WO2021254529A1 - 双环类化合物 - Google Patents

双环类化合物 Download PDF

Info

Publication number
WO2021254529A1
WO2021254529A1 PCT/CN2021/106347 CN2021106347W WO2021254529A1 WO 2021254529 A1 WO2021254529 A1 WO 2021254529A1 CN 2021106347 W CN2021106347 W CN 2021106347W WO 2021254529 A1 WO2021254529 A1 WO 2021254529A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
alkyl
membered
pharmaceutically acceptable
optionally substituted
Prior art date
Application number
PCT/CN2021/106347
Other languages
English (en)
French (fr)
Inventor
李桢
唐锋
赵春艳
陈平
唐任宏
任晋生
Original Assignee
江苏先声药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏先声药业有限公司 filed Critical 江苏先声药业有限公司
Priority to CN202180060895.6A priority Critical patent/CN116406271A/zh
Publication of WO2021254529A1 publication Critical patent/WO2021254529A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention requires a patent application filed with the State Intellectual Property Office of China on July 14, 2020, the patent application number is CN202010676114.3, and the title of the invention is "Bicyclic Compounds and Uses", submitted to the State Intellectual Property Office of China on January 15, 2021, The patent application number is CN202110054406.8, the title of the invention is “bicyclic compounds” and the three cases filed with the State Intellectual Property Office of China on February 9, 2021, the patent application number is CN202110174940.2, and the title of the invention is "bicyclic compounds" Priority of earlier application. The full text of the aforementioned prior application is incorporated into the present invention by reference.
  • the present invention relates to a novel bicyclic compound or pharmaceutically acceptable salt, a pharmaceutical composition containing them, and the use as a MAT2A inhibitor.
  • Methionine adenosyltransferase (methionine adenosyltransferase, MAT), also known as S-adenosyl methionine synthetase, can catalyze the reaction of methionine (Met) with ATP to generate S-adenosyl methyl sulfide
  • SAM S-Adenosyl-L-methionine
  • SAM S-Adenosyl-L-methionine
  • SAM S-Adenosyl-L-methionine
  • SAM S-Adenosyl-L-methionine
  • SAM S-Adenosyl-L-methionine
  • SAM Protein arginine N-methyltransferase 5 (PRMT5) is a methyltransferase with SAM as a substrate, which plays an important regulatory role in tumor cell proliferation and other aspects.
  • MAT1A mainly exists in normal liver cells, while MAT2A is widely distributed in extrahepatic cells. These two subtypes have differences in catalytic efficiency and control methods.
  • MAT2B does not have the ability to catalyze the synthesis of SAM, but as a regulatory subunit of MAT2A, after forming a complex with MAT2A, it regulates the catalytic activity of MAT2A.
  • MTAP methylthioadenosine phosphorylase
  • the large accumulation of MTA will partially inhibit the activity of PRMT5, which in turn will increase the sensitivity of PRMT5 to changes in SAM levels in the body; therefore, in tumors lacking MTAP, inhibiting MAT2A and reducing the level of SAM in the body will further inhibit PRMT5 activity. Produce a synthetic lethal effect.
  • the gene encoding human MTAP is located in the 9p21 region (chr9p21) of chromosome.
  • the frequency of homozygous deletion in all tumors is about 15%, and the frequency of deletion is different in different tumors.
  • Tumor types with a higher frequency of deletion include glioma, mesothelioma, melanoma, gastric cancer, esophageal cancer, bladder cancer, pancreatic cancer, non-small cell lung cancer, astrocytoma, osteosarcoma, head and neck cancer, and mucinous chondrosarcoma , Ovarian cancer, endometrial cancer, breast cancer, soft tissue sarcoma, non-Hodgkin’s lymphoma, etc.
  • MTAP In the human chromosome 9p21 region not only contains the gene encoding MTAP, this region also contains the tumor suppressor genes p16INK4A (also known as CDKN2A) and p15INK4B. In 80%-90% of CDKN2A-deficient tumors, MTAP is also in a missing state.
  • MAT2A Given that the expression level of MAT2A is abnormally elevated in many types of tumors, including gastric cancer, colon cancer, liver cancer, and pancreatic cancer, and selective inhibition of MAT2A can reduce the proliferation activity of MTAP-deficient cancer cells. Therefore, selective inhibition of MAT2A can be used as an effective tumor treatment.
  • WO2018039972 discloses MAT2A inhibitor heterocyclic compounds for the treatment of tumors.
  • the present invention provides a compound represented by general formula (I) or a pharmaceutically acceptable salt thereof:
  • L 1 is selected from N or O
  • R 1 is selected from H or the following groups optionally substituted by R 1a : C 1 -C 10 alkyl, C 3 -C 10 cycloalkyl, 3-10 membered heterocyclic group, C 6 -C 10 aryl, 5-10 membered heteroaryl
  • R 2 is selected from the following groups optionally substituted by R 2a : C 1 -C 10 alkyl, C 3 -C 10 cycloalkyl, 3- 10-membered heterocyclic group, C 6 -C 10 aryl group, 5-10 membered heteroaryl group, or R 1 , R 2 and the N atom to which they are connected together form a 4-7 membered heterocyclic group, the 4-7 membered
  • the heterocyclic group is optionally substituted by R 1a;
  • R 1 is selected from the following groups optionally substituted by R 1a : C 1 -C 10 alkyl, C 3 -C 10 cycloalkyl, 3-10 member Heterocyclic group, C 6 -C 10 aryl group, 5-10 membered heteroaryl group;
  • L 2 is selected from chemical bond, NH or O;
  • R 3 is selected from halogen or the following groups optionally substituted by R 3a : C 1 -C 10 alkyl, C 3 -C 10 cycloalkyl, 3-10 membered heterocyclic group;
  • X 1 and X 3 are selected from N or CH;
  • X 2 is selected from N or CR 4 ;
  • Y is selected from O or S, and when X 2 is N, Y is only selected from S;
  • Ring Q is selected from a C 6 -C 10 aryl group or a 5-10 membered heteroaryl group, the C 6 -C 10 aryl group or a 5-10 membered heteroaryl group is optionally substituted by R 5;
  • L 1 is selected from N
  • R 1 is selected from H or C 1 -C 6 alkyl optionally substituted by R 1a
  • R 2 is selected from the following groups optionally substituted by R 2a : C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, 4-7 membered heterocyclic group.
  • L 1 is selected from N
  • R 1 is selected from H or methyl
  • R 2 is selected from the following groups optionally substituted by R 2a : methyl, cyclopropyl, cyclobutyl, oxo heterocycle Butyl.
  • L 1 is selected from N, R 1 , R 2 and the N atom to which they are connected together form a 4-5 membered heterocyclic group, and the 4-5 membered heterocyclic group is optionally substituted by R 1a.
  • L 1 is selected from N, R 1 , R 2 and the N atoms to which they are connected together form an azetidinyl or pyrrolidinyl group, and the azetidinyl or pyrrolidinyl group is optionally Replaced by R 1a.
  • each of R 1a and R 2a is independently selected from OH or the following groups optionally substituted with OH: C 1 -C 3 alkyl, cyclopropyl.
  • each R 1a is independently selected from OH or CH 2 OH.
  • each R 2a is independently selected from deuterium, OH, or cyclopropyl.
  • each R 2a is independently selected from OH or cyclopropyl.
  • L 1 is selected from N
  • R 1 is selected from H or methyl
  • R 2 is selected from methyl
  • CD 3 Cyclopropyl, Or R 1 , R 2 and their connected N atoms together form
  • L 1 is selected from N
  • R 1 is selected from H or methyl
  • R 2 is selected from methyl
  • L 2 is selected from chemical bonds.
  • L 2 is selected from O.
  • R 3 is selected from halogen or the following groups optionally substituted with R 3a : C 1 -C 3 alkyl, C 3 -C 6 cycloalkyl, 4-7 membered heterocyclyl.
  • R 3 is selected from halogen or C 1 -C 3 alkyl optionally substituted with R 3a.
  • R 3 is selected from F, Cl, Br, I, or the following groups optionally substituted by R 3a : methyl, ethyl.
  • each R 3a is independently selected from F, Cl, Br, I.
  • each R 3a is independently selected from F.
  • R 3 is selected from Cl, CF 3 or ethyl.
  • the structural unit It is selected from Cl, CF 3 or OCH 2 CH 3 .
  • X 3 is selected from CH.
  • X 2 is selected from N and Y is selected from S.
  • X 2 is selected from CR 4 and Y is selected from O.
  • Y when X 2 is selected from N, Y is selected from S, and when X 2 is selected from CR 4 , Y is selected from O.
  • R 4 is selected from H, F, Cl, Br, I, CN, or the following groups optionally substituted by R 4a : C 1 -C 3 alkyl, COOMe, CONHMe, cyclopropyl, 4 -6 membered heterocyclic group, C 1 -C 3 alkoxy group, cyclopropyloxy group, 5-6 membered heteroaryl group, 9-membered heteroaryl group.
  • R 4 is selected from H, F, Br, CN, COOMe, CONHMe, Cyclopropyl, methoxy, cyclopropyloxy,
  • R 4 is selected from H, F, Br, CN, COOMe, CONHMe, Cyclopropyl, methoxy, cyclopropyloxy,
  • ring Q is selected from phenyl or pyridyl, which is optionally substituted with R 5 .
  • ring Q is selected from phenyl, said phenyl is optionally substituted with R 5.
  • R 5 is selected from halogen, CN, or the following groups optionally substituted by R 5a : C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, 4-7 membered heterocyclyl, C 1 -C 6 alkoxy, C 3 -C 6 cycloalkyloxy, 4-7 membered heterocyclyloxy.
  • R 5 is selected from halogen, C 1 -C 6 alkyl, C 1 -C 6 alkoxy or C 3 -C 6 cycloalkyl, the C 1 -C 6 alkyl or C 1 -C 6 alkoxy is optionally substituted by F.
  • R 5 is selected from halogen or methoxy optionally substituted with F.
  • R 5 is selected from F, Cl, methyl, OCHF 2 , CF 3 or cyclopropyl.
  • R 5 is selected from Cl or OCHF 2 .
  • ring Q is selected from
  • ring Q is selected from
  • ring Q is selected from
  • the compound represented by formula (I) or a pharmaceutically acceptable salt thereof is selected from the compound represented by formula (II) or a pharmaceutically acceptable salt thereof:
  • R 1 , R 2 , R 3 , R 4 , X 1 , L 2 and ring Q are as defined above.
  • the compound represented by formula (I) or a pharmaceutically acceptable salt thereof is selected from the compound represented by formula (III) or a pharmaceutically acceptable salt thereof:
  • R 1 is selected from H
  • R 2 is selected from C 1 -C 6 alkyl group, C 3 -C 6 cycloalkyl group, 4-6 membered heterocyclic group or 5-6 membered heteroaryl group, the C 1 -C 6 alkyl group, C 3- C 6 cycloalkyl, 4-6 membered heterocyclic group or 5-6 membered heteroaryl group is optionally substituted by R 2a;
  • R 1 , R 2 and the N atom to which they are connected together form a 4-6 membered heterocyclic group, and the 4-6 membered heterocyclic group is optionally substituted by R 2a;
  • R 2a is selected from halogen, CN, OH or the following groups optionally substituted by R b : C 1 -C 3 alkyl, C 3 -C 6 cycloalkyl or 5-6 membered heteroaryl;
  • R b is selected from C 1 -C 3 alkyl, halogen, CN or OH;
  • R 3 is selected from halogen, C 1 -C 3 alkyl or C 3 -C 6 cycloalkyl, the C 1 -C 3 alkyl or C 3 -C 6 cycloalkyl is optionally substituted by halogen, CN or OH ;
  • R 5 is selected from H, halogen or C 1 -C 3 alkyl
  • X 1 and X 2 are selected from N or CH;
  • Y is selected from O or S
  • the condition is that when X 2 is selected from N, Y is selected from S.
  • R 2 is selected from methyl.
  • R 3 is selected from halogen or halomethyl.
  • R 3 is selected from Cl or CF 3 .
  • R 5 is selected from H, halogen, or methyl.
  • R 5 is selected from H or Cl.
  • the compound or pharmaceutically acceptable salt represented by the general formula (I) is selected from the following compounds or pharmaceutically acceptable salts:
  • the present invention also provides a pharmaceutical composition, which comprises the compound represented by formula (I) of the present invention or a pharmaceutically acceptable salt thereof and pharmaceutically acceptable excipients.
  • the present invention relates to the use of the compound represented by general formula (I) or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof in the preparation of a medicine for preventing or treating MTAP-deficient tumors.
  • the present invention relates to the use of the compound represented by the general formula (I) or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof in the prevention or treatment of MTAP-deficient tumors.
  • the present invention relates to a compound of general formula (I) or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof for preventing or treating MTAP-deficient tumors.
  • the present invention provides a method for treating tumors in which MTAP is absent in a mammal, which comprises administering a therapeutically effective amount of a compound of general formula (I) or a pharmaceutically acceptable salt thereof, or a medicament thereof, to a mammal in need of such treatment, preferably a human combination.
  • pharmaceutically acceptable salts refers to pharmaceutically acceptable salts of non-toxic acids or bases, including salts of inorganic acids and bases, and organic acids and bases.
  • stereoisomer refers to the isomers produced by the different arrangements of atoms in the molecule in space, including cis and trans isomers, enantiomers, diastereomers and conformational isomers.
  • the compounds of the present invention may have asymmetric carbon atoms (optical centers) or double bonds. Racemates, diastereomers, geometric isomers and individual isomers are all included in the scope of the present invention.
  • the schematic diagram of the racemate or enantiomerically pure compound herein is from Maehr, J. Chem. Ed. 1985, 62: 114-120. Unless otherwise specified, wedge-shaped keys and dashed keys are used to indicate the absolute configuration of a solid center. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, unless otherwise specified, they include E and Z geometric isomers. Likewise, all tautomeric forms are included within the scope of the present invention.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, and diastereomers Conformers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to Within the scope of the present invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • tautomer refers to an isomer of a functional group resulting from the rapid movement of an atom in two positions in a molecule.
  • the compounds of the present invention may exhibit tautomerism.
  • Tautomeric compounds can exist in two or more mutually convertible species.
  • Proton shift tautomers result from the migration of covalently bonded hydrogen atoms between two atoms.
  • Tautomers generally exist in an equilibrium form. An attempt to separate a single tautomer usually produces a mixture whose physical and chemical properties are consistent with a mixture of compounds. The position of equilibrium depends on the chemical properties of the molecule.
  • the ketone type is dominant; in phenol, the enol type is dominant.
  • the present invention encompasses all tautomeric forms of the compound.
  • pharmaceutical composition means a mixture of one or more of the compounds described in the text or their physiologically/pharmaceutically acceptable salts or prodrugs and other chemical components, such as physiologically/pharmaceutically acceptable carriers And excipients.
  • the purpose of the pharmaceutical composition is to facilitate the administration of the compound to the organism.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by a substituent, as long as the valence of the specific atom is normal and the substituted compound is stable.
  • it means that two hydrogen atoms are replaced, and the oxo will not occur on the aromatic group.
  • the term “optional” or “optionally” means that the event or situation described later can occur or not occur, and the description includes occurrence of said event or situation and non-occurrence of said event or situation.
  • the ethyl group is "optionally" substituted by halogen, meaning that the ethyl group can be unsubstituted (CH 2 CH 3 ), monosubstituted (such as CH 2 CH 2 F), or polysubstituted (such as CHFCH 2 F, CH 2 CHF 2 etc.) or completely substituted (CF 2 CF 3 ).
  • CH 2 CH 3 unsubstituted
  • monosubstituted such as CH 2 CH 2 F
  • polysubstituted such as CHFCH 2 F, CH 2 CHF 2 etc.
  • CF 2 CF 3 completely substituted
  • any variable e.g., R a, R b
  • its definition on each occurrence is independent. For example, if a group is replaced by 2 R b , then each R b has independent options.
  • linking group When the number of a linking group is 0, such as -(CH 2 ) 0 -, it means that the linking group is a bond.
  • halo or halogen refers to fluorine, chlorine, bromine and iodine.
  • C 1 -C 10 alkyl should be understood to mean a linear or branched saturated monovalent hydrocarbon group having 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms.
  • the alkyl group includes, but is not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, 2-methylbutyl Group, 1-methylbutyl, 1-ethylpropyl, 1,2-dimethylpropyl, neopentyl, 1,1-dimethylpropyl, 4-methylpentyl, 3-methyl 2-methylpentyl, 2-methylpentyl, 1-methylpentyl, 2-ethylbutyl, 1-ethylbutyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl Group, 1,1-dimethylbutyl, 2,3-dimethylbuty
  • C 3 -C 10 cycloalkyl should be understood to mean a saturated monovalent monocyclic or bicyclic hydrocarbon ring having 3, 4, 5, 6, 7, 8, 9, 10 carbon atoms.
  • C 3 -C 6 cycloalkyl should be understood to mean a saturated monovalent monocyclic or bicyclic hydrocarbon ring, which has 3, 4, 5, 6 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl Group, cyclohexyl, etc.
  • alkoxy should be understood as “alkyloxy” or “alkyl-O", preferably, "C 1 -C 10 alkoxy” may include “C 1 -C 6 alkoxy” and " C 1 -C 3 alkoxy”.
  • C 2 -C 10 alkenyl should be understood to preferably mean a linear or branched monovalent hydrocarbon group, which contains one or more double bonds and has 2, 3, 4, 5, 6, 7, 8, 9 Or 10 carbon atoms.
  • the alkenyl groups can be classified into “cis” and “trans” orientations (or “E” and “Z” orientations).
  • C 2 -C 6 alkenyl should be understood as a linear or branched monovalent hydrocarbon group containing one or more double bonds and having 2, 3, 4, 5 or 6 carbon atoms.
  • C 2 -C 10 alkynyl should be understood to preferably mean a linear or branched monovalent hydrocarbon group, which contains one or more triple bonds and has 2, 3, 4, 5, 6, 7, 8, 9 Or 10 carbon atoms.
  • Examples of "C 2 -C 10 alkynyl” include, but are not limited to, ethynyl (-C ⁇ CH), prop-1-ynyl (1-propynyl, -C ⁇ CCH 3 ), prop-2-ynyl (Propargyl), but-1-ynyl, but-2-ynyl or but-3-ynyl.
  • C 2 -C 3 alkynyl examples include ethynyl (-C ⁇ CH), prop-1-ynyl (1-propynyl, -C ⁇ CCH 3 ), prop-2-ynyl (propargyl ).
  • C 3 -C 10 cycloalkyl should be understood to mean a saturated monovalent monocyclic, fused, spiro or bridged ring, which has 3, 4, 5, 6, 7, 8, 9, 10 carbons atom.
  • C 3 -C 6 ring "Alkyl” should be understood to mean a saturated monovalent monocyclic, fused, spiro or bridged ring, which has 3, 4, 5, 6 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, ring Hexyl etc.
  • cycloalkyloxy can be understood as “cycloalkyl-O-”.
  • 3-10 membered heterocyclic group means a saturated or partially saturated monovalent monocyclic, fused ring, spiro ring or bridged ring, which contains 1-5, preferably 1-3 selected from N, O, S, S(O), S(O) 2 heteroatoms or heteroatom groups.
  • 3-10 membered heterocyclic group includes “4-7 membered heterocyclic group” and the like.
  • 4-7 membered heterocyclic group means a saturated or partially saturated monovalent monocyclic, spiro or bridged ring, which contains 1-4, preferably 1-2 selected from N, O, S, S (O), S(O) 2 heteroatoms or heteroatom groups.
  • the heterocyclic group may include but is not limited to: 4-membered ring, such as azetidinyl, oxetanyl; 5-membered ring, such as tetrahydrofuranyl, dioxolyl, pyrrole Alkyl, imidazolidinyl, pyrazolidinyl, pyrrolinyl; or 6-membered ring, such as tetrahydropyranyl, piperidinyl, morpholinyl, dithiaalkyl, thiomorpholinyl, piperazinyl Or trithiaalkyl, or partially saturated 6-membered ring such as tetrahydropyridyl; or 7-membered ring such as diazacycloheptanyl.
  • 4-membered ring such as azetidinyl, oxetanyl
  • 5-membered ring such as tetrahydrofuranyl, dioxolyl, pyrrol
  • the "4-7 membered heterocyclic group” includes “4-6 membered heterocyclic group", “4-5 membered heterocyclic group” and the like; optionally, the "3-10 membered heterocyclic group” also Contains some fused ring groups in which heterocyclic groups are fused with aryl or heteroaryl groups.
  • heterocyclyloxy can be understood as “heterocyclyl-O-”.
  • 5-10 membered heteroaryl should be understood as a monovalent monocyclic or bicyclic aromatic ring system having 5, 6, 7, 8, 9 or 10 ring atoms, especially 5 or 6 or 9. Or 10 ring atoms, and it contains 1-5, preferably 1-3 heteroatoms each independently selected from N, O, and S; and, in addition, may be benzo-fused in each case.
  • "5-10 membered heteroaryl” is selected from thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl , Triazolyl, thiadiazolyl, etc.
  • "5-10 membered heteroaryl group” includes “5-6 membered heteroaryl group", "9-membered heteroaryl group” and the like.
  • heteroaryloxy can be understood as “heteroaryl-O-”.
  • 5-6 membered heteroaryl should be understood as a monovalent aromatic ring system having 5 or 6 ring atoms, and which contains 1-3 heteroatoms independently selected from N, O and S. Especially selected from thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, Pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl and the like.
  • C 6 -C 10 aryl should be understood to preferably mean a monovalent or partially aromatic monocyclic or bicyclic ring having 6 to 10 carbon atoms.
  • a ring having 6 carbon atoms such as phenyl; or a ring having 9 carbon atoms (“C 9 aryl”), such as indanyl or indenyl, or having 10
  • a ring of three carbon atoms such as tetrahydronaphthyl, dihydronaphthyl, or naphthyl.
  • aryloxy can be understood as “aryl-O-”.
  • excipients refers to pharmaceutically acceptable inert ingredients.
  • examples of types of the term “excipient” include, without limitation, binders, disintegrants, lubricants, glidants, stabilizers, fillers, diluents, and the like. Excipients can enhance the handling characteristics of the pharmaceutical preparation, that is, make the preparation more suitable for direct compression by increasing fluidity and/or adhesion.
  • examples of typical "pharmaceutically acceptable carriers” suitable for the above formulations are: sugars, starches, cellulose and its derivatives and other auxiliary materials commonly used in pharmaceutical formulations.
  • treatment means administering the compound or formulation described in this application to prevent, ameliorate or eliminate a disease or one or more symptoms related to the disease, and includes:
  • terapéuticaally effective amount means (i) treatment or prevention of a specific disease, condition or disorder, (ii) reduction, amelioration or elimination of one or more symptoms of a specific disease, condition or disorder, or (iii) prevention or delay
  • the amount of the compound of the present invention that constitutes a “therapeutically effective amount” varies depending on the compound, the disease state and its severity, the mode of administration, and the age of the mammal to be treated, but it can be routinely determined by those skilled in the art. Determined by its own knowledge and the content of this disclosure.
  • pharmaceutically acceptable excipients refers to those excipients that have no obvious stimulating effect on the organism and will not damage the biological activity and performance of the active compound.
  • Suitable auxiliary materials are well known to those skilled in the art, such as carbohydrates, waxes, water-soluble and/or water-swellable polymers, hydrophilic or hydrophobic materials, gelatin, oils, solvents, water and the like.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by their combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the present application also includes compounds of the present application that are the same as those described herein, but have one or more atoms replaced by an isotope-labeled atom having an atomic weight or mass number different from those generally found in nature.
  • isotopes that can be incorporated into the compounds of the present application include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, iodine, and chlorine, such as 2 H, 3 H, 11 C, 13 C, 14 C, 13 N, 15 N, 15 O, 17 O, 18 O, 31 P, 32 P, 35 S, 18 F, 123 I, 125 I and 36 Cl, etc.
  • isotope-labeled compounds of the application can be used in compound and/or substrate tissue distribution analysis. Tritiated (i.e. 3 H) and carbon-14 (i.e. 14 C) isotopes are especially preferred due to their ease of preparation and detectability. Positron emission isotopes such as 15 O, 13 N, 11 C, and 18 F can be used in positron emission tomography (PET) studies to determine substrate occupancy.
  • PET positron emission tomography
  • the isotope-labeled compound of the present application can generally be prepared by the following procedures similar to those disclosed in the schemes and/or examples below, by replacing the non-isotopically-labeled reagent with an isotope-labeled reagent.
  • substitution with heavier isotopes can provide certain therapeutic advantages resulting from higher metabolic stability (for example, increased in vivo half-life or reduced dosage requirements), and therefore in certain situations
  • deuterium substitution can be partial or complete
  • partial deuterium substitution refers to the substitution of at least one hydrogen with at least one deuterium.
  • the pharmaceutical composition of the present application can be prepared by combining the compound of the present application with suitable pharmaceutically acceptable excipients, for example, can be formulated into solid, semi-solid, liquid or gaseous preparations, such as tablets, pills, capsules, and powders. , Granules, ointments, emulsions, suspensions, suppositories, injections, inhalants, gels, microspheres and aerosols.
  • Typical routes for administering the compound of the application or a pharmaceutically acceptable salt or pharmaceutical composition thereof include, but are not limited to, oral, rectal, topical, inhalation, parenteral, sublingual, intravaginal, intranasal, intraocular, intraperitoneal, Intramuscular, subcutaneous, and intravenous administration.
  • the pharmaceutical composition of the present application can be manufactured by methods well known in the art, such as conventional mixing method, dissolution method, granulation method, sugar-coated pill method, grinding method, emulsification method, freeze-drying method, etc.
  • the pharmaceutical composition is in an oral form.
  • the pharmaceutical composition can be formulated by mixing the active compound with pharmaceutically acceptable excipients well known in the art. These auxiliary materials enable the compound of the present application to be formulated into tablets, pills, lozenges, sugar-coated agents, capsules, liquids, gels, slurries, suspensions, etc., for oral administration to patients.
  • the solid oral composition can be prepared by conventional mixing, filling or tableting methods. For example, it can be obtained by the following method: mixing the active compound with solid excipients, optionally grinding the resulting mixture, adding other suitable excipients if necessary, and then processing the mixture into granules to obtain tablets Or the core of the dragee.
  • suitable excipients include, but are not limited to: binders, diluents, disintegrants, lubricants, glidants, sweeteners or flavoring agents.
  • the pharmaceutical composition may also be suitable for parenteral administration, such as a sterile solution, suspension or lyophilized product in a suitable unit dosage form.
  • the daily dose is 0.01 to 100 mg/kg body weight, preferably 0.05 to 50 mg/kg body weight, more preferably 0.1 to 30 mg/kg body weight, in single or divided doses form.
  • the ratio indicated by the mixed solvent is the volume mixing ratio.
  • % means wt%.
  • the structure of the compound is determined by nuclear magnetic resonance (NMR) and/or mass spectrometry (MS).
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • the unit of NMR shift is 10 -6 (ppm).
  • the solvent measured by NMR is deuterated dimethyl sulfoxide, deuterated chloroform, deuterated methanol, etc., and the internal standard is tetramethylsilane (TMS);
  • TMS tetramethylsilane
  • IC 50 refers to the half inhibitory concentration, which refers to the half of the maximum inhibitory effect Concentration
  • DCM refers to dichloromethane
  • the eluent below can be formed by two or more solvents to form a mixed eluent, and the ratio is the volume ratio of each solvent, such as "0-10% methanol/dichloromethane” In the gradient elution process, the volume of methanol:dichloromethane in the mixed eluent is 0:
  • Step 3 Synthesis of 4-amino-1-(2-chlorophenyl)-7-(trifluoromethyl)quinolin-2(1H)-one (Intermediate 1-4)
  • Step 4 Synthesis of 1-(2-chlorophenyl)-4-(methylamino)-7-(trifluoromethyl)quinolin-2(1H)-one (compound 1)
  • the obtained solid was purified by preparative high performance liquid chromatography (alkaline conditions, column: Boston Prime C18 150*30mm*5 ⁇ m; mobile phase: [A: 0.05% ammonia (v/v), B: acetonitrile]; B%: 39% -69%, 9 minutes).
  • the title compound (5.9 mg) was obtained.
  • Step 2 Synthesis of 4-amino-7chloro-1-(2-chlorophenyl)-2-oxo-1,2-dihydroquinoline-3-carboxylic acid methyl ester (Intermediate 2-3)
  • Step 3 Synthesis of 4-amino-7-chloro-1-(2-chlorophenyl)quinoline-2(1H)-one (Intermediate 2-4)
  • Step 4 Synthesis of 7-chloro-1-(2-chlorophenyl)-4-(methylamino)quinolin-2(1H)-one (compound 2)
  • reaction solution was evaporated to dryness under reduced pressure to prepare high performance liquid chromatography (column: YMC-Actus Triart C18 150*30mm*5 ⁇ m; mobile phase: [A: 0.05% ammonia (v/v), B: acetonitrile]; B%: 40%-60%, 11 minutes), to obtain the title compound (0.6 mg).
  • Step 1 Synthesis of 2-((2-chlorophenyl)amino)-6-(trifluoromethyl)-3-cyanopyridine (Intermediate 3-2)
  • the reaction mixture was quenched with 200 mL of water at 0°C, then diluted with 200 mL of ethyl acetate, and extracted three times with 600 mL of ethyl acetate (200 mL*3), and the organic phase was washed three times with saturated brine (400 mL*3), anhydrous sulfuric acid Dry with sodium, filter, and concentrate under reduced pressure.
  • the concentrate is separated by column chromatography ( 120g Fast silica gel column, eluent: 0-2% ethyl acetate/petroleum ether, gradient @100ml/min) to obtain the title compound (5.16g).
  • the reaction solution was quenched with water (150 mL), diluted with ethyl acetate (150 mL), and extracted with ethyl acetate (150 mL*3) three times.
  • the organic phase was dried over sodium sulfate, filtered, and concentrated to dryness under reduced pressure.
  • the concentrate is separated by column chromatography ( 120g Fast silica gel column, eluent: 0-100% ethyl acetate/petroleum ether, gradient @100ml/min; eluent: 0-20% ethyl acetate/methanol, gradient @100ml/min) to obtain the title compound
  • the crude product 11.64g
  • the crude product was directly used in the next reaction.
  • Step 3 Synthesis of 4-amino-1-(2-chlorophenyl)-7-(trifluoromethyl)-1,8-naphthalene-2(1H)-one (Intermediate 3-4)
  • reaction solution was concentrated under reduced pressure to remove methanol, the concentrated solution was diluted with water (150 mL), extracted with ethyl acetate four times (200 mL*4), the organic phase was dried over sodium sulfate, filtered, and concentrated under reduced pressure to dryness. Separated by column chromatography ( 80g Fast silica gel column, eluent: 0-4% dichloromethane/methanol, gradient @100ml/min) to obtain the title compound (4.5g).
  • Step 4 Synthesis of 4-methylamino-1-(2-chlorophenyl)-7-(trifluoromethyl)-1,8-naphthalene-2(1H)-one (compound 3)
  • Step 1 Synthesis of 4-dimethylamino-1-(2-chlorophenyl)-7-(trifluoromethyl)-1,8-naphthalene-2(1H)-one (compound 4)
  • Step 1 Synthesis of 2-chloro-6-(trifluoromethyl)pyridine-3-carbonyl chloride (Intermediate 5-2)
  • the reactant 5-1 (500 mg, 2.22 mmol) was dissolved in dichloromethane (10 mL), dimethylformamide (48.68 mg, 666.00 ⁇ mol) was added, and the mixture was cooled to 0°C. At 0° C., oxalyl chloride (422.68 mg, 3.33 mmol) was added dropwise to the reaction solution, after the dripping was completed, the temperature was raised to 25° C. and the reaction was stirred for 1 h. TLC detects that the reaction is complete. The reaction solution was concentrated to dryness under reduced pressure to obtain the crude title compound (500 mg), which was directly used in the next reaction without purification.
  • the starting material 6-1 (3.1g, 13.39mmol) was dissolved in dichloromethane (55mL), m-chloroperoxybenzoic acid (5.43g, 26.77mmol, content 85%) was added, and the reaction was carried out at room temperature 25°C for 4 hours. TLC showed that the reaction was complete.
  • the reaction solution was quenched with saturated sodium bicarbonate (25 mL) at 25°C. After the layers were separated, the organic phase was washed again with sodium bicarbonate (15 mL*2), dried over anhydrous sodium sulfate, filtered, and the organic phase was concentrated.
  • Step 2 Synthesis of 4-chloro-7-(trifluoromethyl)quinolin-2(1H)-one (Intermediate 6-3)
  • Step 3 Synthesis of 4-chloro-1-phenyl-7-(trifluoromethyl)quinolin-2(1H)-one (Intermediate 6-4)
  • Step 4 Synthesis of 4-(methylamino)-1-phenyl-7-(trifluoromethyl)quinolin-2(1H)-one (compound 6)
  • the starting material 7-1 (1 g, 5.05 mmol) was dissolved in dichloromethane (20 mL), m-chloroperoxybenzoic acid (2.05 g, 10.10 mmol, 85% effective content) was added, and the reaction was carried out at room temperature 25° C. for 4 hours.
  • the reaction solution was quenched with saturated sodium bicarbonate (25 mL) at 25° C., after the layers were separated, the organic phase was washed again with 30 mL of sodium bicarbonate (15 mL*2), dried over sodium sulfate, filtered, and the organic phase was concentrated.
  • Step 4 Synthesis of 7-chloro-4-(methylamino)-1-phenylquinoline-2(1H)-one (compound 7)
  • Step 1 Synthesis of 4-amino-7-chloro-1-(2-chlorophenyl)-2-oxo-1,2-dihydroquinoline-3-carboxylic acid (Intermediate 8-1)
  • Step 2 Synthesis of 4-amino-7-chloro-1-(2-chlorophenyl)-2-oxo-1,2-dihydroquinoline-3-carboxamide (Intermediate 8-2)
  • reaction mixture was diluted with water (50mL), extracted three times with ethyl acetate (50mL*3), the organic phase was dried over sodium sulfate and purified by column chromatography ( 12g Fast silica gel column, eluent 0-67% ethyl acetate/petroleum ether, flow rate 40mL/min), to obtain the title compound (363mg).
  • Step 3 Synthesis of 4-amino-7-chloro-1-(2-chlorophenyl)-2-oxo-1,2-dihydroquinoline-3-carbonitrile (Intermediate 8-3)
  • reaction solution was concentrated under reduced pressure to remove acetonitrile and phosphorus oxychloride, washed three times with 60 mL of water (20 mL*3), the organic phase was dried over sodium sulfate, filtered, and concentrated to dryness under reduced pressure to obtain the crude title compound (391 mg), which was used directly In the next step reaction.
  • Step 4 Synthesis of 7-chloro-1-(2-chlorophenyl)-4-(methylamino)-2-oxo-1,2-dihydroquinoline-3-carbonitrile (compound 8)
  • Step 1 Synthesis of 4-(3-hydroxyazetidin-1-yl)-1-phenyl-7-(trifluoromethyl)quinolin-2(1H)-one (compound 9)
  • reaction solution was concentrated to dryness under reduced pressure, and purified by preparative HPLC (column: YMC-Actus Triart C18 150*30mm*5 ⁇ m; mobile phase: [A: 0.05% ammonia (v/v), B: acetonitrile]; B%: 35 %-57%, 9 minutes) to obtain the title compound (23.6 mg).
  • Step 1 Synthesis of 7-chloro-1-(2-chlorophenyl)-4-(dimethylamino)-2-oxo-1,2-dihydroquinoline-3-carbonitrile (compound 10)
  • Step 1 Synthesis of 4-(3-hydroxypyrrolidin-1-yl)-1-phenyl-7-(trifluoromethyl)quinolin-2(1H)-one (Compound 11)
  • Step 1 Synthesis of 4-((cyclopropylmethyl)amino)-1-phenyl-7-(trifluoromethyl)quinolin-2(1H)-one (compound 13)
  • Step 2 Synthesis of 1-(4-(difluoromethoxy)phenyl)-4-(methylamino)-7-(trifluoromethyl)quinolin-2(1H)-one (Compound 14)
  • the obtained residue was purified by preparative high performance liquid chromatography (alkaline conditions, column: Boston Prime C18 150*30mm*5 ⁇ m; mobile phase: [A: 0.05% ammonia (v/v), B: acetonitrile]; B%: 40 %-70%, 9 minutes), to obtain the title compound (1.2 mg).
  • Step 1 Synthesis of 4-chloro-1-(2-chlorophenyl)-7-(trifluoromethyl)-1,8-naphthalene-2(1H)-one (Intermediate 17-1)
  • reaction solution was concentrated under reduced pressure, the concentrated solution was diluted with methanol (3mL), and separated by high performance liquid chromatography (column: YMC-Actus Triart C18 150*30mm*7 ⁇ m; mobile phase: A: 0.05% ammonia (v/v), B : Acetonitrile; B%: 45%-70%, 9 minutes) to obtain the title compound (21.2 mg).
  • Step 1 Synthesis of 1-(2-chlorophenyl)-4-(dimethylamino)-7-(trifluoromethyl)quinolin-2(1H)-one (Compound 19)
  • the obtained solid was purified by preparative high performance liquid chromatography (alkaline conditions, column: Boston Prime C18 150*30mm*5 ⁇ m; mobile phase: [A: 0.05% ammonia (v/v), B: acetonitrile]; B%: 39% -69%, 9 minutes).
  • the title compound (3.5 mg) was obtained.
  • Step 1 4-Amino-3-bromo-1-(2-chlorophenyl)-7-(trifluoromethyl)-1,8-naphthyridin-2(1H)-one (Intermediate 20-1) Synthesis
  • Step 2 3-Bromo-1-(2-chlorophenyl)-4-(methylamino)-7-(trifluoromethyl)-1,8-naphthyridin-2(1H)-one (intermediate 20-2) and 3-bromo-1-(2-chlorophenyl)-4-(dimethylamino)-7-(trifluoromethyl)-1,8-naphthyridin-2(1H)-one ( Synthesis of Intermediate 20-3)
  • reaction solution was extracted three times with ethyl acetate, the organic layer was concentrated to dryness under reduced pressure, and the residue was purified by high performance liquid chromatography ((column: YMC-Actus Triart C18 150*30mm*5 ⁇ m; mobile phase: [A: 0.05% ammonia ( v/v), B: acetonitrile]; B%: 45%-65%, 11 minutes)) to obtain the title compound (7.3 mg).
  • reaction solution was extracted three times with ethyl acetate, the organic layer was concentrated to dryness under reduced pressure, and the residue was purified by high performance liquid chromatography ((column: YMC-Actus Triart C18 150*30mm*5 ⁇ m; mobile phase: [A: 0.05% ammonia ( v/v), B: acetonitrile]; B%: 45%-65%, 11 minutes)) to obtain the title compound (3.8 mg).
  • Step 1 1-(2-Chlorophenyl)-3-(1-methyl-6-oxo-1,6-dihydropyridin-3-yl)-4-(methylamino)-7-( Synthesis of trifluoromethyl)-1,8-naphthyridin-2(1H)-one (compound 22)
  • reaction solution was extracted three times with ethyl acetate, the organic layer was concentrated to dryness under reduced pressure, and the residue was purified by high performance liquid chromatography ((column: YMC-Actus Triart C18 150*30mm*5 ⁇ m; mobile phase: [A: 0.05% ammonia ( v/v), B: acetonitrile]; B%: 45%-65%, 11 minutes)) to obtain the title compound (3.3 mg).
  • Step 1 1-(2-Chlorophenyl)-4-(dimethylamino)-3-(1-methyl-6-oxo-1,6-dihydropyridin-3-yl)-7-( Synthesis of trifluoromethyl)-1,8-naphthyridin-2(1H)-one (compound 22)
  • reaction solution was extracted three times with ethyl acetate, the organic layer was concentrated to dryness under reduced pressure, and the residue was purified by high performance liquid chromatography ((column: YMC-Actus Triart C18 150*30mm*5 ⁇ m; mobile phase: [A: 0.05% ammonia ( v/v), B: acetonitrile]; B%: 45%-65%, 11 minutes)) to obtain the title compound (1 mg).
  • the reactant 20-1 (30mg, 71.67 ⁇ mol) was dissolved in methanol (1.5mL), and sodium methoxide (23.10mg, 427.59 ⁇ mol), (2-di-tert-butylphosphino-3,6-dimethoxy -2',4',6'-triisopropyl-1,1'-biphenyl)(2-amino-1,1-biphenyl-2-yl)palladium(II) methanesulfonate (tBuBrettPhos Pd G 3 )(6.12mg, 7.17 ⁇ mol), 2-Di-tert-butylphosphine-2',4',6'-triisopropyl-3,6-dimethoxy-1,1'-biphenyl (tBuBrettPhos) (3.47 mg, 7.17 ⁇ mol), sodium tert-butoxide (13.78 mg, 143.34 ⁇ mol) and dioxane
  • the mixture of intermediate 20-2 and 20-3 was purified by high performance liquid chromatography (column: Boston Prime C18 150*30mm*5um; mobile phase: [A: water (0.05% ammonia v/v), B: acetonitrile]; B%: 30%-60%, 9 minutes) to obtain the title compound (6.1 mg).
  • Step 1 Synthesis of 6-chloro-2-((4-(difluoromethoxy)phenyl)amino)-3-cyanopyridine (Intermediate 26-2)
  • Step 2 4-Amino-1-(4-(difluoromethoxy)phenyl)-7-ethoxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3- Synthesis of ethyl formate (Intermediate 26-3)
  • Step 1 3-(azetidin-1-yl)-1-(2-chlorophenyl)-4-(methylamino)-7-(trifluoromethyl)-1,8-naphthyridine- Synthesis of 2(1H)-ketone (Compound 27)
  • reaction solution was reacted for 1.5 hours under a nitrogen atmosphere at 60°C.
  • LC-MS monitors the completion of the raw material reaction.
  • the reaction solution was concentrated to dryness under reduced pressure, and the residue was purified by high performance liquid chromatography ((column: YMC-Actus Triart C18 150*30mm*5um; mobile phase: [A: water (0.05% ammonia v/v), B: acetonitrile ]; B%: 60%-80%, 11 minutes)) to obtain the title compound (4.4 mg).
  • Step 1 Synthesis of 2-((2-methylpyridin-3-yl)amino)-6-(trifluoromethyl)-3-cyanopyridine (Intermediate 28-2)
  • Step 2 4-Amino-1-(2-methylpyridin-3-yl)-2-oxo-7-(trifluoromethyl)-1,2-dihydro-1,8-naphthyridine-3 -Synthesis of methyl formate (intermediate 28-3).
  • Step 3 4-Chloro-1-(2-methylpyridin-3-yl)-2-oxo-7-(trifluoromethyl)-1,2-dihydro-1,8-naphthyridine-3 -Synthesis of methyl formate (intermediate 28-4).
  • Step 4 4-(Methylamino)-1-(2-methylpyridin-3-yl)-2-oxo-7-(trifluoromethyl)-1,2-dihydro-1,8- Synthesis of naphthyridine-3-carboxylic acid methyl ester (compound 28-5).
  • Step 5 4-(Methylamino)-1-(2-methylpyridin-3-yl)-7-(trifluoromethyl)-1,8-naphthyridin-2(1H)-one (Compound 28 )Synthesis.
  • Compound 28 (15mg) was purified by preparative supercritical fluid chromatography (column: DAICEL CHIRALPAK AD (250mm*30mm, 10um); mobile phase: A: carbon dioxide; B: ethanol (0.1% ammonia); B%: 30%-30 %; flow rate: 70 ml/min) to obtain compound 28 Iosmer 1 (3.2 mg, RT: 1.076 min) and compound 28 Iosmer 2 (2.7 mg, RT: 1.423 min).
  • Step 1 4-((Methyl-d 3 )amino)-1-(2-methylpyridin-3-yl)-2-oxo-7-(trifluoromethyl)-1,2-dihydro Synthesis of methyl -1,8-naphthyridine-3-carboxylate (Intermediate 29-1).
  • Step 2 4-((Methyl-d 3 )amino)-1-(2-methylpyridin-3-yl)-7-(trifluoromethyl)-1,8-naphthyridine-2(1H) -Synthesis of Ketone (Compound 29)
  • Step 3 4-((Methyl-d 3 )amino)-1-(2-methylpyridin-3-yl)-7-(trifluoromethyl)-1,8-naphthyridine-2(1H) -Synthesis of ketones (compounds Isomer 1 and Isomer 2)
  • racemate of compound 29 (remaining 27.2 mg) was further purified by supercritical fluid chromatography (column: DAICEL CHIRALPAK AD (250mm*30mm, 10um); mobile phase: A: carbon dioxide; B: ethanol (0.1% ammonia); B %: 30%-30%) to obtain compound 29 Isomer 1 (11.6 mg, RT: 3.231 min) and compound 29 Isomer 2 (12.2 mg, RT: 4.317 min).
  • Step 1 Synthesis of 2-((2-chloro-3-fluorophenyl)amino)-6-(trifluoromethyl)-3-cyanopyridine (Intermediate 30-2)
  • Step 2 4-Amino-1-(2-chloro-3-fluorophenyl)-2-oxo-7-(trifluoromethyl)-1,2-dihydro-1,8-naphthyridine-3 -Synthesis of methyl formate (Intermediate 30-3)
  • Step 3 4-Chloro-1-(2-chloro-3-fluorophenyl)-2-oxo-7-(trifluoromethyl)-1,2-dihydro-1,8-naphthyridine-3 -Synthesis of methyl formate (Intermediate 30-4)
  • Step 4 1-(2-Chloro-3-fluorophenyl)-4-(methylamino)-2-oxo-7-(trifluoromethyl)-1,2-dihydro-1,8- Synthesis of Methyl Naphthyridine-3-carboxylate (Intermediate 30-5)
  • Compound 30 (140mg) was purified by preparative supercritical fluid chromatography (column: DAICEL CHIRALPAK AD (250mm*30mm, 10um); mobile phase: A: carbon dioxide; B: 35% isopropanol (0.1% ammonia); flow rate: 70 ML/min) to obtain compound 30 Isomer 1 (29.5 mg, RT: 3.683 min) and compound 30 Isomer 2 (24.2 mg, RT: 4.924).
  • Step 1 Synthesis of 6-(trifluoromethyl)-2-((2-(trifluoromethyl)pyridin-3-yl)amino)-3-cyanopyridine (Intermediate 31-2).
  • Step 2 4-Amino-2-oxo-7-(trifluoromethyl)-1-(2-(trifluoromethyl)pyridin-3-yl)-1,2-dihydro-1,8- Synthesis of methyl naphthyridine-3-carboxylate (Intermediate 31-3).
  • Step 3 4-Chloro-2-oxo-7-(trifluoromethyl)-1-(2-(trifluoromethyl)pyridin-3-yl)-1,2-dihydro-1,8- Synthesis of naphthyridine-3-carboxylic acid methyl ester (Intermediate 31-4).
  • Step 4 Methyl 4-(methylamino)-2-oxo-7-(trifluoromethyl)-1-(2-(trifluoromethyl)pyridin-3-yl)-1,2-di Synthesis of methyl hydrogen-1,8-naphthyridine-3-carboxylate (Intermediate 31-5).
  • Step 5 4-(Methylamino)-7-(trifluoromethyl)-1-(2-(trifluoromethyl)pyridin-3-yl)-1,8-naphthyridine-2(1H)- Synthesis of ketone (compound 31).
  • the reactant 32-1 (5g, 31.54mmol) and cyclopropylboronic acid (4.06g, 47.31mmol) were dissolved in dioxane (80mL), and PdCl 2 (dppf) (1.15g, 1.58mmol), potassium phosphate (13.39g, 63.07mmol) and water (20mL), the reaction solution was stirred and reacted at 90°C under nitrogen protection for 16 hours.
  • reaction solution was diluted with water (100 mL), extracted with ethyl acetate (200 mL * 3 times), the organic phase was concentrated under reduced pressure and the residue was purified by column chromatography ( 120g Silica Flash Column, gradient 0-2% ethyl acetate/petroleum ether @100mL/min) to obtain the title compound (2.24g).
  • Step 3 Synthesis of 2-((2-cyclopropylpyridin-3-yl)amino)-6-(trifluoromethyl)-3-cyanopyridine (Intermediate 32-4)
  • reaction solution was quenched with 50 mL of water, extracted with ethyl acetate (100 mL * 3 times), the organic phase was concentrated under reduced pressure, and the residue was purified by column chromatography ( 40g Silica Flash Column, gradient 0-12% ethyl acetate/petroleum ether @100mL/min) to obtain the title compound (1.03g).
  • Step 4 4-Amino-1-(2-cyclopropylpyridin-3-yl)-2-oxo-7-(trifluoromethyl)-1,2-dihydro-1,8-naphthyridine- Preparation of methyl 3-formate (Intermediate 32-5)
  • reaction solution was diluted with water (30 mL), extracted with ethyl acetate (50 mL * 3 times), the organic phase was concentrated under reduced pressure, and the residue was purified by column chromatography ( 40g Silica Flash Column, gradient 0 ⁇ 7% methanol/dichloromethane@100mL/min) to obtain the title compound (1.13g).
  • Step 5 4-Chloro-1-(2-cyclopropylpyridin-3-yl)-2-oxo-7-(trifluoromethyl)-1,2-dihydro-1,8-naphthyridine- Preparation of methyl 3-formate (Intermediate 32-6)
  • reaction solution was concentrated under reduced pressure to remove acetonitrile, diluted with water (20 mL), extracted with ethyl acetate (20 mL * 3 times), the organic phase was concentrated under reduced pressure, and the residue was purified by column chromatography ( 40g Silica Flash Column, gradient 0 ⁇ 21 ⁇ 56 ⁇ 94% tetrahydrofuran/petroleum ether@100mL/min) to obtain the title compound (1.12g).
  • Step 6 1-(2-Cyclopropylpyridin-3-yl)-4-(methylamino)-2-oxo-7-(trifluoromethyl)-1,2-dihydro-1,8 -Preparation of methyl naphthyridine-3-carboxylate (Intermediate 32-7)
  • Step 7 1-(2-Cyclopropylpyridin-3-yl)-4-(methylamino)-7-(trifluoromethyl)-1,8-naphthyridin-2(1H)-one (compound 32) Preparation
  • the two crude isomers were further purified by high performance liquid chromatography (column: YMC-Actus Triart C18 150*30mm*5um; mobile phase: [A: water (ammonia), B: acetonitrile]; B%: 35%- 55%, 11 minutes) to obtain the title compound 32 Isomer 1 (9.8 mg, RT: 3.211 min) and compound 32 Isomer 2 (8.3 mg, RT: 3.833 min), respectively.
  • L-methionine and ATP can be converted into SAM, inorganic phosphate and inorganic diphosphate under MAT2A enzyme catalysis.
  • a color developing agent such as ammonium molybdate
  • the content of inorganic phosphate in the sample can be quantitatively detected, and then the enzyme activity of MAT2A can be reflected.
  • MAT2A screening kit was purchased from BPS Bioscience (U.S.); 384-well plate was purchased from Corning (U.S.).
  • MAT2a protein Korean Chemical (Beijing) New Drug Technology Co., Ltd.
  • Detection method dissolve the compound in DMSO, use Echo to dilute the compound to a final concentration of 10 ⁇ M, 3 times dilution, and transfer 80 nL to a 384-well plate.
  • Configure experiment buffer 50mM Tris, 50mM KCl, 15mM MgCl 2 , 100 ⁇ M EDTA, 0.005% BSA.
  • Dilute MAT2a protein with experimental buffer final concentration 4 ⁇ g/mL.
  • PiColorLock TM PiColorLock TM buffer 1 100 mix added to each well shaken for 30 seconds 20 ⁇ L. Add 8 ⁇ L of stabilizing reagent and shake for 30 seconds. The signal value was detected after 30 minutes of incubation at room temperature.
  • the inhibitory effect of the test compound on MAT2A can be expressed by the IC 50 value of the inhibition of the level of phosphoric acid production during the enzymatic reaction.
  • the MAT2A inhibitory activity of the tested compound is shown in Table 1.
  • the cell proliferation counting method based on ATP content is used to measure the effect of the test compound on cell proliferation.
  • HCT116 WT cells and HCT116 MTAP -/- cells were purchased from Kangyuan Bochuang; fetal bovine serum, McCoy's 5a medium and penicillin-streptomycin were purchased from Gibco (U.S.), and 96-well plates were purchased from Corning (U.S.), Cell-Titer Glo reagent was purchased from Promega (U.S.).
  • HCT116 WT cells and HCT116 MTAP -/- cells were both cultured in McCoy's 5a medium containing 10% fetal bovine serum + 1% penicillin-streptomycin at 37°C and 5% CO 2 . Cells in the logarithmic growth phase can be used in experiments.
  • Cell proliferation activity detection Cell-Titer Glo reagent was used to detect the compound's inhibitory activity on the proliferation of HCT116 WT and HCT116 MTAP -/- cell lines. Adjust the cell concentration to 400 cells per well, inoculate a 96-well plate, and incubate overnight at 37°C and 5% CO 2.
  • the compound was dissolved in DMSO, and the compound was diluted with DMSO and medium in turn and transferred to the cell plate to a final concentration of 10 ⁇ M, which was diluted 3 times. Placed at 37°C and 5% CO 2 to continue culturing for 6 days. Add Cell-Titer Glo reagent to detect cell viability.
  • Compounds 28, 29, 30, 31, etc. have good anti-proliferative activity against HCT116 MTAP-/- cells (MTAP-deficient tumor cells). It can be expected that the compounds of the present invention will have therapeutic effects on MTAP-deficient tumors, and have good selectivity and low Side effects.

Abstract

提供了式(I)所示化合物或其药学上可接受的盐、药物组合物及其制备方法,以及作为MAT2A抑制剂的用途。

Description

双环类化合物
本发明要求2020年7月14日向中国国家知识产权局提交的,专利申请号为CN202010676114.3,发明名称为“双环类化合物及用途”、2021年1月15日向中国国家知识产权局提交的,专利申请号为CN202110054406.8,发明名称为“双环类化合物”以及2021年2月9日向中国国家知识产权局提交的,专利申请号为CN202110174940.2,发明名称为“双环类化合物”的三件在先申请的优先权。上述在先申请的全文通过引用的方式结合于本发明中。
技术领域
本发明涉及一种新型的双环类化合物或药学可接受的盐,含有它们的药物组合物以及作为MAT2A抑制剂的用途。
背景技术
甲硫氨酸腺苷转移酶(methionine adenosyltransferase,MAT),又称S-腺苷甲硫氨酸合成酶,是能够催化甲硫氨酸(methionine,Met)与ATP反应生成S-腺苷甲硫氨酸(S-Adenosyl-L-methionine,SAM)的一类酶。SAM能够作为体内甲基转移酶的主要甲基供体,通过转甲基反应调控基因的表达、转录与翻译,进而对细胞的生长、死亡及分化产生重要影响。蛋白精氨酸甲基转移酶5(protein arginine N-methyltransferase 5,PRMT5)即是以SAM为底物的甲基转移酶,其在肿瘤细胞的增殖等方面起到重要的调控作用。
MAT酶主要有三个亚型,MAT1A、MAT2A与MAT2B。MAT1A主要存在于正常肝细胞中,而MAT2A则广泛分布于肝外细胞。这两个亚型在催化效率及调控方式上存在差异。MAT2B不具有催化合成SAM的能力,而是作为MAT2A的调节亚基,与MAT2A形成复合物后,调节MAT2A的催化活性。
研究发现甲硫腺苷磷酸化酶(methylthioadenosine phosphorylase,MTAP)缺失的癌细胞系对MAT2A抑制敏感(Cell Reports 15(3)(2016)574–587)。MTAP在正常的组织细胞中广泛表达。该酶能够催化甲硫腺苷(5’methylthioadenosine,MTA)转化为5-甲基硫代核糖-1-磷酸及腺嘌呤。这一过程也是人体内甲硫氨酸重要的代偿途径。当MTAP缺失后,MTA的代谢途径受到抑制,导致体内MTA大量蓄积。MTA的大量蓄积将会部分抑制PRMT5的活性,进而造成PRMT5对体内SAM水平变化的敏感性增强;因此,在MTAP缺失的肿瘤中,通过抑制MAT2A,降低体内SAM水平,将会进一步抑制PRMT5活性,产生合成致死的作用。
编码人MTAP的基因位于染色体9p21区域(chr9p21),其在所有肿瘤中纯合缺失的频率约为15%左右,且在不同肿瘤中的缺失频率有所不同。缺失频率较高的瘤种包括胶质瘤、间皮瘤、黑色素瘤、胃癌、食管癌、膀胱癌、胰腺癌、非小细胞肺癌、星形细胞瘤、骨肉瘤、头颈癌、粘液性软骨肉瘤、卵巢癌、子宫内膜癌、乳腺癌、软组织肉瘤、非霍奇金淋巴瘤等。
在人染色体9p21区域不仅包含编码MTAP的基因,该区域还包含肿瘤抑制基因p16INK4A(又称CDKN2A)及p15INK4B。在80%-90%的CDKN2A缺失的肿瘤中,MTAP也同样处于缺失的状态。
鉴于MAT2A的表达水平在多类肿瘤中异常升高,包括胃癌,结肠癌,肝癌和胰腺癌等,并且选择性抑制MAT2A能够降低MTAP缺失癌细胞的增殖活性。因此,选择性抑制MAT2A能够作为一种有效的肿瘤治疗手段。
WO2018039972、WO2018045071、WO2019191470及WO2020123395公开了用于治疗肿瘤的MAT2A抑制剂杂环化合物。
发明内容
本发明提供一种通式(I)所示化合物或其药学上可接受的盐:
Figure PCTCN2021106347-appb-000001
其中,
L 1选自N或O;
当L 1选自N时,R 1选自H或任选被R 1a取代的以下基团:C 1-C 10烷基、C 3-C 10环烷基、3-10元杂环基、C 6-C 10芳基、5-10元杂芳基,R 2选自任选被R 2a取代的以下基团:C 1-C 10烷基、C 3-C 10环烷基、3-10元杂环基、C 6-C 10芳基、5-10元杂芳基,或者R 1、R 2及其连接的N原子共同形成4-7元杂环基,所述4-7元杂环基任选被R 1a取代;
当L 1选自O时,R 2不存在,且R 1选自任选被R 1a取代的以下基团:C 1-C 10烷基、C 3-C 10环烷基、3-10元杂环基、C 6-C 10芳基、5-10元杂芳基;
L 2选自化学键、NH或O;
R 3选自卤素或任选被R 3a取代的以下基团:C 1-C 10烷基、C 3-C 10环烷基、3-10元杂环基;
X 1、X 3选自N或者CH;
X 2选自N或者CR 4
Y选自O或S,且当X 2为N时,Y仅选自S;
R 4选自H、卤素、OH、CN、COOH或任选被R 4a取代的以下基团:C 1-C 10烷基、C(=O)-O-(C 1-C 6烷基)、C(=O)-NH(C 1-C 6烷基)、C(=O)-N(C 1-C 6烷基) 2、C 3-C 10环烷基、3-10 元杂环基、C 1-C 10烷氧基、C 3-C 10环烷基氧基、3-10元杂环基氧基、C 6-C 10芳基、5-10元杂芳基、C 6-C 10芳基氧基、5-10元杂芳基氧基、C 2-C 10烯基、C 2-C 10炔基;
环Q选自C 6-C 10芳基或5-10元杂芳基,所述C 6-C 10芳基或5-10元杂芳基任选被R 5取代;
R 5选自卤素、=O、OH、CN或任选被R 5a取代的下列基团:NH 2、C 1-C 10烷基、C 3-C 10环烷基、C 1-C 10烷氧基、C 3-C 10环烷基氧基、3-10元杂环基氧基;
每一个R 1a、R 2a、R 3a、R 4a、R 5a独立地选自氘、F、Cl、Br、I、OH、CN、=O或任选被R b取代的下列基团:NH 2、C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基、C 1-C 6烷氧基、C 3-C 6环烷基氧基、4-7元杂环基氧基、C 2-C 6烯基、C 2-C 6炔基、C 6-C 10芳基、5-10元杂芳基、C 6-C 10芳基氧基、5-10元杂芳基氧基;
每一个R b独立地选自F、Cl、Br、I、OH、CN、=O、NH 2、SH、C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基、C 6-C 10芳基或5-10元杂芳基;
条件是,式(I)所示化合物不包含
Figure PCTCN2021106347-appb-000002
在一些实施方案中,每一个R 1a、R 2a、R 3a、R 4a、R 5a独立地选自F、Cl、Br、I、OH、CN、=O或任选被R b取代的下列基团:NH 2、C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基、C 1-C 6烷氧基、C 3-C 6环烷基氧基、4-7元杂环基氧基、C 2-C 6烯基、C 2-C 6炔基、C 6-C 10芳基、5-10元杂芳基、C 6-C 10芳基氧基、5-10元杂芳基氧基。
在一些实施方案中,R 4选自H、卤素、OH、CN或任选被R 4a取代的以下基团:C 1-C 10烷基、C(=O)-O-(C 1-C 6烷基)、C(=O)-NH(C 1-C 6烷基)、C(=O)-N(C 1-C 6烷基) 2、C 3-C 10环烷基、3-10元杂环基、C 1-C 10烷氧基、C 3-C 10环烷基氧基、3-10元杂环基氧基、C 6-C 10芳基、5-10元杂芳基、C 6-C 10芳基氧基、5-10元杂芳基氧基、C 2-C 10烯基、C 2-C 10炔基。
在一些实施方案中,L 1选自N,R 1选自H或任选被R 1a取代的C 1-C 6烷基,R 2选自任选被R 2a取代的以下基团:C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基。
在一些实施方案中,L 1选自N,R 1选自H或甲基,R 2选自任选被R 2a取代的以下基团:甲基、环丙基、环丁基、氧杂环丁烷基。
在一些实施方案中,L 1选自N,R 1、R 2及其连接的N原子共同形成4-5元杂环基,所述 4-5元杂环基任选被R 1a取代。
在一些实施方案中,L 1选自N,R 1、R 2及其连接的N原子共同形成氮杂环丁烷基或吡咯烷基,所述氮杂环丁烷基或吡咯烷基任选被R 1a取代。
在一些实施方案中,每一个R 1a、R 2a独立地选自氘、F、Cl、Br、I、OH、CN、=O或任选被R b取代的下列基团:NH 2、C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基、C 1-C 6烷氧基。
在一些实施方案中,每一个R 1a、R 2a独立地选自F、Cl、Br、I、OH、CN、=O或任选被R b取代的下列基团:NH 2、C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基、C 1-C 6烷氧基。
在一些实施方案中,每一个R 1a、R 2a独立地选自氘、F、Cl、Br、I、OH、CN、=O或任选被R b取代的下列基团:C 1-C 6烷基、C 3-C 6环烷基。
在一些实施方案中,每一个R 1a、R 2a独立地选自F、Cl、Br、I、OH、CN、=O或任选被R b取代的下列基团:C 1-C 6烷基、C 3-C 6环烷基。
在一些实施方案中,每一个R 1a、R 2a独立地选自OH或任选被OH取代的下列基团:C 1-C 3烷基、环丙基。
在一些实施方案中,每一个R 1a独立地选自OH或CH 2OH。
在一些实施方案中,每一个R 2a独立地选自氘、OH或环丙基。
在一些实施方案中,每一个R 2a独立地选自OH或环丙基。
在一些实施方案中,L 1选自N,R 1选自H或甲基,R 2选自甲基、CD 3
Figure PCTCN2021106347-appb-000003
环丙基、
Figure PCTCN2021106347-appb-000004
或者R 1、R 2及其连接的N原子共同形成
Figure PCTCN2021106347-appb-000005
Figure PCTCN2021106347-appb-000006
在一些实施方案中,L 1选自N,R 1选自H或甲基,R 2选自甲基、
Figure PCTCN2021106347-appb-000007
环丙基、
Figure PCTCN2021106347-appb-000008
或者R 1、R 2及其连接的N原子共同形成
Figure PCTCN2021106347-appb-000009
在一些实施方案中,结构单元
Figure PCTCN2021106347-appb-000010
选自
Figure PCTCN2021106347-appb-000011
Figure PCTCN2021106347-appb-000012
在一些实施方案中,L 2选自化学键。
在一些实施方案中,L 2选自O。
在一些实施方案中,R 3选自卤素或任选被R 3a取代的以下基团:C 1-C 3烷基、C 3-C 6环烷基、4-7元杂环基。
在一些实施方案中,R 3选自卤素或任选被R 3a取代的C 1-C 3烷基。
在一些实施方案中,R 3选自F、Cl、Br、I或任选被R 3a取代的以下基团:甲基、乙基。
在一些实施方案中,每一个R 3a独立地选自F、Cl、Br、I、OH、CN、=O或任选被R b取代的下列基团:NH 2、C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基、C 1-C 6烷氧基。
在一些实施方案中,每一个R 3a独立地选自F、Cl、Br、I。
在一些实施方案中,每一个R 3a独立地选自F。
在一些实施方案中,R 3选自Cl、CF 3或乙基。
在一些实施方案中,结构单元
Figure PCTCN2021106347-appb-000013
选自Cl、CF 3或OCH 2CH 3
在一些实施方案中,X 3选自CH。
在一些实施方案中,X 2选自N,Y选自S。
在一些实施方案中,X 2选自CR 4,Y选自O。
在一些实施方案中,当X 2选自N时,Y选自S,当X 2选自CR 4时,Y选自O。
在一些实施方案中,R 4选自H、卤素、CN、COOH或任选被R 4a取代的以下基团:C 1-C 6烷基、C(=O)-O-(C 1-C 6烷基)、C(=O)-NH(C 1-C 3烷基)、C 3-C 6环烷基、4-7元杂环基、C 1-C 6烷氧基、C 3-C 6环烷基氧基、5-10元杂芳基。
在一些实施方案中,R 4选自H、卤素、CN或任选被R 4a取代的以下基团:C 1-C 6烷基、C(=O)-O-(C 1-C 3烷基)、C(=O)-NH(C 1-C 3烷基)、C 3-C 6环烷基、4-7元杂环基、C 1-C 6烷氧基、C 3-C 6环烷基氧基、5-10元杂芳基。
在一些实施方案中,R 4选自H、F、Cl、Br、I、CN、COOH或任选被R 4a取代的以下基团:C 1-C 3烷基、C(=O)-O-(C 1-C 4烷基)、CONHMe、环丙基、4-6元杂环基、C 1-C 3烷氧基、环丙基氧基、5-6元杂芳基、9元杂芳基。
在一些实施方案中,R 4选自H、F、Cl、Br、I、CN或任选被R 4a取代的以下基团:C 1-C 3烷基、COOMe、CONHMe、环丙基、4-6元杂环基、C 1-C 3烷氧基、环丙基氧基、5-6元杂芳基、9元杂芳基。
在一些实施方案中,每一个R 4a独立地选自F、Cl、Br、I、CN、OH、=O、C 1-C 3烷基或C 1-C 3烷氧基。
在一些实施方案中,每一个R 4a独立地选自OH、=O、C 1-C 3烷基或C 1-C 3烷氧基。
在一些实施方案中,每一个R 4a独立地选自=O、C 1-C 3烷基或C 1-C 3烷氧基。
在一些实施方案中,R 4选自H、F、Br、CN、COOMe、CONHMe、
Figure PCTCN2021106347-appb-000014
环丙基、甲氧基、环丙基氧基、
Figure PCTCN2021106347-appb-000015
Figure PCTCN2021106347-appb-000016
在一些实施方案中,R 4选自H、F、Br、CN、COOMe、CONHMe、
Figure PCTCN2021106347-appb-000017
环丙基、甲氧基、环丙基氧基、
Figure PCTCN2021106347-appb-000018
在一些实施方案中,环Q选自苯基或吡啶基,所述苯基或吡啶基任选被R 5取代。
在一些实施方案中,环Q选自苯基,所述苯基任选被R 5取代。
在一些实施方案中,R 5选自卤素、CN或任选被R 5a取代的下列基团:C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基、C 1-C 6烷氧基、C 3-C 6环烷基氧基、4-7元杂环基氧基。
在一些实施方案中,R 5选自卤素、C 1-C 6烷基、C 1-C 6烷氧基或C 3-C 6环烷基,所述C 1-C 6烷基或C 1-C 6烷氧基任选被F取代。
在一些实施方案中,R 5选自卤素或任选被F取代的甲氧基。
在一些实施方案中,R 5选自F、Cl、甲基、OCHF 2、CF 3或环丙基。
在一些实施方案中,R 5选自Cl或OCHF 2
在一些实施方案中,环Q选自
Figure PCTCN2021106347-appb-000019
Figure PCTCN2021106347-appb-000020
在一些实施方案中,环Q选自
Figure PCTCN2021106347-appb-000021
在一些实施方案中,环Q选自
Figure PCTCN2021106347-appb-000022
在一些实施方案中,式(I)所示化合物或其药学上可接受的盐选自式(II)所示化合物或其药学上可接受的盐:
Figure PCTCN2021106347-appb-000023
其中,R 1、R 2、R 3、R 4、X 1、L 2和环Q如上文定义。
在一些实施方案中,式(I)所示化合物或其药学上可接受的盐选自式(III)所示化合物或其药学上可接受的盐:
Figure PCTCN2021106347-appb-000024
其中,
R 1选自H;
R 2选自C 1-C 6烷基、C 3-C 6环烷基、4-6元杂环基或5-6元杂芳基,所述C 1-C 6烷基、C 3-C 6环烷基、4-6元杂环基或5-6元杂芳基任选被R 2a取代;
或者R 1、R 2以及它们连接的N原子共同形成4-6元杂环基,所述4-6元杂环基任选被R 2a取代;
R 2a选自卤素、CN、OH或任选被R b取代的以下基团:C 1-C 3烷基、C 3-C 6环烷基或5-6 元杂芳基;
R b选自C 1-C 3烷基、卤素、CN或OH;
R 3选自卤素、C 1-C 3烷基或C 3-C 6环烷基,所述C 1-C 3烷基或C 3-C 6环烷基任选被卤素、CN或OH取代;
R 5选自H、卤素或C 1-C 3烷基;
X 1、X 2选自N或者CH;
Y选自O或S;
条件是,当X 2选自N时,Y选自S。
在一些实施方案中,R 2选自甲基。
在一些实施方案中,R 3选自卤素或卤代甲基。
在一些实施方案中,R 3选自Cl或CF 3
在一些实施方案中,R 5选自H、卤素或甲基。
在一些实施方案中,R 5选自H或Cl。
在一些实施方案中,所述通式(I)所示的化合物或药学可接受的盐,选自以下化合物或药学可接受的盐:
Figure PCTCN2021106347-appb-000025
Figure PCTCN2021106347-appb-000026
Figure PCTCN2021106347-appb-000027
本发明还提供药物组合物,其包含本发明的式(I)所示化合物或其药学可接受的盐和药学上可接受的辅料。
进一步,本发明涉及通式(I)所示的化合物或其药学上可接受的盐,或其药物组合物在制备预防或者治疗MTAP缺失的肿瘤的药物中的用途。
进一步,本发明涉及通式(I)所示的化合物或其药学上可接受的盐,或其药物组合物在预防或者治疗MTAP缺失的肿瘤的用途。
进一步,本发明涉及预防或者治疗MTAP缺失的肿瘤的通式(I)化合物或其药学上可接受的盐,或其药物组合物。
进一步,本发明提供治疗哺乳动物MTAP缺失的肿瘤的方法,包括对需要该治疗的哺乳动物,优选人类,给予治疗有效量的通式(I)化合物或其药学上可接受的盐、或其药物组合物。
术语定义和说明
除非另有说明,本申请说明书和权利要求书中记载的基团和术语定义,包括其作为实例的定义、示例性的定义、优选的定义、表格中记载的定义、实施例中具体化合物的定义等,可以彼此之间任意组合和结合。这样的组合和结合后的基团定义及化合物结构,应当属于本申请说明书记载的范围内。一个特定的术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照本领域普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
本文中
Figure PCTCN2021106347-appb-000028
表示连接位点。
术语“药学上可接受的盐”是指药学上可接受的无毒酸或碱的盐,包括无机酸和碱、有机酸和碱的盐。
术语“立体异构体”是指由分子中原子在空间上排列方式不同所产生的异构体,包括顺反异构体、对映异构体、非对应异构体和构象异构体。
本发明的化合物可以具有不对称碳原子(光学中心)或双键。外消旋体、非对映异构体、 几何异构体和单个的异构体都包括在本发明的范围之内。
本文中消旋体或者对映体纯的化合物的图示法来自Maehr,J.Chem.Ed.1985,62:114-120。除非另有说明,用楔形键和虚线键表示一个立体中心的绝对构型。当本文所述化合物含有烯属双键或其它几何不对称中心,除非另有规定,它们包括E、Z几何异构体。同样地,所有的互变异构形式均包括在本发明的范围之内。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
术语“互变异构体”是指因分子中某一原子在两个位置迅速移动而产生的官能团异构体。本发明化合物可表现出互变异构现象。互变异构的化合物可以存在两种或多种可相互转化的种类。质子移变互变异构体来自两个原子之间共价键合的氢原子的迁移。互变异构体一般以平衡形式存在,尝试分离单一互变异构体时通常产生一种混合物,其理化性质与化合物的混合物是一致的。平衡的位置取决于分子内的化学特性。例如,在很多脂族醛和酮如乙醛中,酮型占优势;而在酚中,烯醇型占优势。本发明包含化合物的所有互变异构形式。
术语“药物组合物”表示一种或多种文本所述化合物或其生理学/药学上可接受的盐或前体药物与其它化学组分的混合物,其它组分例如生理学/药学上可接受的载体和赋形剂。药物组合物的目的是促进化合物对生物体的给药。
术语“被取代”是指特定原子上的任意一个或多个氢原子被取代基取代,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧代(即=O)时,意味着两个氢原子被取代,氧代不会发生在芳香基上。
术语“任选”或“任选地”是指随后描述的事件或情况可以发生或不发生,该描述包括发生所述事件或情况和不发生所述事件或情况。例如,乙基“任选”被卤素取代,指乙基可以是未被取代的(CH 2CH 3)、单取代的(如CH 2CH 2F)、多取代的(如CHFCH 2F、CH 2CHF 2等)或完全被取代的(CF 2CF 3)。本领域技术人员可理解,对于包含一个或多个取代基的任何基团,不会引入任何在空间上不可能存在和/或不能合成的取代或取代模式。
当任何变量(例如R a、R b)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。例如,如果一个基团被2个R b所取代,则每个R b都有独立的选项。
当一个连接基团的数量为0时,比如-(CH 2) 0-,表示该连接基团为键。
当其中一个变量选自化学键或不存在时,表示其连接的两个基团直接相连,比如A-L-Z中L代表键时表示该结构实际上是A-Z。
术语“卤”或“卤素”是指氟、氯、溴和碘。
术语“C 1-C 10烷基”应理解为表示具有1、2、3、4、5、6、7、8、9或10个碳原子的直链或支链饱和一价烃基。所述烷基包括但不限于甲基、乙基、丙基、丁基、戊基、己基、异丙基、异丁基、仲丁基、叔丁基、异戊基、2-甲基丁基、1-甲基丁基、1-乙基丙基、1,2-二甲基丙基、新戊基、1,1-二甲基丙基、4-甲基戊基、3-甲基戊基、2-甲基戊基、1-甲基戊基、2-乙基丁基、1-乙基丁基、3,3-二甲基丁基、2,2-二甲基丁基、1,1-二甲基丁基、2,3-二甲基丁基、1,3-二甲基丁基或1,2-二甲基丁基等;“C 1-C 6烷基”应理解为表示具有1、2、3、4、5、6个碳原子的直链或支链饱和一价烃基;“C 1-C 4烷基”应理解为表示具有1、2、3、4个碳原子的直链或支链饱和一价烃基;“C 1-C 3烷基”应理解为甲基、乙基、正丙基或异丙基。
术语“C 3-C 10环烷基”应理解为表示饱和的一价单环或双环烃环,其具有3、4、5、6、7、8、9、10个碳原子。如环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基或环癸基,或者是双环烃基如十氢化萘环。术语“C 3-C 6环烷基”应理解为表示饱和的一价单环或双环烃环,其具有3、4、5、6个碳原子,如环丙基、环丁基、环戊基、环己基等。
术语“烷氧基”应理解为“烷基氧基”或“烷基-O”,优选地,“C 1-C 10烷氧基”可以包含“C 1-C 6烷氧基”和“C 1-C 3烷氧基”。
术语“C 2-C 10烯基”应理解为优选表示直链或支链的一价烃基,其包含一个或多个双键并且具有2、3、4、5、6、7、8、9或10个碳原子。所述烯基可分为“顺式”和“反式”取向(或者″E″和″Z″取向)。“C 2-C 6烯基”应理解为直链或支链的一价烃基,其包含一个或多个双键并且具有2、3、4、5或6个碳原子。“C 2-C 10烯基”的实例包括但不限于乙烯基(-CH=CH 2)、丙-1-烯基(-CH=CHCH 3)、丙-2-烯基(-CH 2CH=CH 2)、2-甲基丙-1-烯基、丁-1-烯基、丁-2-烯基、丁-3-烯基、丁-1,3-二烯基、2-甲基-1,3-丁二烯基、己-1-烯基、己-2-烯基、己-3-烯基或己-4-烯基。
术语“C 2-C 10炔基”应理解为优选表示直链或支链的一价烃基,其包含一个或多个三键并且具有2、3、4、5、6、7、8、9或10个碳原子。“C 2-C 10炔基”的实例包括但不限于乙炔基(-C≡CH)、丙-1-炔基(1-丙炔基、-C≡CCH 3)、丙-2-炔基(炔丙基)、丁-1-炔基、丁-2-炔基或丁-3-炔基。“C 2-C 3炔基”实例包括乙炔基(-C≡CH)、丙-1-炔基(1-丙炔基、-C≡CCH 3)、丙-2-炔基(炔丙基)。
术语“C 3-C 10环烷基”应理解为表示饱和的一价单环、并环、螺环或桥环,其具有3、4、5、6、7、8、9、10个碳原子。如环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基或环癸基,或者是双环烃基如十氢化萘环;术语“C 3-C 6环烷基”应理解为表示饱和的一价单环、并环、螺环或桥环,其具有3、4、5、6个碳原子,如环丙基、环丁基、环戊基、环己基 等。
术语“环烷基氧基”可理解为“环烷基-O-”。
术语“3-10元杂环基”意指饱和的或部分饱和的一价单环、并环、螺环或桥环,其包含1-5个,优选1-3个选自N、O、S、S(O)、S(O) 2的杂原子或杂原子团。特别地,“3-10元杂环基”包括“4-7元杂环基”等。术语“4-7元杂环基”意指饱和的或部分饱和的一价单环、螺环或桥环,其包含1-4个,优选1-2个选自N、O、S、S(O)、S(O) 2的杂原子或杂原子团。特别地,所述杂环基可以包括但不限于:4元环,如氮杂环丁烷基、氧杂环丁烷基;5元环,如四氢呋喃基、二氧杂环戊烯基、吡咯烷基、咪唑烷基、吡唑烷基、吡咯啉基;或6元环,如四氢吡喃基、哌啶基、吗啉基、二噻烷基、硫代吗啉基、哌嗪基或三噻烷基,或部分饱和的6元环如四氢吡啶基;或7元环,如二氮杂环庚烷基。优选地,“4-7元杂环基”包括“4-6元杂环基”、“4-5元杂环基”等;任选地,所述“3-10元杂环基”还包含一些杂环基与芳基或杂芳基稠合的稠合环基。
术语“杂环基氧基”可理解为“杂环基-O-”。
术语“5-10元杂芳基”应理解为这样的一价单环或双环芳族环系:其具有5、6、7、8、9或10个环原子,特别是5或6或9或10个环原子,且其包含1-5个,优选1-3各独立选自N、O和S的杂原子;并且,另外在每一种情况下可为苯并稠合的。特别地,“5-10元杂芳基”选自噻吩基、呋喃基、吡咯基、噁唑基、噻唑基、咪唑基、吡唑基、异噁唑基、异噻唑基、噁二唑基、三唑基、噻二唑基等以及它们的苯并衍生物,例如苯并呋喃基、苯并噻吩基、苯并噻唑基、苯并噁唑基、苯并异噁唑基、苯并咪唑基、苯并三唑基、吲唑基、吲哚基、异吲哚基等;或吡啶基、哒嗪基、嘧啶基、吡嗪基、三嗪基等,以及它们的苯并衍生物,例如喹啉基、喹唑啉基、异喹啉基等。优选地,“5-10元杂芳基”包括“5-6元杂芳基”、“9元杂芳基”等。
术语“杂芳基氧基”可理解为“杂芳基-O-”。
术语“5-6元杂芳基”应理解为具有5或6个环原子的一价芳族环系,且其包含1-3个独立选自N、O和S的杂原子。特别地选自噻吩基、呋喃基、吡咯基、噁唑基、噻唑基、咪唑基、吡唑基、异噁唑基、异噻唑基、噁二唑基、三唑基、噻二唑基、吡啶基、哒嗪基、嘧啶基、吡嗪基、三嗪基等。
术语“C 6-C 10芳基”应理解为优选表示具有6~10个碳原子的一价芳香性或部分芳香性的单环或双环。特别是具有6个碳原子的环(“C 6芳基”),例如苯基;或者具有9个碳原子的环(“C 9芳基”),例如茚满基或茚基,或者具有10个碳原子的环(“C 10芳基”),例如四氢化萘基、二氢萘基或萘基。
术语“芳基氧基”可理解为“芳基-O-”。
术语“辅料”是指可药用惰性成分。术语“赋形剂”的种类实例非限制性地包括粘合剂、崩解剂、润滑剂、助流剂、稳定剂、填充剂和稀释剂等。赋形剂能增强药物制剂的操作特性,即通过增加流动性和/或粘着性使制剂更适于直接压缩。适用于上述制剂的典型的“药学上可接受的载体”的实例为:糖类,淀粉类,纤维素及其衍生物等在药物制剂中常用到的辅料。
术语“治疗”意为将本申请所述化合物或制剂进行给药以预防、改善或消除疾病或与所述疾病相关的一个或多个症状,且包括:
(i)预防疾病或疾病状态在哺乳动物中出现,特别是当这类哺乳动物易患有该疾病状态,但尚未被诊断为已患有该疾病状态时;
(ii)抑制疾病或疾病状态,即遏制其发展;
(iii)缓解疾病或疾病状态,即使该疾病或疾病状态消退。
术语“治疗有效量”意指(i)治疗或预防特定疾病、病况或障碍,(ii)减轻、改善或消除特定疾病、病况或障碍的一种或多种症状,或(iii)预防或延迟本文中所述的特定疾病、病况或障碍的一种或多种症状发作的本发明化合物的用量。构成“治疗有效量”的本发明化合物的量取决于该化合物、疾病状态及其严重性、给药方式以及待被治疗的哺乳动物的年龄而改变,但可例行性地由本领域技术人员根据其自身的知识及本公开内容而确定。
术语“药学上可接受的辅料”是指对有机体无明显刺激作用,而且不会损害该活性化合物的生物活性及性能的那些辅料。合适的辅料是本领域技术人员熟知的,例如碳水化合物、蜡、水溶性和/或水可膨胀的聚合物、亲水性或疏水性材料、明胶、油、溶剂、水等。
词语“包括(comprise)”、“含有(comprise)”或“包含(comprise)”及其英文变体例如comprises或comprising应理解为开放的、非排他性的意义,即“包括但不限于”。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本申请还包括与本文中记载的那些相同的,但一个或多个原子被原子量或质量数不同于自然中通常发现的原子量或质量数的原子置换的同位素标记的本申请化合物。可结合到本申请化合物的同位素的实例包括氢、碳、氮、氧、磷、硫、氟、碘和氯的同位素,诸如分别为 2H、 3H、 11C、 13C、 14C、 13N、 15N、 15O、 17O、 18O、 31P、 32P、 35S、 18F、 123I、 125I和 36Cl等。
某些同位素标记的本申请化合物(例如用 3H及 14C标记的那些)可用于化合物和/或底物组织分布分析中。氚化(即 3H)和碳-14(即 14C)同位素对于由于它们易于制备和可检测性是尤其优选的。正电子发射同位素,诸如 15O、 13N、 11C和 18F可用于正电子发射断层扫描(PET)研究以测定底物占有率。通常可以通过与公开于下文的方案和/或实施例中的那些类似的下列 程序,通过同位素标记试剂取代未经同位素标记的试剂来制备同位素标记的本申请化合物。
此外,用较重同位素(诸如氘(即 2H))取代可以提供某些由更高的代谢稳定性产生的治疗优点(例如增加的体内半衰期或降低的剂量需求),并且因此在某些情形下可能是优选的,其中氘取代可以是部分或完全的,部分氘取代是指至少一个氢被至少一个氘取代。
本申请的药物组合物可通过将本申请的化合物与适宜的药学上可接受的辅料组合而制备,例如可配制成固态、半固态、液态或气态制剂,如片剂、丸剂、胶囊剂、粉剂、颗粒剂、膏剂、乳剂、悬浮剂、栓剂、注射剂、吸入剂、凝胶剂、微球及气溶胶等。
给予本申请化合物或其药学上可接受的盐或其药物组合物的典型途径包括但不限于口服、直肠、局部、吸入、肠胃外、舌下、阴道内、鼻内、眼内、腹膜内、肌内、皮下、静脉内给药。
本申请的药物组合物可以采用本领域众所周知的方法制造,如常规的混合法、溶解法、制粒法、制糖衣药丸法、磨细法、乳化法、冷冻干燥法等。
在一些实施方案中,药物组合物是口服形式。对于口服给药,可以通过将活性化合物与本领域熟知的药学上可接受的辅料混合,来配制该药物组合物。这些辅料能使本申请的化合物被配制成片剂、丸剂、锭剂、糖衣剂、胶囊剂、液体、凝胶剂、浆剂、悬浮剂等,用于对患者的口服给药。
可以通过常规的混合、填充或压片方法来制备固体口服组合物。例如,可通过下述方法获得:将所述的活性化合物与固体辅料混合,任选地碾磨所得的混合物,如果需要则加入其它合适的辅料,然后将该混合物加工成颗粒,得到了片剂或糖衣剂的核心。适合的辅料包括但不限于:粘合剂、稀释剂、崩解剂、润滑剂、助流剂、甜味剂或矫味剂等。
药物组合物还可适用于肠胃外给药,如合适的单位剂型的无菌溶液剂、混悬剂或冻干产品。
本文所述的通式Ⅰ化合物的所有施用方法中,每天给药的剂量为0.01到100mg/kg体重,优选为0.05到50mg/kg体重,更优选0.1到30mg/kg体重,以单独或分开剂量的形式。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
具体实施方式
以下实施例详细说明发明的技术方案,但本发明的保护范围包括但不限于此。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱 离本发明精神和范围的情况下针对本发明具体实施方式进行的各种改变和改进将是显而易见的。本发明所使用的所有试剂是市售的,无需进一步纯化即可使用。
除非另作说明,混合溶剂表示的比例是体积混合比例。
除非另作说明,否则,%是指wt%。
化合物经手工或
Figure PCTCN2021106347-appb-000029
软件命名,市售化合物采用供应商目录名称。
化合物的结构是通过核磁共振(NMR)和/或质谱(MS)来确定的。NMR位移的单位为10 -6(ppm)。NMR测定的溶剂为氘代二甲基亚砜、氘代氯仿、氘代甲醇等,内标为四甲基硅烷(TMS);“IC 50”指半数抑制浓度,指达到最大抑制效果一半时的浓度;“DCM”指二氯甲烷;下文的洗脱剂可由两种或多种溶剂形成混合洗脱剂,其比值为各溶剂的体积比,如”0~10%甲醇/二氯甲烷”表示梯度洗脱过程中,混合洗脱剂中的甲醇:二氯甲烷的体积用量为0:100~10:100。
实施例1、1-(2-氯苯基)-4-(甲基氨基)-7-(三氟甲基)喹啉-2(1H)-酮(化合物1)
Figure PCTCN2021106347-appb-000030
步骤1:2-((2-氯苯基)氨基)-4-(三氟甲基)苯甲腈(中间体1-2)的合成
将2-氯苯胺(674.59mg,5.29mmol)溶于DMF(10mL),在0℃加钠氢(528.74mg,13.22mmol),搅拌15分钟,将反应物1-1(1g,5.29mmol)的DMF(3mL)溶液加入,在0℃搅拌30分钟,然后在25℃搅拌16小时。LCMS表明产物形成,反应液用氯化铵溶液(15mL)淬灭,用乙酸乙酯(15mL*2)萃取,饱和食盐水(20mL)洗涤,浓缩。所得经快速柱色谱纯化(
Figure PCTCN2021106347-appb-000031
20g
Figure PCTCN2021106347-appb-000032
快速硅胶柱,4-10%乙酸乙酯/石油醚梯度洗脱,流速60mL/min)。得标题化合物(1.04g)。
MS m/z(ESI):297.0[M+H] +
步骤2:4-氨基-1-(2-氯苯基)-2-羰基-7-(三氟甲基)-1,2-二氢喹啉-3-羧酸甲酯(中间体1-3)的合成
在氮气下,向中间体1-2(700mg,2.36mmol)和四氯化锡(2.46g,9.44mmol)的甲苯溶液 (4mL)中加入丙二酸二甲酯(1.25g,9.44mmol)。加热至120℃,搅拌反应20小时。LCMS表明产物生成。将反应液倒入水中(10mL),用饱和碳酸氢钠溶液调pH到7,乙酸乙酯(20mL*2)萃取,浓缩。所得残余物经快速柱色谱纯化(
Figure PCTCN2021106347-appb-000033
12g
Figure PCTCN2021106347-appb-000034
快速硅胶柱,0~50%乙酸乙酯/二氯甲烷梯度洗脱,流速80mL/min)。得标题化合物(300mg)。
MS m/z(ESI):396.9[M+H] +
步骤3:4-氨基-1-(2-氯苯基)-7-(三氟甲基)喹啉-2(1H)-酮(中间体1-4)的合成
将中间体1-3(200mg,504.10μmol)溶于甲醇(6mL)和水(2mL),加入氢氧化钠(403.28mg,10.08mmol)后在50℃搅拌反应36小时,LCMS表明原料反应完,产物生成。用乙酸乙酯(10mL*2)萃取,食盐水洗涤后干燥浓缩。得标题化合物粗品(150mg),直接用于下一步反应。
MS m/z(ESI):339.1[M+H] +
步骤4:1-(2-氯苯基)-4-(甲基氨基)-7-(三氟甲基)喹啉-2(1H)-酮(化合物1)的合成
将中间体1-4(40mg,100.38μmol,85%纯度)溶于DMF(1.5mL)在0℃加入NaH(12.04mg,301.14μmol,60%有效含量),并在0℃搅拌反应10分钟,加入碘甲烷(14.25mg,100.38μmol),在0℃搅拌反应1小时,LCMS表明产物生成。将反应液倒入氯化铵溶液,用乙酸乙酯(10mL*3)萃取,食盐水洗涤后,干燥浓缩。得固体经过制备高效液相色谱纯化(碱性条件,柱子:Boston Prime C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:39%-69%,9分钟)。得标题化合物(5.9mg)。
m/z:ES +[M+H] +=MS m/z(ESI):353.0[M+H] +
1H NMR(400MHz,CD 3OD)δ=8.17(d,J=8.6Hz,1H),7.80-7.70(m,1H),7.65-7.58(m,2H),7.55(d,J=9.2Hz,1H),7.46-7.37(m,1H),6.69(s,1H),5.72(s,1H),3.06-2.99(m,3H)。
实施例2、7-氯-1-(2-氯苯基)-4-(甲基氨基)喹啉-2(1H)-酮(化合物2)
Figure PCTCN2021106347-appb-000035
步骤1:4-氯-2-((2-氯苯基)氨基)苯甲腈(中间体2-2)的合成
将2-氯苯胺(82.01mg,642.85μmol)溶于DMF(2mL)中,在0℃加入钠氢(51.42mg,1.29mmol,60%有效含量),搅拌15分钟后,缓慢滴加反应物2-1的DMF(0.5mL)溶液。在0℃搅拌反应30分钟后,室温搅拌反应16小时。LCMS检测反应完毕,滴加饱和氯化铵溶液(3mL)后用乙酸乙酯(5mL*2)萃取。有机相用无水硫酸钠干燥之后,减压蒸干后制备柱层析(
Figure PCTCN2021106347-appb-000036
4g
Figure PCTCN2021106347-appb-000037
快速硅胶柱,洗脱剂梯度:0~5%乙酸乙酯/石油醚,流速18mL/min)得标题化合物(150mg)。
MS m/z(ESI):=263.1[M+H] +.
步骤2:4-氨基-7氯-1-(2-氯苯基)-2-氧代-1,2-二氢喹啉-3-羧酸甲酯(中间体2-3)的合成
将中间体2-2(50mg,190.03μmol)溶于1,2-二氯乙烷(DCE)(5mL)中,加入四氯化锡(99.01mg,380.05μmol),丙二酸二甲酯(75.32mg,570.08μmol)。将反应液升温至70℃搅拌反应12小时。LC-MS检测反应完毕。将反应液加水用乙酸乙酯15mL(5mL*3)萃取。有机相用无水硫酸钠干燥之后,减压浓缩,粗品经制备薄层色谱(二氧化硅,石油醚:乙酸乙酯=1:1)纯化得标题化合物(53mg)。
MS m/z(ESI):=363.0[M+H] +.
步骤3:4-氨基-7-氯-1-(2-氯苯基)喹啉-2(1H)-酮(中间体2-4)的合成
将中间体2-3(90mg,247.80μmol)溶于水/甲醇(1mL)中,加入氢氧化钠的水溶液(10M,991.20μL),反应液于50℃搅拌反应96小时。LC-MS检测反应完毕。将反应液减压蒸干后用乙酸乙酯15mL(5mL*3)萃取。有机相用无水硫酸钠干燥之后,减压蒸干后得标题化合物(27mg)。
MS m/z(ESI):=304.9[M+H] +.
步骤4:7-氯-1-(2-氯苯基)-4-(甲基氨基)喹啉-2(1H)-酮(化合物2)的合成
将中间体2-4(27mg,1.38mmol)溶于四氢呋喃(3mL)中,在0℃加入钠氢(10.62mg,265.44μmol)后搅拌反应2小时,将碘甲烷(6.28mg,44.24μmol)加入,将反应液升温至40℃,搅拌反应12小时。LC-MS检测反应完毕。将反应液减压蒸干后制备高效液相色谱(柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:40%-60%,11分钟),得标题化合物(0.6mg)。
1H NMR(400MHz,CD 3OD)δ=7.96(d,J=8.8Hz,1H),7.73(d,J=5.0Hz,1H),7.63-7.58(m,2H),7.45-7.40(m,2H),7.27(d,J=1.8Hz,1H),5.63(s,1H),3.01(s,3H)。
MS m/z(ESI):=319.0[M+H] +.
实施例3、4-甲基氨基-1-(2-氯苯基)-7-(三氟甲基)-1,8-二氮杂萘-2(1H)-酮(化合物3)
Figure PCTCN2021106347-appb-000038
步骤1:2-((2-氯苯基)氨基)-6-(三氟甲基)-3-氰基吡啶(中间体3-2)的合成
将邻氯苯胺(7.20g,56.46mmol)溶于DMF(100mL)中,氮气保护0℃下加氢化钠(9.68g,242.07mmol),0℃保持1小时,0℃下向反体系中滴加反应物3-1(10g,48.41mmol)溶于DMF(20mL)的溶液并在25℃下搅拌反应16小时。LCMS检测反应完毕。反应混合物在0℃下用200mL水淬灭,接着用200mL乙酸乙酯稀释,乙酸乙酯萃取三遍600mL(200mL*3),有机相用饱和食盐水洗三遍(400mL*3),无水硫酸钠干燥,过滤、减压浓缩。浓缩液经柱层析分离(
Figure PCTCN2021106347-appb-000039
120g
Figure PCTCN2021106347-appb-000040
快速硅胶柱,洗脱剂:0~2%乙酸乙酯/石油醚,梯度@100毫升/分钟)得到标题化合物(5.16g)。
MS m/z(ESI):297.9[M+H] +
步骤2:4-氨基-1-(2-氯苯基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-二氮杂萘-3-羧酸甲酯(中间体3-3)的合成
将中间体3-2(5.16g,17.34mmol)和四氯化锡(18.06g,69.34mmol)溶于1,2-二氯乙烷(100mL)中,25℃氮气保护下加丙二酸二甲酯(6.87g,52.01mmol),将反应液升温到70℃并在70℃下搅拌反应16小时。接着25℃氮气保护下补加四氯化锡(2.23g,8.56mmol)和丙二酸二甲酯(1.15g,8.70mmol),反应液升温到70℃并在70℃下搅拌反应4小时。LC-MS显示完毕。反应液用水(150mL)淬灭,乙酸乙酯(150mL)稀释,乙酸乙酯(150mL*3)萃取三遍。有机相用硫酸钠干燥,过滤,减压浓缩至干。浓缩液经柱层析分离(
Figure PCTCN2021106347-appb-000041
120g
Figure PCTCN2021106347-appb-000042
快速硅胶柱,洗脱剂:0~100%乙酸乙酯/石油醚,梯度@100毫升/分钟;洗脱剂:0~20%乙酸乙酯/甲醇,梯度@100毫升/分钟)得到标题化合物粗品(11.64g),粗品直接用于下步反应。
MS m/z(ESI):389.0[M+H] +
步骤3:4-氨基-1-(2-氯苯基)-7-(三氟甲基)-1,8-二氮杂萘-2(1H)-酮(中间体3-4)的合成
将中间体3-3(11.64g,29.27mmol)溶于甲醇(115mL)中,0℃下滴加氢氧化钠水溶液(10M,87.80mL)。反应体系温度升到25℃并在25℃下搅拌反应16小时。接着,反应体系温度 升到50℃并在50℃下搅拌反应70小时。LC-MS显示反应完成。反应液减压浓缩除去甲醇,浓缩液用水(150mL)稀释,乙酸乙酯萃取四次(200mL*4),有机相用硫酸钠干燥,过滤,减压浓缩至干。经柱色谱分离(
Figure PCTCN2021106347-appb-000043
80g
Figure PCTCN2021106347-appb-000044
快速硅胶柱,洗脱剂:0~4%二氯甲烷/甲醇,梯度@100毫升/分钟)得到标题化合物(4.5g)。
MS m/z(ESI):340.1[M+H] +
步骤4:4-甲基氨基-1-(2-氯苯基)-7-(三氟甲基)-1,8-二氮杂萘-2(1H)-酮(化合物3)的合成
将中间体3-4(14mg,41.21μmol)溶于THF(0.5mL)中,0℃氮气保护下加钠氢(4.94mg,123.63μmol,60%有效含量)并在0℃下搅拌反应10分钟。0℃下加碘甲烷(5.85mg,41.21μmol)并在0℃下搅拌反应1小时。LC-MS显示产物生成。反应液用水(0.5mL)在0℃淬灭,减压除去四氢呋喃。经制高效液相色谱分离(碱性条件)(柱子:YMC-Actus Triart C18 150*30mm*5μm;A:0.05%氨水(v/v),B:乙腈;B%:46%-66%,11分钟)得标题化合物(0.7mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.60(d,J=8.3Hz,1H),7.68(d,J=8.3Hz,1H),7.64-7.60(m,1H),7.51(td,J=2.4,4.6Hz,2H),7.37-7.32(m,1H),5.74(s,1H),3.04(s,3H)
MS m/z(ESI):353.9[M+H] +
实施例4、4-二甲氨基-1-(2-氯苯基)-7-(三氟甲基)-1,8-二氮杂萘-2(1H)-酮(化合物4)
Figure PCTCN2021106347-appb-000045
步骤1:4-二甲氨基-1-(2-氯苯基)-7-(三氟甲基)-1,8-二氮杂萘-2(1H)-酮(化合物4)的合成
将中间体3-4(14mg,41.21μmol)溶于THF(0.5mL)中,0℃氮气保护下加钠氢(4.94mg,123.63μmol,60%有效含量)并在0℃下搅拌反应10分钟。0℃下加碘甲烷(5.85mg,41.21μmol)并在0℃下搅拌反应1小时。LC-MS显示产物生成。反应液用水(0.5mL)在0℃淬灭,减压除去四氢呋喃。经制高效液相色谱分离(碱性条件)(柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:A:0.05%氨水(v/v),B:乙腈;B%:46%-66%,11分钟)得标题化合物(1.6mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.62(d,J=8.3Hz,1H),7.69(d,J=8.3Hz,1H),7.66-7.62(m,1H),7.55-7.49(m,2H),7.38-7.33(m,1H),6.14(s,1H),3.13(s,6H)。
MS m/z(ESI):368.0[M+H] +
实施例5、1-(2-氯苯基)-4-(甲基氨基)-7-(三氟甲基)吡啶并[2,3-d]嘧啶-2(1H)-硫酮(化合 物5)
Figure PCTCN2021106347-appb-000046
步骤1:2-氯-6-(三氟甲基)吡啶-3-甲酰氯(中间体5-2)的合成
将反应物5-1(500mg,2.22mmol)溶于二氯甲烷(10mL)中,加入二甲基甲酰胺(48.68mg,666.00μmol),冷却至0℃。在0℃下,向反应液中滴加草酰氯(422.68mg,3.33mmol),滴毕,升至25℃搅拌反应1h。薄层色谱检测反应完毕。将反应液减压浓缩至干,得标题化合物粗品(500mg),不经纯化,直接用于下一步反应。
步骤2:2-氯-6-(三氟甲基)吡啶-3-甲酰胺(中间体5-3)的合成
将中间体5-2(500mg,2.05mmol)溶于二氯甲烷(10mL)中,冷却至0℃。在0℃下,向反应液中滴加氨水(1.01g,7.17mmol,1.10mL,25%有效含量)。滴毕,升至25℃搅拌反应2h。LCMS检测反应完毕。反应液减压浓缩除去二氯甲烷,加入乙酸乙酯(20mL)稀释,饱和食盐水洗有机层,有机层减压浓缩至干,得标题化合物粗品(450mg),不经纯化,直接用于下一步反应。
MS m/z(ESI):224.9[M+H] +
步骤3:1-(2-氯苯基)-2-硫代-7-(三氟甲基)-2,3-二氢吡啶并[2,3-d]嘧啶-4(1H)-酮(中间体5-5)的合成
将中间体5-3(350mg,1.56mmol)溶于二甲基甲酰胺(6mL)中,冷却至0℃。在0℃下,向反应液中加入钠氢(156mg,3.9mmol,60%有效含量),于0℃搅拌反应0.5h。中间体5-4(264.38mg,1.56mmol)于0℃滴加至反应液中,滴毕,反应液于25℃搅拌反应1.5h。LCMS检测反应完毕。在0℃下,向反应液中滴加水(1mL),乙酸乙酯(20mL×3)萃取,有机层减压浓缩至干,得标题化合物粗品(500mg),不经纯化,直接用于下一步反应。
MS m/z(ESI):357.9[M+H] +
步骤4:4-氯-1-(2-氯苯基)-7-(三氟甲基)吡啶并[2,3-d]嘧啶-2(1H)-硫酮(中间体5-6)的合 成
将中间体5-5(50mg,139.77μmol)溶于乙腈(1mL)中,加入二异丙基乙胺(90.32mg,698.84μmol),三氯氧磷(107.15mg,698.84μmol)。将反应液升至80℃搅拌反应2小时。LCMS检测反应完毕。减压浓缩至干,得标题化合物粗品(50mg),不经纯化,直接用于下一步反应。
MS m/z(ESI):376.0[M+H] +
步骤5:1-(2-氯苯基)-4-(甲基氨基)-7-(三氟甲基)吡啶并[2,3-d]嘧啶-2(1H)-硫酮(化合物5)的合成
在0℃下,将中间体5-6(50mg,132.91μmol)加入至甲胺(137.60mg,1.33mmol,30%有效含量)的乙醇溶液中,滴毕,反应液于25℃搅拌反应2h。LCMS检测反应完毕。乙酸乙酯(20mL×3)萃取,有机层减压浓缩至干,粗产物经制备液相(柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:40%-60%,11分钟)纯化,得标题化合物(4.4mg)。
1H NMR(400MHz,Methanol-d 4)δppm 8.66(d,J=8.3Hz,1H),7.73(d,J=8.3Hz,1H),7.62-7.57(m,1H),7.51-7.44(m,2H),7.40-7.31(m,1H),3.25(s,3H).
MS m/z(ESI):370.9[M+H] +
实施例6、4-(甲基氨基)-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(化合物6)
Figure PCTCN2021106347-appb-000047
步骤1:4-氯-7-(三氟甲基)喹啉N-氧化物(中间体6-2)的合成
将起始原料6-1(3.1g,13.39mmol)溶解于二氯甲烷(55mL),加入间氯过氧苯甲酸(5.43g,26.77mmol,含量85%),室温25℃反应4小时。TLC显示反应完全。反应液以饱和碳酸氢钠(25mL)在25℃下淬灭,分层后,有机相再次用碳酸氢钠(15mL*2)洗涤,再用无水硫 酸钠干燥,过滤后浓缩有机相。粗品用柱层析色谱纯化(SiO 2,石油醚/乙酸乙酯=7/1~1/1),得到标题化合物(2.94g)。
MS m/z(ESI):248.1[M+H] +
步骤2:4-氯-7-(三氟甲基)喹啉-2(1H)-酮(中间体6-3)的合成
将中间体6-2溶解于氯仿(30mL)和水(4mL)混合溶剂,加入对甲基苯磺酰氯(1.79g,9.40mmol),碳酸钾(3.25g,23.51mmol),反应以氮气保护,25℃搅拌反应16小时。TLC显示反应完全。反应液用二氯甲烷30ml和水50ml萃取,洗涤。有机相分离后用水20mL洗,硫酸钠干燥后过滤,浓缩。粗品用柱层析色谱纯化(SiO 2,石油醚/乙酸乙酯=7/1~1/1)得到标题化合物(1.9g)。
MS m/z(ESI):248.0[M+H] +
步骤3:4-氯-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(中间体6-4)的合成
将中间体6-3溶解于二氯甲烷(2mL),然后加入苯硼酸(98.49mg,807.75μmol),醋酸铜(80.69mg,444.26μmol),吡啶(95.84mg,1.21mmol),反应在氧气气氛下,40℃反应16小时。反应液过滤,浓缩后用薄层制备色谱纯化(SiO 2,石油醚/乙酸乙酯=1/1)得到标题化合物(71.5mg)。
MS m/z(ESI):324.1[M+H] +
步骤4:4-(甲基氨基)-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(化合物6)的合成
将中间体6-4(35mg,108.13μmol)和甲胺的乙醇溶液(508.80mg,5.41mmol,含量33%)溶于N-甲基吡咯烷酮(1mL),氮气保护,100℃反应16小时。LCMS显示原料反应完全,反应液减压浓缩后用高效液相制备色谱纯化(柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:60%-80%,11min)得到标题化合物(2.1mg)。
1H NMR(400MHz,Methanol-d 4)δ8.14(d,J=8.8Hz,1H),7.72-7.65(m,2H),7.62(d,J=6.8Hz,1H),7.52(d,J=8.0Hz,1H),7.31(d,J=7.3Hz,2H),6.87(s,1H),5.72(s,1H),3.03(s,3H).
MS m/z(ESI):319.1[M+H] +
实施例7、7-氯-4-(甲基氨基)-1-苯基喹啉-2(1H)-酮(化合物7)
Figure PCTCN2021106347-appb-000048
步骤1:4,7-二氯喹啉N-氧化物(中间体7-2)的合成
将起始原料7-1(1g,5.05mmol)溶解于二氯甲烷(20mL),加入间氯过氧苯甲酸(2.05g,10.10mmol,85%有效含量),室温25℃反应4小时。反应液以饱和碳酸氢钠(25mL)在25℃下淬灭,分层后,有机相再次用碳酸氢钠30mL(15mL*2)洗,再用硫酸钠干燥,过滤后浓缩有机相。粗品用柱层析色谱纯化(SiO 2,石油醚/乙酸乙酯=8/1~1/1),得到标题化合物(670mg)。
1H NMR(400MHz,Methanol-d 4)δ8.71(d,J=2.0Hz,1H),8.65(d,J=6.5Hz,1H),8.35(d,J=9.0Hz,1H),7.91(dd,J=2.0,9.0Hz,1H),7.72(d,J=6.8Hz,1H).
MS m/z(ESI):214.1[M+H] +
步骤2:4,7-二氯喹啉-2(1H)-酮(中间体7-3)的合成
将中间体7-2溶解于氯仿(12mL)和水(1.5mL)混合溶剂,加入对甲基苯磺酰氯(716.10mg,3.76mmol),碳酸钾(1.30g,9.39mmol),反应以氮气保护,25℃搅拌反应16小时。反应物用乙酸乙酯30ml和水30ml萃取,洗涤。有机相分离后用水40mL(20mL*2)洗,硫酸钠干燥后过滤,减压浓缩。粗品用柱层析色谱纯化(SiO 2,石油醚/乙酸乙酯=8/1~1/1)得到标题化合物(395mg)。
1H NMR(400MHz,Methanol-d 4)δ7.85(d,J=8.8Hz,1H),7.33(d,J=2.0Hz,1H),7.25(dd,J=2.0,8.8Hz,1H),6.72(s,1H).
MS m/z(ESI):214.1[M+H] +
步骤3:4,7-二氯-1-苯基喹啉-2(1H)-酮(中间体7-4)的合成
将中间体7-3溶解于二氯甲烷(5mL),然后加入苯硼酸(113.93mg,934.37μmol),醋酸铜(93.34mg,513.90μmol),吡啶(110.86mg,1.40mmol),反应在氧气气氛下,40℃反应16小时。反应液过滤,减压浓缩后,用薄层制备色谱纯化(SiO 2,石油醚/乙酸乙酯=1/1)得到标题 化合物(75mg)。
1H NMR(400MHz,DMSO-d 6)δ8.03(d,J=8.7Hz,1H),7.70-7.58(m,3H),7.49-7.38(m,3H),7.10(s,1H),6.49(d,J=2.0Hz,1H).
MS m/z(ESI):290.1[M+H] +
步骤4:7-氯-4-(甲基氨基)-1-苯基喹啉-2(1H)-酮(化合物7)的合成
将中间体7-4(35mg,120.63μmol)和甲胺的乙醇溶液(567.63mg,6.03mmol,含量33%)溶于N-甲基吡咯烷酮(1mL),氮气保护,100℃反应16小时。反应液减压浓缩后,用高效液相制备色谱纯化(柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:38%-58%,11min)得到标题化合物(1.4mg)。
1H NMR(400MHz,Methanol-d 4)δ7.93(d,J=8.3Hz,1H),7.73-7.64(m,2H),7.63-7.56(m,1H),7.35-7.22(m,3H),6.59(s,1H),5.64(s,1H),3.00(s,3H).
MS m/z(ESI):285.1[M+H] +
实施例8、7-氯-1-(2-氯苯基)-4-(甲基氨基)-2-氧代-1,2-二氢喹啉-3-甲腈(化合物8)的合成
Figure PCTCN2021106347-appb-000049
步骤1:4-氨基-7-氯-1-(2-氯苯基)-2-氧代-1,2-二氢喹啉-3-羧酸(中间体8-1)的合成
将中间体2-3(1.1g,3.03mmol)溶于甲醇(30mL)中,25℃下滴加氢氧化钠水溶液(8M,12.49mL)。反应体系在25℃下搅拌反应2小时。接着,反应体系温度升到50℃并在50℃下搅拌反应70小时。LC-MS显示反应完成。反应液用盐酸(3.8M,35mL)调pH=1,过滤,滤液减压浓缩除去甲醇,浓缩液用水(50mL)稀释,乙酸乙酯150mL(50mL*3)萃取三次,有机相用硫酸钠干燥,过滤,减压浓缩至干,得到标题化合物粗品(1g)。
MS m/z(ESI):348.9[M+H] +
步骤2:4-氨基-7-氯-1-(2-氯苯基)-2-氧代-1,2-二氢喹啉-3-甲酰胺(中间体8-2)的合成
将中间体8-1(1g,2.86mmol),4,4-二甲胺基吡啶(349.89mg,2.86mmol)和二异丙基乙 基胺(444.16mg,3.44mmol)溶于四氢呋喃(25mL)中,25℃下滴加Boc 2O(1.25g,5.73mmol),反应体系25℃下搅拌反应16小时。25℃下滴加氨水(32.26g,257.76mmol)并在25℃下搅拌反应16小时。LC-MS显示反应完成。反应混合物用水(50mL)稀释,乙酸乙酯(50mL*3)萃取三次,有机相用硫酸钠干燥,经柱色谱纯化(
Figure PCTCN2021106347-appb-000050
12g
Figure PCTCN2021106347-appb-000051
快速硅胶柱,洗脱剂0~67%乙酸乙酯/石油醚,流速40mL/分钟),得标题化合物(363mg)。
MS m/z(ESI):348.1[M+H] +
步骤3:4-氨基-7-氯-1-(2-氯苯基)-2-氧代-1,2-二氢喹啉-3-甲腈(中间体8-3)的合成
将中间体8-2(300mg,861.62μmol)和吡啶(272.61mg,3.45mmol)溶于乙腈(12mL)中,氮气保护0℃下滴加三氯氧磷(1.06g,6.89mmol),将反应体系温度升到40℃并在40℃下搅拌反应48小时。LC-MS显示反应完成。反应液减压浓缩,除去乙腈和三氯氧磷,用水60mL(20mL*3)洗涤三遍,有机相用硫酸钠干燥,过滤,减压浓缩至干,得到标题化合物粗品(391mg),直接用于下一步反应。
MS m/z(ESI):330.0[M+H] +
步骤4:7-氯-1-(2-氯苯基)-4-(甲基氨基)-2-氧代-1,2-二氢喹啉-3-甲腈(化合物8)的合成
将中间体8-3(50mg,151.44μmol)溶于THF(2mL)中,氮气0℃下加钠氢(12.11mg,302.88μmol,60%有效含量),0℃下反应1小时,0℃下加入碘甲烷(10.75mg,75.72μmol),LCMS显示反应物消耗完,产物生成。反应液用在0℃下用水(2mL)淬灭,乙酸乙酯5mL稀释、乙酸乙酯(5mL*3)萃取三次,有机相用硫酸钠干燥、过滤、减压浓缩至干,浓缩液经高效液相色谱纯化(碱性条件)(柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:A:0.05%氨水(v/v),B:乙腈;B%:42%-62%,11分钟)得到标题化合物(2.8mg)。
1H NMR(400MHz,Methanol-d 4)δ8.07(d,J=8.9Hz,1H),7.77-7.72(m,1H),7.66-7.57(m,2H),7.48-7.42(m,1H),7.34(dd,J=1.9,8.8Hz,1H),6.46(d,J=2.0Hz,1H),3.53(s,3H)。
MS m/z(ESI):343.9[M+H] +
实施例9、4-(3-羟基氮杂环丁-1-基)-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(化合物9)
Figure PCTCN2021106347-appb-000052
步骤1:4-(3-羟基氮杂环丁-1-基)-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(化合物9)的合 成
将中间体6-4(70mg,216.25μmol)和氮杂环丁烷-3-醇(79.03mg,1.08mmol),N-甲基吡咯烷酮(1.5mL)中,向其中加入三乙胺(65.65mg,648.75μmol),反应液于氮气保护下80℃搅拌16h。LC-MS检测反应完毕。反应液减压浓缩至干,经制备HPLC纯化(柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:35%-57%,9分钟)得标题化合物(23.6mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.11(d,J=8.5Hz,1H),7.72-7.59(m,3H),7.51(d,J=8.3Hz,1H),7.29(d,J=7.5Hz,2H),6.87(s,1H),5.57(s,1H),4.83-4.78(m,1H),4.70(t,J=7.8Hz,2H),4.21(dd,J=3.6,9.2Hz,2H).
MS m/z(ESI):361.3[M+H] +
实施例10、7-氯-1-(2-氯苯基)-4-(二甲氨基)-2-氧代-1,2-二氢喹啉-3-甲腈(化合物10)
Figure PCTCN2021106347-appb-000053
步骤1:7-氯-1-(2-氯苯基)-4-(二甲氨基)-2-氧代-1,2-二氢喹啉-3-甲腈(化合物10)的合成
将中间体8-3(50mg,151.44μmol)溶于THF(2mL)中,在氮气氛下,0℃下加钠氢(12.11mg,302.88μmol,60%有效含量),0℃下反应1小时,0℃下加入碘甲烷(10.75mg,75.72μmol),LCMS显示反应物消耗完,产物生成。反应液用在0℃下用水(2mL)淬灭,乙酸乙酯5mL稀释、乙酸乙酯(5mL*3)萃取三次,有机相用硫酸钠干燥、过滤、减压浓缩至干,浓缩液经高效液相色谱纯化(碱性条件)(柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:A:0.05%氨水(v/v),B:乙腈;B%:42%-62%,11分钟)得到标题化合物(0.5mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.08(d,J=9.0Hz,1H),7.79-7.74(m,1H),7.68-7.59(m,2H),7.49-7.43(m,1H),7.35(dd,J=1.9,8.9Hz,1H),6.50(d,J=1.8Hz,1H),3.49(s,6H)。
MS m/z(ESI):357.9[M+H] +
实施例11、4-(3-羟基吡咯烷-1-基)-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(化合物11)
Figure PCTCN2021106347-appb-000054
步骤1:4-(3-羟基吡咯烷-1-基)-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(化合物11)的合成
将中间体6-4(70mg,216.25μmol)溶于N-甲基吡咯烷酮(NMP)(1mL)中,25℃下滴加3-羟基吡咯烷(94.20mg,1.08mmol),将反应液升温到80℃并在80℃下搅拌反应16小时。LC-MS检测反应完毕。反应液用乙腈(1mL)稀释,经柱色谱分离(碱性条件)(柱子:Boston Prime C18 150*25mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:40%-60%,9分钟)得到标题化合物(17.9mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.41(d,J=8.5Hz,1H),7.72-7.65(m,2H),7.65-7.59(m,1H),7.53-7.49(m,1H),7.30(dd,J=2.4,5.9Hz,2H),6.89(s,1H),5.90(s,1H),4.59(s,1H),4.04-3.95(m,2H),3.72-3.65(m,1H),3.57(d,J=11.0Hz,1H),2.25-2.09(m,2H);
MS m/z(ESI):375.1[M+H] +
实施例12、(R)-4-(2-(羟甲基)吡咯烷-1-基)-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(化合物12)
Figure PCTCN2021106347-appb-000055
步骤1:(R)-4-(2-(羟甲基)吡咯烷-1-基)-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(化合物12)的合成
将中间体6-4(70mg,216.25μmol)溶于N-甲基吡咯烷酮(NMP)中,25℃下滴加D-脯氨醇(109.37mg,1.08mmol),将反应液升温到80℃并在80℃下搅拌反应16小时。LC-MS检测反应完毕。反应液用乙腈(1mL)稀释,经柱色谱分离(碱性条件)(柱子Boston Prime C18 150*25mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:43%-65%,9分钟)得到标题化合物(27.3mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.31(d,J=8.6Hz,1H),7.71-7.65(m,2H),7.64-7.59(m,1H),7.50(dd,J=1.4,8.6Hz,1H),7.36-7.27(m,2H),6.88(s,1H),6.12(s,1H),4.23-4.13(m, 1H),4.02(dt,J=5.6,10.3Hz,1H),3.78-3.72(m,1H),3.71-3.62(m,2H),2.41-2.30(m,1H),2.15-2.03(m,2H),1.94-1.78(m,1H);
MS m/z(ESI):389.1[M+H] +
实施例13、4-((环丙基甲基)氨基)-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(化合物13)
Figure PCTCN2021106347-appb-000056
步骤1:4-((环丙基甲基)氨基)-1-苯基-7-(三氟甲基)喹啉-2(1H)-酮(化合物13)的合成
将中间体6-4(70mg,216.25μmol)溶于N-甲基吡咯烷酮(NMP)(1mL)中,25℃下滴加环丙基甲胺(76.90mg),将反应液升温到80℃并在80℃下搅拌反应16小时。LC-MS检测反应完毕。反应液用乙腈(1mL)稀释,经柱色谱分离(碱性条件)(柱子Boston Prime C18 150*25mm*5μm;流动相[A:0.05%氨水(v/v),B:乙腈];B%:50%-72%,9分钟)得到标题化合物(21.1mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.28(d,J=8.4Hz,1H),7.72-7.65(m,2H),7.64-7.59(m,1H),7.53(d,J=8.2Hz,1H),7.31(d,J=7.3Hz,2H),6.87(s,1H),5.80(s,1H),3.24(d,J=6.7Hz,2H),1.30(s,1H),0.66(br d,J=6.8Hz,2H),0.39(br d,J=5.1Hz,2H);
MS m/z(ESI):359.1[M+H] +
实施例14、1-(4-(二氟甲氧基)苯基)-4-(甲基氨基)-7-(三氟甲基)喹啉-2(1H)-酮(化合物14)
Figure PCTCN2021106347-appb-000057
步骤1:4-氯-1-(4-(二氟甲氧基)苯基)-7-(三氟甲基)喹啉-2(1H)-酮(中间体14-1)的合成在氧气气氛下,将中间体7-3(110mg,0.443mmol)溶解于二氯甲烷(2mL),然后依次加入对二氟甲氧基苯硼酸(124.85mg,0.664mmol),醋酸铜(160.6mg),吡啶(110mg,1.33mmol)。随后,将反应液于40℃下反应16小时。LCMS显示产物生成。将反应液过滤,浓缩直接用薄层制 备色谱纯化(SiO 2,石油醚/乙酸乙酯=1/1)得到标题化合物粗品(105mg),直接用于下一步反应。
步骤2:1-(4-(二氟甲氧基)苯基)-4-(甲基氨基)-7-(三氟甲基)喹啉-2(1H)-酮(化合物14)的合成
在氮气气氛下,将中间体14-1(100mg,粗产品,30%纯度),Et 3N(780mg,7.71mmol)和甲胺盐酸盐(348mg,5.14mmol)溶于N-甲基吡咯烷酮(3mL),于100℃反应16小时。LCMS显示原料反应完全。将反应液减压浓缩后经高效液相制备色谱纯化(柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:60%-80%,11min),收集产品并冻干,得到标题化合物(14mg)。
1H NMR(400MHz,Methanol-d 4)δ8.15(d,J=8.4Hz,1H),7.54(dd,J=8.7,1.7Hz,1H),7.43(s,2H),7.36(d,J=8.9Hz,2H),7.01(s,1H),6.90(s,1H),5.72(s,1H),3.03(s,3H).
MS m/z(ESI):385.1[M+H] +
实施例15、1-(2-氯苯基)-4-((环丙基甲基)氨基)-2-氧代-7-(三氟甲基)-1,2-二氢喹啉-3-羧酸甲酯(化合物15)
Figure PCTCN2021106347-appb-000058
步骤1:1-(2-氯苯基)-4-((环丙基甲基)氨基)-2-氧代-7-(三氟甲基)-1,2-二氢喹啉-3-羧酸甲酯(化合物15)的合成
在25℃,将中间体1-3(80mg,201.64μmol)和溴代甲基环丙烷(27.22mg,201.64μmol)溶于DMF(1mL),加入碳酸钾(69.67mg,504.10μmol),反应液在80℃搅拌反应3小时。LCMS表明产物生成。反应液倒入水(10mL)中,用乙酸乙酯(10mL*2)萃取,干燥后减压浓缩。所得残余物经制备高效液相色谱纯化(碱性条件,柱子:Boston Prime C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:40%-70%,9分钟),得标题化合物(1.2mg)。
MS m/z(ESI):451.1[M+H] +
1H NMR(400MHz,Methanol-d 4)δ=8.41(d,J=8.6Hz,1H),7.77-7.69(m,1H),7.65-7.54(m,3H),7.47-7.36(m,1H),6.69(s,1H),3.86(s,3H),3.25(d,J=7.1Hz,2H),1.29-1.22(m,1H),0.71-0.60(m,2H),0.34(m,2H)。
实施例16、1-(2-氯苯基)-4-(3-羟基吡咯烷-1-基)-7-(三氟甲基)吡啶并[2,3-d]嘧啶-2(1H)-硫酮(化合物16)
Figure PCTCN2021106347-appb-000059
步骤1:1-(2-氯苯基)-4-(3-羟基吡咯烷-1-基)-7-(三氟甲基)吡啶并[2,3-d]嘧啶-2(1H)-硫酮(化合物16)的合成
将中间体5-6(50mg,132.91μmol)溶于乙腈(1mL)中,加入3-羟基吡咯烷(77.19mg,265.82μmol)和二异丙基乙胺(51.53mg,398.73μmol),反应液于50℃搅拌反应15小时。LCMS检测反应完毕。乙酸乙酯(20mL×3)萃取,有机层减压浓缩至干,粗产物经制备液相(色谱柱:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:40%-60%,11分钟)纯化,得标题化合物(1.5mg)。
1H NMR(400MHz,Methanol-d 4)δ8.98-8.92(m,1H),7.74-7.67(m,1H),7.63-7.54(m,1H),7.52-7.44(m,2H),7.39-7.30(m,1H),4.37-4.32(m,1H),4.20-4.15(m,2H),4.12-3.77(m,2H),2.34-2.02(m,2H)。
MS m/z(ESI):427.1[M+H] +
实施例17、1-(2-氯苯基)-4-(3-羟基吡咯烷-1-基)-7-(三氟甲基)-1,8-二氮杂萘-2(1H)-酮(化合物17)
Figure PCTCN2021106347-appb-000060
步骤1:4-氯-1-(2-氯苯基)-7-(三氟甲基)-1,8-二氮杂萘-2(1H)-酮(中间体17-1)的合成
将中间体1-4(200mg,588.76μmol)溶于乙腈(40mL)中,0℃氮气保护下滴加亚硝酸叔丁酯(182.14mg,1.77mmol),0℃保持10分钟。0℃下加入氯化铜(253.31mg,1.88mmol)并保持10分钟,25℃下搅拌反应40小时。LC-MS显示反应完成。反应混合物减压浓缩出去乙腈,浓缩液用水(20mL)稀释,乙酸乙酯(20mL*3)萃取三次,有机相用硫酸钠干燥,过滤,减压浓缩至干,得到标题化合物粗品(211mg),直接用于下一步。
MS m/z(ESI):358.9[M+H] +
步骤2:1-(2-氯苯基)-4-(3-羟基吡咯烷-1-基)-7-(三氟甲基)-1,8-二氮杂萘-2(1H)-酮(化合物17)的合成
将中间体17-1(211mg,587.53μmol)和3-羟基吡咯烷(102.37mg,1.18mmol)溶于溶于乙腈(5mL)中,25℃下加入三乙胺(178.36mg,1.76mmol),将反应体系温度升到50℃并在50℃下搅拌反应16小时。LC-MS显示反应完成。反应液减压浓缩,浓缩液用甲醇(3mL)稀释,经高效液相色谱分离(柱子:YMC-Actus Triart C18 150*30mm*7μm;流动相:A:0.05%氨水(v/v),B:乙腈;B%:45%-70%,9分钟)得到标题化合物(21.2mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.85(dd,J=3.6,8.4Hz,1H),7.70-7.56(m,2H),7.60-7.46(m,2H),7.40-7.29(m,1H),5.85(s,1H),4.06-3.96(m,2H),3.79-3.69(m,1H),3.61(d,J=10.8Hz,1H),3.33(s,1H),2.27-2.10(m,2H)。
MS m/z(ESI):409.9[M+H] +
实施例18、1-(2-氯苯基)-4-(甲基氨基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-二氮杂萘-3-羧酸甲酯(化合物18)
Figure PCTCN2021106347-appb-000061
步骤1:1-(2-氯苯基)-4-(甲基氨基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-二氮杂萘-3-羧酸甲酯(化合物18)的合成
将中间体3-3(30mg,75.43μmol)溶于THF(1mL)中,0℃氮气保护下加钠氢(9.05mg,226.28μmol,60%有效含量)并在0℃下搅拌反应10分钟。0℃下加碘甲烷(10.71mg,75.43μmol)并在25℃下搅拌反应1小时。将反应体系温度升到40℃并在40℃下搅拌反应4小时。LC-MS显示反应完成。在0℃下,反应液用水(0.5mL)淬灭,用甲醇(1mL)稀释。经制高效液相色谱分离(碱性条件)(柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:A:0.05%氨水(v/v),B:乙腈;B%:40%-60%,11分钟)得到标题化合物(2.9mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.69(d,J=8.3Hz,1H),7.69(d,J=8.3Hz,1H),7.65-7.59(m,1H),7.53-7.46(m,2H),7.40-7.35(m,1H),3.90(s,3H),3.07(s,3H).
MS m/z(ESI):412.0[M+H] +
实施例19、1-(2-氯苯基)-4-(二甲氨基)-7-(三氟甲基)喹啉-2(1H)-酮(化合物19)
Figure PCTCN2021106347-appb-000062
步骤1:1-(2-氯苯基)-4-(二甲氨基)-7-(三氟甲基)喹啉-2(1H)-酮(化合物19)的合成
将中间体1-4(40mg,100.38μmol,85%纯度)溶于DMF(1.5mL)在0℃加入NaH(12.04mg,301.14μmol,60%有效含量),并在0℃搅拌反应10分钟,加入碘甲烷(14.25mg,100.38μmol),在0℃搅拌反应1小时,LCMS表明产物生成。将反应液倒入氯化铵溶液,用乙酸乙酯(10mL*3)萃取,食盐水洗涤后,干燥浓缩。得固体经过制备高效液相色谱纯化(碱性条件,柱子:Boston Prime C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:39%-69%,9分钟)。得标题化合物(3.5mg)。
MS m/z(ESI):367.1[M+H] +
1H NMR(400MHz,Methanol-d 4)δ=8.20(d,J=8.6Hz,1H),7.81-7.70(m,1H),7.66-7.59(m,3H),7.56(d,J=8.3Hz,1H),7.47-7.40(m,1H),6.74(s,1H),6.16(s,1H),3.08(s,6H)。
实施例20、1-(2-氯苯基)-3-(1-甲基-1H-苯并[d]咪唑-6-基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物20)
Figure PCTCN2021106347-appb-000063
步骤1:4-氨基-3-溴-1-(2-氯苯基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(中间体20-1)的合成
将中间体1-4(400mg,1.18mmol)溶于乙腈(8mL)中,在25℃下加入N-溴代丁二酰亚胺(209.58mg,1.18mmol),反应液在25℃下搅拌反应0.1小时。LC-MS监测原料已经全部反应完全,目标产物形成。反应液减压浓缩至干,残余物经柱层析纯化(二氧化硅,石油醚/乙酸乙酯=48%~100%),得标题化合物(492.9mg)。
MS m/z(ESI):420.1[M+H] +
步骤2:3-溴-1-(2-氯苯基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(中间体20-2)和3-溴-1-(2-氯苯基)-4-(二甲氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(中间体20-3)的合成
将中间体20-1(492mg,1.18mmol)溶于四氢呋喃(10mL)中,氮气保护0℃下加入氢化钠(94.02mg,2.35mmol,60%纯度)并在0℃下搅拌反应1小时。接着,在0℃下向反应混 合物滴加碘甲烷(133.46mg,940.29μmol)。反应液于25℃,搅拌反应16小时。LC-MS监测原料已经全部反应完全,目标产物形成。反应液在0℃下用水淬灭(10mL)反应液用乙酸乙酯萃取三次,有机层减压浓缩至干,得标题化合物粗品(包含中间体20-2和中间体20-3的混合物),不经纯化,直接用于下步反应。
MS m/z(ESI)(中间体20-2):433.9[M+H] +
MS m/z(ESI)(中间体20-3):447.8[M+H] +
步骤3:1-(2-氯苯基)-3-(1-甲基-1H-苯并[d]咪唑-6-基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物20)的合成
将中间体20-2和中间体20-3的混合物(100mg,231.15μmol),中间体20-4(89.50mg,346.73μmol)溶于二氧六环(2mL)中,加入Pd(dppf)Cl 2(16.91mg,23.12μmol),碳酸铯(150.63mg,462.30μmol)和水(0.5mL)。反应液于100℃氮气保护下,搅拌反应16小时。LC-MS监测原料已经全部反应完全,目标产物形成。反应液用乙酸乙酯萃取三次,有机层减压浓缩至干,残余物经高效液相色谱纯化((柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:45%-65%,11分钟)),得标题化合物(7.3mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.69(d,J=8.3Hz,1H),8.16(s,1H),7.70(dd,J=6.6,8.1Hz,2H),7.63-7.59(m,2H),7.51-7.45(m,2H),7.43-7.38(m,1H),7.35-7.30(m,1H),3.93(s,3H),2.47(s,3H)
MS m/z(ESI):484.2[M+H] +
实施例21、1-(2-氯苯基)-4-(二甲氨基)-3-(1-甲基-1H-苯并[d]咪唑-6-基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物21)
Figure PCTCN2021106347-appb-000064
步骤1:1-(2-氯苯基)-4-(二甲氨基)-3-(1-甲基-1H-苯并[d]咪唑-6-基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物21)的合成
将中间体20-2和中间体20-3的混合物(100mg,231.15μmol),中间体20-4(89.50mg,346.73μmol)溶于二氧六环(2mL)中,加入Pd(dppf)Cl 2(16.91mg,23.12μmol),碳酸铯(150.63mg,462.30μmol)和水(0.5mL)。反应液于100℃氮气保护下,搅拌反应16小时。LC-MS监测原料已经全部反应完全,目标产物形成。反应液用乙酸乙酯萃取三次,有机层减压浓缩至干, 残余物经高效液相色谱纯化((柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:45%-65%,11分钟)),得标题化合物(3.8mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.65(d,J=8.1Hz,1H),8.37(s,1H),7.79(d,J=8.3Hz,1H),7.72(d,J=8.3Hz,1H),7.67-7.61(m,2H),7.55-7.48(m,2H),7.45-7.39(m,1H),7.32(d,J=8.0Hz,1H),3.98(s,3H),2.73(s,6H).
MS m/z(ESI):498.2[M+H] +
实施例22、1-(2-氯苯基)-3-(1-甲基-6-氧代-1,6-二氢吡啶-3-基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物22)
Figure PCTCN2021106347-appb-000065
步骤1:1-(2-氯苯基)-3-(1-甲基-6-氧代-1,6-二氢吡啶-3-基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物22)的合成
中间体20-2和中间体20-3的混合物(50mg,115.57μmol),中间体22-1(40.76mg,173.36μmol)溶于二氧六环(1mL)中,加入Pd(dppf)Cl 2(8.46mg,11.56μmol),碳酸铯(75.31mg,231.15μmol)和水(0.25mL)。反应液于100℃氮气保护下,搅拌反应16小时。LC-MS监测原料已经全部反应完全,目标产物形成。反应液用乙酸乙酯萃取三次,有机层减压浓缩至干,残余物经高效液相色谱纯化((柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:45%-65%,11分钟)),得标题化合物(3.3mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.69(d,J=8.3Hz,1H),7.72-7.66(m,2H),7.65-7.55(m,2H),7.51-7.46(m,2H),7.40-7.34(m,1H),6.62(d,J=9.3Hz,1H),3.64(s,3H),2.81(s,3H)
MS m/z(ESI):461.2[M+H] +
实施例23、1-(2-氯苯基)-4-(二甲氨基)-3-(1-甲基-6-氧代-1,6-二氢吡啶-3-基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物23)
Figure PCTCN2021106347-appb-000066
步骤1:1-(2-氯苯基)-4-(二甲氨基)-3-(1-甲基-6-氧代-1,6-二氢吡啶-3-基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物22)的合成
将中间体20-2和中间体20-3的混合物(50mg,115.57μmol),中间体22-1(40.76mg,173.36μmol)溶于二氧六环(1mL)中,加入Pd(dppf)Cl 2(8.46mg,11.56μmol),碳酸铯(75.31mg,231.15μmol)和水(0.25mL)。反应液于100℃氮气保护下,搅拌反应16小时。LC-MS监测原料已经全部反应完全,目标产物形成。反应液用乙酸乙酯萃取三次,有机层减压浓缩至干,残余物经高效液相色谱纯化((柱子:YMC-Actus Triart C18 150*30mm*5μm;流动相:[A:0.05%氨水(v/v),B:乙腈];B%:45%-65%,11分钟)),得标题化合物(1mg)。
1H NMR(400MHz,Methanol-d 4)δ=8.63(d,J=8.3Hz,1H),7.74(d,J=2.4Hz,1H),7.71(d,J=8.3Hz,1H),7.66-7.61(m,1H),7.55-7.49(m,3H),7.41-7.36(m,1H),6.67(d,J=9.3Hz,1H),3.66(s,3H),2.93(s,6H).
MS m/z(ESI):475.2[M+H] +
实施例24、1-(2-氯苯基)-3-甲氧基-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物24)的合成
Figure PCTCN2021106347-appb-000067
步骤1:1-(2-氯苯基)-3-甲氧基-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物24)的合成
将反应物20-1(30mg,71.67μmol)溶于甲醇(1.5mL)中,加入甲醇钠(23.10mg,427.59μmol),(2-二叔丁基膦基-3,6-二甲氧基-2’,4’,6’-三异丙基-1,1’-联苯基)(2-氨基-1,1-联苯-2-基)钯(II)甲磺酸盐(tBuBrettPhos Pd G 3)(6.12mg,7.17μmol),2-二叔丁基膦-2’,4’,6’-三异丙基-3,6-二甲氧基-1,1’-联苯(tBuBrettPhos)(3.47mg,7.17μmol),叔丁醇钠(13.78mg,143.34μmol)和二氧六环(1.5mL)。氮气保护下将反应体系温度升到80℃并在80℃下搅拌反应16小时。LC-MS监测原料已经全部反应完全。反应液用乙酸乙酯萃取三次,有机层减压浓缩至干,残余物经高效液相色谱纯化(柱子:Agela DuraShell C18 150*25mm*5um;流动相:[A:水(0.05%氨水v/v),B:乙腈];B%:40%-60%,11分钟)得标题化合物(1.6mg)。
1H NMR(400MHz,METHANOL-d 4)δ8.69(d,J=8.3Hz,1H),7.67(d,J=8.3Hz,1H),7.64-7.60(m,1H),7.51-7.48(m,2H),7.38-7.34(m,1H),4.69(s,3H),3.42(s,3H)。
MS m/z(ESI):=384.0[M+H] +
实施例25、3-溴-1-(2-氯苯基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物25)的合成
Figure PCTCN2021106347-appb-000068
步骤1:3-溴-1-(2-氯苯基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物25)的合成
中间体20-2与20-3的混合物经高效液相色谱纯化(柱子:Boston Prime C18 150*30mm*5um;流动相:[A:水(0.05%氨水v/v),B:乙腈];B%:30%-60%,9分钟)得标题化合物(6.1mg)。
1H NMR(400MHz,METHANOL-d 4)δ8.84(d,J=8.3Hz,1H),7.68(d,J=8.5Hz,1H),7.65-7.60(m,1H),7.55-7.47(m,2H),7.41-7.35(m,1H),3.49(s,3H).
MS m/z(ESI):=433.9[M+H] +
实施例26、1-(4-(二氟甲氧基)苯基)-7-乙氧基-4-(甲基氨基)-2-氧代-1,2-二氢-1,8-萘啶-3-甲酸乙酯(化合物26)的合成
Figure PCTCN2021106347-appb-000069
步骤1:6-氯-2-((4-(二氟甲氧基)苯基)氨基)-3-氰基吡啶(中间体26-2)的合成
在25℃下,将4-(二氟甲氧基)苯胺(9.20g,57.80mmol)溶于N,N-二甲基甲酰胺(200mL)溶液中,反应液温度降至0℃后,缓慢加入氢化钠(4.62g,115.61mmol,60%有效含量),反应搅拌反应30分钟后,向混合物中加入化合物26-1(10g,57.80mmol),反应液于氮气保护下25℃搅拌反应16小时。LCMS显示原料已经全部反应完全。反应结束后,向反应液中加入水溶液(10mL)进行淬灭,再向其中加入乙酸乙酯(200mL)和水(400mL),使用水(400mL)萃取2次,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩(0.01MPa)除去溶剂得标题化合物(17g)。
MS m/z(ESI):=296.0[M+H] +
步骤2:4-氨基-1-(4-(二氟甲氧基)苯基)-7-乙氧基-2-氧代-1,2-二氢-1,8-萘啶-3-甲酸乙酯(中间体26-3)的合成
在20℃下,将丙二酸二甲酯(22.52g,170.46mmol)溶于乙醇(100mL)溶液中,向混合物中加入乙 醇钠(15.47g,227.28mmol),反应30分钟后,向其中加入中间体26-2(16.8g,56.82mmol)。在氮气保护下,反应液在90℃搅拌反应16小时。LCMS显示原料已完全反应完,有目标产物生成。反应结束后,有机相经减压浓缩(0.01MPa)除去溶剂。向其中加入乙酸乙酯(200mL)和水(400mL),使用水(400mL)萃取2次,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩(0.01MPa)除去溶剂。残留物以柱层析法纯化(二氧化硅,二氯甲烷/甲醇=9/1),得标题化合物(7g)。
MS m/z(ESI):=420.1[M+H] +
步骤3:1-(4-(二氟甲氧基)苯基)-7-乙氧基-4-(甲基氨基)-2-氧代-1,2-二氢-1,8-萘啶-3-甲酸乙酯(化合物26)的合成
在20℃下,将中间体26-3(100mg,238.45μmol)溶于N,N-二甲基甲酰胺(1mL)溶液中,向混合物中缓慢加入氢化钠(14.31mg,357.67μmol,60%有效含量)和碘甲烷(27.08mg,190.76μmol)。在氮气保护下,反应液在40℃时搅拌反应16小时。LCMS显示反应完全,目标产物生成。反应结束后,向反应液中加入水溶液(1mL)进行淬灭,再向其中加入乙酸乙酯(5mL)和水(10mL),使用水(10mL)萃取2次,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩(0.01MPa)除去溶剂。残留物以高效液相色谱法纯化(酸性条件,柱子:Waters Xbridge BEH C18 100*25mm*5um;流动相:[A:水(0.225%甲酸v/v),B:乙腈];B%:30%-60%,12分钟)得标题化合物(3.6mg)。
1H NMR(400MHz,METHANOL-d 4)δ8.28(d,J=8.8Hz,1H),7.34-7.25(m,4H),6.93(t,J=73.8Hz,1H),6.64(d,J=8.8Hz,1H),4.34(q,J=7.0Hz,2H),3.96(q,J=7.0Hz,2H),3.06(s,3H),1.37(t,J=7.2Hz,3H),1.12(t,J=7.0Hz,3H).
MS m/z(ESI):=434.1[M+H] +
实施例27、3-(氮杂环丁-1-基)-1-(2-氯苯基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物27)的合成
Figure PCTCN2021106347-appb-000070
步骤1:3-(氮杂环丁-1-基)-1-(2-氯苯基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物27)的合成
将化合物25(30mg,69.34μmol)和氮杂环丁烷(11.88mg,208.03μmol)溶于二氧六环(2mL)中,25℃下加入(2-二环己基膦基-3,6-二甲氧基-2’,4’,6’-三异丙基-1,1’-联苯)(2’-氨基-1,1’-联苯基-2-基)钯(II)甲磺酸盐,(Brettphos Pd G 3)(6.29mg,6.93μmol)和碳酸铯(45.19mg,138.69μmol)。反应液于60℃氮气氛围下反 应1.5小时。LC-MS监测原料反应完全。反应液减压浓缩至干,残余物经高效液相色谱纯化((柱子:YMC-Actus Triart C18 150*30mm*5um;流动相:[A:水(0.05%氨水v/v),B:乙腈];B%:60%-80%,11分钟))得标题化合物(4.4mg)。
1H NMR(400MHz,METHANOL-d 4)δ8.53(d,J=8.2Hz,1H),7.65-7.60(m,1H),7.58(d,J=8.3Hz,1H),7.50(dd,J=3.5,5.9Hz,2H),7.36(dd,J=3.6,5.8Hz,1H),4.12(t,J=7.3Hz,4H),3.16(s,3H),2.24(q,J=7.3Hz,2H).
MS m/z(ESI):=409.1[M+H] +
实施例28、4-(甲基氨基)-1-(2-甲基吡啶-3-基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物28)
Figure PCTCN2021106347-appb-000071
步骤1:2-((2-甲基吡啶-3-基)氨基)-6-(三氟甲基)-3-氰基吡啶(中间体28-2)的合成
在25℃下,将中间体28-1(3.14g,29.05mmol)溶于无水N,N-二甲基甲酰胺(50mL)溶液中,将温度降至0℃,向其中缓慢加入NaH(1.94g,48.41mmol,60%有效含量),搅拌30分钟后,将中间体3-1(5g,24.21mmol)溶于无水N,N-二甲基甲酰胺(50mL)溶液,再加入反应体系中,反应液于氮气保护下25℃搅拌反应16小时。反应结束后,向反应液中加入乙酸乙酯(100mL)和水(200mL),用乙酸乙酯溶液(100mL)萃取2次,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂。残留物以制备柱层析法纯化(0~20%乙酸乙酯/石油醚,流速:50毫升/分钟),得标题化合物(4.3g)。
MS m/z(ESI):=279.0[M+H] +
步骤2:4-氨基-1-(2-甲基吡啶-3-基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体28-3)的合成.
在20℃下,将中间体28-2(200mg,718.82μmol)溶于1,2-二氯乙烷(2mL)溶液中,将温度降至0℃,向其中缓慢加入四氯化锡(374.54mg,1.44mmol)和丙二酸二甲酯(284.90mg,2.16mmol)。在氮气保护下,反应液在70℃搅拌反应16小时。反应结束后,用饱和碳酸氢钠(5mL) 淬灭,向反应液中加入二氯甲烷(10mL)和水(20mL),使用二氯甲烷(10mL)萃取2次,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂。残留物以制备薄层色谱法纯化(乙酸乙酯100%),得标题化合物(60mg)。
MS m/z(ESI):=379.1[M+H] +
步骤3:4-氯-1-(2-甲基吡啶-3-基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体28-4)的合成.
在20℃下,将中间体28-3(60mg,158.60μmol)溶于乙腈(1mL)溶液中,将温度降至0℃,向其中缓慢加入亚硝酸叔丁酯(3.60mg,713.71μmol)和氯化亚铜(31.40mg,317.20μmol)。在氮气保护下,反应液在20℃搅拌反应4小时。反应结束后,向反应液中加入乙酸乙酯(10mL)和水(20mL),使用乙酸乙酯(10mL)萃取2次,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂。残留物以制备薄层色谱法纯化(石油醚/乙酸乙酯=1/1),得标题化合物(10mg)。
MS m/z(ESI):=398.0[M+H] +
步骤4:4-(甲基氨基)-1-(2-甲基吡啶-3-基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(化合物28-5)的合成.
在20℃下,将中间体28-4(10mg,25.14μmol)溶于四氢呋喃(0.5mL)溶液中,向其中加入甲胺的乙醇溶液(23.66mg,251.42μmol,质量分数为33%)。在氮气保护下,反应液在20℃搅拌反应3小时。反应结束后,有机相经减压浓缩除去溶剂。得标题化合物(10mg)。
MS m/z(ESI):=393.1[M+H] +
步骤5:4-(甲基氨基)-1-(2-甲基吡啶-3-基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物28)的合成.
在20℃下,将中间体28-5(10mg,25.49μmol)溶于无水甲醇(0.5mL)溶液中,将一水合氢氧化锂(53.48mg,1.27mmol)溶于水(0.5mL)加入反应液中。在氮气保护下,反应液在20℃搅拌反应16小时。反应结束后,有机相经减压浓缩除去溶剂。残留物以高效液相色谱法纯化(柱子:Waters Xbridge BEH C18 100*25mm*5um;流动相:A:水(甲酸),B:乙腈;B%:8%-28%,22分钟),得标题化合物(2.4mg)。
1H NMR(400MHz,DMSO-d 6)δ8.73(d,J=8.0Hz,1H),8.59(d,J=3.8Hz,1H),7.83-7.77(m,2H),7.74(d,J=4.8Hz,1H),7.52(dd,J=5.0,7.8Hz,1H),5.59(s,1H),2.91(d,J=4.3Hz,3H),2.14(s,3H).
MS m/z(ESI):=335.1[M+H] +
化合物28(15mg)经过制备超临界流体色谱法纯化(柱子:DAICEL CHIRALPAK AD (250mm*30mm,10um);流动相:A:二氧化碳;B:乙醇(0.1%氨水);B%:30%-30%;流速:70毫升/分钟),得到化合物28 Iosmer 1(3.2mg,RT:1.076min)和化合物28 Iosmer 2(2.7mg,RT:1.423min)。
化合物28 Iosmer 1:
1H NMR(400MHz,Methanol-d 4)δ8.62(d,J=8.0Hz,1H),8.55(dd,J=1.3,5.0Hz,1H),7.73-7.65(m,2H),7.48(dd,J=4.9,7.9Hz,1H),5.75(s,1H),3.04(s,3H),2.21(s,3H).
MS m/z(ESI):=335.1[M+H] +
化合物28 Iosmer 2:
1H NMR(400MHz,Methanol-d 4)δ=8.62(d,J=8.3Hz,1H),8.55(dd,J=1.4,4.9Hz,1H),7.74-7.65(m,2H),7.48(dd,J=5.0,7.8Hz,1H),5.75(s,1H),3.04(s,3H),2.21(s,3H).
MS m/z(ESI):=335.1[M+H] +
实施例29、4-((甲基-d 3)氨基)-1-(2-甲基吡啶-3-基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物29)
Figure PCTCN2021106347-appb-000072
步骤1:4-((甲基-d 3)氨基)-1-(2-甲基吡啶-3-基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体29-1)的合成.
在25℃下,将中间体28-3(200mg,528.67μmol)溶于无水N,N-二甲基甲酰胺(3mL)溶液中,将温度降至0℃,向其中缓慢加入NaH(42.29mg,1.06mmol,60%有效含量),搅拌30分钟后,将氘代碘甲烷(61.31mg,422.94μmol)溶于无水N,N-二甲基甲酰胺(1mL)溶液,再加入反应体系中,反应液于氮气保护下25℃搅拌反应16小时。反应结束后,向反应液中加入乙酸乙酯(10mL)和水(20mL),用乙酸乙酯溶液(10mL)萃取2次,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂。残留物以制备薄层色谱法纯化(二氯甲烷/四氢呋喃=5/1)得标题化合物(110mg)。
MS m/z(ESI):=396.1[M+H] +.
步骤2:4-((甲基-d 3)氨基)-1-(2-甲基吡啶-3-基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物29)的合成
在20℃下,将中间体29-1(110mg,278.23μmol)溶于无水甲醇(5mL)溶液中,将一水合氢氧化锂(350.24mg,8.35mmol)溶于水(5mL)加入反应液中。在氮气保护下,反应液 在20℃搅拌反应16小时。反应结束后,向反应液中加入二氯甲烷(20mL)和水(40mL),使用二氯甲烷(20mL)萃取2次,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂。残留物以薄层色谱法纯化(二氯甲烷/甲醇=10/1),得标题化合物(30mg,消旋体);
1H NMR(400MHz,Methanol-d 4)δ=8.74(d,J=5.1Hz,1H),8.67(d,J=7.6Hz,1H),8.19(d,J=7.6Hz,1H),7.83(d,J=5.9Hz,1H),7.76(d,J=7.9Hz,1H),5.76(s,1H),2.40(s,3H).
MS m/z(ESI):=338.1[M+H] +.
步骤3:4-((甲基-d 3)氨基)-1-(2-甲基吡啶-3-基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物Isomer 1和Isomer 2)的合成
化合物29消旋体(剩余27.2mg)再经超临界流体色谱法进一步纯化(柱子:DAICEL CHIRALPAK AD(250mm*30mm,10um);流动相:A:二氧化碳;B:乙醇(0.1%氨水);B%:30%-30%)得化合物29 Isomer 1(11.6mg,RT:3.231min)和化合物29 Isomer 2(12.2mg,RT:4.317min)。
1H NMR(400MHz,Methanol-d 4)δ8.61(d,J=8.3Hz,1H),8.54(d,J=3.5Hz,1H),7.73-7.65(m,2H),7.48(dd,J=4.9,7.9Hz,1H),5.74(s,1H),2.21(s,3H).
MS m/z(ESI):=338.1[M+H] +.
1H NMR(400MHz,Methanol-d 4)δ8.61(d,J=8.3Hz,1H),8.54(d,J=5.0Hz,1H),7.73-7.65(m,2H),7.48(dd,J=4.9,7.9Hz,1H),5.74(s,1H),2.21(s,3H).
MS m/z(ESI):=338.1[M+H] +.
实施例30、1-(2-氯-3-氟苯基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物30)
Figure PCTCN2021106347-appb-000073
步骤1:2-((2-氯-3-氟苯基)氨基)-6-(三氟甲基)-3-氰基吡啶(中间体30-2)的合成
在25℃下,将中间体30-1(3.52g,24.21mmol)溶于N,N二甲基甲酰胺(20mL)中,待温 度降至0℃,向反应液中加入NaH(1.94g,48.41mmol,60%有效含量)。在氮气保护下,反应液在0℃搅拌0.5小时,向反应液中加入中间体3-1(5g,24.21mmol)。在氮气保护下,反应液在25℃搅拌16小时。反应结束后,向反应液加入水(200mL),使用乙酸乙酯(100mL*2)萃取,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂,残留物经制备柱层析法纯化(石油醚/乙酸乙酯=0~100%;流速:80毫升/分钟)得标题化合物(5g)。
MS m/z(ESI):=316.0[M+H] +
步骤2:4-氨基-1-(2-氯-3-氟苯基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体30-3)的合成
在25℃下,将中间体30-2(5g,15.84mmol)和丙二酸二甲酯(6.28g,47.52mmol)溶于1,2-二氯乙烷(80mL)溶液中,向反应液中加入无水四氯化锡(8.25g,31.68mmol)。在氮气保护下,反应液在70℃搅拌16小时。反应结束后,向反应液加入饱和碳酸氢钠(200mL),使用乙酸乙酯(500mL*2)萃取,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂,残留物经制备柱层析法纯化(石油醚/乙酸乙酯=0~100%;流速:60毫升/分钟)得标题化合物(1.56g)。
MS m/z(ESI):=415.9[M+H] +
步骤3:4-氯-1-(2-氯-3-氟苯基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体30-4)的合成
在25℃时,将中间体30-3(1g,2.41mmol)加入到无水乙腈(15mL)中,向反应液中加入亚硝酸叔丁酯(1.24g,12.03mmol),待温度降至0℃,向反应液中加入氯化铜(646.83mg,4.81mmol),反应液在氮气条件下50℃反应16小时。反应结束后,向反应液加入水(200mL),使用乙酸乙酯(100mL*2)萃取,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂。残留物经制备柱层析法纯化(石油醚/乙酸乙酯=0~40%;流速:60毫升/分钟)得标题化合物(900mg)。
MS m/z(ESI):=434.7[M+H] +
步骤4:1-(2-氯-3-氟苯基)-4-(甲基氨基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体30-5)的合成
在25℃下,将中间体30-4(500mg,1.15mmol)溶于无水四氢呋喃(5mL)中,向反应液中加入甲胺的乙醇溶液(2.16g,22.98mmol,33%有效含量)。在氮气保护下,反应液在20℃搅拌0.5小时。反应结束后,待温度降至25℃,有机相经减压浓缩除去溶剂得标题化合物(472mg)。
MS m/z(ESI):=430.0[M+H] +
步骤5:1-(2-氯-3-氟苯基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物30)的合成
在25℃下,将中间体30-5(235mg,546.83μmol)溶于无水甲醇(2mL)中,向反应液中加入一水合氢氧化锂(688.40mg,16.40mmol)。在氮气保护下,反应液在50℃搅拌16小时。反应结束后。待温度降至25℃,加入水(200mL),使用乙酸乙酯(50mL*2)萃取,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂,残留物经制备高效液相色谱法纯化(柱子:Waters Xbridge BEH C18 100*25mm*5um;流动相:A:水(0.025%甲酸);B:乙腈,22%-42%;12分钟)得标题化合物(21.2mg,消旋体)。
MS m/z(ESI):=372.0[M+H] +
1H NMR(400MHz,Methanol-d 4)δ8.60(d,J=8.3Hz,1H),7.69(d,J=8.3Hz,1H),7.56-7.47(m,1H),7.45-7.36(m,1H),7.23(d,J=7.8Hz,1H),5.72(s,1H),3.04(s,4H).
化合物30(140mg)经制备超临界流体色谱法纯化(柱子:DAICEL CHIRALPAK AD(250mm*30mm,10um);流动相:A:二氧化碳;B:35%异丙醇(0.1%氨水);流速:70毫升/分钟)得化合物30 Isomer 1(29.5mg,RT:3.683min)和化合物30 Isomer 2(24.2mg,RT:4.924)。
化合物30 Isomer 1:
MS m/z(ESI):=372.0[M+H] +
1H NMR(400MHz,Methanol-d 4)δ8.59(d,J=8.3Hz,1H),7.69(d,J=8.3Hz,1H),7.55-7.49(m,1H),7.47-7.38(m,1H),7.23(d,J=8.0Hz,1H),5.72(s,1H),3.04(s,3H).
化合物30 Isomer 2:
MS m/z(ESI):=372.0[M+H] +
1H NMR(400MHz,Methanol-d 4)δ8.59(d,J=8.0Hz,1H),7.69(d,J=8.3Hz,1H),7.60-7.46(m,1H),7.45-7.39(m,1H),7.23(d,J=8.0Hz,1H),5.72(s,1H),3.04(s,3H).
实施例31、4-(甲基氨基)-7-(三氟甲基)-1-(2-(三氟甲基)吡啶-3-基)-1,8-萘啶-2(1H)-酮(化合物31)
Figure PCTCN2021106347-appb-000074
步骤1:6-(三氟甲基)-2-((2-(三氟甲基)吡啶-3-基)氨基)-3-氰基吡啶(中间体31-2)的合成.
在25℃下,将中间体31-1(1.65g,10.17mmol)溶于无水N,N-二甲基甲酰胺(40mL)溶液中,将温度降至0℃,向其中缓慢加入NaH(813.28mg,20.33mmol,60%有效含量),搅拌30分钟后,将中间体3-1(2.1g,10.17mmol)溶于无水N,N-二甲基甲酰胺(10mL)溶液,再加入反应体系中,反应液于氮气保护下25℃搅拌反应16小时。反应结束后,向反应液中加入乙酸乙酯(50mL)和水(100mL),用乙酸乙酯溶液(50mL*2)萃取,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂。残留物以制备柱层析法纯化(0~10%乙酸乙酯/石油醚,流速:60毫升/分钟)得标题化合物(2.4g)。
MS m/z(ESI):=332.9[M+H] +
步骤2:4-氨基-2-氧代-7-(三氟甲基)-1-(2-(三氟甲基)吡啶-3-基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体31-3)的合成.
在20℃下,将中间体31-2(2.4g,7.22mmol)溶于1,2-二氯乙烷(30mL)溶液中,将温度降至0℃,向其中缓慢加入无水四氯化锡(3.76g,14.45mmol)和丙二酸二甲酯(2.86g,21.67mmol)。在氮气保护下,反应液在70℃搅拌反应16小时。反应结束后,用饱和碳酸氢钠(30mL)淬灭,向反应液中加入二氯甲烷(50mL)和水(100mL),使用二氯甲烷(50mL*2)萃取,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂。残留物以制备柱色谱法纯化(0~100%乙酸乙酯/石油醚,流速:60毫升/分钟)得标题化合物(1.35g)。
MS m/z(ESI):=433.0[M+H] +
步骤3:4-氯-2-氧代-7-(三氟甲基)-1-(2-(三氟甲基)吡啶-3-基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体31-4)的合成.
在20℃下,将中间体31-3(1g,2.31mmol)溶于乙腈(12mL)溶液中,将温度降至0℃,向其中缓慢加入亚硝酸叔丁酯(1.07g,10.41mmol)和氯化铜(622.07mg,4.63mmol)。在氮 气保护下,反应液在20℃搅拌反应16小时。反应结束后,向反应液中加入乙酸乙酯(30mL)和水(60mL),使用乙酸乙酯(30mL*2)萃取,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂。残留物以制备薄层色谱法纯化(0~30%乙酸乙酯/石油醚,流速:60毫升/分钟)得标题化合物(900mg)。
MS m/z(ESI):=452.0[M+H] +
步骤4:甲基4-(甲基氨基)-2-氧代-7-(三氟甲基)-1-(2-(三氟甲基)吡啶-3-基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体31-5)的合成.
在20℃下,将中间体31-4(500mg,1.11mmol)溶于四氢呋喃(5mL)溶液中,向其中加入甲胺的乙醇溶液(5.21g,55.35mmol,33%有效含量)。在氮气保护下,反应液在20℃搅拌反应3小时。反应结束后,有机相经减压浓缩除去溶剂。残留物以制备薄层色谱法纯化(乙酸乙酯100%)得标题化合物(310mg)。
MS m/z(ESI):=447.1[M+H] +
步骤5:4-(甲基氨基)-7-(三氟甲基)-1-(2-(三氟甲基)吡啶-3-基)-1,8-萘啶-2(1H)-酮(化合物31)的合成.
在20℃下,将中间体31-5(150mg,336.09μmol)溶于无水甲醇(5mL)溶液中,将一水合氢氧化锂(423.11mg,10.08mmol)溶于水(5mL)加入反应液中。在氮气保护下,反应液在20℃搅拌反应16小时。向反应液中加入二氯甲烷(20mL)和水(40mL),使用二氯甲烷(20mL)萃取2次,合并有机相,用无水硫酸钠干燥。过滤后,有机相经减压浓缩除去溶剂。得标题化合物(5.0mg)。
1H NMR(400MHz,Methanol-d 4)δ8.83(d,J=3.8Hz,1H),8.61(d,J=8.3Hz,1H),7.96-7.92(m,1H),7.89-7.85(m,1H),7.69(d,J=8.0Hz,1H),5.71(s,1H),3.04(s,3H).
MS m/z(ESI):=389.0[M+H] +
化合物31(30mg)经过制备超临界流体色谱分离纯化(柱子:DAICEL CHIRALPAK AD(250mm*30mm,10um);流动相:A:二氧化碳;B:乙醇(0.1%氨水);B%:30%-30%;流速:70毫升/分钟),得到化合物31 Isomer 1(6.8mg,RT:2.752min)和化合物31 Isomer 2(6.4mg,RT:3.579min).
化合物31 Isomer 1:
1H NMR(400MHz,Methanol-d 4)δ=8.83(d,J=4.3Hz,1H),8.61(d,J=8.0Hz,1H),7.97-7.92(m,1H),7.90-7.84(m,1H),7.69(d,J=8.3Hz,1H),5.71(s,1H),3.04(s,3H)
MS m/z(ESI):=389.1[M+H] +
化合物31 Isomer 2:
1H NMR(400MHz,Methanol-d 4)δ=8.83(d,J=3.8Hz,1H),8.61(d,J=8.3Hz,1H),7.97-7.91(m,1H),7.90-7.84(m,1H),7.69(d,J=8.3Hz,1H),5.71(s,1H),3.04(s,3H)
MS m/z(ESI):=389.1[M+H] +
实施例32、1-(2-环丙基吡啶-3-基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物32)
Figure PCTCN2021106347-appb-000075
步骤1:2-环丙基-3-硝基吡啶(中间体32-2)的合成
将反应物32-1(5g,31.54mmol)和环丙基硼酸(4.06g,47.31mmol)溶于二氧六环(80mL)中,25℃氮气保护下加入PdCl 2(dppf)(1.15g,1.58mmol),磷酸钾(13.39g,63.07mmol)和水(20mL),反应液于90℃氮气保护下搅拌反应16小时。反应结束后,反应液用水(100mL)稀释,乙酸乙酯(200mL*3次)萃取,有机相减压浓缩残余物经柱层析纯化(
Figure PCTCN2021106347-appb-000076
120g
Figure PCTCN2021106347-appb-000077
Silica Flash Column,梯度0~2%乙酸乙酯/石油醚@100mL/min)得标题化合物(2.24g)。
MS m/z(ESI):=165.0[M+H] +
步骤2:2-环丙基吡啶-3-胺(中间体32-3)的合成
将中间体32-2(2.24g,13.65mmol)溶于甲醇(40mL)中,25℃下加入氯化铵(7.30g,136.45mmol),铁粉(3.81g,68.23mmol)和水(10mL),反应液于50℃氮气保护下搅拌反应16小时。25℃下补加铁粉(3.81g,68.23mmol),反应液于80℃氮气保护下搅拌反应6小时。反应结束后,反应液过滤,减压浓缩除去甲醇,乙酸乙酯(200mL*3次)萃取,有机相减压浓缩得标题化合物(1.19g)。
1H NMR(400MHz,DMSO-d 6)δ=7.67(s,1H),6.92-6.79(m,2H),5.15(s,2H),2.06(s,1H),0.88-0.77(m,4H)
步骤3:2-((2-环丙基吡啶-3-基)氨基)-6-(三氟甲基)-3-氰基吡啶(中间体32-4)的合成
将中间体32-3(1.19g,8.87mmol)溶于N,N-二甲基甲酰胺(30mL)中。反应液于0℃氮 气保护下加入氢化钠(709.44mg,17.74mmol,60%有效含量),并搅拌30分钟。反应液于0℃加入中间体3-1(1.83g,8.87mmol),20℃下搅拌反应16小时。反应结束后,反应液用水50mL淬灭,乙酸乙酯萃取(100mL*3次),有机相减压浓缩,残余物经柱层析纯化(
Figure PCTCN2021106347-appb-000078
40g
Figure PCTCN2021106347-appb-000079
Silica Flash Column,梯度0~12%乙酸乙酯/石油醚@100mL/min)得标题化合物(1.03g)。
MS m/z(ESI):=305.2[M+H] +
步骤4:4-氨基-1-(2-环丙基吡啶-3-基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体32-5)的制备
将中间体32-4(980mg,3.22mmol)和丙二酸二甲酯(1.28g,9.66mmol,1.11mL)溶于二氯乙烷(19mL)中。反应液于25℃氮气保护下,加入四氯化锡(1.68g,6.44mmol,752.55uL)。反应液于70℃下搅拌反应16小时。反应结束后,反应液用水(30mL)稀释,乙酸乙酯萃取(50mL*3次),有机相减压浓缩,残余物经柱层析纯化(
Figure PCTCN2021106347-appb-000080
40g
Figure PCTCN2021106347-appb-000081
Silica Flash Column,梯度0~7%甲醇/二氯甲烷@100mL/min)得标题化合物(1.13g)。
MS m/z(ESI):=405.2[M+H] +
步骤5:4-氯-1-(2-环丙基吡啶-3-基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体32-6)的制备
将中间体32-5(1.13g,2.79mmol)溶于乙腈(19mL)中。反应液于0℃氮气保护下加入亚硝酸叔丁酯(1.30g,12.58mmol,1.50mL)和氯化铜(751.50mg,5.59mmol)。反应液于25℃下,搅拌反应16小时。反应结束后,反应液减压浓缩除去乙腈,用水(20mL)稀释,乙酸乙酯萃取(20mL*3次),有机相减压浓缩,残余物经柱层析纯化(
Figure PCTCN2021106347-appb-000082
40g
Figure PCTCN2021106347-appb-000083
Silica Flash Column,梯度0~21~56~94%四氢呋喃/石油醚@100mL/min)得标题化合物(1.12g)。
MS m/z(ESI):=424.1[M+H] +
步骤6:1-(2-环丙基吡啶-3-基)-4-(甲基氨基)-2-氧代-7-(三氟甲基)-1,2-二氢-1,8-萘啶-3-甲酸甲酯(中间体32-7)的制备
将中间体32-6(500mg,1.18mmol)溶于四氢呋喃(5mL)中。反应液于25℃氮气保护下,加入甲胺乙醇溶液(1.11g,11.80mmol,33%含量)。反应液于25℃下搅拌反应0.5小时。反应结束后,反应液减压浓缩得标题化合物(587mg)。
MS m/z(ESI):=419.0[M+H] +
步骤7:1-(2-环丙基吡啶-3-基)-4-(甲基氨基)-7-(三氟甲基)-1,8-萘啶-2(1H)-酮(化合物32)的制备
将中间体32-7(300mg,717.07μmol)溶于甲醇(5mL)中,25℃下加入一水合氢氧化锂(902.73mg,21.51mmol)和水(2.5mL)。25℃下搅拌反应16小时。反应结束后,反应液用水(30mL)稀释,乙酸乙酯萃取(30mL*3次),有机相减压浓缩,得粗品标题化合物260mg。140mg粗品标题化合物再进一步经高效液相色谱纯化(柱子:YMC-Actus Triart C18 150*30mm*5um;流动相:[A:水(氨水),B:乙腈];B%:37%-57%,11分钟)得标题化合物(8.5mg)。
1H NMR(400MHz,DMSO-d 6)δ=8.70(d,J=8.2Hz,1H),8.46(dd,J=1.4,4.7Hz,1H),7.78(d,J=8.2Hz,1H),7.66(d,J=4.6Hz,1H),7.56(dd,J=1.5,7.8Hz,1H),7.27(dd,J=4.8,7.8Hz,1H),5.59(s,1H),2.90(d,J=4.5Hz,3H),1.56-1.41(m,1H),1.08-0.97(m,1H),0.76-0.66(m,2H),0.61-0.51(m,1H)
MS m/z(ESI):=361.1[M+H] +
化合物32(110mg)经制备超临界流体色谱分离纯化(柱子:DAICEL CHIRALPAK AD(250mm*30mm,10um);流动相:[A:二氧化碳,B:乙醇(0.1%氨水)];B%:30%-30%)得化合物32 Isomer 1粗品(29.1mg)和化合物32 Isomer 2粗品(22.3mg)。两个异构体粗品再进一步经高效液相色谱纯化(柱子:YMC-Actus Triart C18 150*30mm*5um;流动相:[A:水(氨水),B:乙腈];B%:35%-55%,11分钟)分别得标题化合物化合物32 Isomer 1(9.8mg,RT:3.211min)和化合物32 Isomer 2(8.3mg,RT:3.833min)。
1H NMR(400MHz,DMSO-d 6)δ8.70(d,J=8.0Hz,1H),8.46(dd,J=1.5,4.8Hz,1H),7.78(d,J=8.0Hz,1H),7.67(d,J=4.5Hz,1H),7.56(dd,J=1.5,7.8Hz,1H),7.27(dd,J=4.8,7.8Hz,1H),5.59(s,1H),2.90(d,J=4.5Hz,3H),1.57-1.42(m,1H),1.09-0.97(m,1H),0.77-0.64(m,2H),0.62-0.51(m,1H)
MS m/z(ESI):=361.1[M+H] +
1H NMR(400MHz,DMSO-d 6)δ8.70(d,J=8.0Hz,1H),8.46(dd,J=1.4,4.6Hz,1H),7.78(d,J=8.3Hz,1H),7.67(d,J=4.5Hz,1H),7.56(dd,J=1.4,7.9Hz,1H),7.27(dd,J=4.8,7.8Hz,1H),5.59(s,1H),2.90(d,J=4.5Hz,3H),1.54-1.44(m,1H),1.07-0.97(m,1H),0.76-0.65(m,2H),0.61-0.50(m,1H)
MS m/z(ESI):=361.1[M+H] +
生物学活性及相关性质测试例
测试例1、生物化学测试
试验原理简介:L-甲硫氨酸和ATP能够在MAT2A酶催化条件下转化为SAM、无机磷酸盐和无机二磷酸盐。通过向酶促反应混合物中加入显色剂,如钼酸铵等,可以定量地检测样 品中无机磷酸盐的含量,进而反应MAT2A的酶活性。
材料:MAT2A筛选试剂盒购于BPS bioscience公司(美国);384孔板购于康宁公司(美国)。
1.MAT2a蛋白(康龙化成(北京)新药技术股份有限公司)
2.L-甲硫氨酸(Sigma#M9625-5G)
3.ATP(Sigma#A7699-1G)
4.KCL(Sigma#60142-500ML-F)
5.Tris(Sigma#T2663-1L)
6.MgCl 2(Sigma#M1028)
7.EDTA(Invitrogen#AM9260G)
8.BSA(Sangon Biotech#A500023-0100)
9.PiColorLock(abcam#ab270004)。
检测方法:DMSO溶解化合物,利用Echo将化合物稀释至终浓度10μM,3倍稀释,并转移80nL至384孔板中。
配置实验缓冲液(50mM Tris,50mM KCl,15mM MgCl 2,100μM EDTA,0.005%BSA)。用实验缓冲液稀释MAT2a蛋白(终浓度为4μg/mL)。于384孔板中加入40μL 2X的MAT2a溶液,1000rpm离心1分钟,常温孵育120分钟。
用实验缓冲液稀释L-甲硫氨酸和ATP(L-甲硫氨酸终浓度为200μM,ATP终浓度为400μM)。加入40μL 2X的L-甲硫氨酸和ATP溶液启动反应,1000rpm离心1分钟,常温孵育90分钟。
按照说明书将PiColorLock TM反应催化剂与PiColorLock TM缓冲液1:100混匀,每孔加入20μL后振荡30秒。加入8μL稳定试剂,振荡30秒。常温孵育30分钟后检测信号值。
数据分析:
计算%Compound inhibition并拟合得到化合物的IC 50
%Compound inhibition=(100-100*(Signal-Bottom)/(Top-Bottom))%
实验结果:
在本实验条件下,待测化合物对MAT2A的抑制作用可以用对酶促反应过程中磷酸产生水平抑制的IC 50值表示。待测化合物的MAT2A抑制活性具体见表1。
表1
Figure PCTCN2021106347-appb-000084
Figure PCTCN2021106347-appb-000085
Figure PCTCN2021106347-appb-000086
测试例2、人结肠癌HCT116细胞增殖抑制试验
试验原理简介:将待测MAT2A抑制剂与癌细胞共孵育一段时间后,采用基于ATP含量的细胞增殖计数方法来测量待测化合物对细胞增殖的影响。
材料与细胞:HCT116 WT细胞和HCT116 MTAP -/-细胞购于康源博创;胎牛血清、McCoy's 5a培养基和青霉素-链霉素购于Gibco公司(美国),96孔板购于康宁公司(美国),Cell-Titer Glo试剂购于普洛麦格公司(美国)。
细胞培养:HCT116 WT细胞和HCT116 MTAP -/-细胞均用含10%胎牛血清+1%青霉素-链霉素的McCoy's 5a培养液于37℃、5%CO 2条件下培养。处于对数生长期细胞方可用于实验。
细胞增殖活性检测:利用Cell-Titer Glo试剂检测化合物对HCT116 WT和HCT116 MTAP -/-两细胞株增殖的抑制活性。调整细胞浓度为每孔400个,接种96孔板,置于37℃、5%CO 2条件下培养过夜。
DMSO溶解化合物,依次用DMSO和培养基稀释化合物并转移至细胞板中,终浓度为10μM,3倍稀释。置于37℃、5%CO 2条件下继续培养6天。加入Cell-Titer Glo试剂,检测细胞活性。
数据分析:
计算%Compound inhibition并拟合得到化合物的IC 50
%Compound inhibition=1-100%*(Signal-Bottom)/(Top-Bottom)
实验结果如表2所示。
表2
Figure PCTCN2021106347-appb-000087
Figure PCTCN2021106347-appb-000088
化合物28、29、30、31等对于HCT116 MTAP-/-细胞(MTAP缺失的肿瘤细胞)抗增殖活性好,能够预期本发明化合物对MTAP缺失的肿瘤具有治疗效果,同时具备良好的选择性和低的副作用。

Claims (15)

  1. 一种式(I)所示化合物或其药学上可接受的盐:
    Figure PCTCN2021106347-appb-100001
    其中,
    L 1选自N或O;
    当L 1选自N时,R 1选自H或任选被R 1a取代的以下基团:C 1-C 10烷基、C 3-C 10环烷基、3-10元杂环基、C 6-C 10芳基、5-10元杂芳基,R 2选自任选被R 2a取代的以下基团:C 1-C 10烷基、C 3-C 10环烷基、3-10元杂环基、C 6-C 10芳基、5-10元杂芳基,或者R 1、R 2及其连接的N原子共同形成4-7元杂环基,所述4-7元杂环基任选被R 1a取代;
    当L 1选自O时,R 2不存在,且R 1选自任选被R 1a取代的以下基团:C 1-C 10烷基、C 3-C 10环烷基、3-10元杂环基、C 6-C 10芳基、5-10元杂芳基;
    L 2选自化学键、NH或O;
    R 3选自卤素或任选被R 3a取代的以下基团:C 1-C 10烷基、C 3-C 10环烷基、3-10元杂环基;
    X 1、X 3选自N或者CH;
    X 2选自N或者CR 4
    Y选自O或S,且当X 2为N时,Y仅选自S;
    R 4选自H、卤素、OH、CN、COOH或任选被R 4a取代的以下基团:C 1-C 10烷基、C(=O)-O-(C 1-C 6烷基)、C(=O)-NH(C 1-C 6烷基)、C(=O)-N(C 1-C 6烷基) 2、C 3-C 10环烷基、3-10元杂环基、C 1-C 10烷氧基、C 3-C 10环烷基氧基、3-10元杂环基氧基、C 6-C 10芳基、5-10元杂芳基、C 6-C 10芳基氧基、5-10元杂芳基氧基、C 2-C 10烯基、C 2-C 10炔基;
    环Q选自C 6-C 10芳基或5-10元杂芳基,所述C 6-C 10芳基或5-10元杂芳基任选被R 5取代;
    R 5选自卤素、=O、OH、CN或任选被R 5a取代的下列基团:NH 2、C 1-C 10烷基、C 3-C 10环烷基、C 1-C 10烷氧基、C 3-C 10环烷基氧基、3-10元杂环基氧基;
    每一个R 1a、R 2a、R 3a、R 4a、R 5a独立地选自氘、F、Cl、Br、I、OH、CN、=O或任选被R b取代的下列基团:NH 2、C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基、C 1-C 6烷氧基、C 3-C 6环 烷基氧基、4-7元杂环基氧基、C 2-C 6烯基、C 2-C 6炔基、C 6-C 10芳基、5-10元杂芳基、C 6-C 10芳基氧基、5-10元杂芳基氧基;
    每一个R b独立地选自F、Cl、Br、I、OH、CN、=O、NH 2、SH、C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基、C 6-C 10芳基或5-10元杂芳基;
    条件是,式(I)所示化合物不包含
    Figure PCTCN2021106347-appb-100002
  2. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,L 1选自N,R 1选自H或任选被R 1a取代的C 1-C 6烷基,R 2选自任选被R 2a取代的以下基团:C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基,或者R 1、R 2及其连接的N原子共同形成氮杂环丁烷基或吡咯烷基,所述氮杂环丁烷基或吡咯烷基任选被R 1a取代。
  3. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,L 1选自N,R 1选自H或甲基,R 2选自甲基、CD 3
    Figure PCTCN2021106347-appb-100003
    环丙基、
    Figure PCTCN2021106347-appb-100004
    或者R 1、R 2及其连接的N原子共同形成
    Figure PCTCN2021106347-appb-100005
  4. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,R 3选自卤素或任选被R 3a取代的C 1-C 3烷基。
  5. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,结构单元
    Figure PCTCN2021106347-appb-100006
    选自Cl、CF 3或OCH 2CH 3
  6. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,当X 2选自N时,Y选自S,当X 2选自CR 4时,Y选自O。
  7. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,R 4选自H、F、Cl、Br、I、CN、COOH或任选被R 4a取代的以下基团:C 1-C 3烷基、C(=O)-O-(C 1-C 4烷基)、CONHMe、环丙基、4-6元杂环基、C 1-C 3烷氧基、环丙基氧基、5-6元杂芳基、9元杂芳基。
  8. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,R 4选自H、F、Br、CN、COOMe、CONHMe、
    Figure PCTCN2021106347-appb-100007
    环丙基、甲氧基、环丙基氧基、
    Figure PCTCN2021106347-appb-100008
    Figure PCTCN2021106347-appb-100009
  9. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,环Q选自苯基或吡啶基,所述苯基或吡啶基任选被R 5取代。
  10. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,R 5选自卤素、CN或任选被R 5a取代的下列基团:C 1-C 6烷基、C 3-C 6环烷基、4-7元杂环基、C 1-C 6烷氧基、C 3-C 6环烷基氧基、4-7元杂环基氧基。
  11. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,环Q选自
    Figure PCTCN2021106347-appb-100010
  12. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其特征在于,式(I)所示化合物或其药学上可接受的盐选自式(II)所示化合物或其药学上可接受的盐:
    Figure PCTCN2021106347-appb-100011
    其中,R 1、R 2、R 3、R 4、X 1、L 2和环Q如权利要求1定义。
  13. 根据权利要求1所述的式(I)所示化合物或其药学上可接受的盐,其中化合物选自如下结构之一:
    Figure PCTCN2021106347-appb-100012
    Figure PCTCN2021106347-appb-100013
    Figure PCTCN2021106347-appb-100014
  14. 一种药物组合物,所述组合物包含权利要求1至13任一项的化合物或其药学上可接受的盐,以及药学上可接受的辅料。
  15. 权利要求1至13任一项的化合物或其药学上可接受的盐、或权利要求14所述的药物组合物在制备预防或者治疗MTAP缺失的肿瘤的药物中的用途。
PCT/CN2021/106347 2020-07-14 2021-07-14 双环类化合物 WO2021254529A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180060895.6A CN116406271A (zh) 2020-07-14 2021-07-14 双环类化合物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010676114.3 2020-07-14
CN202010676114 2020-07-14
CN202110054406.8 2021-01-15
CN202110054406 2021-01-15
CN202110174940.2 2021-02-09
CN202110174940 2021-02-09

Publications (1)

Publication Number Publication Date
WO2021254529A1 true WO2021254529A1 (zh) 2021-12-23

Family

ID=79268514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106347 WO2021254529A1 (zh) 2020-07-14 2021-07-14 双环类化合物

Country Status (2)

Country Link
CN (1) CN116406271A (zh)
WO (1) WO2021254529A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349690A (zh) * 2022-02-15 2022-04-15 甘肃皓天医药科技有限责任公司 一种多拉韦林中间体合成方法
WO2022222911A1 (zh) * 2021-04-19 2022-10-27 武汉人福创新药物研发中心有限公司 嘧啶酮化合物及其用途
WO2022228515A1 (zh) * 2021-04-30 2022-11-03 赛诺哈勃药业(成都)有限公司 甲硫氨酸腺苷转移酶抑制剂、其制备方法及应用
WO2023185811A1 (zh) * 2022-03-29 2023-10-05 首药控股(北京)股份有限公司 一种新型杂环化合物
WO2024067433A1 (zh) * 2022-09-26 2024-04-04 上海湃隆生物科技有限公司 新型prmt5抑制剂及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB988776A (en) * 1960-08-10 1965-04-14 Geigy Ag J R Process for the production of new carbostyril derivatives
CN101516853A (zh) * 2006-09-29 2009-08-26 泰博特克药品有限公司 喹啉酮衍生物
WO2014079232A1 (zh) * 2012-11-22 2014-05-30 中国科学院广州生物医药与健康研究院 7-氧代吡啶并嘧啶类化合物及其药用组合物和应用
WO2020123395A1 (en) * 2018-12-10 2020-06-18 Ideaya Biosciences, Inc. 2-oxoquinazoline derivatives as methionine adenosyltransferase 2a inhibitors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB988776A (en) * 1960-08-10 1965-04-14 Geigy Ag J R Process for the production of new carbostyril derivatives
CN101516853A (zh) * 2006-09-29 2009-08-26 泰博特克药品有限公司 喹啉酮衍生物
WO2014079232A1 (zh) * 2012-11-22 2014-05-30 中国科学院广州生物医药与健康研究院 7-氧代吡啶并嘧啶类化合物及其药用组合物和应用
WO2020123395A1 (en) * 2018-12-10 2020-06-18 Ideaya Biosciences, Inc. 2-oxoquinazoline derivatives as methionine adenosyltransferase 2a inhibitors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222911A1 (zh) * 2021-04-19 2022-10-27 武汉人福创新药物研发中心有限公司 嘧啶酮化合物及其用途
WO2022228515A1 (zh) * 2021-04-30 2022-11-03 赛诺哈勃药业(成都)有限公司 甲硫氨酸腺苷转移酶抑制剂、其制备方法及应用
CN114349690A (zh) * 2022-02-15 2022-04-15 甘肃皓天医药科技有限责任公司 一种多拉韦林中间体合成方法
WO2023185811A1 (zh) * 2022-03-29 2023-10-05 首药控股(北京)股份有限公司 一种新型杂环化合物
WO2024067433A1 (zh) * 2022-09-26 2024-04-04 上海湃隆生物科技有限公司 新型prmt5抑制剂及其应用

Also Published As

Publication number Publication date
CN116406271A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2021254529A1 (zh) 双环类化合物
US8003662B2 (en) Heterobicyclic thiophene compounds and methods of use
US8741911B2 (en) Raf inhibitor compounds
TW202110841A (zh) Mat2a之雜雙環抑制劑及用於治療癌症之使用方法
TW200829594A (en) Phosphoinositide 3-kinase inhibitor compounds and methods of use
SG176781A1 (en) Janus kinase inhibitor compounds and methods
WO2021139775A1 (zh) 吡啶酮化合物及应用
WO2013185353A1 (en) Compound as wnt signaling inhibitor, composition, and use thereof
WO2013170770A1 (zh) 具有抗肿瘤活性的乙炔衍生物
TW201927792A (zh) 作為溴結構域蛋白質抑制劑的化合物和組合物
CN107207467A (zh) 作为parg的抑制剂的2,4‑二氧代‑喹唑啉‑6磺酰胺衍生物
TW202039490A (zh) Mat2a之雜雙環抑制劑及用於治療癌症之使用方法
US11858938B2 (en) Imidazo-fused heterocycles and uses thereof
WO2015058661A1 (zh) Bcr-abl激酶抑制剂及其应用
KR101905295B1 (ko) 나프티리딘디온 유도체
CN109956928A (zh) 吡啶类化合物、其制备方法及用途
WO2020215998A1 (zh) 嘧啶并五元杂环类化合物及其作为突变型idh2抑制剂的用途
CN114874207A (zh) 作为mat2a抑制剂的双环类化合物
WO2018228275A1 (zh) 作为mnk抑制剂的杂环化合物
EP3999057A1 (en) Polyaromatic urea derivatives and their use in the treatment of muscle diseases
WO2023036252A1 (zh) 吡咯并嘧啶类或吡咯并吡啶类衍生物及其医药用途
WO2022078403A1 (zh) 取代的吡啶酮化合物及应用
WO2015120737A1 (zh) 取代的吡啶并嘧啶化合物及其制备方法和应用
WO2022171088A1 (zh) 吡唑并[3,4-d]嘧啶-3-酮衍生物
CN115916756A (zh) 砜衍生物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825135

Country of ref document: EP

Kind code of ref document: A1