压值与接面温度的数学关系式或对应表或图换算得到接面 111的接面温度,而后再通 过多个发光组件 13 的光强度与接面温度的数学关系式或对应表或图, 得到多个发光组件 13的发光强度, 以判定多个发光组件 13的发光强度是否变化, 并根据判断结果调整多个 发光组件 13发出的多个光线的光强度。 本发 明另一实施例中, 固态光源发射器 10还包括基板 11 , 测量多个发光组件 13工 作时的定电流偏压值, 并通过多个发光组件 13 的定电流偏压值与固态光源发射器 10的 PN 接面温度的数学关系式或对应表或图换算得到固态光源发射器 10的 PN接面温度, 而 后再通过多个发光组件 13的光强度与 PN接面温度的数学关系式或对应表或图, 得到多 个发光组件 13的发光强度比例,并根据判断结果修正第一光学接收器 30所测量多个发光 组件 13发出的光强度数值。 由于每一个发光二极管的发光强度与其接面温度 (junction temperature)呈反向关系, 以 及发光二极管的散热问题, 发光二极管于电流密度运作下历经持续操作时间的增加, 则会 增加接面温度而导致发光强度减 少, 因此有必要以一种发光修正方法进行发光强度的校 正。 发光修正方法依序包含校正关系取得步骤 P01、 测量顺向偏压步骤 P02、 比例关系取 得步骤 P03及完成校正步骤 P04。 发光修正方法可以接续于发光方法之后, 前述的光谱检 测方法的滤波步骤 S03及反转换步骤 S04接续于发光修正方法之后, 请参见图 9AO 校正关系取得步骤 P01: 取得每一个发光二极管的发光强度或相对强度与接面温度的 数学关系式或对应表或图, 通常由发光二极管的制造厂商所提供。请参阅图 9B , 图 9B为 第四发光二极管的相对强度与接面温度的对应图, 第四发光二极管于接面温度为摄氏 25 度下的第四发光峰值波长为 772nm且相对强度是以 100%计算。 另外, 也取得每一个发光 二极管的顺向偏压 (forward voltage)与接面温度的数学关系式或对应表或图,第四发光二极 管于接面温度为摄氏 25度下的第四发光峰值波长为 772nm且顺向偏压为 2伏特。 请参阅 图 9C, 为第四发光二极管的顺向偏压与接面温度的对应图。 发光强度或相对强度与接面 温度的数学关系式或对应表或图, 以及发光二极管的顺向偏压与接面温度的数学关系式或 对应表或图, 两者的取得方式可以参阅[科学与工程技术期刊第三卷第四期 民国九十六 年, 99-103页, 发光二极管接面温度的自动量测系统]( Journal of Science and Engineering Technology, Vol. 3, No. 4, pp. 99-103 (2007)), 以及中国台湾发明专利公开第 200818363号 所公开的方式进行, 因此不在此赘述。 测量顺 向偏压步骤 P02: 于开启 (点亮)发光二极管的时间区间, 例如于明灭频率中开 启 (点亮)发光二极管的时间区间, 同时测量发光二极管的顺向偏压。 例如于前述实施例二 及三之中, 第四发光二极管的明灭频率约为 90.90次 /秒、 明灭频率中开启 (点亮)发光二极 管的时间区间为 1 毫秒 (1ms)、 明灭频率中关闭 (熄灭)发光二极管的时间区间为 10毫秒 (10ms), 于明灭频率中开启 (点亮)第四发光二极管的时间区间, 同时测量第四发光二极管 的顺向偏压为 1.9伏特。 比例关系取得步骤 P03: 将所测量到的顺向偏压对照前述的发光二极管的顺向偏压与 接面温度的数学关系式或对应表或图, 换算得到接面温度。 例如, 将测量到的第四发光二 极管的顺向偏压为 1.9伏特, 对照图 9C而得出接面温度为摄氏 50度。 接着, 将换算得到 的接面温度对照前述的发光强度或相对强度与接面温度的数学关系式或对应表或图,换算 得到发光强度或相对强度。例如, 将对照得出的接面温度为摄氏 50度, 对照图 9B而得出 第四发光二极管的相对强度为 83%。再接续地, 将换算得到发光强度或相对强度, 与发光 强度或相对强度与接面温度 的数学关系式或对应表或图中的特定接面温度下的发光强度 或相对强度相比较得出比例关系。 例如, 特定接面温度为摄氏 25度, 摄氏 25度的第四发 光二极管的相对强度是 100%, 将接面温度为摄氏 25度的相对强度是 100%除以摄氏 50 度时的相对强度 83%, 得出比例关系为 1.20倍。 完成校正步骤 P04: 将前述初始光谱能量分布曲线中发光二极管所对应的波长范围的 发光强度乘以比例关系, 以达到发光强度的校正; 或者, 将所测得有关于发光二极管所对 应的波长范围的光谱信号乘以比例关系, 以达到光谱信号的校正。所述波长范围的光谱信 号可以为前述的待测物光谱信号及背景噪声构成待测物时域信号。例如, 光检测器或计算 器将第四发光二极管所对应的第四发光强度 17.7xl07(a.u.)乘以比例关系为 1.20倍, 所得 出的发光强度可以视为第四发光二极管在特定接面温度(摄氏 25度)的发光强度。 特别说 明的是, 本发明将光源的多个发光二极管的至少其中的一个发光二极管、 部分 的发光二极管或全部的发光二极管, 依序或同时执行发光修正方法。 较佳地, 本发明将全 部的发光二极管同时执行发光修正方法,如此得出的光谱能量分布曲线可以视为在特定接 面温度(摄氏 25 度)的光谱能量分布曲线, 以及得出的光谱信号可以视为在特定接面温度 (摄氏 25度)的光谱信号。 请参 阅图 10, 其表示本发明的光学分析系统的一个实施例。 本实施例的光学分析系 统除了包括图 2所示的光学分析仪 100之外, 还包括液体输送件 200, 流体待测物。于液 体输送件 200内输送, 均匀混和或分光组件 20与第二光学接收器 40设置于液体输送件 200的两侧,第二光线 L2穿过液体输送件 200并形成检测光线 L3而由第二光学接收器 40 接收。 虽然图 10所示的光学分析系统除了包括图 2所示的光学分析仪 100, 但本发明不 限于此, 图 4所示的光学分析仪也适用于本发明的光学分析系统。 请参 阅图 11 , 其表示本发明的光学分析仪的一个实施例的系统方块图。 本实施例的 光学分析仪除了包括前述的固态光源发射器 10、 均匀混和或分光组件 20、 第一光学接收 器 30以及第二光学接收器 40以外, 本实施例的光学分析仪还包括第一处理器 50、 第一 显示设备 60及第一无线通信模块 70o 固态光源发射器 10、 第一光学接收器 30以及第二 光学接收器 40连接于第一处理器 50, 第一处理器 50控制固态光源发射器 10依序发出多 个光线,第一光学接收器 30以及第二光学接收器 40接收的光强度信号显示于第一显示设 备 60, 即第一显示设备 60显示第二光线 L2通过待测物后产生检测光线 L3的吸收光谱。 第一无线通信模块 70连接于第一处理器 50, 第一光学接收器 30以及第二光学接收器 40 接收的光强度信号可经由第一无线通信模块 70传送至外部的电子装置, 或接收来自外部 的电子装置的控制信号。 请参 阅图 12, 其表示本发明的光学分析仪信号连接的电子装置的系统方块图。 外部 的电子装置可以是例如移动装置或计算器装置等。外部的电子装置 E包括第二处理器 110、 第二设定单元 120、 第二显示设备 130及第二无线通信模块 140o 第二设定单元 120、 第 二显示设备 130及第二无线通信模块 140均连接于第二处理器 110。第二无线通信模块 140 与第一无线通信模块 70形成信号连接, 第一光学接收器 30以及第二光学接收器 40接收 的光强度信号可经由第一无线通信模块 70及第二无线通信模块 140传送至外部的电子装 置 E, 经由第二处理器 110传送至第二显示设备 130而显示于第二显示设备 130o 第二设 定单元 120输入的设定数值或指令(控制信号)也经由第二处理器 110并由第二无线通信模 块 140传送至第一无线通信模块 70, 然后传送至第一处理器 50, 而控制固态光源发射器 10o 进一步地 , 于上述实施例中, 可以由光学分析仪来比对标准穿透率与工作穿透率, 以 及根据比对结果判断流体待测物。 的组成分变化,其中光学分析仪包括处理器, 以进行上 述工作。 在其他实施方式中, 可以是由与光学分析仪电性连接(有线或无线连接)的计算机 设备或云端服务器来进行比对与分析。 另外,请参照本发明的图 13,图 13为本发明的光学分析仪的又一个实施例的示意图。 不同于图 5, 其不具有均匀混和或分光组件 20' (也就是不具有为具有通孔 24的遮蔽板。 于此实施例, 固态光源发射器 10发出的光线包括第一光线 L1与第二光线 L2, 第一光学 接收器 30与第二光学接收器 40位于流体带测物 0的不同的两侧, 第一光学接收器 30位 于固态光源发射器 10发出的第一光线 L1的行进方向上, 但不在固态光源发射器 10发出 的第二光线 L2的行进方向上, 以及第二光学接收器 40位于第一光线 L1通过流体带测物 0 所形成的第三光线 L3的行进方向上。 当第一光线 L1具有标准光强度时,第二光线 L2的光强度与标准光强度之间呈现特定 比例,且检测光线 L3与标准光强度的比值为流体待测物 O的标准穿透率。当第一光线 L1 具有工作光强度时,第二光线 L2的光强度与工作光强度呈现特定比例,检测光线 L3与工 作光强度的比值为流体待测物。 的工作穿透率,且标准光强度与工作光强度不相同。如此 一来, 标准穿透率与工作穿透率之间的比对结果被用于判断流体待测物 O的组成分变化。 综上所述 ,本发明与现有技术与产品相较之下,本发明具有以下多个优点的至少一者。 本发 明的一个目的是通过光源具有多个发出不同波长范围的光线 的发光组件而且逐 一发光, 使得光学分析仪不需要设置现有技术的单色器, 故可以大幅降低光学分析仪的体 积。 而且本发明的光学分析仪设有第一光学接收器以及第二光学接收器, 可以检测得知发 光组件光强度衰减的状态。 本发 明的一个目的是通过均匀混和或分光组件为光学积分球的技术特征, 由于光学积 分球的体积较小,故可用以解决过去使用切光器所造成的体积大而携带不便的问题,再者, 光学积分球能使光线均匀混和后由特定的第一光出口与第二光出口出射,而进一步地解决 过去使用分光器时, 可能因分光器角度产生改变所造成光强度的影响。 本发 明的一个目的是通过均匀混和或分光组件为遮蔽板的技术特征, 由于遮蔽板所具 有的通孔与其配置关系 , 除了能解决过去使用切光器所造成的体积大而携带不便的问题 外, 故也可以通过通孔使部分光线通过, 而进一步地解决过去使用分光器时, 可能因分光 器角度产生改变所造成光强度的影响。 本发 明的一个目的是通过接收第一光线的第一光学接收器与接收通过流体 待测物的 检测光线的第二光学接收器, 以实时地监控或动态连续纪录目前的流体待测物的穿透率与 其组成分比例及浓度是否符合正常工作时所需的质量, 或者进一步推算使用寿命, 而预先 做好更换或调整流体待测物的准备作业。 本发 明的一个目的是通过接收第一光线的第一光学接收器实时监控 固态光源发射器 的光源的光强度是否衰减, 与光强度信号衰减的变化量, 而进一步调整或更换固态光源发 射器的光源。 惟 以上所述者, 仅为本发明的较佳实施例而已, 当不能以此限定本发明实施的范围, 即凡依本发明权利要求及新型说明内容所作的简单的等效变化与修饰, 皆仍属本发明专利 涵盖的范围内。 另外, 本发明的任一个实施例或权利要求不须达成本发明所公开的全部目 的或优点或特点。 此外, 摘要部分和标题仅是用来辅助专利文件搜索的用途, 并非用来限 制本发明的权利范围。 此外, 本说明书或权利要求中提及的 “第一”、 “第二”等用语仅 用以命名组件 (Sement)的名称或区别不同实施例或范围, 而并非用来限制组件数量上的上 限或下限。

Claims

权利要求
1. 一种光学分析仪, 其特征在于, 所述光学分析仪包括: 固态光源发射器 (10), 其包括光源, 所述光源包括多个各放射具有至少一发光峰值波 长及至少一波长范围的光的发光组件 (13), 所述多个发光组件 (13)为发光二极管、 垂直共 振腔面射型激光或激光二极管, 且所述多个发光组件 (13)能够分别呈现明灭频率的非连续 发光, 所述多个明灭频率彼此相同或彼此不同, 或者所述多个明灭频率部分相同或部分不 同; 均匀混和或分光 组件 (20), 所述多个发光组件 (13)发出的光线通过所述均匀混和或分 光组件 (20)后形成第一光线 (L1)以及第二光线 (L2), 所述第二光线 (L2)通过流体待测物 (O), 所述第二光线 (L2)中未被所述流体待测物 (O)吸收的一部分形成检测光线 (L3); 第一光学接收器 (30), 接收所述第一光线 (L1); 以及 第二光学接收器 (40), 接收所述检测光线 (L3)o
2. 如权利要求 1所述的光学分析仪, 其特征在于, 其中当所述第一光线 (L1)具有标准 光强度时, 所述第二光线 (L2)的光强度与所述标准光强度之间呈现特定比例, 且所述检测 光线 (L3)与所述标准光强度的比值为所述流体待测物 (O)的标准穿透率;而当所述第一光线 (L1)具有工作光强度时,所述第二光线 (L2)的光强度与所述工作光强度呈现所述特定比例, 所述检测光线 (L3)与所述工作光强度的比值为所述流体待测物 (O)的工作穿透率,且所述标 准光强度与所述工作光强度不相同;其中所述标准穿透率与所述工作穿透率之间的比对结 果被用于判断所述流体待测物 (O)的组成分变化。
3. 如权利要求 1所述的光学分析仪, 其特征在于, 其中当所述第一光线 (L1)具有标准 光强度时, 所述第一光学接收器 (30)接收所述第一光线 (L1)并产生标准光强度信号, 而当 所述第一光线 (L1)具有衰减光强度时,所述第一光学接收器 (30)接收所述第一光线 (L1)并产 生衰减光强度信号, 比较, 所述均匀混和或分光组件 (20)根据所述标准光强度信号与所述 衰减光强度信号间的变化量调整所述第一光线 (L1)的光强度。
4. 如权利要求 1所述的光学分析仪, 其特征在于, 其中所述均匀混和或分光组件 (20) 为光学积分球, 所述光学积分球包括光入口 (21)、第一光出口 (22)以及第二光出口 (23), 所 述第一光学接收器 (30)对准所述第一光出口 (22),所述第二光学接收器 (40)对准所述第二光 出口 (23), 所述发光组件 (13)发出的所述光线由所述光入口 (21)进入所述光学积分球, 所述 第一光线 (L1)从所述第一光出口 (22)出射, 所述第二光线 (L2)从所述第二光出口 (23)出射。
5. 如权利要求 4所述的光学分析仪, 其特征在于, 其中所述第一光出口 (22)与所述光 入口 (21)相对于所述光学积分球的球心相隔 90度的圆心角, 所述第二光出口 (23)与所述光 入口 (21)相对于所述光学积分球的球心相隔 90度的圆心角, 且所述第一光出口 (22)与所述 第二光出口 (23)相对于所述光学积分球的球心相隔 180度的圆心角。
6. 如权利要求 1所述的光学分析仪,其特征在于,其中所述均匀混和或分光组件 (20' ) 为具有通孔 (24)的遮蔽板, 所述第一光学接收器 (30)设置于所述遮蔽板且与所述多个发光 组件 (13)相向设置, 所述多个发光组件 (13)发出的所述多个光线的部分成为所述第一光线 (L1)并由所述第一光学接收器 (30)接收,所述多个发光组件 (13)发出的所述多个光线的另一 部分通过所述通孔 (24)而成为所述第二光线 (L2) o
7. 如权利要求 1 所述的光学分析仪, 其特征在于, 其中相邻的二个所述发光峰值波 长所对应的二个所述发光组件 (13)的所述多个波长范围部分重叠以形成较所述多个发光组 件 (13)中的各者的所述波长范围宽的连续波长范围, 或者相邻的二个所述发光峰值波长所 对应的二个所述发光组件 (13)的所述多个波长范围不重叠。
8. 如权利要求 1所述的光学分析仪, 其特征在于, 其中所述多个发光组件 (13)依序发 光, 前述依序发光指于不同位置的所述多个发光组件 (13)放射相同所述波长范围的光的所 述多个发光组件 (13)不同时发光; 或者, 所述多个发光组件 (13)部分同时发光, 前述部分 同时发光指的是将所述多个发光组件 (13), 使其中一部分同时发光而同时放射不同所述多 个波长范围的光。
9. 如权利要求 1所述的光学分析仪, 其特征在于, 其中所述固态光源发射器 (10)还包 括基板 (11), 测量所述多个发光组件 (13)工作时的定电流偏压值, 并通过所述多个发光组 件 (13)的所述定电流偏压值与所述固态光源发射器 (10)的 PN接面温度的数学关系式或对 应表或图换算得到所述固态光源发射器 (10)的所述 PN接面温度, 而后再通过所述多个发 光组件 (13)的光强度与所述 PN接面温度的数学关系式或对应表或图, 得到所述多个发光 组件 (13)的发光强度比例, 并根据判断结果修正所述第一光学接收器 (30)所测量所述多个 发光组件 (13)发出的光强度数值。
10. 如权利要求 1所述的光学分析仪, 其特征在于, 所述光学分析仪还包括第一处理 器 (50)以及第一显示设备 (60), 所述固态光源发射器 (10)、 所述第一光学接收器 (30)以及所 述第二光学接收器 (40)连接于所述第一处理器 (50),所述第一处理器 (50)控制所述固态光源 发射器 (10)依序发出所述多个光线,所述第一光学接收器 (30)以及所述第二光学接收器 (40) 接收的光强度信号显示于所述第一显示设备 (60) o
11. 如权利要求 10所述的光学分析仪, 其特征在于, 所述光学分析仪还包括第一无 线通信模块 (70), 其连接于所述第一处理器 (50), 所述第一光学接收器 (30)以及所述第二光 学接收器 (40)接收的光强度信号可经由所述第一无线通信模块 (70)传送至外部的电子装 置, 或接收来自外部的电子装置的控制信号。
12. 如权利要求 1所述的光学分析仪, 其特征在于, 其中所述明灭频率是介于 0.05次 /秒至 50000次 /秒之间。
13. 如权利要求 12所述的光学分析仪, 其特征在于, 其中所述明灭频率中开启所述 发光组件 (13)的时间区间为介于 0.00001秒至 10秒之间, 以及所述明灭频率中关闭所述发 光组件 (13)的时间区间为介于 0.00001秒至 10秒之间。
14. 如权利要求 1所述的光学分析仪, 其特征在于, 其中相邻的二个所述发光峰值波 长彼此相差为介于 Inm至 80nm之间。
15. 如权利要求 14所述的光学分析仪, 其特征在于, 其中相邻的二个所述发光峰值 波长彼此相差为介于 5nm至 80nm之间。
16. 如权利要求 15所述的光学分析仪, 其特征在于, 其中各所述发光峰值波长所对 应的波长半高宽为介于 15nm至 50nm之间。
17. 如权利要求 16所述的光学分析仪, 其特征在于, 其中各所述发光峰值波长所对 应的波长半高宽为介于 15nm至 40nm之间。
18. 如权利要求 1所述的光学分析仪, 其特征在于, 其中相邻的二个所述发光峰值波 长彼此相差为大于或等于 0.5nm。
19. 如权利要求 18所述的光学分析仪, 其特征在于, 其中相邻的二个所述发光峰值 波长彼此相差为介于 Inm至 80nm之间。
20. 如权利要求 1所述的光学分析仪, 其特征在于, 其中所述多个发光峰值波长之中 的至少一部分的所述发光峰值波长所对应的波长半高宽为大于 Onm且小于或等于 60nm。
21. 一种光学分析仪, 其特征在于, 所述光学分析仪包括: 固态光源发射器 (10), 其包括光源, 所述光源包括多个各放射具有至少一发光峰值波 长及至少一波长范围的光的发光组件 (13), 所述多个发光组件 (13)为发光二极管、 垂直共 振腔面射型激光或激光二极管, 且所述多个发光组件 (13)能够分别呈现明灭频率的非连续 发光, 所述多个明灭频率彼此相同或彼此不同, 或者所述多个明灭频率部分相同或部分不 同, 以及所述多个发光组件 (13)发出的所述光线形成第一光线 (LI)以及第二光线 (L2) , 所 述第二光线 (L2)通过流体待测物 (O)后形成检测光线 (L3); 第一光学接收器 (30), 接收所述第一光线 (L1); 以及 第二光学接收器 (40), 接收所述检测光线 (L3); 其 中, 当所述第一光线 (L1)具有标准光强度时, 所述第二光线 (L2)的光强度与所述标 准光强度之间呈现特定比例, 且所述检测光线 (L3)与所述标准光强度的比值为所述流体待 测物 (O)的标准穿透率; 而当所述第一光线 (L1)具有工作光强度时, 所述第二光线 (L2)的光 强度与所述工作光强度呈现所述特定比例, 所述检测光线 (L3)与所述工作光强度的比值为 所述流体待测物 (O)的工作穿透率, 且所述标准光强度与所述工作光强度不相同; 其中所 述标准穿透率与所述工作穿透率之间的比对结果被用于判 断所述流体待测物 (O)的组成分 变化。
22. 一种光学分析系统, 其特征在于, 所述光学分析系统包括: 如权利要求 1至 21中任一项所述的光学分析仪 (100); 以及 液体输送件 (200), 所述流体待测物 (O)于所述液体输送件 (200)内输送, 所述均匀混和 或分光组件 (20)与所述第二光学接收器 (40)设置于所述液体输送件 (200)的两侧, 所述第二 光线 (L2)穿过所述液体输送件 (200)并形成所述检测光线 (L3)而由所述第二光学接收器 (40) 接收。
21
PCT/IB2022/061126 2021-11-18 2022-11-18 光学分析系统及其光学分析仪 WO2023089545A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280021875.2A CN117120815A (zh) 2021-11-18 2022-11-18 光学分析系统及其光学分析仪

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW110143041 2021-11-18
TW110143041 2021-11-18
TW111143042 2022-11-10
TW111143042A TWI815724B (zh) 2021-11-18 2022-11-10 光學分析系統及其光學分析儀

Publications (1)

Publication Number Publication Date
WO2023089545A1 true WO2023089545A1 (zh) 2023-05-25

Family

ID=86396394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/061126 WO2023089545A1 (zh) 2021-11-18 2022-11-18 光学分析系统及其光学分析仪

Country Status (2)

Country Link
CN (1) CN117120815A (zh)
WO (1) WO2023089545A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870926A (en) * 1996-03-15 1999-02-16 Japan Tobacco Inc. Infrared moisture measuring apparatus and infrared moisture measuring method
US20100252737A1 (en) * 2007-10-12 2010-10-07 Sp3H Spectrometer for fluid analysis
CN102656441A (zh) * 2010-10-21 2012-09-05 光学传感器公司 具有验证单元的光谱仪
CN104374747A (zh) * 2014-10-30 2015-02-25 北京空间机电研究所 一种双基线大气能见度透射仪
CN111458107A (zh) * 2019-01-18 2020-07-28 宁波群志光电有限公司 自动检测系统及其方法
CN111987079A (zh) * 2020-02-20 2020-11-24 大连兆晶生物科技有限公司 发光装置、发光方法、光谱仪及光谱检测方法
CN112525854A (zh) * 2019-09-18 2021-03-19 大连兆晶生物科技有限公司 一种鉴定成分的方法
CN112834436A (zh) * 2019-11-25 2021-05-25 大连兆晶生物科技有限公司 一种可提高讯杂比的光谱检测方法
TW202201717A (zh) * 2020-06-20 2022-01-01 丁逸聖 發光裝置、發光方法、光檢測裝置、光譜檢測方法及發光修正方法
CN113933268A (zh) * 2020-07-13 2022-01-14 中移物联网有限公司 一种光学检测装置及光学检测方法
CN114910444A (zh) * 2021-02-09 2022-08-16 大连兆晶生物科技有限公司 成分分析仪及成分分析系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870926A (en) * 1996-03-15 1999-02-16 Japan Tobacco Inc. Infrared moisture measuring apparatus and infrared moisture measuring method
US20100252737A1 (en) * 2007-10-12 2010-10-07 Sp3H Spectrometer for fluid analysis
CN102656441A (zh) * 2010-10-21 2012-09-05 光学传感器公司 具有验证单元的光谱仪
CN104374747A (zh) * 2014-10-30 2015-02-25 北京空间机电研究所 一种双基线大气能见度透射仪
CN111458107A (zh) * 2019-01-18 2020-07-28 宁波群志光电有限公司 自动检测系统及其方法
CN112525854A (zh) * 2019-09-18 2021-03-19 大连兆晶生物科技有限公司 一种鉴定成分的方法
TW202113313A (zh) * 2019-09-18 2021-04-01 丁逸聖 發光裝置、發光方法、光譜儀及光譜檢測方法
CN112834436A (zh) * 2019-11-25 2021-05-25 大连兆晶生物科技有限公司 一种可提高讯杂比的光谱检测方法
CN111987079A (zh) * 2020-02-20 2020-11-24 大连兆晶生物科技有限公司 发光装置、发光方法、光谱仪及光谱检测方法
TW202201717A (zh) * 2020-06-20 2022-01-01 丁逸聖 發光裝置、發光方法、光檢測裝置、光譜檢測方法及發光修正方法
CN113933268A (zh) * 2020-07-13 2022-01-14 中移物联网有限公司 一种光学检测装置及光学检测方法
CN114910444A (zh) * 2021-02-09 2022-08-16 大连兆晶生物科技有限公司 成分分析仪及成分分析系统

Also Published As

Publication number Publication date
CN117120815A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6042961B2 (ja) 測色ユニット
WO2009128138A1 (ja) 校正用ガスセルを搭載したガス分析装置
US8446582B2 (en) System and method for analyzing fluids
US20100110415A1 (en) Analyzer and analytic system
US10422740B2 (en) Dual wavelength source gas detector
WO2011117572A1 (en) Analysis of breath
RU2737362C2 (ru) Система и способ лазерного детектирования
EP0121404A2 (en) A photometric light absorption measuring apparatus
US20170102317A1 (en) Device for monitoring a light source of an optical sensor
WO2023089545A1 (zh) 光学分析系统及其光学分析仪
TWI790184B (zh) 光學分析系統及其光學分析儀
TWI790185B (zh) 光學分析系統及其光學分析儀
JP2008157809A (ja) レーザ出力制御装置および光学測定ユニット
TWI815724B (zh) 光學分析系統及其光學分析儀
JP6750410B2 (ja) レーザ式ガス分析装置
WO2005001400A1 (ja) 非破壊分光測定器
US10627405B2 (en) Detection device and biological information measuring device
JP2004219322A (ja) 非破壊分光測定器
JPH11248622A (ja) 尿検査装置
CN108931716B (zh) 太阳能电池的量测设备
JPH1137930A (ja) 吸光光度計
KR100961138B1 (ko) 분광분석기
TWI795000B (zh) 光學分析儀及其光學分析系統
WO2023176091A1 (ja) 濃度測定装置
TWI795988B (zh) 成像裝置及手持式成像裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895084

Country of ref document: EP

Kind code of ref document: A1