WO2021254486A1 - 工程机械的转弯控制方法、工程机械和计算机设备 - Google Patents

工程机械的转弯控制方法、工程机械和计算机设备 Download PDF

Info

Publication number
WO2021254486A1
WO2021254486A1 PCT/CN2021/100934 CN2021100934W WO2021254486A1 WO 2021254486 A1 WO2021254486 A1 WO 2021254486A1 CN 2021100934 W CN2021100934 W CN 2021100934W WO 2021254486 A1 WO2021254486 A1 WO 2021254486A1
Authority
WO
WIPO (PCT)
Prior art keywords
turning
curve
angle
construction machine
type
Prior art date
Application number
PCT/CN2021/100934
Other languages
English (en)
French (fr)
Inventor
刘吉安
贾干
杜斌
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Publication of WO2021254486A1 publication Critical patent/WO2021254486A1/zh
Priority to US17/584,700 priority Critical patent/US20220147047A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0025Planning or execution of driving tasks specially adapted for specific operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/001Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits the torque NOT being among the input parameters
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/26Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/26Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles
    • E01C19/262Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles pedestrian-controlled, e.g. with safety arrangements for operator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators

Definitions

  • the present disclosure relates to the technical field of turning control, and in particular, to a turning control method of engineering machinery, engineering machinery and computer equipment.
  • construction machinery often needs to perform operations such as turning, turning around, and changing lanes in a local area, and the operation frequency is high, and a large number of repeated operations are required.
  • Some existing construction machinery adopts the method of installing an automatic turning operating system to control the construction machinery to perform automatic turning instead of manual operation, reduce repetitive operations, and improve operation efficiency.
  • in-situ steering is not allowed during the turning process.
  • the automatic turning operating system and method in the prior art has the phenomenon of turning in place when turning, which will affect the quality and accuracy of the construction road surface, and does not meet the requirements of road construction, and the existing automatic turning operating system and method
  • the error of is relatively large and cannot be applied to turning operations with high-precision requirements, and the path planning scene is relatively single, and the scope of application is small.
  • embodiments of the present disclosure provide a turning control method for construction machinery, a turning control device for construction machinery, construction machinery, and computer equipment.
  • the embodiments of the present disclosure provide a turning control method for construction machinery.
  • the turning control method includes: obtaining position information and kinematic parameters of the starting position and target position of the construction machine; determining the turning curve according to the position information and kinematic parameters; and controlling the construction machine to drive from the starting position to the target position according to the turning curve
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching time required for the construction machinery to switch from the straight state to the minimum turning radius state.
  • the part where the curvature of the turning curve changes is the relaxation curve.
  • the start and end positions of the turning process are determined by obtaining the position information of the starting position and the target position of the construction machine; by obtaining the kinematic parameters of the construction machine, including the minimum turning radius of the construction machine , Rotation speed and the switching time required for the construction machinery to switch from the straight state to the minimum turning radius state, so that the turning curve line can be determined in the subsequent steps.
  • the turning curve of the turning process can be determined by mathematical calculation. Curves with continuously changing curvatures set between the curves) to ensure that there are no points with sudden curvature changes in the turning curve.
  • the turning curve by controlling the construction machinery to drive from the starting position to the target position, the curvature of the construction machinery can be continuously changed during the entire turning process, and there is no phenomenon of turning in place, especially for road construction machinery such as road rollers. Causing damage to the construction road surface is conducive to controlling the quality and construction accuracy of the construction road surface, and reducing errors in the turning process.
  • the turning control method of construction machinery in this scheme is suitable for turning operations in the process of approaching, turning, changing lanes and position adjustment, and has a wide range of applications.
  • the part where the curvature remains unchanged also includes a straight line or a circular arc line in the turning curve.
  • the construction object is the pavement that has completed the paving operation, and the road surface is not completely solidified. If the road roller performs in-situ steering operation, the road surface will be deformed under the action of the friction of the wheels. , Affecting the quality of construction operations.
  • the turning control method of construction machinery in this scheme can effectively alleviate the above problems.
  • determining the turning curve according to position information and kinematic parameters includes: determining the first angle and the first distance between the target position and the extension line of the starting position according to the position information; Establish a curve model based on the minimum turning radius, turning speed and switching time; determine the curve type of the turning line according to the first distance; and determine the turning line according to the first angle, curve type, and curve model, where the first angle is the turning of the construction machinery Complementary angle of the angle, the curve type is determined from a variety of different types according to whether the construction machinery needs to travel in a straight line.
  • the curve model is used to calculate the turning curve of the construction machinery from the starting position to the target position.
  • the first angle and the first distance between the target position and the extension line of the starting position are determined according to the position information of the starting position and the target position, as a calculation basis for subsequently determining the turning curve.
  • the first angle is the supplementary angle of the turning angle from the starting position to the target position.
  • a curve model for calculating the turning curve is established to calculate the turning curve from the starting position to the target position.
  • the turning curve includes two transition curves and two circular arc lines. The starting position and the target position are respectively located at the start and end points of the two transition curves.
  • is the turning angle of the easement curve, that is, the deflection angle
  • is the angle turned by the bisector of the first angle from the connection point of the easement curve and the arc line
  • is the first angle
  • ⁇ - ⁇ is The turning angle of the entire turning curve
  • r is the instantaneous turning radius
  • l is the length of the transition curve corresponding to the instantaneous turning radius
  • R is the minimum turning radius
  • L is the length of the transition curve
  • V is the turning speed
  • t is the construction machinery The switching time required to switch from the straight state to the state of turning with the smallest turning radius.
  • the curve type of the turning curve can be divided into many different types according to whether it needs to travel in a straight line.
  • each type of turning curve is different. Specifically, the curve type of the turning curve can be determined according to the size of the first distance. Finally, according to the first angle, curve type and curve model, the curve equation of the turning curve can be calculated, that is, the turning curve can be determined.
  • determining the curve type of the turning curve according to the first distance includes: judging whether the first distance is less than or equal to a distance threshold, and generating a first judgment result; if the first judgment result is yes, then Determine the curve type as the first type; and if the first judgment result is no, determine the curve type as the second type, wherein when the curve type is the first type, the turning curve is used to control the construction machinery to achieve the start position by turning Drive to the target position.
  • the curve type is the second type, the turning curve is used to control the construction machinery to drive from the starting position to the target position through multiple turns and driving in a straight line.
  • the curve types of the turning curve are specifically divided into two types: the first type and the second type.
  • the first type of turning curve can be directly turned from the starting position to the target position without driving in a straight line.
  • the second type of turning curve includes multiple turns and a straight line.
  • the turning curve when the turning curve is the second type, when the turning angle is large enough, it can also be turned directly from the starting position to the target position.
  • the operation path is long and requires a large space, which is not easy to achieve in the actual construction process. , So it is replaced by multiple turns and driving in a straight line to achieve a turn in a smaller range.
  • determining the turning curve according to the first angle, the curve type, and the curve model includes: determining the angle interval in which the first angle is located; if 0° ⁇ If the first angle ⁇ the first angle threshold, the turning point is determined according to the first angle, and the turning curve is determined according to the turning point, the starting position, the target position, and the curve model; if the first angle threshold ⁇ the first angle ⁇ the second Angle threshold, the turning curve is determined according to the curve model; if the second angle threshold ⁇ the first angle ⁇ the third angle threshold, the turning curve is determined according to the curve model through the angle change; if the third angle threshold ⁇ the first angle ⁇ 180°, Then determine the backward steering angle according to the first angle and the first distance, and determine the turning curve according to the backward steering angle and the curve model, where the first angle threshold and the third angle threshold are preset values, and the second angle threshold is the deflection of the easement curve Two times the complementary
  • the angle interval of the first angle is determined to determine different easement curve calculation methods.
  • the minimum turning radius of construction machinery is a fixed value
  • the size of the first angle is different, that is, the size of the turning angle is different, and there are certain differences in the shape and calculation of the easement curve.
  • set three critical values the first angle threshold, the second angle threshold, and the third angle threshold.
  • the first angle threshold is less than the second angle threshold
  • the second angle threshold is less than
  • the third angle threshold is divided into four angle intervals.
  • the first angle threshold and the third angle threshold are preset values, which are determined according to experiment or operating experience
  • the second angle threshold is determined as the deflection angle of the easement curve according to the geometric relationship.
  • the turning angle is large at this time, and the construction machinery cannot drive from the starting position to the target position through a turn.
  • the turning curve can be directly determined according to the curve model.
  • the turning angle is small.
  • the vehicle body axis of the construction machine needs to be turned back to coincide with the vehicle body axis at the target position, and then drive straight along the vehicle body axis to the target position.
  • the backward steering angle is determined according to the size of the first angle
  • the curve of the backward steering part can be determined according to the curve model and the backward steering angle
  • the curve of the backward steering part can be combined with the straight part to determine the total turning curve line.
  • determining the turning curve according to the first angle, the curve type, and the curve model includes: determining the first turning point and the first turning point according to the starting position and the target position. Second turning point; determining the connecting straight line passing through the first turning point and the second turning point; determining the first turning line according to the first angle, starting position, first turning point and curve model; according to the first angle and second turning Point, target position, and curve model to determine the second turning curve; and according to the connecting straight line, the first turning curve and the second turning curve, the turning curve is determined, where the first turning point is when the construction machinery turns from the starting position to the connecting straight line The second turning point is the starting position when the construction machinery turns from the connecting straight line to the target position.
  • the starting position is far from the target position, and it is necessary to go through multiple turns and driving straight to reach the target position.
  • the number of turns is two, and a straight driving process is required between the two turns.
  • the first turning point and the second turning point are determined according to the starting position and the target position, the first turning point is used as the end point of the first turning, and the second turning point is used as the starting point of the second turning. Determine the connecting straight line passing through the first turning point and the second turning point to determine the straight travel path between the two turns.
  • the first angle, the starting position, the first turning point and the curve model the first turning curve of the first turning process can be determined.
  • the first angle, the second turning point, the target position and the curve model can be determined
  • the second turning curve in the second turning process, and then the first turning curve, the connecting straight line, and the second turning curve line are spliced to obtain the total turning curve line from the starting position to the target position.
  • the turning curve is the second type, when the turning angle is large enough, it can also be turned directly from the starting position to the target position.
  • the operation path is long and requires a large space, which is not easy to achieve in the actual construction process. , So it is replaced by multiple turns and driving in a straight line to achieve a turn in a smaller range.
  • determining the first turning curve line according to the first angle, the starting position, the first turning point, and the curve model includes: determining that the vehicle body axis of the construction machine at the starting position is the first straight line Line; determine the first included angle between the first straight line and the connecting straight line; and determine the first turning curve line according to the first included angle and the curve model.
  • the orientation of the construction machine when it is located at the starting position can be determined, and it can be determined that the axis of the vehicle body is the first straight line at this time.
  • determining the second turning curve line according to the first angle, the second turning point, the target position, and the curve model includes: determining that the vehicle body axis when the construction machine is at the target position is the second straight line; and determining A second included angle between the second straight line and the connecting straight line; and the second turning curve is determined according to the second included angle and the curve model.
  • the orientation of the construction machine when it is located at the target position can be determined, and it is determined that the vehicle body axis is the second straight line at this time.
  • the included angle between the second straight line and the connecting straight line, that is, the second included angle the turning path from the second turning point to the target position, that is, the second turning line, is determined according to the curve model and the second included angle, so that There is no sudden curvature in the second turning curve.
  • the length of the curve R is the minimum turning radius
  • L is the length of the transition curve
  • V is the turning speed
  • t is the switching time required for the construction machinery to switch from the straight state to the minimum turning radius.
  • the construction machine is a road construction machine.
  • inventions of the present disclosure provide a turning control device for construction machinery.
  • the turning control device includes: an acquisition module for acquiring position information and kinematics parameters of the starting position and target position of the construction machinery; a determining module for determining the turning line according to the position information and kinematics parameters; and a control module for To control the construction machinery to drive from the starting position to the target position according to the turning curve.
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching required for the construction machinery to switch from the straight state to the minimum turning radius state Over time, the part where the curvature of the turning curve changes is the easing curve.
  • an embodiment of the present disclosure provides an engineering machine.
  • the construction machinery includes: a vehicle body; a detection component connected to the vehicle body for detecting the position information of the vehicle body; a controller, which is arranged in the vehicle body, and is electrically connected to the vehicle body and the detection component to detect The position information of the vehicle body is controlled to drive, wherein the controller is configured to control the vehicle body to turn according to the following steps: obtain the position information and kinematic parameters of the starting position and target position of the construction machinery; determine the turn according to the position information and the kinematic parameters Curve; and according to the turning line to control the construction machinery from the starting position to the target position; the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the construction machinery is required to switch from the straight state to the minimum turning radius state In the switching time, the part where the curvature of the turning curve changes is the relaxation curve.
  • the construction machine includes a vehicle body, a detection component, and a controller.
  • the car body is used to carry various operating mechanisms.
  • the detection component is connected to the car body to detect the position information of the car body, including the start position, the end position, and the coordinate information and angle information of any point on the turning path, as a basis for determining the turning curve.
  • the controller is arranged in the vehicle body and is electrically connected with the vehicle body and the detection component to control the vehicle body to travel according to the position information detected by the detection component.
  • the controller determines the turning line of the vehicle body according to the position information of the starting position and the target position of the vehicle body and the kinematic parameters of the vehicle body, and then controls the turning line of the vehicle body according to the turning line, and then starting Turn from the starting position to the target position.
  • the part where the curvature of the turning curve changes is a gentle curve
  • the part where the curvature remains unchanged is a straight line or a circular arc line, so that the curvature of the car body changes continuously during the turning process, and the phenomenon of turning in place does not occur, especially When the construction machinery is a road construction machine, it can effectively prevent the in-situ turning from causing damage to the construction road surface, so as not to affect the construction quality and accuracy.
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching time required for the construction machinery to switch from the straight state to the state of turning with the minimum turning radius, which are used to calculate the curve equation of the transition curve.
  • the construction machine is an unmanned construction machine.
  • the construction machinery is an unmanned construction machinery, that is, the construction machinery can be operated under the control of the controller. It is not limited to straight driving and turning of the car body, but also includes approaching, turning, and changing lanes. And position adjustment and other operations, as well as the corresponding job operations. Unmanned construction machinery can effectively reduce the manual operation process, reduce the intensity of manual labor, and at the same time can greatly improve the accuracy, precision and construction quality of construction operations. Especially in the process of turning, it can be understood that the accuracy and accuracy of manual operation is low, even if the turning path is planned in advance, it cannot guarantee that the actual driving trajectory can completely match the turning path.
  • the actual driving trajectory is inevitable There will be points where the curvature of the ground changes suddenly, that is, the position where the in-situ turning occurs, which is likely to cause damage to the construction pavement.
  • the unmanned construction machinery in this scheme can accurately control the car body to turn along the planned turning path, which can effectively prevent the phenomenon of turning in place.
  • embodiments of the present disclosure provide a computer device, including a memory, a processor, and a computer program stored in the memory and capable of running in the processor.
  • the processor executes the computer program, the technical solution as described in the first aspect is implemented. Steps of any one of the engineering machinery turning control methods.
  • a computer device is used to store and run a computer program to implement the steps of the engineering machinery turning control method in any one of the above-mentioned technical solutions of the first aspect, so that the engineering machinery realizes a turning operation with continuously changing curvature .
  • the computer equipment in this solution should also have all the beneficial effects of the engineering machinery turning control system in the first aspect of the technical solution, which will not be repeated here.
  • Fig. 1 shows a flowchart of a turning control method for construction machinery according to an embodiment of the present disclosure
  • Fig. 2 shows a flow chart of a turning control method for construction machinery according to an embodiment of the present disclosure
  • Fig. 3 shows a schematic diagram of a curve model according to an embodiment of the present disclosure
  • Fig. 4 shows a flow chart of a turning control method for construction machinery according to an embodiment of the present disclosure
  • Fig. 5 shows a schematic diagram of the correspondence between the position of the construction machine and the curve type according to an embodiment of the present disclosure
  • Fig. 6 shows a flowchart of a turning control method for construction machinery according to an embodiment of the present disclosure
  • Fig. 7 shows a schematic diagram of turning of a construction machine according to an embodiment of the present disclosure
  • Fig. 8 shows a schematic diagram of turning of a construction machine according to an embodiment of the present disclosure
  • Fig. 9 shows a schematic diagram of turning of a construction machine according to an embodiment of the present disclosure.
  • Fig. 10 shows a schematic diagram of turning of a construction machine according to an embodiment of the present disclosure
  • FIG. 11 shows a flowchart of a turning control method of construction machinery according to an embodiment of the present disclosure
  • Fig. 12 shows a schematic diagram of turning of a construction machine according to an embodiment of the present disclosure
  • FIG. 13 shows a schematic diagram of turning of a construction machine according to an embodiment of the present disclosure
  • FIG. 14 shows a flowchart of a turning control method of construction machinery according to an embodiment of the present disclosure
  • FIG. 15 shows a flowchart of a turning control method of construction machinery according to an embodiment of the present disclosure
  • Fig. 16 shows a schematic diagram of turning of a construction machine according to an embodiment of the present disclosure
  • FIG. 17 shows a schematic structural diagram of a control device for construction machinery according to an embodiment of the present disclosure
  • Fig. 18 shows a schematic block diagram of a construction machine according to an embodiment of the present disclosure
  • Fig. 19 shows a schematic block diagram of a computer device according to an embodiment of the present disclosure.
  • FIGS. 1 to 19 a method for controlling turning of a construction machine, a control device, a construction machine, and a computer device according to some embodiments of the present disclosure will be described.
  • Fig. 1 shows a turning control method of a construction machine according to some embodiments of the present disclosure.
  • the turning control method may include the following steps:
  • Step S1000 Obtain position information and kinematic parameters of the starting position and target position of the construction machinery
  • Step S2000 Determine the turning curve according to the position information and the kinematic parameters
  • Step S3000 Control the construction machinery to travel from the starting position to the target position according to the turning curve.
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching time required for the construction machinery to switch from the straight state to the state of turning with the minimum turning radius.
  • the part where the curvature of the turning curve changes is a relaxation curve.
  • step S1000 the position information of the starting position and the target position of the construction machine is obtained to determine the start and end positions of the turning process; at the same time, the kinematic parameters of the construction machine are obtained, including the minimum turning radius of the construction machine , Rotation speed, driving speed, and the switching time required for the construction machinery to switch from a straight state to a state of turning with a minimum turning radius, so as to be used when determining the turning curve in the subsequent steps.
  • step S2000 according to the position information and kinematic parameters of the starting position and the ending position, the turning line of the turning process is determined through mathematical calculation, which is used as a path reference of the engineering machine turning.
  • the part where the curvature of the turning curve changes is a relaxation curve (a curve with continuously changing curvature set between a straight line and a circular curve, and a circular curve and a circular curve) to ensure that there is no point of sudden curvature change in the turning curve.
  • the construction machinery is controlled to drive from the starting position to the target position according to the turning curve, so that the curvature of the construction machinery changes continuously during the entire turning process, and there is no phenomenon of turning in place.
  • the turning control method for construction machinery provided in this embodiment can effectively prevent damage to the construction road surface, especially for road construction machinery such as road rollers, which is beneficial to control the quality and construction accuracy of the construction road surface, reduce errors in the turning process, and is applicable It has a wide range of applications for turning operations in the process of construction machinery approach, transition, lane change and position adjustment.
  • Fig. 2 shows a turning control method of a construction machine according to other embodiments of the present disclosure.
  • the turning control method may include the following steps:
  • Step S1000 Obtain position information and kinematic parameters of the starting position and target position of the construction machinery
  • Step S2100 Determine the first angle and the first distance between the target position and the extension line of the starting position according to the position information
  • Step S2200 Establish a curve model according to the minimum turning radius, turning speed and switching time of the construction machinery
  • Step S2300 Determine the curve type of the turning curve according to the first distance
  • Step S2400 Determine the turning curve according to the first angle, curve type, and curve model
  • Step S3000 Control the construction machinery to travel from the starting position to the target position according to the turning curve.
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching time required for the construction machinery to switch from a straight state to a state of turning with the minimum turning radius (that is, the switching time in S2200).
  • the curvature occurs in the turning curve.
  • the changed part is the transition curve.
  • the first angle is the supplementary angle of the turning angle of the construction machinery.
  • the curve type can be divided into many different types according to whether it needs to travel in a straight line.
  • the curve model can calculate the construction machinery from the starting position to the target position. The turn bend line.
  • the turning control method for construction machinery provided by this embodiment further improves step S2000 on the basis of the embodiment shown in FIG. 1.
  • step S2100 the first angle is determined according to the position information of the starting position and the target position, and the first distance between the target position and the extension line of the starting position is determined, as a calculation basis for subsequently determining the turning curve.
  • the first angle is the supplementary angle of the turning angle from the starting position to the target position.
  • step S2200 according to the kinematic parameters of the construction machine, that is, the minimum turning radius, the turning speed and the switching time, a curve model for calculating the turning curve is established for calculating the turning curve from the starting position to the target position.
  • the curve type of the turning curve can be divided into many different types according to whether it needs to travel in a straight line.
  • the calculation process of each type of turning curve is different.
  • the curve type of the turning curve can be determined according to the size of the first distance.
  • the curve equation of the turning curve can be calculated according to the first angle, the curve type and the curve model, that is, the turning curve is determined.
  • the turning curve is the curve PW, where ⁇ is the turning angle of the transition curve PN, that is, the deflection angle; ⁇ is the connection point N between the transition curve PN and the arc line NQ
  • the angle bisector L1 from the point to the first angle ⁇ turns; ⁇ is the first angle, ⁇ - ⁇ is the turning angle of the entire turning curve PW; R is the minimum turning radius, L is the length of the transition curve, and V is Turning speed, t is the switching time required for the construction machinery to switch from a straight state to a state of turning with a minimum turning radius.
  • the turning curve PW includes two transition curves PN and UW and two arc lines NQ and QU.
  • the starting position P and the target position W are located at the start and end points of the two transition curves, and the two arc lines connect the two transition curves.
  • r is the instantaneous turning radius
  • l is the length of the transition curve corresponding to the instantaneous turning radius.
  • Fig. 4 shows a turning control method of a construction machine according to other embodiments of the present disclosure.
  • the turning control method may include the following steps:
  • Step S1000 Obtain position information and kinematic parameters of the starting position and target position of the construction machinery
  • Step S2100 Determine the first angle and the first distance between the target position and the extension line of the starting position according to the position information
  • Step S2200 Establish a curve model according to the minimum turning radius, turning speed and switching time of the construction machinery
  • Step S2310 Determine whether the first distance is less than or equal to the distance threshold, and generate a first judgment result; if the first judgment result is yes, execute step S2320, if the first judgment result is no, execute step S2330;
  • Step S2320 Determine that the curve type is the first type
  • Step S2330 Determine that the curve type is the second type
  • Step S2400 Determine the turning curve according to the first angle, curve type, and curve model
  • Step S3000 Control the construction machinery to travel from the starting position to the target position according to the turning curve.
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching time required for the construction machinery to switch from a straight state to a state of turning with the minimum turning radius (that is, the switching time in S2200).
  • the curvature occurs in the turning curve.
  • the changed part is the transition curve.
  • the first angle is the supplementary angle of the turning angle of the construction machinery.
  • the curve type can be divided into many different types according to whether it needs to travel in a straight line.
  • the curve model can calculate the construction machinery from the starting position to the target position. The turn bend line.
  • the curve type is the first type, the construction machine can drive from the starting position to the target position only by turning.
  • the curve type is the second type, the construction machine needs to go from the starting position through multiple turns and driving in a straight line. To the target location.
  • the turning control method for construction machinery provided by this embodiment further improves step S2300 on the basis of the embodiment shown in FIG. 2.
  • the curve types of the turning curve are divided into two types: the first type and the second type; in the first type of turning curve, the distance between the starting position and the target position is relatively close, and it can be directly started by turning. When the starting position reaches the target position, there is no need to travel in a straight line; in the second type of turning line, the starting position is far from the target position, and it needs to go through multiple turns and driving in a straight line to reach the target position.
  • step S2310 it is judged whether the first distance is less than or equal to the distance threshold, and the first judgment result is generated to determine the curve type of the turning curve, so that the turning curve can be determined according to the corresponding curve type in subsequent steps. If the first judgment result is yes, it indicates that the starting position is closer to the target position, and the turning curve is determined to be the first type; otherwise, it indicates that the starting position is farther from the target position, and the turning curve is determined to be the second type.
  • Fig. 6 shows a turning control method of a construction machine according to other embodiments of the present disclosure.
  • the turning control method may include the following steps:
  • Step S1000 Obtain position information and kinematic parameters of the starting position and target position of the construction machinery
  • Step S2100 Determine the first angle and the first distance between the target position and the extension line of the starting position according to the position information
  • Step S2200 Establish a curve model according to the minimum turning radius, turning speed and switching time of the construction machinery
  • Step S2310 Determine whether the first distance is less than or equal to the distance threshold, and generate a first judgment result; if the first judgment result is yes, execute the following steps S2320 to S2414, if the first judgment result is no, execute the following steps S2330 to S2400 ;
  • Step S2320 Determine that the curve type is the first type
  • Step S2410 Determine the angle interval in which the first angle is located
  • step S2411 determine the turning point according to the first angle, and determine the turning curve line according to the turning point, the starting position, the target position, and the curve model;
  • step S2412 determine the turning curve according to the curve model
  • step S2413 determine the turning curve according to the curve model through an angle change
  • step S2414 determine the backward steering angle according to the first angle and the first distance, and determine the turning curve according to the backward steering angle and the curve model;
  • Step S2330 Determine that the curve type is the second type
  • Step S2400 Determine the turning curve according to the first angle, curve type, and curve model
  • Step S3000 Control the construction machinery to travel from the starting position to the target position according to the turning curve.
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching time required for the construction machinery to switch from a straight state to a state of turning with the minimum turning radius (that is, the switching time in S2200).
  • the curvature occurs in the turning curve.
  • the changed part is the transition curve.
  • the first angle is the supplementary angle of the turning angle of the construction machinery.
  • the curve type can be divided into many different types according to whether it needs to travel in a straight line.
  • the curve model can calculate the construction machinery from the starting position to the target position. The turn bend line. When the curve type is the first type, the construction machine can drive from the starting position to the target position only by turning.
  • the construction machine needs to go from the starting position through multiple turns and driving in a straight line.
  • the first angle threshold and the third angle threshold are preset values, and the second angle threshold is twice the complementary angle of the deflection angle of the easement curve.
  • the axis of the vehicle body at the target position coincides with the angle of rotation.
  • the turning control method of construction machinery provided by this embodiment further improves S2400 on the basis of the embodiment shown in FIG. 4.
  • the angle interval where the first angle is located is determined to determine the turning curve calculation method under different conditions.
  • three critical values are set: the first angle threshold ⁇ 0 , the second angle threshold ⁇ -2 ⁇ , and the third angle threshold ⁇ 1 , and the first angle threshold ⁇ 0 is smaller than the first angle threshold ⁇ 0.
  • Two angle thresholds ⁇ -2 ⁇ , the second angle threshold ⁇ -2 ⁇ is smaller than the third angle threshold ⁇ 1.
  • Four angle intervals are divided according to the above three critical values. Among them, the first angle threshold ⁇ 0 and the third angle threshold ⁇ 1 are The preset value is determined according to experiment or operating experience, and the second angle threshold is determined according to the geometric relationship.
  • step S2411 a transition point (ie point Z in Fig. 7) is determined according to the first angle, and the curve model is successively retreated through the angle ⁇ +2 ⁇ to the transition point, and then forwarded to the target position according to the curve model and rotated through the angle ⁇ - 2 ⁇ , reach the target position, calculate the path curve during the two turns, and then determine the total turning curve.
  • the turning angle ⁇ ′ is small at this time, and the vehicle body axis of the construction machine needs to be turned back to coincide with the vehicle body axis at the target position, and then drive straight along the body axis To the target location.
  • the backward steering angle ⁇ is determined according to the size of the first angle ⁇ , the curve of the backward steering part can be determined according to the curve model and the backward steering angle ⁇ , and then spliced with the straight part to determine the total turning curve line.
  • Fig. 11 shows a turning control method of a construction machine according to other embodiments of the present disclosure.
  • the turning control method may include the following steps:
  • Step S1000 Obtain position information and kinematic parameters of the starting position and target position of the construction machinery
  • Step S2100 Determine the first angle and the first distance between the target position and the extension line of the starting position according to the position information
  • Step S2200 Establish a curve model according to the minimum turning radius, turning speed and switching time of the construction machinery
  • Step S2310 Determine whether the first distance is less than or equal to the distance threshold, and generate a first judgment result; if the first judgment result is yes, execute steps S2320 to S2400, if the first judgment result is no, execute steps S2330 to S2460;
  • Step S2320 Determine that the curve type is the first type
  • Step S2400 Determine the turning curve according to the first angle, curve type, and curve model
  • Step S2330 Determine that the curve type is the second type
  • Step S2420 Determine the first turning point and the second turning point according to the starting position and the target position
  • Step S2430 Determine the connecting straight line passing through the first turning point and the second turning point
  • Step S2440 Determine the first turning curve according to the first angle, the starting position, the first turning point, and the curve model
  • Step S2450 Determine a second turning curve line according to the first angle, the second turning point, the target position, and the curve model;
  • Step S2460 Determine the turning curve line according to the connecting straight line, the first turning curve line and the second turning curve line;
  • Step S3000 Control the construction machinery to travel from the starting position to the target position according to the turning curve.
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching time required for the construction machinery to switch from a straight state to a state of turning with the minimum turning radius (that is, the switching time in S2200).
  • the curvature occurs in the turning curve.
  • the changed part is the transition curve.
  • the first angle is the supplementary angle of the turning angle of the construction machinery.
  • the curve type can be divided into many different types according to whether it needs to travel in a straight line.
  • the curve model can calculate the construction machinery from the starting position to the target position. The turn bend line. When the curve type is the first type, the construction machinery can drive from the starting position to the target position only by turning.
  • the construction machinery needs to go from the starting position through multiple turns and driving in a straight line. Drive to the target location.
  • the first turning point is the end point when the engineering machinery turns from the starting position to the connecting straight line
  • the second turning point is the starting point when the engineering machinery turns from the connecting straight line to the target position.
  • the turning control method for construction machinery provided by this embodiment further improves step S2400 on the basis of the embodiment shown in FIG. 4.
  • the curve type is the second type
  • the starting position is far from the target position, and it needs to go through two turns, and it needs to go through a straight driving process between the two turns.
  • the first turning point and the second turning point are determined according to the starting position and the target position.
  • the first turning point is the M1 point in Figure 12 as the end point of the first turning
  • the second turning point is the second turning point in Figure 12
  • the M2 point is the starting point for the second turn.
  • the connecting straight line L2 passing through the first turning point and the second turning point is determined to determine the straight travel path between two turns.
  • step S2440 according to the first angle, the starting position, the first turning point and the curve model, determine the first turning line of the first turning process; through step S2450, according to the first angle, the second turning point, the target position and The curve model can determine the second turn curve of the second turn process, and then through step S2460, the first turn curve line, the connecting straight line L2 and the second turn curve line can be spliced to obtain the total turn curve line from the starting position to the target position, such as The path curve shown by the solid line in Figure 13.
  • the turning curve when the turning angle is large enough, it can also be turned directly from the starting position to the target position, but the operation path is long and requires a large space. In the actual construction process It is not easy to achieve, so it is replaced by multiple turns and driving in a straight line to achieve a turn in a smaller range
  • Fig. 14 shows a turning control method of a construction machine according to other embodiments of the present disclosure.
  • the turning control method may include the following steps:
  • Step S1000 Obtain position information and kinematic parameters of the starting position and target position of the construction machinery
  • Step S2100 Determine the first angle and the first distance between the target position and the extension line of the starting position according to the position information
  • Step S2200 Establish a curve model according to the minimum turning radius, turning speed and switching time of the construction machinery
  • Step S2310 Determine whether the first distance is less than or equal to the distance threshold, and generate a first judgment result; if the first judgment result is yes, execute steps S2320 to S2400, if the first judgment result is no, execute steps S2330 to S2460;
  • Step S2320 Determine that the curve type is the first type
  • Step S2400 Determine the turning curve according to the first angle, curve type, and curve model
  • Step S2330 Determine that the curve type is the second type
  • Step S2420 Determine the first turning point and the second turning point according to the starting position and the target position
  • Step S2430 Determine the connecting straight line passing through the first turning point and the second turning point
  • Step S2441 Determine that the vehicle body axis of the construction machine at the starting position is the first straight line
  • Step S2442 Determine the first included angle between the first straight line and the connecting straight line
  • Step S2443 Determine the first turning curve line according to the first included angle and the curve model
  • Step S2450 Determine a second turning curve line according to the first angle, the second turning point, the target position, and the curve model;
  • Step S2460 Determine the turning curve line according to the connecting straight line, the first turning curve line and the second turning curve line;
  • Step S3000 Control the construction machinery to travel from the starting position to the target position according to the turning curve.
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching time required for the construction machinery to switch from a straight state to a state of turning with the minimum turning radius (that is, the switching time in S2200).
  • the curvature occurs in the turning curve.
  • the changed part is the transition curve.
  • the first angle is the supplementary angle of the turning angle of the construction machinery.
  • the curve type can be divided into many different types according to whether it needs to travel in a straight line.
  • the curve model can calculate the construction machinery from the starting position to the target position. The turn bend line. When the curve type is the first type, the construction machinery can drive from the starting position to the target position only by turning.
  • the construction machinery needs to go from the starting position through multiple turns and driving in a straight line. Drive to the target location.
  • the first turning point is the end point when the engineering machinery turns from the starting position to the connecting straight line
  • the second turning point is the starting point when the engineering machinery turns from the connecting straight line to the target position.
  • the turning control method for construction machinery provided by this embodiment further improves step S2440 on the basis of the embodiment shown in FIG. 11.
  • the orientation of the construction machine when it is at the starting position can be determined, and the vehicle body axis at this time can be determined as the first straight line L3.
  • step S2442 determine the included angle between the first straight line L3 and the connecting straight line L2, that is, the first included angle a1, and then through step S2443, determine from the starting position to the first turn based on the curve model and the first included angle a1
  • the turning path at the point M1 is the first turning curve, so that there is no sudden curvature in the first turning curve.
  • Fig. 15 shows a turning control method of a construction machine according to other embodiments of the present disclosure.
  • the turning control method may include the following steps:
  • Step S1000 Obtain position information and kinematic parameters of the starting position and target position of the construction machinery
  • Step S2100 Determine the first angle and the first distance between the target position and the extension line of the starting position according to the position information
  • Step S2200 Establish a curve model according to the minimum turning radius, turning speed and switching time of the construction machinery
  • Step S2310 Determine whether the first distance is less than or equal to the distance threshold, and generate a first judgment result; if the first judgment result is yes, execute steps S2320 to S2400, if the first judgment result is no, execute steps S2330 to S2460;
  • Step S2320 Determine that the curve type is the first type
  • Step S2400 Determine the turning curve according to the first angle, curve type, and curve model
  • Step S2330 Determine that the curve type is the second type
  • Step S2420 Determine the first turning point and the second turning point according to the starting position and the target position
  • Step S2430 Determine the connecting straight line passing through the first turning point and the second turning point
  • Step S2440 Determine the first turning curve according to the first angle, the starting position, the first turning point, and the curve model
  • Step S2451 It is determined that the vehicle body axis when the construction machine is located at the target position is the second straight line;
  • Step S2452 Determine a second included angle between the second straight line and the connecting straight line;
  • Step S2453 Determine the second turning curve line according to the second included angle and the curve model
  • Step S2460 Determine the turning curve line according to the connecting straight line, the first turning curve line and the second turning curve line;
  • Step S3000 Control the construction machinery to travel from the starting position to the target position according to the turning curve.
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching time required for the construction machinery to switch from a straight state to a state of turning with the minimum turning radius (that is, the switching time in S2200).
  • the curvature occurs in the turning curve.
  • the changed part is the transition curve.
  • the first angle is the supplementary angle of the turning angle of the construction machinery.
  • the curve type can be divided into many different types according to whether it needs to travel in a straight line.
  • the curve model can calculate the construction machinery from the starting position to the target position. The turn bend line. When the curve type is the first type, the construction machinery can drive from the starting position to the target position only by turning.
  • the construction machinery needs to go from the starting position through multiple turns and driving in a straight line. Drive to the target location.
  • the first turning point is the end point when the engineering machinery turns from the starting position to the connecting straight line
  • the second turning point is the starting point when the engineering machinery turns from the connecting straight line to the target position.
  • the turning control method for construction machinery further improves step S2450 on the basis of the embodiment shown in FIG. 11.
  • step S2451 according to the target position, the orientation of the construction machine when it is located at the target position can be determined, and it is determined that the vehicle body axis is the second straight line L4 at this time.
  • step S2452 determine the included angle between the second straight line L4 and the connecting straight line L2, that is, the second included angle a2, to determine the turning path from the second turning point M2 to the target position according to the curve model and the second included angle a2, That is, the second turning curve line, so that there is no sudden curvature in the second turning curve line.
  • the center point of the vehicle body axis when the construction machine is at the target position is taken as the origin, and the advancing direction along the vehicle body axis is the x-axis to establish a rectangular coordinate system.
  • the starting position is point P
  • the target position is point O
  • the distance from the starting position P point to the x-axis is D
  • the first angle is ⁇ .
  • is in the angle interval of ( ⁇ 1 , ⁇ )
  • the steering needs to be reversed until the vehicle body axis coincides with the vehicle body axis at the target position, that is, the position where the vehicle body axis coincides with the x-axis in Figure 16;
  • the path curve is composed of four partial relaxation curves, and then the coordinate changes
  • the curve equation of the path curve in the Cartesian coordinate system can be obtained, and then the straight line equation when the construction machinery is traveling straight along the x-axis can be combined to finally determine the total turning curve.
  • the construction machinery is controlled to travel, which can be avoided during driving.
  • the phenomenon of turning in situ occurs to prevent damage to the construction road surface.
  • FIGS. 1 to 16 the turning control method of the present disclosure is exemplified in conjunction with FIGS. 1 to 16, and the turning control device of the present disclosure is exemplified below in conjunction with FIG. 17. It should be understood that there is a one-to-one correspondence between the method embodiments and the device embodiments, and repeated descriptions are omitted for the sake of brevity.
  • Fig. 17 shows a schematic structural diagram of a turning control device for construction machinery according to some embodiments of the present disclosure.
  • the turning control device 1 may include an acquisition module 11, a determination module 12 and a control module 13.
  • the acquiring module 11 can be used to acquire the position information and kinematic parameters of the starting position and the target position of the construction machine.
  • the determining module 12 may be used to determine the turning curve according to position information and kinematic parameters.
  • the control module 13 may be used to control the construction machinery to travel from the starting position to the target position according to the turning curve.
  • the kinematic parameters include the minimum turning radius of the construction machinery, the turning speed and the switching time required for the construction machinery to switch from a straight state to a state of turning with the minimum turning radius.
  • the part where the curvature of the turning curve changes is a relaxation curve.
  • Figure 18 shows a construction machine 2 according to some embodiments of the present disclosure.
  • the construction machine 2 includes a vehicle body 21, a detection component 22 and a controller 23.
  • the vehicle body 21 serves as the main body of the construction machine 2 and is used to mount various operating mechanisms.
  • the detection component 22 can be connected to the vehicle body 21 to detect the position information of the vehicle body 21.
  • the position information may include, for example, the start position, the end position, and the coordinate information and angle information of any point on the turning path, as a basis for determining the turning curve.
  • the controller 23 may be provided in the vehicle body 21 and electrically connected to the vehicle body 21 and the detection assembly 22 to control the vehicle body 21 to travel according to the position information detected by the detection assembly 22. When the vehicle body 21 is turning, the controller 23 may control the vehicle body 21 to turn according to the turning control method provided in the foregoing embodiment.
  • the construction machine 2 is an unmanned construction machine, which can perform construction operations under the control of the controller 23, and is not limited to straight driving and turning of the vehicle body 21.
  • Application scenarios include approaching, transitioning, and changing. Channel and position adjustment and other operations, as well as the corresponding operations.
  • Unmanned construction machinery can effectively reduce the manual operation process, reduce the intensity of manual labor, and at the same time can greatly improve the accuracy, precision and construction quality of construction operations.
  • the embodiment of the present disclosure also provides a computer device.
  • Figure 19 shows a computer device 3 according to some embodiments of the present disclosure.
  • the computer device 3 may include a memory 31, a processor 32, and a computer program stored in the memory and capable of running in the processor 32.
  • the processor 32 executes the computer program, the implementation is as in any of the above embodiments.
  • the computer device 3 in this embodiment should also have all the beneficial effects of the engineering machinery turning control system in any of the above embodiments, and will not be repeated here.
  • any process or method description in the flowchart or described in other ways herein can be understood to mean that it includes one or more executable steps for realizing a specific logical function or process.
  • Modules, fragments, or parts of the code of instructions, and the scope of the preferred embodiments of the present disclosure includes additional implementations, which may not be in the order shown or discussed, including in a substantially simultaneous manner according to the functions involved or vice versa In order to perform functions, this should be understood by those skilled in the art to which the embodiments of the present disclosure belong.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because it can be done, for example, by optically scanning the paper or other medium, and then editing, interpreting, or other suitable methods when necessary. Process to obtain the program electronically and then store it in the computer memory.
  • each part of the present disclosure can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic circuits, application-specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • PGA programmable gate arrays
  • FPGA field programmable gate arrays
  • the program can be stored in a computer-readable storage medium. , Including one of the steps of the method embodiment or a combination thereof.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Combustion & Propulsion (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Human Computer Interaction (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种工程机械的转弯控制方法、工程机械(2)和计算机设备(3),转弯控制方法为:获取起始和目标位置信息以及包括最小转弯半径、转弯行驶速度、自直行状态到以最小转弯半径转弯状态的切换时间的运动学参数,确定转弯曲线,根据转弯曲线由起始位置行驶至目标位置;工程机械(2)包括车体(21)、检测组件(22)和按照转弯控制方法控制车体行驶的控制器(23);计算机设备(3)包括存储器(31)和处理器(32)以及实现转弯控制方法的计算机程序,计算机程序存储在存储器(31)中,并可在处理器(32)中运行。该转弯控制方法精度高,所需转弯空间小,可避免原地转向对路面的破坏。

Description

工程机械的转弯控制方法、工程机械和计算机设备 技术领域
本公开涉及转弯控制技术领域,具体而言,涉及一种工程机械的转弯控制方法、一种工程机械和一种计算机设备。
背景技术
目前,在施工过程中,工程机械经常需要在局部区域内进行转向、调头、变道等操作,且操作频率较高,需要大量的重复操作。一些现有的工程机械中采取了加装自动转弯操作系统的方法,以便控制工程机械进行自动转弯,代替人工操作,减少重复性操作,提高操作效率。然而,对于部分工程机械,特别是针对筑路机械,为避免对施工路面造成破坏,在转弯过程中不允许发生原地转向。现有技术中的自动转弯操作系统以及方法在转弯时存在原地转向的现象,这会影响施工路面的作业质量和精度,不符合筑路施工的要求,且现有的自动转弯操作系统及方法的误差相对较大,无法适用于高精度要求的转弯操作,且路径规划场景相对单一,适用范围较小。
发明内容
有鉴于此,本公开实施例提供一种工程机械的转弯控制方法、工程机械的转弯控制装置、工程机械以及计算机设备。
第一方面,本公开实施例提供了一种工程机械的转弯控制方法。该转弯控制方法包括:获取工程机械的起始位置和目标位置的位置信息以及运动学参数;根据位置信息和运动学参数确定转弯曲线;以及根据转弯曲线控制工程机械由起始位置行驶至目标位置,其中运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间,转弯曲线中曲率发生变化的部分为缓和曲线。
根据本发明第一方面的技术方案,通过获取工程机械的起始位置和目标位置的位置信息,以确定转弯过程的起终点位置;通过获取工程机械的运动学参数,包括工程机械的最小转弯半径、转速速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间,以便于后续步骤中确定转弯曲线。根据起始位置和终点位置的位置信息和运动学参数,可通过数学计算确定转弯过程的转弯曲线,其中,转弯曲线中曲率发生变化的部分为缓和曲线(在直线与圆曲线、圆曲线与圆曲线之间设置的曲率连续变化的曲线),以确保转弯曲线中不存在曲率突变的点。根据转弯曲线,通过控制工程机械由起始位置行驶至目标位置,可使工程机械在整个转弯过程中曲率连续变化,不存在原地转向的现象,特别是针对压路机等筑路机械,因而不会对施工路面造成破坏,有利于控制施工路面的质量和施工精度,降低转弯过程中的误差。同时,本方案中的工程机械转弯控制方法适用于进场、转场、变道以及位置调整等过程中的转弯操作,适用范围广。
需要说明的是,根据起始位置和目标位置的不同,转弯曲线中除了缓和曲线之外,曲率保持不变的部分还包括直线或圆弧线。
可以理解,在筑路机械施工过程中,例如压路机,施工对象为已完成摊铺作业的路面,路面尚未完全凝固,若压路机进行原地转向操作,路面会在车轮的摩擦力的作用下发生变形,影响施工作业的质量。本方案中的工程机械的转弯控制方法能够有效缓解以上问题。
结合第一方面,在一些实施例中,根据位置信息和运动学参数确定转弯曲线,包括:根据位置信息确定第一角度、目标位置与起始位置延长线之间的第一距离;根据工程机械的最小转弯半径、转弯行驶速度和切换时间建立曲线模型;根据第一距离确定转弯曲线的曲线类型;以及根据第一角度、曲线类型以及曲线模型确定转弯曲线,其中第一角度为工程机械的转弯角度的补角,曲线类型为根据工程机械是否需要经过直线行驶从多种不同的类型中确定的,曲线模型用于计算工程机械由起始位置到达目标位置的转弯曲线。
在该技术方案中,根据起始位置和目标位置的位置信息确定第一角度以及目标位置与起始位置延长线之间的第一距离,以作为后续确定转弯曲线的计算依据。其中,第一角度为由起始位置转弯至目标位置的转弯角度的补角。根据工程机械的运动学参数,即最小转弯半径、转弯行驶速度和切换时间, 建立计算转弯曲线的曲线模型,用于计算由起始位置至目标位置的转弯曲线。具体地,转弯曲线包括两段缓和曲线和两段圆弧线,起始位置和目标位置分别位于两段缓和曲线的起点和终点,两段圆弧线连接两段缓和曲线,且两段缓和曲线和两段圆弧线以第一角度的角平分线为轴对称设置,从而可得出几何关系:2α+2γ=π-β,且α=L/(2R);缓和曲线满足方程:r×l=R×L,且L=V×t。其中,α为缓和曲线的转过角度,即切偏角;γ为缓和曲线与圆弧线的连接点至第一角度的角平分线转过的角度;β为第一角度,π-β为整条转弯曲线的转弯角度;r为瞬时转弯半径,l为瞬时转弯半径对应的缓和曲线的长度,R为最小转弯半径,L为缓和曲线的长度;V为转弯行驶速度,t为工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间。转弯曲线的曲线类型根据是否需要经过直线行驶可分为多种不同类型,每种类型的转弯曲线的计算过程存在差异,具体可根据第一距离的大小确定转弯曲线的曲线类型。最后根据第一角度、曲线类型以及曲线模型可计算出转弯曲线的曲线方程,即确定转弯曲线。
结合第一方面,在一些实施例中,根据第一距离确定转弯曲线的曲线类型,包括:判断第一距离是否小于或等于距离阈值,生成第一判断结果;若第一判断结果为是,则确定曲线类型为第一类型;以及若第一判断结果为否,则确定曲线类型为第二类型,其中在曲线类型为第一类型时,转弯曲线用于控制工程机械通过转弯实现由起始位置行驶至目标位置,在曲线类型为第二类型时,转弯曲线用于控制工程机械通过多次转弯以及直线行驶实现由起始位置行驶至目标位置。
在该技术方案中,转弯曲线的曲线类型具体分为两类:第一类型和第二类型,第一类型的转弯曲线可直接通过转弯由起始位置到达目标位置,无需经过直线行驶,而第二类型的转弯曲线包括多次转弯以及一段直线。通过判断第一距离是否小于或等于距离阈值,以确定转弯曲线的曲线类型,并生成第一判断结果。若第一判断结果为是,表明起始位置距离目标位置较近,确定转弯曲线为第一类型,否则表明起始位置距离目标位置较远,确定转弯曲线为第二类型。可以理解,在转弯曲线为第二类型时,当转弯角度足够大时也可以由起始位置直接转弯至目标位置,但该操作路径较长,需要较大的空间,在实际施工过程中不易实现,故通过多次转弯以及直线行驶代替,以在较小的范围内实现转弯。
结合第一方面,在一些实施例中,在曲线类型为第一类型时,根据第一角度、曲线类型以及曲线模型确定转弯曲线,包括:确定第一角度所处的角度区间;若0°<第一角度≤第一角度阈值,则根据第一角度确定中转点,并根据中转点、起始位置、目标位置以及与曲线模型,确定转弯曲线;若第一角度阈值<第一角度≤第二角度阈值,则根据曲线模型确定转弯曲线;若第二角度阈值<第一角度≤第三角度阈值,则根据曲线模型经过角度变化确定转弯曲线;若第三角度阈值<第一角度≤180°,则根据第一角度与第一距离确定后退转向角,根据后退转向角与曲线模型确定转弯曲线,其中第一角度阈值和第三角度阈值为预设值,第二角度阈值为缓和曲线的切偏角的余角的二倍,后退转向角为工程机械由起始位置后退并转向至车身轴线与位于目标位置时的车身轴线重合所转过的角度。
在该技术方案中,在曲线类型为第一类型时,通过确定第一角度的角度区间,以确定不同的缓和曲线计算方法。可以理解,工程机械的最小转弯半径为固定值,第一角度的大小不同,即转弯角度的大小不同,缓和曲线的形状以及计算存在一定的差异。在(0°,180°]的范围内,设定三个临界值:第一角度阈值、第二角度阈值和第三角度阈值,且第一角度阈值小于第二角度阈值,第二角度阈值小于第三角度阈值,以划分四个角度区间。其中,第一角度阈值和第三角度阈值为预设值,根据试验或操作经验确定,第二角度阈值根据几何关系确定为缓和曲线的切偏角的余角的二倍。
若0°<第一角度≤第一角度阈值,此时转弯角度较大,工程机械无法通过一次转弯由起始位置行驶至目标位置,根据第一角度确定一个中转点,先由起始位置转弯至中转点,再由中转点转弯至目标位置,具体地,先根据曲线模型后退转过角度β+2α至中转点,再根据曲线模型朝向目标位置前进转过角度π-2α,到达目标位置,分别计算出两次转弯过程中的路径曲线,即可确定总转弯曲线。
若第一角度阈值<第一角度≤第二角度阈值,此时可根据曲线模型直接确定转弯曲线。
若第二角度阈值<第一角度≤第三角度阈值,可对曲线模型进行角度变化,根据α^'=(π-β)/2=l^2/2C,确定转弯曲线,其中,C=R×L。
若第三角度阈值<第一角度≤180°,转弯角度较小,此时需通过后退转向至工程机械的车身轴线与位于目标位置时的车身轴线重合,再沿车身轴线直线行驶至目标位置。根据第一角度的大小确定后退转向角,根据曲线模型以及后退转向角可确定后退转向部分的曲线,与直线部分拼接,即可确定总转弯曲线。
需要说明的是,在(180°,360°]的范围内转弯曲线的确定方法与在(0°,180°]时的方法相同,仅方向不同。
结合第一方面,在一些实施例中,在曲线类型为第二类型时,根据第一角度、曲线类型以及曲线模型确定转弯曲线,包括:根据起始位置和目标位置确定第一转弯点和第二转弯点;确定穿过第一转弯点和第二转弯点的连接直线;根据第一角度、起始位置、第一转弯点以及曲线模型确定第一转弯曲线;根据第一角度、第二转弯点、目标位置以及曲线模型确定第二转弯曲线;以及根据连接直线、第一转弯曲线和第二转弯曲线,确定转弯曲线,其中第一转弯点为工程机械由起始位置转弯至连接直线上时的终点位置,第二转弯点为工程机械由连接直线向目标位置转弯时的起始位置。
在该技术方案中,在曲线类型为第二类型时,起始位置距离目标位置较远,需要经过多次转弯和直线行驶到达目标位置。具体地,转弯次数为两次,两次转弯过程之间需经过一段直线行驶过程。根据起始位置和目标位置确定第一转弯点和第二转弯点,第一转弯点作为第一次转弯的终点,第二转弯点作为第二次转弯的起点。确定穿过第一转弯点和第二转弯点的连接直线,以确定两次转弯之间的直线行驶的路径。根据第一角度、起始位置、第一转弯点以及曲线模型,可确定第一次转弯过程的第一转弯曲线,类似地,根据第一角度、第二转弯点、目标位置以及曲线模型可以确定第二次转弯过程的第二转弯曲线,进而将第一转弯曲线、连接直线和第二转弯曲线拼接可得到由起始位置到目标位置的总转弯曲线。可以理解,在转弯曲线为第二类型时,当转弯角度足够大时也可以由起始位置直接转弯至目标位置,但该操作路径较长,需要较大的空间,在实际施工过程中不易实现,故通过多次转弯以及直线行驶代替,以在较小的范围内实现转弯。
结合第一方面,在一些实施例中,根据第一角度、起始位置、第一转弯点以及曲线模型确定第一转弯曲线,包括:确定工程机械在起始位置时的车身轴线为第一直线;确定第一直线与连接直线之间的第一夹角;以及根据第一夹角与曲线模型确定第一转弯曲线。
在该技术方案中,根据起始位置,可确定工程机械位于起始位置时的朝向,并确定此时车身轴线为第一直线。通过确定第一直线与连接直线之间的夹角,即第一夹角,以根据曲线模型和第一夹角确定由起始位置至第一转弯点的转弯路径,即第一转弯曲线,从而使得第一转弯曲线中不存在曲率突变的现象。
结合第一方面,在一些实施例中,根据第一角度、第二转弯点、目标位置以及曲线模型确定第二转弯曲线,包括:确定工程机械位于目标位置时的车身轴线为第二直线;确定第二直线与连接直线之间的第二夹角;以及根据第二夹角与曲线模型确定第二转弯曲线。
在该技术方案中,根据目标位置,可确定工程机械位于目标位置时的朝向,并确定此时车身轴线为第二直线。通过确定第二直线与连接直线之间的夹角,即第二夹角,以根据曲线模型和第二夹角确定由第二转弯点至目标位置的转弯路径,即第二转弯曲线,从而使得第二转弯曲线中不存在曲率突变的现象。
结合第一方面,在一些实施例中,缓和曲线满足下述公式:r×l=R×L;以及L=V×t,式中,r为瞬时转弯半径,l为瞬时转弯半径对应的缓和曲线的长度,R为最小转弯半径,L为缓和曲线的长度,V为转弯行驶速度,t为工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间。
将缓和曲线设置有满足该公式,可以确保工程机械在转弯时不会原地转向。
结合第一方面,在一些实施例中,工程机械为筑路机械。
第二方面,本公开实施例提供一种工程机械的转弯控制装置。该转弯控制装置包括:获取模块,用于获取工程机械的起始位置和目标位置的位置信息以及运动学参数;确定模块,用于根据位置信息和运动学参数确定转弯曲线;以及控制模块,用于根据转弯曲线控制工程机械由起始位置行驶至目标位置,其中运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间,转弯曲线中曲率发生变化的部分为缓和曲线。
第三方面,本公开实施例提供一种工程机械。该工程机械包括:车体;检测组件,连接于车体,用于检测车体的位置信息;控制器,设于车体内,控制器与车体和检测组件电连接,以根据检测组件检测到的位置信息控制车体行驶,其中控制器被配置为根据以下步骤控制车体进行转弯:获取工程机械的起始位置和目标位置的位置信息以及运动学参数;根据位置信息和运动学参数确定转弯曲线;以及根据转弯曲线控制工程机械由起始位置行驶至目标位置;其中运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间,转弯曲线中曲率发生变化的部分为缓和曲线。
根据本公开第三方面的技术方案,工程机械包括车体、检测组件和控制器。车体作为工程机械的主体,用于搭载各种作业机构。检测组件连接于车体尚,以检测车体的位置信息,包括起始位置、终点位置以及转弯路径上任一点的坐标信息和角度信息,以作为确定转弯曲线的依据。控制器设于车体内,并与车体和检测组件电连接,以根据检测组件检测到的位置信息控制车体行驶。其中,在车体转 弯时,控制器根据车体的起始位置和目标位置的位置信息以及车体的运动学参数确定车体的转弯曲线,进而根据转弯曲线控制车体进行转弯,并由起始位置转弯至目标位置。其中,转弯曲线中曲率发生变化的部分为缓和曲线,曲率保持不变的部分为直线或圆弧线,从而使得车体在转弯过程中的曲率连续变化,不发生原地转向的现象,特别是在工程机械为筑路机械时,可有效防止原地转向对施工路面造成破坏,以免影响施工质量和精度。运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间,用于计算缓和曲线的曲线方程。
结合第三方面,在一些实施例中,工程机械为无人驾驶工程机械。
在该技术方案中,工程机械为无人驾驶工程机械,即工程机械可完全在控制器在控制下进行施工操作,不限于车体的直线行驶和转弯,还包括进场、转场、变道以及位置调整等操作,以及相应的作业操作。无人驾驶工程机械可以有效减少人工操作过程,降低人工劳动强度,同时可以大幅提高施工作业的准确性、精度和施工质量。特别是在转弯过程中,可以理解,人工操作的精度和准确性较低,即是事先规划好转弯路径,也不能保证实际的行驶轨迹能够完全与转弯路径相吻合,实际的行驶轨迹中不可避免地会存在曲率突变的点,即发生原地转向的位置,容易对施工路面造成破坏。本方案中的无人驾驶工程机械可以精确控制车体沿规划好的转弯路径进行转弯,可有效防止出现原地转向的现象。
第四方面,本公开实施例提供一种计算机设备,包括存储器、处理器及存储在存储器中并可在处理器中运行的计算机程序,处理器执行计算机程序时,实现如上述第一方面技术方案中任一项的工程机械转弯控制方法的步骤。
根据本公开第四方面的技术方案,通过计算机设备存储和运行计算机程序,实现上述第一方面技术方案中任一项的工程机械转弯控制方法的步骤,以使工程机械实现曲率连续变化的转弯操作。此外,本方案中的计算机设备还应具有上述第一方面技术方案中的工程机械转弯控制系统的全部有益效果,在此不再赘述。
本公开的附加方面和优点将在下面的描述部分中变得明显,或通过本公开的实践了解到。
附图简要说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本公开一个实施例的工程机械的转弯控制方法的流程图;
图2示出了根据本公开一个实施例的工程机械的转弯控制方法的流程图;
图3示出了根据本公开一个实施例的曲线模型的示意图;
图4示出了根据本公开一个实施例的工程机械的转弯控制方法的流程图;
图5示出了根据本公开一个实施例的工程机械的位置与曲线类型的对应关系示意图;
图6示出了根据本公开一个实施例的工程机械的转弯控制方法的流程图;
图7示出了根据本公开一个实施例的工程机械的转弯示意图;
图8示出了根据本公开一个实施例的工程机械的转弯示意图;
图9示出了根据本公开一个实施例的工程机械的转弯示意图;
图10示出了根据本公开一个实施例的工程机械的转弯示意图;
图11示出了根据本公开一个实施例的工程机械的转弯控制方法的流程图;
图12示出了根据本公开一个实施例的工程机械的转弯示意图;
图13示出了根据本公开一个实施例的工程机械的转弯示意图;
图14示出了根据本公开一个实施例的工程机械的转弯控制方法的流程图;
图15示出了根据本公开一个实施例的工程机械的转弯控制方法的流程图;
图16示出了根据本公开一个实施例的工程机械的转弯示意图;
图17示出了根据本公开一个实施例的工程机械的控制装置的结构示意图;
图18示出了根据本公开一个实施例的工程机械的示意框图;
图19示出了根据本公开一个实施例的计算机设备的示意框图。
图18和图19中附图标记与部件之间的对应关系如下:
2工程机械,21车体,22检测组件,23控制器,3计算机设备,31存储器,32处理器。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面结合附图和具体实施方式对本公开进行进一步的详细描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但是,本公开还可以采用不同于在此描述的其他方式来实施,因此,本公开的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图19描述根据本公开一些实施例的工程机械转弯的控制方法、控制装置、工程机械和计算机设备。
图1示出了根据本公开一些实施例的工程机械的转弯控制方法。
如图1所示,在该实施例中,转弯控制方法可以包括以下步骤:
步骤S1000:获取工程机械的起始位置和目标位置的位置信息以及运动学参数;
步骤S2000:根据位置信息和运动学参数确定转弯曲线;
步骤S3000:根据转弯曲线控制工程机械由起始位置行驶至目标位置。
其中,运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间,转弯曲线中曲率发生变化的部分为缓和曲线。
在本实施例中,通过步骤S1000,获取工程机械的起始位置和目标位置的位置信息,以确定转弯过程的起终点位置;同时,获取工程机械的运动学参数,包括工程机械的最小转弯半径、转速行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间,以便在后续步骤中确定转弯曲线时使用。通过步骤S2000,根据起始位置和终点位置的位置信息和运动学参数,经过数学计算确定转弯过程的转弯曲线,以作为工程机械转弯的路径参照。其中,转弯曲线中曲率发生变化的部分为缓和曲线(在直线与圆曲线、圆曲线与圆曲线之间设置的曲率连续变化的曲线),以确保转弯曲线中不存在曲率突变的点。步骤S3000,根据转弯曲线控制工程机械由起始位置行驶至目标位置,可使得工程机械在整个转弯过程中曲率连续变化,不存在原地转向的现象。
该实施例提供的工程机械的转弯控制方法,可有效防止对施工路面造成破坏,特别是针对压路机等筑路机械,有利于控制施工路面的质量和施工精度,降低转弯过程中的误差,且适用于工程机械进场、转场、变道以及位置调整等过程中的转弯操作,适用范围广。
图2示出了根据本公开另一些实施例的工程机械的转弯控制方法。
如图2所示,在该实施例中,转弯控制方法可以包括以下步骤:
步骤S1000:获取工程机械的起始位置和目标位置的位置信息以及运动学参数;
步骤S2100:根据位置信息确定第一角度、目标位置与起始位置延长线之间的第一距离;
步骤S2200:根据工程机械的最小转弯半径、转弯行驶速度和切换时间建立曲线模型;
步骤S2300:根据第一距离确定转弯曲线的曲线类型;
步骤S2400:根据第一角度、曲线类型以及曲线模型确定转弯曲线;
步骤S3000:根据转弯曲线控制工程机械由起始位置行驶至目标位置。
其中,运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间(即S2200中的切换时间),转弯曲线中曲率发生变化的部分为缓和曲线,第一角度为工程机械的转弯角度的补角,曲线类型根据是否需要经过直线行驶可分为多种不同的类型,曲线模型可计算工程机械由起始位置到达目标位置的转弯曲线。
该实施例提供的工程机械转弯控制方法,在图1所示的实施例的基础上对步骤S2000做了进一步改进。通过步骤S2100,根据起始位置和目标位置的位置信息确定第一角度,并确定目标位置与起始位置延长线之间的第一距离,以作为后续确定转弯曲线的计算依据。其中,第一角度为由起始位置转弯至目标位置的转弯角度的补角。通过步骤S2200,根据工程机械的运动学参数,即最小转弯半径、转弯行驶速度和切换时间,建立计算转弯曲线的曲线模型,用于计算由起始位置至目标位置的转弯曲线。转弯曲线的曲线类型根据是否需要经过直线行驶可分为多种不同类型,每种类型的转弯曲线的计算过程存在差异,通过步骤S2300,可根据第一距离的大小确定转弯曲线的曲线类型。最后通过步骤S2400,根据第一角度、曲线类型以及曲线模型可计算出转弯曲线的曲线方程,即确定转弯曲线。
举例而言,如图3所示的曲线模型,转弯曲线为曲线PW,其中,α为缓和曲线PN的转过角度,即切偏角;γ为缓和曲线PN与圆弧线NQ的连接点N点至第一角度β的角平分线L1转过的角度;β为第一角度,π-β为整条转弯曲线PW的转弯角度;R为最小转弯半径,L为缓和曲线的长度,V 为转弯行驶速度,t为工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间。转弯曲线PW包括两段缓和曲线PN和UW以及两段圆弧线NQ和QU,起始位置P和目标位置W分别位于两段缓和曲线的起点和终点,两段圆弧线连接两段缓和曲线,且两段缓和曲线和两段圆弧线以第一角度β的角平分线L1为轴对称设置,O点为圆弧线NQ和QU的圆点。由几何关系可以得到:2α+2γ=π-β,且α=L/(2R);缓和曲线PN满足方程:r×l=R×L,且L=V×t。这里,r为瞬时转弯半径,l为瞬时转弯半径对应的缓和曲线的长度。通过缓和曲线PN、圆弧线NQ的方程以及相对于L1的对称关系,可确定圆弧线QU和缓和曲线UW的方程,从而确定整体转弯曲线PW。
图4示出了根据本公开另一些实施例的工程机械的转弯控制方法。
如图4所示,在该实施例中,转弯控制方法可以包括以下步骤:
步骤S1000:获取工程机械的起始位置和目标位置的位置信息以及运动学参数;
步骤S2100:根据位置信息确定第一角度、目标位置与起始位置延长线之间的第一距离;
步骤S2200:根据工程机械的最小转弯半径、转弯行驶速度和切换时间建立曲线模型;
步骤S2310:判断第一距离是否小于或等于距离阈值,生成第一判断结果;若第一判断结果为是,执行步骤S2320,若第一判断结果为否,执行步骤S2330;
步骤S2320:确定曲线类型为第一类型;
步骤S2330:确定曲线类型为第二类型;
步骤S2400:根据第一角度、曲线类型以及曲线模型确定转弯曲线;
步骤S3000:根据转弯曲线控制工程机械由起始位置行驶至目标位置。
其中,运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间(即S2200中的切换时间),转弯曲线中曲率发生变化的部分为缓和曲线,第一角度为工程机械的转弯角度的补角,曲线类型根据是否需要经过直线行驶可分为多种不同的类型,曲线模型可计算工程机械由起始位置到达目标位置的转弯曲线。在曲线类型为第一类型时,工程机械可仅通过转弯实现由起始位置行驶至目标位置,在曲线类型为第二类型时,工程机械需通过多次转弯以及直线行驶实现由起始位置行驶至目标位置。
该实施例提供的工程机械的转弯控制方法,在图2所示的实施例的基础上对步骤S2300做了进一步改进。如图5所示,转弯曲线的曲线类型具体分为两类:第一类型和第二类型;第一类型的转弯曲线中,起始位置与目标位置的距离较近,可直接通过转弯由起始位置到达目标位置,无需经过直线行驶;第二类型的转弯曲线中,起始位置距离目标位置较远,需要经过多次转弯以及直线行驶才能到达目标位置。通过步骤S2310,判断第一距离是否小于或等于距离阈值,并生成第一判断结果,以确定转弯曲线的曲线类型,以便于后续步骤中根据相应的曲线类型确定转弯曲线。若第一判断结果为是,表明起始位置距离目标位置较近,确定转弯曲线为第一类型,否则表明起始位置距离目标位置较远,确定转弯曲线为第二类型。
需要说明的是,在转弯曲线为第二类型的情况中,当转弯角度足够大时也可以由起始位置直接转弯至目标位置,但该操作路径较长,需要较大的空间,在实际施工过程中不易实现,故通过多次转弯以及直线行驶代替,以在较小的范围内实现转弯。
图6示出了根据本公开另一些实施例的工程机械的转弯控制方法。
如图6所示,在该实施例中,转弯控制方法可以包括以下步骤:
步骤S1000:获取工程机械的起始位置和目标位置的位置信息以及运动学参数;
步骤S2100:根据位置信息确定第一角度、目标位置与起始位置延长线之间的第一距离;
步骤S2200:根据工程机械的最小转弯半径、转弯行驶速度和切换时间建立曲线模型;
步骤S2310:判断第一距离是否小于或等于距离阈值,生成第一判断结果;若第一判断结果为是,执行以下步骤S2320至S2414,若第一判断结果为否,执行以下步骤S2330至步骤S2400;
步骤S2320:确定曲线类型为第一类型;
步骤S2410:确定第一角度所处的角度区间;
若0°<第一角度≤第一角度阈值,执行步骤S2411:根据第一角度确定中转点,并根据中转点、起始位置、目标位置以及与曲线模型,确定转弯曲线;
若第一角度阈值<第一角度≤第二角度阈值,执行步骤S2412:根据曲线模型确定转弯曲线;
若第二角度阈值<第一角度≤第三角度阈值,执行步骤S2413:根据曲线模型经过角度变化确定转弯曲线;
若第三角度阈值<第一角度≤180°,执行步骤S2414:根据第一角度与第一距离确定后退转向角,根据后退转向角与曲线模型确定转弯曲线;
步骤S2330:确定曲线类型为第二类型;
步骤S2400:根据第一角度、曲线类型以及曲线模型确定转弯曲线;
步骤S3000:根据转弯曲线控制工程机械由起始位置行驶至目标位置。
其中,运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间(即S2200中的切换时间),转弯曲线中曲率发生变化的部分为缓和曲线,第一角度为工程机械的转弯角度的补角,曲线类型根据是否需要经过直线行驶可分为多种不同的类型,曲线模型可计算工程机械由起始位置到达目标位置的转弯曲线。在曲线类型为第一类型时,工程机械可仅通过转弯实现由起始位置行驶至目标位置,在曲线类型为第二类型时,工程机械需通过多次转弯以及直线行驶实现由起始位置行驶至目标位置。第一角度阈值和第三角度阈值为预设值,第二角度阈值为缓和曲线的切偏角的余角的二倍,后退转向角为工程机械由起始位置后退并转向至车身轴线与位于目标位置时的车身轴线重合所转过的角度。
该实施例提供的工程机械的转弯控制方法,在图4所示的实施例的基础上对S2400做了进一步改进。在曲线类型为第一类型时,通过步骤S2410,确定第一角度所处的角度区间,以确定不同情况下的转弯曲线计算方法。在(0°,180°]的范围内,设定三个临界值:第一角度阈值β 0、第二角度阈值π-2α和第三角度阈值β 1,且第一角度阈值β 0小于第二角度阈值π-2α,第二角度阈值π-2α小于第三角度阈值β 1。根据以上三个临界值划分四个角度区间。其中,第一角度阈值β 0和第三角度阈值β 1为预设值,根据试验或操作经验确定,第二角度阈值根据几何关系确定。
如图7所示,在0<β≤β 0时,转弯角度较大,工程机械无法通过一次转弯由起始位置行驶至目标位置。通过步骤S2411,根据第一角度确定一个中转点(即图7中的Z点),根据曲线模型先后退转过角度β+2α至中转点,再根据曲线模型朝向目标位置前进转过角度π-2α,到达目标位置,分别计算出两次转弯过程中的路径曲线,即可确定总转弯曲线。
如图8所示,在β 0<β≤π-2α时,此时符合曲线模型中的位置关系,可通过步骤S2412,根据曲线模型直接确定转弯曲线。
如图9所示,在π-2α<β≤β 1时,此时的位置关系与图8中的情况类似,经过对角度的数学变换即可符合曲线模型,通过步骤S2413,对曲线模型进行角度的数学变化
Figure PCTCN2021100934-appb-000001
C=R×L,即可确定转弯曲线。
如图10所示,在β 1<β≤π时,此时转弯角度β 较小,需通过后退转向至工程机械的车身轴线与位于目标位置时的车身轴线重合,再沿车身轴线直线行驶至目标位置。根据第一角度β的大小确定后退转向角θ,根据曲线模型以及后退转向角θ可确定后退转向部分的曲线,再与直线部分拼接,即可确定总转弯曲线。
图11示出了根据本公开另一些实施例的工程机械的转弯控制方法。
如图11所示,在该实施例中,转弯控制方法可以包括以下步骤:
步骤S1000:获取工程机械的起始位置和目标位置的位置信息以及运动学参数;
步骤S2100:根据位置信息确定第一角度、目标位置与起始位置延长线之间的第一距离;
步骤S2200:根据工程机械的最小转弯半径、转弯行驶速度和切换时间建立曲线模型;
步骤S2310:判断第一距离是否小于或等于距离阈值,生成第一判断结果;若第一判断结果为是,执行步骤S2320至S2400,若第一判断结果为否,执行步骤S2330至步骤S2460;
步骤S2320:确定曲线类型为第一类型;
步骤S2400:根据第一角度、曲线类型以及曲线模型确定转弯曲线;
步骤S2330:确定曲线类型为第二类型;
步骤S2420:根据起始位置和目标位置确定第一转弯点和第二转弯点;
步骤S2430:确定穿过第一转弯点和第二转弯点的连接直线;
步骤S2440:根据第一角度、起始位置、第一转弯点以及曲线模型确定第一转弯曲线;
步骤S2450:根据第一角度、第二转弯点、目标位置以及曲线模型确定第二转弯曲线;
步骤S2460:根据连接直线、第一转弯曲线和第二转弯曲线,确定转弯曲线;
步骤S3000:根据转弯曲线控制工程机械由起始位置行驶至目标位置。
其中,运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间(即S2200中的切换时间),转弯曲线中曲率发生变化的部分为缓和曲线,第一角度为工程机械的转弯角度的补角,曲线类型根据是否需要经过直线行驶可分为多种不同的类型,曲线模型可计算工程机械由起始位置到达目标位置的转弯曲线。在曲线类型为第一 类型时,工程机械仅通过转弯即可实现由起始位置行驶至目标位置,在曲线类型为第二类型时,工程机械需通过多次转弯以及直线行驶实现由起始位置行驶至目标位置。第一转弯点为工程机械由起始位置转弯至连接直线上时的终点,第二转弯点为工程机械由连接直线向目标位置转弯时的起点。
该实施例提供的工程机械的转弯控制方法,在图4所示的实施例的基础上对步骤S2400做了进一步改进。如图12所示,在曲线类型为第二类型时,起始位置距离目标位置较远,需要经过两次转弯,两次转弯过程之间需经过一段直线行驶过程。通过步骤S2420,根据起始位置和目标位置确定第一转弯点和第二转弯点,第一转弯点即图12中的M1点,作为第一次转弯的终点,第二转弯点即图12中的M2点,作为第二次转弯的起点。通过步骤S2430,确定穿过第一转弯点和第二转弯点的连接直线L2,以确定两次转弯之间的直线行驶的路径。通过步骤S2440,根据第一角度、起始位置、第一转弯点以及曲线模型,确定第一次转弯过程的第一转弯曲线;通过步骤S2450,根据第一角度、第二转弯点、目标位置以及曲线模型可以确定第二次转弯过程的第二转弯曲线,进而可通过步骤S2460,将第一转弯曲线、连接直线L2和第二转弯曲线拼接得到由起始位置到目标位置的总转弯曲线,如图13中实线所示的路径曲线。
需要说明的是,在转弯曲线为第二类型时,当转弯角度足够大时也可以由起始位置直接转弯至目标位置,但该操作路径较长,需要较大的空间,在实际施工过程中不易实现,故通过多次转弯以及直线行驶代替,以在较小的范围内实现转弯
图14示出了根据本公开另一些实施例的工程机械的转弯控制方法。
如图14所示,在该实施例中,转弯控制方法可以包括以下步骤:
步骤S1000:获取工程机械的起始位置和目标位置的位置信息以及运动学参数;
步骤S2100:根据位置信息确定第一角度、目标位置与起始位置延长线之间的第一距离;
步骤S2200:根据工程机械的最小转弯半径、转弯行驶速度和切换时间建立曲线模型;
步骤S2310:判断第一距离是否小于或等于距离阈值,生成第一判断结果;若第一判断结果为是,执行步骤S2320至S2400,若第一判断结果为否,执行步骤S2330至步骤S2460;
步骤S2320:确定曲线类型为第一类型;
步骤S2400:根据第一角度、曲线类型以及曲线模型确定转弯曲线;
步骤S2330:确定曲线类型为第二类型;
步骤S2420:根据起始位置和目标位置确定第一转弯点和第二转弯点;
步骤S2430:确定穿过第一转弯点和第二转弯点的连接直线;
步骤S2441:确定工程机械在起始位置时的车身轴线为第一直线;
步骤S2442:确定第一直线与连接直线之间的第一夹角;
步骤S2443:根据第一夹角与曲线模型确定第一转弯曲线;
步骤S2450:根据第一角度、第二转弯点、目标位置以及曲线模型确定第二转弯曲线;
步骤S2460:根据连接直线、第一转弯曲线和第二转弯曲线,确定转弯曲线;
步骤S3000:根据转弯曲线控制工程机械由起始位置行驶至目标位置。
其中,运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间(即S2200中的切换时间),转弯曲线中曲率发生变化的部分为缓和曲线,第一角度为工程机械的转弯角度的补角,曲线类型根据是否需要经过直线行驶可分为多种不同的类型,曲线模型可计算工程机械由起始位置到达目标位置的转弯曲线。在曲线类型为第一类型时,工程机械仅通过转弯即可实现由起始位置行驶至目标位置,在曲线类型为第二类型时,工程机械需通过多次转弯以及直线行驶实现由起始位置行驶至目标位置。第一转弯点为工程机械由起始位置转弯至连接直线上时的终点,第二转弯点为工程机械由连接直线向目标位置转弯时的起点。
该实施例提供的工程机械的转弯控制方法,在图11所示的实施例的基础上对步骤S2440做了进一步改进。如图12和图13所示,通过S2441,根据起始位置,可确定工程机械位于起始位置时的朝向,并确定此时车身轴线为第一直线L3。通过步骤S2442,确定第一直线L3与连接直线L2之间的夹角,即第一夹角a1,进而通过步骤S2443,根据曲线模型和第一夹角a1确定由起始位置至第一转弯点M1的转弯路径,即第一转弯曲线,从而使得第一转弯曲线中不存在曲率突变的现象。
图15示出了根据本公开另一些实施例的工程机械的转弯控制方法。
如图15所示,在该实施例中,转弯控制方法可以包括以下步骤:
步骤S1000:获取工程机械的起始位置和目标位置的位置信息以及运动学参数;
步骤S2100:根据位置信息确定第一角度、目标位置与起始位置延长线之间的第一距离;
步骤S2200:根据工程机械的最小转弯半径、转弯行驶速度和切换时间建立曲线模型;
步骤S2310:判断第一距离是否小于或等于距离阈值,生成第一判断结果;若第一判断结果为是,执行步骤S2320至S2400,若第一判断结果为否,执行步骤S2330至步骤S2460;
步骤S2320:确定曲线类型为第一类型;
步骤S2400:根据第一角度、曲线类型以及曲线模型确定转弯曲线;
步骤S2330:确定曲线类型为第二类型;
步骤S2420:根据起始位置和目标位置确定第一转弯点和第二转弯点;
步骤S2430:确定穿过第一转弯点和第二转弯点的连接直线;
步骤S2440:根据第一角度、起始位置、第一转弯点以及曲线模型确定第一转弯曲线;
步骤S2451:确定工程机械位于目标位置时的车身轴线为第二直线;
步骤S2452:确定第二直线与连接直线之间的第二夹角;
步骤S2453:根据第二夹角与曲线模型确定第二转弯曲线;
步骤S2460:根据连接直线、第一转弯曲线和第二转弯曲线,确定转弯曲线;
步骤S3000:根据转弯曲线控制工程机械由起始位置行驶至目标位置。
其中,运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间(即S2200中的切换时间),转弯曲线中曲率发生变化的部分为缓和曲线,第一角度为工程机械的转弯角度的补角,曲线类型根据是否需要经过直线行驶可分为多种不同的类型,曲线模型可计算工程机械由起始位置到达目标位置的转弯曲线。在曲线类型为第一类型时,工程机械仅通过转弯即可实现由起始位置行驶至目标位置,在曲线类型为第二类型时,工程机械需通过多次转弯以及直线行驶实现由起始位置行驶至目标位置。第一转弯点为工程机械由起始位置转弯至连接直线上时的终点,第二转弯点为工程机械由连接直线向目标位置转弯时的起点。
该实施例提供的工程机械的转弯控制方法,在图11所示的实施例的基础上对步骤S2450做了进一步改进。如图12和图13所示,通过步骤S2451,根据目标位置,可确定工程机械位于目标位置时的朝向,并确定此时车身轴线为第二直线L4。通过步骤S2452,确定第二直线L4与连接直线L2之间的夹角,即第二夹角a2,以根据曲线模型和第二夹角a2确定由第二转弯点M2至目标位置的转弯路径,即第二转弯曲线,从而使得第二转弯曲线中不存在曲率突变的现象。
为了对本公开实施例提供的工程机械的转弯控制方法进行更清楚、完整地描述,下面结合图16给出一具体示例。
如图16所示,以工程机械在目标位置时的车身轴线的中点为原点,沿车身轴线的前进方向为x轴,建立直角坐标系。起始位置为P点,目标位置为O点,起始位置P点至x轴的距离为D,第一角度为β。示例性地,工程机械通过检测装置可获取起始位置P点和目标位置O点的位置信息,并可确定转弯角度β =0.18rad,第一角度β=π-β ,距离D=1.52m。工程机械的运动学参数分别为:最小转弯半径R=7m,转弯行驶速度V=0.5m/s,工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间t=5s。
结合上述已知条件,根据D可确定曲线类型为第一类型,利用曲线模型可确定一条缓和曲线方程为r×l=R×L=R×V×t=17.5,α=L/(2R)=0.1786rad。根据第一角度β可确定β处于(β 1,π]的角度区间,需先后退转向至车身轴线与位于目标位置时的车身轴线重合,即图16中车身轴线与x轴重合的位置;经过计算可确定后退转向角θ=0.16rad。根据上述参数在局部坐标下计算可得到工程机械由起始位置P点后退转向至N点的路径曲线由四条部分缓和曲线组合而成,再通过坐标变化可得到在直角坐标系下的路径曲线的曲线方程,进而再拼接工程机械沿x轴直线行驶时的直线方程,可最终确定总转弯曲线。根据总转弯曲线控制工程机械行驶,行驶过程中可避免出现原地转向的现象,从而防止对施工路面造成破坏。
以上,结合图1至图16对本公开的转弯控制方法进行了举例说明,下面,结合图17对本公开的转弯控制装置进行举例说明。应当理解,方法实施例与装置实施例一一对应,出于简洁的目的,省略重复描述。
图17示出了根据本公开一些实施例的工程机械的转弯控制装置的结构示意图。
如图17所示,转弯控制装置1可以包括获取模块11、确定模块12和控制模块13。
获取模块11可以用于获取工程机械的起始位置和目标位置的位置信息以及运动学参数。确定模块12可以用于根据位置信息和运动学参数确定转弯曲线。控制模块13可以用于根据转弯曲线控制工程机械由起始位置行驶至目标位置。
这里,运动学参数包括工程机械的最小转弯半径、转弯行驶速度和工程机械由直行状态切换至以最小转弯半径转弯的状态所需的切换时间,转弯曲线中曲率发生变化的部分为缓和曲线。
本公开实施例还提供一种工程机械。图18示出了根据本公开一些实施例的工程机械2。
如图18所示,工程机械2包括车体21、检测组件22和控制器23。
车体21作为工程机械2的主体,用于搭载各种作业机构。检测组件22可以连接于车体21上,以检测车体21的位置信息。位置信息例如可以包括起始位置、终点位置以及转弯路径上任一点的坐标信息和角度信息,以作为确定转弯曲线的依据。控制器23可以设于车体21内,并与车体21和检测组件22电连接,以根据检测组件22检测到的位置信息控制车体21行驶。在车体21转弯时,控制器23可以根据上述实施例提供的转弯控制方法来控制车体21进行转弯。
在一些实施例中,工程机械2为无人驾驶工程机械,可完全在控制器23在控制下进行施工操作,不限于车体21的直线行驶和转弯,应用场景包括进场、转场、变道以及位置调整等操作,以及相应的作业操作。无人驾驶工程机械可以有效减少人工操作过程,降低人工劳动强度,同时可以大幅提高施工作业的准确性、精度和施工质量。
本公开实施例还提供一种计算机设备。图19示出了根据本公开一些实施例的计算机设备3。
如图19所示,计算机设备3可以包括存储器31、处理器32及存储在存储器中并可在处理器32中运行的计算机程序,处理器32执行计算机程序时,实现如上述任一实施例中的工程机械转弯控制方法的步骤,以使工程机械实现曲率连续变化的转弯操作。此外,本实施例中的计算机设备3还应具有上述任一实施例中的工程机械转弯控制系统的全部有益效果,在此不再赘述。
以上结合附图详细说明了本公开的技术方案,可使工程机械在转弯过程中曲率连续变化,不存在原地转向的现象,防止对施工路面造成破坏,有利于控制施工路面的质量和施工精度,降低转弯过程中的误差,可适用于多种应用场景,适用范围广。
在本公开中,可以理解的是,流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成的,程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种工程机械的转弯控制方法,其特征在于,包括:
    获取所述工程机械的起始位置和目标位置的位置信息以及运动学参数;
    根据所述位置信息和所述运动学参数确定转弯曲线;以及
    根据所述转弯曲线控制所述工程机械由所述起始位置行驶至所述目标位置,
    其中所述运动学参数包括所述工程机械的最小转弯半径、转弯行驶速度和所述工程机械由直行状态切换至以所述最小转弯半径转弯的状态所需的切换时间,所述转弯曲线中曲率发生变化的部分为缓和曲线。
  2. 根据权利要求1所述的转弯控制方法,其特征在于,所述根据所述位置信息和所述运动学参数确定所述转弯曲线,包括:
    根据所述位置信息确定第一角度、所述目标位置与所述起始位置延长线之间的第一距离;
    根据所述工程机械的所述最小转弯半径、所述转弯行驶速度和所述切换时间建立曲线模型;
    根据所述第一距离确定所述转弯曲线的曲线类型;以及
    根据所述第一角度、所述曲线类型以及所述曲线模型确定所述转弯曲线,
    其中所述第一角度为所述工程机械的转弯角度的补角,所述曲线类型为根据所述工程机械是否需要经过直线行驶从多种不同的曲线类型中确定的,所述曲线模型用于计算所述工程机械由所述起始位置到达所述目标位置的转弯曲线。
  3. 根据权利要求2所述的转弯控制方法,其特征在于,所述根据所述第一距离确定所述转弯曲线的曲线类型,包括:
    判断所述第一距离是否小于或等于距离阈值,生成第一判断结果;
    若所述第一判断结果为是,则确定所述曲线类型为第一类型;以及
    若所述第一判断结果为否,则确定所述曲线类型为第二类型,
    其中在所述曲线类型为所述第一类型时,所述转弯曲线用于控制所述工程机械通过转弯实现由所述起始位置行驶至所述目标位置,在所述曲线类型为所述第二类型时,所述转弯曲线用于控制所述工程机械通过多次转弯以及直线行驶实现由所述起始位置行驶至所述目标位置。
  4. 根据权利要求3所述的转弯控制方法,其特征在于,在所述曲线类型为第一类型时,所述根据所述第一角度、所述曲线类型以及所述曲线模型确定所述转弯曲线,包括:
    确定所述第一角度所处的角度区间;
    若0°<所述第一角度≤第一角度阈值,则根据所述第一角度确定中转点,并根据所述中转点、所述起始位置、所述目标位置以及与所述曲线模型,确定所述转弯曲线;
    若所述第一角度阈值<所述第一角度≤第二角度阈值,则根据所述曲线模型确定所述转弯曲线;
    若所述第二角度阈值<所述第一角度≤第三角度阈值,则根据所述曲线模型经过角度变化确定所述转弯曲线;以及
    若所述第三角度阈值<所述第一角度≤180°,则根据所述第一角度与所述第一距离确定后退转向角,根据所述后退转向角与所述曲线模型确定所述转弯曲线,
    其中所述第一角度阈值和所述第三角度阈值为预设值,所述第二角度阈值为所述缓和曲线的切偏角的余角的二倍,所述后退转向角为所述工程机械由所述起始位置后退并转向至车身轴线与位于所述目标位置时的车身轴线重合所转过的角度。
  5. 根据权利要求3或4所述的转弯控制方法,其特征在于,在所述曲线类型为第二类型时,所述根据所述第一角度、所述曲线类型以及所述曲线模型确定所述转弯曲线,包括:
    根据所述起始位置和所述目标位置确定第一转弯点和第二转弯点;
    确定穿过所述第一转弯点和所述第二转弯点的连接直线;
    根据所述第一角度、所述起始位置、所述第一转弯点以及所述曲线模型确定第一转弯曲线;
    根据所述第一角度、所述第二转弯点、所述目标位置以及所述曲线模型确定第二转弯曲线;以及
    根据所述连接直线、所述第一转弯曲线和所述第二转弯曲线,确定所述转弯曲线,
    其中所述第一转弯点为所述工程机械由所述起始位置转弯至所述连接直线上时的终点位置,所述第二转弯点为所述工程机械由所述连接直线向所述目标位置转弯时的起始位置。
  6. 根据权利要求5所述的转弯控制方法,其特征在于,所述根据所述第一角度、所述起始位置、所述第一转弯点以及所述曲线模型确定第一转弯曲线,包括:
    确定所述工程机械在所述起始位置时的车身轴线为第一直线;
    确定所述第一直线与所述连接直线之间的第一夹角;以及
    根据所述第一夹角与所述曲线模型确定所述第一转弯曲线。
  7. 根据权利要求5或6所述的转弯控制方法,其特征在于,所述根据所述第一角度、所述第二转弯点、所述目标位置以及所述曲线模型确定第二转弯曲线,包括:
    确定所述工程机械位于所述目标位置时的车身轴线为第二直线;
    确定所述第二直线与所述连接直线之间的第二夹角;以及
    根据所述第二夹角与所述曲线模型确定所述第二转弯曲线。
  8. 根据权利要求1至7中任一项所述的转弯控制方法,其特征在于,所述缓和曲线满足下述公式:
    r×l=R×L;以及
    L=V×t,
    式中,r为瞬时转弯半径,l为所述瞬时转弯半径对应的缓和曲线的长度,R为所述最小转弯半径,L为所述缓和曲线的长度,V为所述转弯行驶速度,t为所述工程机械由直行状态切换至以所述最小转弯半径转弯的状态所需的切换时间。
  9. 根据权利要求1至8中任一项所述的转弯控制方法,其特征在于,所述工程机械为筑路机械。
  10. 一种工程机械,其特征在于,包括:
    车体;
    检测组件,连接于所述车体,用于检测所述车体的位置信息;以及
    控制器,设于所述车体内,所述控制器与所述车体和所述检测组件电连接,以根据所述检测组件检测到的所述位置信息控制所述车体行驶,其中
    所述控制器被配置为根据以下步骤控制所述车体进行转弯:
    获取所述工程机械的起始位置和目标位置的位置信息以及运动学参数;
    根据所述位置信息和所述运动学参数确定转弯曲线;以及
    根据所述转弯曲线控制所述工程机械由所述起始位置行驶至所述目标位置;
    其中所述运动学参数包括所述工程机械的最小转弯半径、转弯行驶速度和所述工程机械由直行状态切换至以所述最小转弯半径转弯的状态所需的切换时间,所述转弯曲线中曲率发生变化的部分为缓和曲线。
  11. 根据权利要求10所述的工程机械,其特征在于,所述根据所述位置信息和所述运动学参数确定所述转弯曲线,包括:
    根据所述位置信息确定第一角度、所述目标位置与所述起始位置延长线之间的第一距离;
    根据所述工程机械的所述最小转弯半径、所述转弯行驶速度和所述切换时间建立曲线模型;
    根据所述第一距离确定所述转弯曲线的曲线类型;以及
    根据所述第一角度、所述曲线类型以及所述曲线模型确定所述转弯曲线,
    其中所述第一角度为所述工程机械的转弯角度的补角,所述曲线类型是根据所述工程机械是否需要经过直线行驶从多种不同的类型中确定的,所述曲线模型用于计算所述工程机械由所述起始位置到达所述目标位置的转弯曲线。
  12. 根据权利要求11所述的工程机械,其特征在于,所述根据所述第一距离确定所述转弯曲线的曲线类型,具体包括:
    判断所述第一距离是否小于或等于距离阈值,生成第一判断结果;
    若所述第一判断结果为是,则确定所述曲线类型为第一类型;以及
    若所述第一判断结果为否,则确定所述曲线类型为第二类型,
    其中在所述曲线类型为所述第一类型时,所述转弯曲线用于控制所述工程机械通过转弯实现由所述起始位置行驶至所述目标位置,在所述曲线类型为所述第二类型时,所述转弯曲线用于控制所述工程机械通过多次转弯以及直线行驶实现由所述起始位置行驶至所述目标位置。
  13. 根据权利要求12所述的工程机械,其特征在于,在所述曲线类型为第一类型时,所述根据所述第一角度、所述曲线类型以及所述曲线模型确定所述转弯曲线,包括:
    确定所述第一角度所处的角度区间;
    若0°<所述第一角度≤第一角度阈值,则根据所述第一角度确定中转点,并根据所述中转点、所述起始位置、所述目标位置以及与所述曲线模型,确定所述转弯曲线;
    若所述第一角度阈值<所述第一角度≤第二角度阈值,则根据所述曲线模型确定所述转弯曲线;
    若所述第二角度阈值<所述第一角度≤第三角度阈值,则根据所述曲线模型经过角度变化确定所述转弯曲线;以及
    若所述第三角度阈值<所述第一角度≤180°,则根据所述第一角度与所述第一距离确定后退转向角,根据所述后退转向角与所述曲线模型确定所述转弯曲线,
    其中所述第一角度阈值和所述第三角度阈值为预设值,所述第二角度阈值为所述缓和曲线的切偏角的余角的二倍,所述后退转向角为所述工程机械由所述起始位置后退并转向至车身轴线与位于所述目标位置时的车身轴线重合所转过的角度。
  14. 根据权利要求12或13所述的工程机械,其特征在于,在所述曲线类型为第二类型时,所述根据所述第一角度、所述曲线类型以及所述曲线模型确定所述转弯曲线,包括:
    根据所述起始位置和所述目标位置确定第一转弯点和第二转弯点;
    确定穿过所述第一转弯点和所述第二转弯点的连接直线;
    根据所述第一角度、所述起始位置、所述第一转弯点以及所述曲线模型确定第一转弯曲线;
    根据所述第一角度、所述第二转弯点、所述目标位置以及所述曲线模型确定第二转弯曲线;以及
    根据所述连接直线、所述第一转弯曲线和所述第二转弯曲线,确定所述转弯曲线,
    其中所述第一转弯点为所述工程机械由所述起始位置转弯至所述连接直线上时的终点位置,所述第二转弯点为所述工程机械由所述连接直线向所述目标位置转弯时的起始位置。
  15. 根据权利要求14所述的工程机械,其特征在于,所述根据所述第一角度、所述起始位置、所述第一转弯点以及所述曲线模型确定第一转弯曲线,包括:
    确定所述工程机械在所述起始位置时的车身轴线为第一直线;
    确定所述第一直线与所述连接直线之间的第一夹角;以及
    根据所述第一夹角与所述曲线模型确定所述第一转弯曲线。
  16. 根据权利要求14或15所述的工程机械,其特征在于,所述根据所述第一角度、所述第二转弯点、所述目标位置以及所述曲线模型确定第二转弯曲线,包括:
    确定所述工程机械位于所述目标位置时的车身轴线为第二直线;
    确定所述第二直线与所述连接直线之间的第二夹角;以及
    根据所述第二夹角与所述曲线模型确定所述第二转弯曲线。
  17. 根据权利要求10至16中任一项所述的工程机械,其特征在于,其特征在于,所述缓和曲线满足下述公式:
    r×l=R×L;以及
    L=V×t,
    其中,r为瞬时转弯半径,l为所述瞬时转弯半径对应的缓和曲线的长度,R为所述最小转弯半径,L为所述缓和曲线的长度,V为所述转弯行驶速度,t为所述工程机械由直行状态切换至以所述最小转弯半径转弯的状态所需的切换时间。
  18. 根据权利要求10至17中任一项所述的工程机械,其特征在于,所述工程机械为筑路机械。
  19. 根据权利要求10至18中任一项所述的工程机械,其特征在于,所述工程机械为无人驾驶工程机械。
  20. 一种计算机设备,包括存储器、处理器及存储在所述存储器中并可在所述处理器中运行的计算机程序,其特征在于,
    所述处理器执行所述计算机程序时,实现如权利要求1至9中任一项所述的工程机械转弯控制方法的步骤。
PCT/CN2021/100934 2020-06-19 2021-06-18 工程机械的转弯控制方法、工程机械和计算机设备 WO2021254486A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/584,700 US20220147047A1 (en) 2020-06-19 2022-01-26 Turning control method for construction machine, construction machine and computer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010564714.0 2020-06-19
CN202010564714.0A CN111764235B (zh) 2020-06-19 2020-06-19 工程机械转弯控制方法、工程机械和计算机设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/584,700 Continuation US20220147047A1 (en) 2020-06-19 2022-01-26 Turning control method for construction machine, construction machine and computer device

Publications (1)

Publication Number Publication Date
WO2021254486A1 true WO2021254486A1 (zh) 2021-12-23

Family

ID=72721266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100934 WO2021254486A1 (zh) 2020-06-19 2021-06-18 工程机械的转弯控制方法、工程机械和计算机设备

Country Status (3)

Country Link
US (1) US20220147047A1 (zh)
CN (1) CN111764235B (zh)
WO (1) WO2021254486A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111764235B (zh) * 2020-06-19 2022-02-18 三一汽车制造有限公司 工程机械转弯控制方法、工程机械和计算机设备
CN112373463B (zh) * 2020-11-17 2022-05-06 湖南三一智能控制设备有限公司 车辆的控制方法、控制系统和车辆
CN112389465B (zh) * 2020-11-17 2022-03-18 湖南三一智能控制设备有限公司 工程车辆的控制方法、控制系统和工程车辆
CN113568406A (zh) * 2021-07-27 2021-10-29 北京京东乾石科技有限公司 装置移动方法、装置、电子设备和计算机可读介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334804A1 (en) * 2003-03-20 2016-11-17 Agjunction Llc Gnss and optical guidance and machine control
CN109471441A (zh) * 2018-12-11 2019-03-15 湖南三智能控制设备有限公司 路面机械设备及其上线规划方法、系统和可读存储介质
CN109857097A (zh) * 2018-12-07 2019-06-07 北京中交睿达科技有限公司 一种路面碾压过程的监控方法及系统
CN110440824A (zh) * 2019-08-27 2019-11-12 广州小鹏汽车科技有限公司 一种路径规划方法及路径规划系统
CN110789523A (zh) * 2018-08-01 2020-02-14 上海汽车集团股份有限公司 一种轨迹规划方法及装置
JP2020027459A (ja) * 2018-08-13 2020-02-20 株式会社Subaru 自動運転支援装置
WO2020069769A1 (de) * 2018-10-04 2020-04-09 Bomag Gmbh Verfahren zur steuerung einer bodenverdichtungsmaschine und bodenverdichtungsmaschine
CN111764235A (zh) * 2020-06-19 2020-10-13 三一汽车制造有限公司 工程机械转弯控制方法、工程机械和计算机设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095340B2 (ja) * 2002-05-17 2008-06-04 樹 斉藤 アスファルト面取装置
CN104627175B (zh) * 2015-01-22 2017-03-01 北京理工大学 一种人车交互智能泊车系统
CN107447621B (zh) * 2017-08-17 2019-03-01 连云港市惠城市政工程有限公司 一种带有坡度和转弯的路面沥青铺设方法
JP7199905B2 (ja) * 2018-10-18 2023-01-06 フォルシアクラリオン・エレクトロニクス株式会社 自動運転制御装置、および自動運転経路演算方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334804A1 (en) * 2003-03-20 2016-11-17 Agjunction Llc Gnss and optical guidance and machine control
CN110789523A (zh) * 2018-08-01 2020-02-14 上海汽车集团股份有限公司 一种轨迹规划方法及装置
JP2020027459A (ja) * 2018-08-13 2020-02-20 株式会社Subaru 自動運転支援装置
WO2020069769A1 (de) * 2018-10-04 2020-04-09 Bomag Gmbh Verfahren zur steuerung einer bodenverdichtungsmaschine und bodenverdichtungsmaschine
CN109857097A (zh) * 2018-12-07 2019-06-07 北京中交睿达科技有限公司 一种路面碾压过程的监控方法及系统
CN109471441A (zh) * 2018-12-11 2019-03-15 湖南三智能控制设备有限公司 路面机械设备及其上线规划方法、系统和可读存储介质
CN110440824A (zh) * 2019-08-27 2019-11-12 广州小鹏汽车科技有限公司 一种路径规划方法及路径规划系统
CN111764235A (zh) * 2020-06-19 2020-10-13 三一汽车制造有限公司 工程机械转弯控制方法、工程机械和计算机设备

Also Published As

Publication number Publication date
US20220147047A1 (en) 2022-05-12
CN111764235B (zh) 2022-02-18
CN111764235A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2021254486A1 (zh) 工程机械的转弯控制方法、工程机械和计算机设备
US11914394B2 (en) Materials handling vehicle path validation and dynamic path modification
US20210114620A1 (en) Method for controlling autonomous vehicle to pass through curve, electronic device and medium
CN108052102B (zh) 机器人行进路线的确定方法、装置及机器人
CN111443709B (zh) 车辆变道路线规划方法、装置、终端和存储介质
JPH10240342A (ja) 自律走行車
CN112277931B (zh) 垂直泊车轨迹生成方法、装置、车辆及存储介质
CN109709943B (zh) 一种自动驾驶公交车进站停靠点的选取方法
BR112017022955B1 (pt) Sistema, método e meio não transitório legível por computador para calcular um plano de trajetória dirigível para um veículo autônomo e sistema, método e meio não transitório legível por computador para controlar um veículo autônomo
JPH11175149A (ja) 自律走行車
CN107560620B (zh) 一种路径导航方法和芯片及机器人
CN114812566B (zh) 矿区车辆的行驶路径规划方法、装置及计算机设备
KR20210002959A (ko) 자율주행차량의 차선변경 제어 장치 및 그 방법
CN109703553B (zh) 一种基于牵引点跟踪的自动泊车方法
CN113335270B (zh) 一种泊车路径规划方法和装置
WO2019225579A1 (ja) 車両制御装置
WO2018233298A1 (zh) 用于使车辆自动驶入车位的方法和装置
JP2021130454A (ja) 自動運転車両のカーブ走行制御方法、装置、機器及び媒体
KR20220138674A (ko) 자율 주행 농기계의 제어 방법 및 장치
EP4151487A2 (en) Method and apparatus for controlling lane changing, electronic device and storage medium
JP7096705B2 (ja) 走路設定装置
CN116359946A (zh) 目标检测方法、装置、设备及介质
CN115056765A (zh) 垂直与斜列车位自主泊车的路径规划方法及装置
JP2739030B2 (ja) 履帯式車両の走行制御装置
CN113008257A (zh) 一种道路工程车辆及其路径规划方法、系统和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825128

Country of ref document: EP

Kind code of ref document: A1