WO2021254436A1 - 发光薄膜及其制备方法、发光器件、显示基板 - Google Patents

发光薄膜及其制备方法、发光器件、显示基板 Download PDF

Info

Publication number
WO2021254436A1
WO2021254436A1 PCT/CN2021/100614 CN2021100614W WO2021254436A1 WO 2021254436 A1 WO2021254436 A1 WO 2021254436A1 CN 2021100614 W CN2021100614 W CN 2021100614W WO 2021254436 A1 WO2021254436 A1 WO 2021254436A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
polymer
quantum dots
film
Prior art date
Application number
PCT/CN2021/100614
Other languages
English (en)
French (fr)
Inventor
梅文海
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/770,220 priority Critical patent/US20230010474A1/en
Publication of WO2021254436A1 publication Critical patent/WO2021254436A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a light-emitting film, a preparation method thereof, a light-emitting device, and a display substrate.
  • AMOLED Active Matrix Organic Light Emitting Diode
  • Quantum Dot Light Emitting Diodes QLED
  • quantum efficiency has been continuously improved, which has basically reached the level of industrialization.
  • quantum dots to prepare high-resolution QLED products has become an important issue.
  • the embodiments of the present disclosure provide a light-emitting film, a preparation method thereof, a light-emitting device, and a display substrate.
  • a light-emitting film which includes a polymer and quantum dots bonded to the polymer;
  • the quantum dots include metal nanoparticles and a core-shell structure connected to the metal nanoparticles;
  • the metal nanoparticles are bonded to the polymer through sulfur bonds.
  • the material of the metal nanoparticles is gold or silver.
  • the core-shell structure includes a core layer and a coating layer surrounding the core layer, the core layer is made of cadmium selenide or cadmium sulfide, and the coating layer is made of zinc sulfide or zinc oxide , Any of zinc selenide.
  • the quantum dots have a Janus nanoparticle structure or a symmetrical nanoparticle structure.
  • the shape of the metal nanoparticle and the core-shell structure is spherical, square or ellipsoidal.
  • the quantum dots are patterned quantum dots.
  • the quantum dots include red quantum dots, green quantum dots and blue quantum dots, or the quantum dots are single-color quantum dots.
  • a light-emitting device in another aspect, includes: the above-mentioned light-emitting film.
  • the light-emitting device includes a cathode, and an electron transport layer, a light-emitting film, a hole transport layer, a hole injection layer, and an anode that are sequentially stacked on the cathode;
  • the polymer is formed on the electron transport layer and is in contact with the electron transport layer.
  • the light-emitting device includes an anode, and a hole injection layer, a hole transport layer, a light-emitting film, an electron transport layer, and a cathode that are sequentially stacked on the anode;
  • the polymer is formed on the hole transport layer and is in contact with the hole transport layer.
  • a display substrate including the above-mentioned light-emitting device.
  • the structure of the polymer precursor layer includes a plurality of sulfhydryl structures
  • the quantum dot layer includes metal nanoparticles and a core-shell structure connected to the metal nanoparticles;
  • the quantum dot layer is developed to form the patterned quantum dot layer.
  • the forming a polymer precursor layer includes:
  • Forming a polymer film the structure of the polymer film includes multiple oversulfide bond structures or multiple cyclic sulfide structures;
  • the polymer film is illuminated to form a polymer precursor layer.
  • the thickness of the polymer film is less than 20 nm.
  • the plurality of supersulfide bond structures or the plurality of cyclic sulfide structures are located on different branches of the polymer film, and one of the branches includes one of the supersulfide bond structures or one of the Sulfide structure.
  • the structure of the polymer precursor layer further includes an R group connected to the sulfhydryl structure, and the R group includes a first group and a second group, and the second group is respectively connected to The first group is connected to the sulfhydryl structure;
  • the first group is any one of a hydroxyl group, an aldehyde group, a carboxyl group or an amino group;
  • the second group is an aromatic ring structure, the aromatic ring structure includes at least one benzene ring, and the benzene ring includes at least one polar group.
  • the step of forming a quantum dot layer on the polymer precursor layer includes:
  • a sulfur source and a zinc source are sequentially deposited on the metal nanoparticle film after annealing treatment, and annealing treatment is performed to form the quantum dot layer.
  • the size range of the metal nanoparticles is 5nm-8nm.
  • the material of the metal nanoparticles is gold or silver.
  • the core-shell structure includes a core layer and a coating layer surrounding the core layer, the core layer is made of cadmium selenide or cadmium sulfide, and the coating layer is made of zinc sulfide or zinc oxide , Any of zinc selenide.
  • FIG. 1 is a schematic structural diagram of a light-emitting film provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of the structure of a quantum dot provided by an embodiment of the disclosure.
  • FIG. 3 is a schematic structural diagram of a light emitting device provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic structural diagram of another light emitting device provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic flow chart of a method for preparing a light-emitting film according to an embodiment of the disclosure
  • FIG. 6 is a schematic flow chart of another method for preparing a light-emitting film according to an embodiment of the disclosure.
  • FIG. 7 is a schematic flow chart of a method for preparing quantum dots according to an embodiment of the disclosure.
  • FIG. 8 is a schematic flowchart of another method for preparing quantum dots according to an embodiment of the disclosure.
  • words such as “first” and “second” are used to distinguish the same items or similar items that have basically the same function and effect. This is only to clearly describe the technical solutions of the embodiments of the present disclosure, and cannot be understood. To indicate or imply relative importance or implicitly indicate the number of technical features indicated.
  • the orientation or positional relationship indicated by the term " ⁇ " etc. is based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present disclosure and simplifying the description, rather than indicating or implying what is referred to.
  • the device or element must have a specific orientation, be configured and operated in a specific orientation, and therefore cannot be understood as a limitation of the present disclosure.
  • the light-emitting film includes a polymer 1 and quantum dots 2 bonded to the polymer 1.
  • the quantum dot 2 (also known as QD) includes a metal nanoparticle 3 and a core-shell structure (not labeled in FIG. 1) connected to the metal nanoparticle 3; the metal nanoparticle 3 is bonded to the polymer 1 through a sulfur bond.
  • the material of the aforementioned metal nanoparticles may be gold or silver. Since the interaction force between the gold nanoparticles and the polymer is stronger, gold nanoparticles are often used.
  • the aforementioned quantum dots are composite materials containing metal nanoparticles, and belong to binary quantum dots.
  • the structure of the aforementioned quantum dots may be the Janus (double-sided) nanoparticle structure as shown in FIG. 1 or the symmetrical nanoparticle structure as shown in FIG. 2, which is not limited here.
  • Figure 1 shows the former as an example.
  • the shape of the aforementioned metal nanoparticles and core-shell structure can be spherical, square, ellipsoidal, etc., and most of them are spherical.
  • Fig. 1 and Fig. 2 both show a spherical shape as an example.
  • the aforementioned quantum dots can be any of red quantum dots, green quantum dots or blue quantum dots; specifically, quantum dots with different luminous colors can be obtained by controlling the size of the core-shell structure.
  • the above-mentioned light-emitting film may only include any one of red quantum dots, green quantum dots or blue quantum dots, or may include red quantum dots, green quantum dots and blue quantum dots at the same time, which can be specifically determined according to actual requirements.
  • the metal nanoparticles are bonded to the polymer through sulfur bonds, and there is a very strong interaction force between the metal nanoparticles and the polymer, so that there is a strong interaction force between the quantum dots and the polymer; then
  • the strong force between the metal nanoparticle and the polymer can be used to fix the quantum dots on the polymer, and then develop a patterned quantum dot layer to form a patterned light-emitting film.
  • the light-emitting film formed by this method can form a high-resolution display panel.
  • the material of the metal nanoparticles is gold or silver. Since the interaction between gold nanoparticles and polymers is stronger, gold nanoparticles are mostly used.
  • the core-shell structure includes a core layer 5 and a coating layer 4 surrounding the core layer 5.
  • the material of the core layer is cadmium selenide (CdSe) or cadmium sulfide (CdS).
  • the material is any one of zinc sulfide (ZnS), zinc oxide (ZnO), and zinc selenide (ZnSe).
  • ZnS zinc sulfide
  • ZnO zinc oxide
  • ZnSe zinc selenide
  • cadmium selenide is often used to form the core layer and zinc sulfide is used to form the coating layer.
  • the embodiments of the present disclosure provide a light-emitting device, including the light-emitting film provided in the above embodiments.
  • the light-emitting device may be an inverted QLED light-emitting device as shown in FIG. 3, including a cathode 10, and an electron transport layer 11, a light-emitting film 12, a hole transport layer 13, and a hole injection layer sequentially stacked on the cathode 10. 14 and anode 15; wherein, the light-emitting film 12 includes a polymer 1 and quantum dots 2 bonded to the polymer 1, and the polymer 1 is formed on the electron transport layer 11 and is in contact with the electron transport layer 11.
  • the light-emitting device can also be an upright QLED light-emitting device as shown in FIG. 4, which includes an anode 15, and a hole injection layer 14, a hole transport layer 13, and a light emitting film 12, which are sequentially stacked on the anode 15.
  • the quantum dots included in the light-emitting film are patterned quantum dots, including red quantum dots (R), green quantum dots (G) and blue quantum dots (B), including
  • the light-emitting device of the light-emitting film can be used to realize color display.
  • the quantum dots included in the light-emitting film may also be single-color quantum dots.
  • the light-emitting device including the light-emitting film can be used for single-color display.
  • the quantum dots of the light-emitting film include metal nanoparticles and a core-shell structure connected to the metal nanoparticles; the metal nanoparticles are bonded to the polymer through sulfur bonds.
  • the strong force between the metal nanoparticles and the polymer can be used to fix the quantum dots on the polymer, and then develop a patterned quantum dot layer to form a patterned light-emitting film.
  • the light-emitting device has a higher resolution and can be used to form a high-resolution QLED display panel.
  • metal nanoparticles can produce surface plasmon effects, improve the light extraction efficiency of quantum dots, and thereby improve device performance.
  • the embodiment of the present disclosure provides a display substrate, including the light emitting device provided in the above embodiment.
  • the display substrate can be used to form a high-resolution QLED display panel, which can be used as a quantum dot array substrate or a quantum dot color film substrate (QDPR), which is not limited here.
  • QLED quantum dot color film substrate
  • the embodiments of the present disclosure provide a display panel, including the display substrate provided in the above embodiments.
  • the display panel may be a QLED display panel, or any product or component with a display function such as a TV, a digital camera, a mobile phone, a tablet computer and the like including the QLED display panel; it has the advantages of high resolution and good display performance.
  • the embodiments of the present disclosure provide a method for preparing the light-emitting film provided in the above embodiments, and the method includes:
  • the structure of the polymer precursor layer includes multiple sulfhydryl structures.
  • Sulfhydryl group also known as sulfhydryl group or thiol group, is a negative monovalent functional group composed of a sulfur atom and a hydrogen atom, and the chemical formula is -SH.
  • Different groups can be connected to the sulfhydryl end, for example: mercaptan (R-SH), thiophenol (Ar-SH).
  • R-SH mercaptan
  • Ar-SH thiophenol
  • the disulfide bond (—S—S—) can generate sulfhydryl (—SH) under the action of UV (ultraviolet rays) irradiation.
  • a quantum dot layer is formed on the polymer precursor layer; the quantum dot layer includes metal nanoparticles and a core-shell structure connected to the metal nanoparticles.
  • the metal nanoparticles and the sulfhydryl structure can form a strong interaction, thereby fixing the quantum dots on the polymer precursor layer.
  • a good solvent for quantum dots for example, toluene, etc.
  • a good solvent for quantum dots can be used for development, so as to wash away the quantum dots without the strong interaction region between metal nanoparticles and sulfhydryl groups, thereby forming a patterned quantum dot layer.
  • the organic layer structure of AMOLED is usually prepared by the method of mask evaporation, but the mask evaporation method has the defects of difficulty in alignment, low yield, and inability to achieve a smaller area of light emission; this ability to accurately control the evaporation area is insufficient
  • the problem cannot meet the current rapidly developing demand for high-resolution displays.
  • printing and printing methods are used to replace the process of mask evaporation to prepare the organic light-emitting layer, and the resolution obtained is extremely limited.
  • the above-mentioned preparation method utilizes the strong force between the metal nanoparticle and the sulfhydryl structure of the polymer to fix the quantum dots on the polymer precursor layer, and then develop a patterned quantum dot layer to form Patterned light-emitting film.
  • the above-mentioned preparation method does not need to adopt printing and printing methods, and can form a high-resolution display panel.
  • Forming a polymer precursor layer includes:
  • the structure of the polymer film includes multiple oversulfide bond structures or multiple cyclic sulfide structures.
  • multiple oversulfide bond structures or multiple cyclic sulfide structures are located on different branches of the polymer film, that is, one branch includes one oversulfide bond structure or one cyclic sulfide structure.
  • S012 irradiate the polymer film with light to form a polymer precursor layer.
  • the illumination can be UV illumination to illuminate the area where quantum dots need to be formed, and the rest of the area does not need to be illuminated.
  • the above-mentioned supersulfide bond structure refers to a disulfide bond (—S—S—) structure.
  • the disulfide bond can generate a sulfhydryl structure under UV light.
  • the specific chemical formula is as follows:
  • the above cyclic sulfide structure can also generate a sulfhydryl structure under UV light.
  • the specific chemical formula is as follows:
  • the above-mentioned supersulfide bond structure and cyclic sulfide structure can form a sulfhydryl structure after UV irradiation.
  • the structure of the polymer precursor layer also includes an R group connected to a mercapto structure.
  • the R group includes a first group (R1) and a second group (R2), and the second group is connected to the first group and the second group respectively. Sulfhydryl structure connection.
  • R-SH can be: SH-R2-R1, wherein the second group R2 is an aromatic ring structure, the aromatic ring structure includes at least one benzene ring, and the benzene ring includes at least one polar group; the first group R1 is hydroxyl (-OH), aldehyde group carboxyl Or any of amino (-NH 2 ).
  • the thickness of the above-mentioned polymer film is less than 20 nm, and a better light-emitting effect can be obtained.
  • a polymer film including multiple oversulfur bond structures is taken as an example to illustrate the specific preparation method.
  • the polymer film 100 including multiple oversulfur bond structures decomposes under the action of UV light to form a polymer film 101 including multiple sulfhydryl structures; then, quantum dots (QD) are deposited to form a deposited quantum dot (QD).
  • QD quantum dots
  • the polymer film 101 is illustrated by taking two sulfhydryl structures as an example, but of course, it does not stop there.
  • a luminescent film including red quantum dots, green quantum dots and blue quantum dots is taken as an example to illustrate the patterned preparation method of the luminescent film.
  • a polymer film 100 with branched chains including a supersulfide bond structure is prepared on the front film layer 200 through a lift-off process, and the area used to form red quantum dot pixels is irradiated with UV at a dose of 5000 mj/ cm 2 ;
  • the Janus red quantum dot composite material 201 is spin-coated, and then developed with toluene to form the red quantum dots R, thus completing the preparation of the patterned red quantum dots; then follow the same process to sequentially form the green quantum dots G And blue quantum dot B, finally forming a light-emitting film including red quantum dot R, green quantum dot G and blue quantum dot B.
  • Janus green light quantum dot composite material is marked as 202
  • Janus blue light quantum dot composite material is
  • a quantum dot layer is formed on the polymer precursor layer; the quantum dot layer includes metal nanoparticles, and the core-shell structure connected to the metal nanoparticles includes:
  • the size of the metal nanoparticle ranges from 5nm to 8nm.
  • S022 Depositing a selenium source and a cadmium source on the metal nanoparticle film in sequence, and performing annealing treatment.
  • a metastable gold/cadmium selenide core-shell structure is formed on the Au surface. Because there is a large mismatch between the gold lattice and the cadmium selenide lattice, the cadmium selenide can no longer coat the gold nanoparticles, but is distributed to one or both sides of the gold; therefore, after annealing, due to the cadmium selenide The surface tension of the crystal forms a janus composite nanoparticle structure of gold/cadmium selenide.
  • S023 Depositing a sulfur source and a zinc source in sequence on the metal nanoparticle film after annealing treatment, and performing annealing treatment to form a quantum dot layer.
  • zinc sulfide is formed on the periphery of the cadmium selenide, thereby forming a cadmium selenide/zinc sulfide core-shell structure, and then forming a gold/cadmium selenide/zinc sulfide core-shell janus composite nanoparticle structure.
  • the type of nanoparticles that are finally formed can be controlled. For example, if the amount of deposited selenium source and cadmium source is small, the janus dual-faced nanoparticles shown in Figure 7 can eventually be formed; if the amount of deposited selenium source and cadmium source is large, the final result can be formed as shown in Figure 8. Symmetrical nanoparticles shown.
  • the material of the core layer is cadmium selenide, and the material of the coating layer is zinc sulfide.
  • the metal nanoparticles are gold nanoparticles as an example for illustration.
  • the material of the metal nanoparticles is gold or silver. Since the interaction between gold nanoparticles and polymers is stronger, gold nanoparticles are mostly used.
  • the core-shell structure includes a core layer 5 and a coating layer 4 surrounding the core layer 5.
  • the material of the core layer is cadmium selenide (CdSe) or cadmium sulfide (CdS).
  • the material is any one of zinc sulfide (ZnS), zinc oxide (ZnO), and zinc selenide (ZnSe).
  • ZnS zinc sulfide
  • ZnO zinc oxide
  • ZnSe zinc selenide
  • cadmium selenide is often used to form the core layer and zinc sulfide is used to form the coating layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

发光薄膜及其制备方法、发光器件、显示基板,涉及显示技术领域。该发光薄膜包括聚合物(1)、以及与所述聚合物(1)键合的量子点(2);所述量子点(2)包括金属纳米粒子(3)、以及与所述金属纳米粒子(3)连接的核壳结构;所述金属纳米粒子(3)通过硫键与所述聚合物(1)键合。

Description

发光薄膜及其制备方法、发光器件、显示基板
相关申请的交叉引用
本公开要求在2020年06月19日提交中国专利局、申请号为202010566459.3、名称为“一种发光薄膜及其制备方法、发光器件、显示基板”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种发光薄膜及其制备方法、发光器件、显示基板。
背景技术
有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode,AMOLED)曾被公认为有希望成为取代液晶显示器(Liquid Crystal Display,LCD)的下一代显示,但是随着消费者的消费水平的提升,高分辨率产品成为显示产品的重点发展方向。
与此同时,随着量子点技术的深入发展,电致量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)的研究日益深入,量子效率不断提升,已基本达到产业化的水平。采用量子点制备高分辨率的QLED产品已经成为一项重要的议题。
概述
本公开的实施例提供一种发光薄膜及其制备方法、发光器件、显示基板。
为达到上述目的,本公开的实施例采用如下技术方案:
一方面,提供了一种发光薄膜,包括聚合物、以及与所述聚合物键合的量子点;
所述量子点包括金属纳米粒子、以及与所述金属纳米粒子连接的核壳结构;并且
所述金属纳米粒子通过硫键与所述聚合物键合。
可选地,所述金属纳米粒子的材料为金或者银。
可选地,所述核壳结构包括内核层和包围所述内核层的包覆层,所述内核层的材料为硒化镉或者硫化镉,所述包覆层的材料为硫化锌、氧化锌、硒化锌中的任一种。
可选地,所述量子点为Janus纳米粒子结构,或对称性纳米粒子结构。
可选地,所述金属纳米粒子和所述核壳结构的形状为球形、方形或椭球形。
可选地,所述量子点为图案化后的量子点;并且
所述量子点包括红色量子点、绿色量子点和蓝色量子点,或者所述量子点为单一颜色的量子点。
另一方面,提供了一种发光器件,所述发光器件包括:上述的发光薄膜。
可选地,所述发光器件包括阴极、以及依次层叠设置在阴极之上的电子传输层、发光薄膜、空穴传输层、空穴注入层和阳极;
所述聚合物形成在所述电子传输层之上,且与所述电子传输层接触。
可选地,所述发光器件包括阳极、以及依次层叠设置在所述阳极之上的空穴注入层、空穴传输层、发光薄膜、电子传输层和阴极;
所述聚合物形成在所述空穴传输层之上,且与所述空穴传输层接触。
再一方面,提供了一种显示基板,包括上述的发光器件。
又一方面,提供了一种如上述所述的发光薄膜的制备方法,所述制备方法包括:
形成聚合物前体层;所述聚合物前体层的结构包括多个巯基结构;
在所述聚合物前体层上形成量子点层;所述量子点层包括金属纳米粒子、以及与所述金属纳米粒子连接的核壳结构;以及
对所述量子点层进行显影,形成图案化的所述量子点层。
可选地,所述形成聚合物前体层包括:
形成聚合物薄膜;所述聚合物薄膜的结构包括多个过硫键结构或者多个环硫醚结构;
对所述聚合物薄膜进行光照,形成聚合物前体层。
可选地,所述聚合物薄膜的厚度小于20nm。
可选地,所述多个过硫键结构或者所述多个环硫醚结构位于所述聚合物薄膜的不同支链上,一个所述支链包括一个所述过硫键结构或者一个所述环 硫醚结构。
可选地,所述聚合物前体层的结构还包括与所述巯基结构连接的R基团,所述R基团包括第一基团和第二基团,所述第二基团分别与所述第一基团和所述巯基结构连接;
所述第一基团为羟基、醛基、羧基或者氨基中的任一种;
所述第二基团为芳环结构,所述芳环结构包括至少一个苯环,所述苯环至少包括一个极性基团。
可选地,所述在所述聚合物前体层上形成量子点层的步骤,包括:
形成金属纳米粒子薄膜;
在所述金属纳米粒子薄膜上依次沉积硒源和镉源,并进行退火处理;
在经过退火处理后的所述金属纳米粒子薄膜上依次沉积硫源和锌源,并进行退火处理,形成所述量子点层。
可选地,所述金属纳米粒子的尺寸范围为5nm-8nm。
可选地,所述金属纳米粒子的材料为金或者银。
可选地,所述核壳结构包括内核层和包围所述内核层的包覆层,所述内核层的材料为硒化镉或者硫化镉,所述包覆层的材料为硫化锌、氧化锌、硒化锌中的任一种。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种发光薄膜的结构示意图;
图2为本公开实施例提供的一种量子点的结构示意图;
图3为本公开实施例提供的一种发光器件的结构示意图;
图4为本公开实施例提供的另一种发光器件的结构示意图;
图5为本公开实施例提供的一种发光薄膜的制备方法的流程示意图;
图6为本公开实施例提供的另一种发光薄膜的制备方法的流程示意图;
图7为本公开实施例提供的一种量子点的制备方法的流程示意图;并且
图8为本公开实施例提供的另一种量子点的制备方法的流程示意图。
详细描述
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的实施例中,采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,仅为了清楚描述本公开实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
在本公开的实施例中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开的实施例中,术语“上”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
本公开实施例提供了一种发光薄膜,参考图1所示,该发光薄膜包括聚合物1、以及与聚合物1键合的量子点2。
量子点2(又称QD)包括金属纳米粒子3、以及与金属纳米粒子3连接的核壳结构(图1未标记);金属纳米粒子3通过硫键与聚合物1键合。
上述金属纳米粒子的材料可以是金或者银,由于金纳米粒子与聚合物之间的相互作用力更强,因此多采用金纳米粒子。
上述量子点为含有金属纳米粒子的复合材料,属于二元量子点。上述量子点的结构可以是如图1所示的Janus(两面性)纳米粒子结构,也可以是如图2所示的对称性纳米粒子结构,这里不做限定。图1中以前者为例进行绘示。
上述金属纳米粒子、核壳结构的形状可以是球形、方形、椭球形等,一 般多为球形。图1和图2均以球形为例进行绘示。
上述量子点可以是红色量子点、绿色量子点或者蓝色量子点中的任一种;具体可以通过控制核壳结构的尺寸,从而得到不同发光颜色的量子点。上述发光薄膜可以仅包括红色量子点、绿色量子点或者蓝色量子点中的任一种,也可以同时包括红色量子点、绿色量子点和蓝色量子点,具体可以根据实际要求确定。
上述发光薄膜的制备方法可以参考下文实施例,这里不做说明。
该发光薄膜中,金属纳米粒子通过硫键与聚合物键合,则金属纳米粒子与聚合物之间存在非常强的相互作用力,从而使得量子点与聚合物之间存在强相互作用力;那么,在制作该发光薄膜时,可以利用金属纳米粒子与聚合物之间的强作用力使得量子点固定在聚合物上,进而通过显影形成图案化的量子点层,从而形成图案化的发光薄膜。通过该方法形成的发光薄膜能够形成高分辨率的显示面板。
可选地,金属纳米粒子的材料为金或者银。由于金纳米粒子与聚合物之间的相互作用力更强,因此多采用金纳米粒子。
可选地,参考图1所示,核壳结构包括内核层5和包围内核层5的包覆层4,内核层的材料为硒化镉(CdSe)或者硫化镉(CdS),包覆层的材料为硫化锌(ZnS)、氧化锌(ZnO)、硒化锌(ZnSe)中的任一种。实际中,多采用硒化镉形成内核层、硫化锌形成包覆层。
本公开实施例提供了一种发光器件,包括上文实施例提供的发光薄膜。
该发光器件可以是如图3所示的倒置型QLED发光器件,包括阴极10、以及依次层叠设置在阴极10之上的电子传输层11、发光薄膜12、空穴传输层13、空穴注入层14和阳极15;其中,发光薄膜12包括聚合物1、以及与聚合物1键合的量子点2,聚合物1形成在电子传输层11之上且与电子传输层11接触。
当然,该发光器件还可以是如图4所示的正置型QLED发光器件,包括阳极15、以及依次层叠设置在阳极15之上的空穴注入层14、空穴传输层13、发光薄膜12、电子传输层11和阴极10;其中,发光薄膜12包括聚合物1、以及与聚合物1键合的量子点2,聚合物1形成在空穴传输层13之上且与空穴传输层13接触。需要说明的是,图3和图4中,发光薄膜包括的量子点为 图案化后的量子点,包括红色量子点(R)、绿色量子点(G)和蓝色量子点(B),包括该发光薄膜的发光器件可用于实现彩色显示。当然,发光薄膜包括的量子点也可以是单一颜色的量子点,此时,包括该发光薄膜的发光器件可用于单一颜色的显示。
上述发光器件中,发光薄膜的量子点包括金属纳米粒子、以及与金属纳米粒子连接的核壳结构;金属纳米粒子通过硫键与聚合物键合。一方面,可以利用金属纳米粒子与聚合物之间的强作用力使得量子点固定在聚合物上,进而通过显影形成图案化的量子点层,从而形成图案化的发光薄膜。该发光器件具有较高的分辨率,可用于形成高分辨率的QLED显示面板。另一方面,金属纳米粒子能够产生表面等离激元效应,提升量子点的出光效率,从而提升器件性能。
本公开实施例提供了一种显示基板,包括上文实施例提供的发光器件。
该显示基板可用于形成高分辨率的QLED显示面板,其可以作为量子点阵列基板,也可以作为量子点彩膜基板(QDPR),这里不做限定。
本公开实施例提供了一种显示面板,包括上文实施例提供的显示基板。该显示面板可以是QLED显示面板,还可以是包括该QLED显示面板的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件;具有分辨率高、显示性能好的优点。
本公开实施例提供了一种如上文实施例提供的发光薄膜的制备方法,该方法包括:
S01、形成聚合物前体层;聚合物前体层的结构包括多个巯基结构。
巯基又称氢硫基或硫醇基,是由一个硫原子和一个氢原子相连组成的负一价官能团,化学式为—SH。巯基端可以连接不同的基团,例如:硫醇(R—SH)、硫酚(Ar—SH)。二硫键(—S—S—)在UV(紫外线)照射的作用下,可以生成巯基(—SH)。
S02、在聚合物前体层上形成量子点层;量子点层包括金属纳米粒子、以及与金属纳米粒子连接的核壳结构。
金属纳米粒子与巯基结构可以形成强相互作用,从而将量子点固定在聚合物前体层上。
S03、对量子点层进行显影,形成图案化的量子点层。
这里可以采用量子点的良溶剂(例如:甲苯等)进行显影,从而将没有金属纳米粒子-巯基强相互作用区域的量子点洗去,进而形成图案化的量子点层。
相关技术中,AMOLED的有机层结构通常采用掩模蒸发的方法制备,但是掩模蒸发方法存在着对位困难,良品率低,无法实现更小面积发光的缺陷;这种精确控制蒸发区域能力不足的问题,无法满足目前迅速发展的对高分辨率显示的需求。而采用印刷和打印的方法,来取代掩模蒸发制备有机发光层的工艺,其得到的分辨率也是极其有限的。
相比相关技术,上述制备方法,利用金属纳米粒子与聚合物的巯基结构之间的强作用力,使得量子点固定在聚合物前体层,进而通过显影形成图案化的量子点层,从而形成图案化的发光薄膜。上述制备方法无需采用印刷和打印的方法,能够形成高分辨率的显示面板。
下面说明聚合物前体层的具体形成方法。
S01、形成聚合物前体层包括:
S011、形成聚合物薄膜;聚合物薄膜的结构包括多个过硫键结构或者多个环硫醚结构。其中,多个过硫键结构或者多个环硫醚结构位于聚合物薄膜的不同支链上,即一个支链包括一个过硫键结构或者一个环硫醚结构。
S012、对聚合物薄膜进行光照,形成聚合物前体层。这里的光照可以采用UV光照,对需要形成量子点的区域进行光照,其余区域不需要进行光照。
上述过硫键结构是指二硫键(—S—S—)结构,二硫键在UV光照下,可以生成巯基结构。具体化学式如下:
Figure PCTCN2021100614-appb-000001
上述环硫醚结构在UV光照下,也可以生成巯基结构。具体化学式如下:
Figure PCTCN2021100614-appb-000002
上述过硫键结构和环硫醚结构在UV光照后,可以形成巯基结构。上述聚合物前体层的结构还包括与巯基结构连接的R基团,R基团包括第一基团(R1)和第二基团(R2),第二基团分别与第一基团和巯基结构连接。上述R-SH的结构式可以为:SH-R2-R1,其中,第二基团R2为芳环结构,芳环结 构包括至少一个苯环,苯环至少包括一个极性基团;第一基团R1为羟基(-OH)、醛基
Figure PCTCN2021100614-appb-000003
羧基
Figure PCTCN2021100614-appb-000004
或者氨基(-NH 2)中的任一种。
上述聚合物薄膜的厚度小于20nm,可以得到更好地发光效果。
下面以包括多个过硫键结构的聚合物薄膜为例,说明具体的制备方法。参考图5所示,包括多个过硫键结构的聚合物薄膜100在UV光照作用下,分解形成包括多个巯基结构的聚合物薄膜101;接着,沉积量子点(QD),形成沉积有量子点2的聚合物薄膜102;最后,采用量子点的良溶剂进行QD显影,形成最终的发光薄膜12,该发光薄膜中,包括聚合物、以及与聚合物键合的量子点;量子点包括金属纳米粒子、以及与金属纳米粒子连接的核壳结构;金属纳米粒子通过硫键与聚合物键合。图5中,聚合物薄膜101以包括两个巯基结构为例进行绘示,当然实际不止于此。
下面以包括红色量子点、绿色量子点和蓝色量子点的发光薄膜为例,说明该发光薄膜的图形化制备方法。参考图6所示,在前膜层200上通过lift-off工艺制备支链包括过硫键结构的聚合物薄膜100并对其用于形成红色量子点像素的区域进行UV照射,剂量为5000mj/cm 2;照射完成后,旋涂Janus红光量子点复合材料201,接着使用甲苯进行显影,形成红色量子点R,从而完成图形化红色量子点的制备;接着按照同样工艺,依次形成绿色量子点G和蓝色量子点B,最终形成包括红色量子点R、绿色量子点G和蓝色量子点B的发光薄膜。图6中,Janus绿光量子点复合材料标记为202,Janus蓝光量子点复合材料标记为203。
下面说明量子点层的具体形成方法。
参考图7和图8所示,S02、在聚合物前体层上形成量子点层;量子点层包括金属纳米粒子、以及与金属纳米粒子连接的核壳结构包括:
S021、形成金属纳米粒子薄膜;该金属纳米粒子的尺寸范围为5nm-8nm。
S022、在金属纳米粒子薄膜上依次沉积硒源和镉源,并进行退火处理。参考图7和图8所示,在Au表面形成亚稳态的金/硒化镉核壳结构。因为金的晶格与硒化镉的晶格有较大的失配,可以让硒化镉不再包覆金纳米粒子,而是分布到金的一边或者两边;因此退火后,由于硒化镉晶体的表面张力的原因,形成了金/硒化镉的janus复合纳米粒子结构。
S023、在经过退火处理后的金属纳米粒子薄膜上依次沉积硫源和锌源,并进行退火处理,形成量子点层。
参考图7和图8所示,在硒化镉的外围形成硫化锌,从而形成硒化镉/硫化锌核壳结构,进而形成金/硒化镉/硫化锌核壳型janus复合纳米粒子结构。
通过控制S022中,沉积的硒源和镉源的量,可以控制最终形成的纳米粒子的类型。示例的,若沉积的硒源和镉源的量较少,则最终可以形成图7所示的janus两面性纳米粒子;若沉积的硒源和镉源的量较多,则最终可以形成图8所示的对称性纳米粒子。
通过S021-S023,形成的量子点中的核壳结构中,内核层的材料为硒化镉,包覆层的材料为硫化锌。图7和图8中,以金属纳米粒子为金纳米粒子为例进行绘示。
可选地,金属纳米粒子的材料为金或者银。由于金纳米粒子与聚合物之间的相互作用力更强,因此多采用金纳米粒子。
可选地,参考图1所示,核壳结构包括内核层5和包围内核层5的包覆层4,内核层的材料为硒化镉(CdSe)或者硫化镉(CdS),包覆层的材料为硫化锌(ZnS)、氧化锌(ZnO)、硒化锌(ZnSe)中的任一种。实际中,多采用硒化镉形成内核层、硫化锌形成包覆层。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种发光薄膜,其中,所述发光薄膜包括聚合物、以及与所述聚合物键合的量子点;
    所述量子点包括金属纳米粒子、以及与所述金属纳米粒子连接的核壳结构;并且
    所述金属纳米粒子通过硫键与所述聚合物键合。
  2. 根据权利要求1所述的发光薄膜,其中,所述金属纳米粒子的材料为金或者银。
  3. 根据权利要求1所述的发光薄膜,其中,所述核壳结构包括内核层和包围所述内核层的包覆层,所述内核层的材料为硒化镉或者硫化镉,所述包覆层的材料为硫化锌、氧化锌、硒化锌中的任一种。
  4. 根据权利要求1所述的发光薄膜,其中,所述量子点为Janus纳米粒子结构,或对称性纳米粒子结构。
  5. 根据权利要求1所述的发光薄膜,其中,所述金属纳米粒子和所述核壳结构的形状为球形、方形或椭球形。
  6. 根据权利要求1所述的发光薄膜,其中,所述量子点为图案化后的量子点;并且
    所述量子点包括红色量子点、绿色量子点和蓝色量子点,或者所述量子点为单一颜色的量子点。
  7. 一种发光器件,其中,所述发光器件包括权利要求1-6任一项所述的发光薄膜。
  8. 根据权利要求7所述的发光器件,其中,所述发光器件包括阴极、以及依次层叠设置在阴极之上的电子传输层、发光薄膜、空穴传输层、空穴注入层和阳极;
    所述聚合物形成在所述电子传输层之上,且与所述电子传输层接触。
  9. 根据权利要求7所述的发光器件,其中,所述发光器件包括阳极、以及依次层叠设置在所述阳极之上的空穴注入层、空穴传输层、发光薄膜、电子传输层和阴极;
    所述聚合物形成在所述空穴传输层之上,且与所述空穴传输层接触。
  10. 一种显示基板,其中,包括权利要求7-9任一项所述的发光器件。
  11. 一种如权利要求1-6任一项所述的发光薄膜的制备方法,其中,所述制备方法包括:
    形成聚合物前体层;所述聚合物前体层的结构包括多个巯基结构;
    在所述聚合物前体层上形成量子点层;所述量子点层包括金属纳米粒子、以及与所述金属纳米粒子连接的核壳结构;以及
    对所述量子点层进行显影,形成图案化的所述量子点层。
  12. 根据权利要求11所述的制备方法,其中,所述形成聚合物前体层包括:
    形成聚合物薄膜;所述聚合物薄膜的结构包括多个过硫键结构或者多个环硫醚结构;
    对所述聚合物薄膜进行光照,形成聚合物前体层。
  13. 根据权利要求12所述的制备方法,其中,所述聚合物薄膜的厚度小于20nm。
  14. 根据权利要求12所述的制备方法,其中,所述多个过硫键结构或者所述多个环硫醚结构位于所述聚合物薄膜的不同支链上,一个所述支链包括一个所述过硫键结构或者一个所述环硫醚结构。
  15. 根据权利要求12所述的制备方法,其中,所述聚合物前体层的结构还包括与所述巯基结构连接的R基团,所述R基团包括第一基团和第二基团,所述第二基团分别与所述第一基团和所述巯基结构连接;
    所述第一基团为羟基、醛基、羧基或者氨基中的任一种;
    所述第二基团为芳环结构,所述芳环结构包括至少一个苯环,所述苯环至少包括一个极性基团。
  16. 根据权利要求11所述的制备方法,其中,所述在所述聚合物前体层上形成量子点层的步骤,包括:
    形成金属纳米粒子薄膜;
    在所述金属纳米粒子薄膜上依次沉积硒源和镉源,并进行退火处理;
    在经过退火处理后的所述金属纳米粒子薄膜上依次沉积硫源和锌源,并进行退火处理,形成所述量子点层。
  17. 根据权利要求16所述的制备方法,其中,所述金属纳米粒子的尺寸范围为5nm-8nm。
  18. 根据权利要求11-17任一项所述的制备方法,其中,所述金属纳米粒子的材料为金或者银。
  19. 根据权利要求11所述的制备方法,其中,所述核壳结构包括内核层和包围所述内核层的包覆层,所述内核层的材料为硒化镉或者硫化镉,所述包覆层的材料为硫化锌、氧化锌、硒化锌中的任一种。
PCT/CN2021/100614 2020-06-19 2021-06-17 发光薄膜及其制备方法、发光器件、显示基板 WO2021254436A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/770,220 US20230010474A1 (en) 2020-06-19 2021-06-17 Light-emitting thin film, preparation method therefor, light-emitting device and display substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010566459.3A CN111690164A (zh) 2020-06-19 2020-06-19 一种发光薄膜及其制备方法、发光器件、显示基板
CN202010566459.3 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021254436A1 true WO2021254436A1 (zh) 2021-12-23

Family

ID=72482172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100614 WO2021254436A1 (zh) 2020-06-19 2021-06-17 发光薄膜及其制备方法、发光器件、显示基板

Country Status (3)

Country Link
US (1) US20230010474A1 (zh)
CN (1) CN111690164A (zh)
WO (1) WO2021254436A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690164A (zh) * 2020-06-19 2020-09-22 京东方科技集团股份有限公司 一种发光薄膜及其制备方法、发光器件、显示基板
CN114497410B (zh) * 2020-10-27 2024-03-08 京东方科技集团股份有限公司 一种图案化量子点膜、量子点发光器件及制作方法
CN112375497B (zh) * 2020-11-16 2022-09-27 京东方科技集团股份有限公司 一种发光薄膜、发光器件及其制作方法、显示基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609651A (zh) * 2016-01-07 2016-05-25 东南大学 自组装聚合物空穴传输层结构的高效量子点发光二极管
CN106085417A (zh) * 2016-06-14 2016-11-09 深圳市华星光电技术有限公司 水溶性量子点、制备方法及量子点薄膜制备方法
CN106910814A (zh) * 2017-03-27 2017-06-30 武汉华星光电技术有限公司 一种量子点薄膜及其制备方法
CN109180853A (zh) * 2018-07-19 2019-01-11 京东方科技集团股份有限公司 Tadf聚合物配体、量子点材料和其制备方法及应用
US20190319208A1 (en) * 2018-04-12 2019-10-17 Samsung Electronics Co., Ltd. Quantum dot device and electronic device
US10663860B2 (en) * 2017-02-20 2020-05-26 Samsung Electronics Co., Ltd. Photosensitive compositions, quantum dot polymer composite produced therefrom, and layered structures and electronic device including the same
CN111690164A (zh) * 2020-06-19 2020-09-22 京东方科技集团股份有限公司 一种发光薄膜及其制备方法、发光器件、显示基板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805200B (zh) * 2014-01-26 2015-07-08 华东师范大学 银纳米晶/半导体量子点复合纳米材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609651A (zh) * 2016-01-07 2016-05-25 东南大学 自组装聚合物空穴传输层结构的高效量子点发光二极管
CN106085417A (zh) * 2016-06-14 2016-11-09 深圳市华星光电技术有限公司 水溶性量子点、制备方法及量子点薄膜制备方法
US10663860B2 (en) * 2017-02-20 2020-05-26 Samsung Electronics Co., Ltd. Photosensitive compositions, quantum dot polymer composite produced therefrom, and layered structures and electronic device including the same
CN106910814A (zh) * 2017-03-27 2017-06-30 武汉华星光电技术有限公司 一种量子点薄膜及其制备方法
US20190319208A1 (en) * 2018-04-12 2019-10-17 Samsung Electronics Co., Ltd. Quantum dot device and electronic device
CN109180853A (zh) * 2018-07-19 2019-01-11 京东方科技集团股份有限公司 Tadf聚合物配体、量子点材料和其制备方法及应用
CN111690164A (zh) * 2020-06-19 2020-09-22 京东方科技集团股份有限公司 一种发光薄膜及其制备方法、发光器件、显示基板

Also Published As

Publication number Publication date
CN111690164A (zh) 2020-09-22
US20230010474A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
WO2021254436A1 (zh) 发光薄膜及其制备方法、发光器件、显示基板
US11056650B2 (en) Film of quantum dot, method for patterning the same and quantum dot light emitting device using the same
WO2017117994A1 (zh) 具有结合层的量子点发光二极管基板及其制备方法
WO2017121163A1 (zh) 可交联量子点及其制备方法、阵列基板及其制备方法
WO2018113334A1 (zh) 量子点发光层与器件及制备方法、发光模组与显示装置
CN103346154B (zh) 一种量子点发光二极管及其制备方法、显示器件
US10367128B2 (en) Pixel structure and method for the fabrication thereof
WO2018068388A1 (zh) Qled显示装置的制作方法
US20190280152A1 (en) Transfer template, display substrate, display panel, and method for manufacturing the same
CN110459691B (zh) 显示基板及其制作方法、和显示装置
CN110364559B (zh) Qled显示屏及制备方法
CN113193133A (zh) 一种发光器件及其制备方法、显示面板
US11387285B2 (en) Display substrate and manufacturing method thereof including depositing different quantum dot solutions wettable to different material layers
CN203250777U (zh) 一种量子点发光二极管及显示器件
CN113690378A (zh) 量子点发光器件及其制备方法、显示面板
US11968852B2 (en) Light-emitting device and method of manufacturing the same, light-emitting substrate and method of manufacturing the same, and light-emitting apparatus
CN113745439B (zh) 量子点发光结构及其制作方法和显示装置
WO2022126444A1 (zh) 图案化量子点膜层、量子点发光器件和制作方法
WO2022087903A1 (zh) 发光基板及其制备方法和发光装置
CN108054285B (zh) 量子点薄膜的制备方法、电致发光器件及其制备方法
US20240147805A1 (en) Quantum dot pattern, quantum dot light-emitting device, display apparatus, and manufacturing method
WO2023122999A1 (zh) 发光器件及其制备方法、显示面板、显示装置
US20220302201A1 (en) Stacked luminescent device and method of manufacturing the same
WO2023065984A1 (zh) 发光器件及其制备方法
WO2023137668A1 (zh) 发光基板及其制备方法和发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825882

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21825882

Country of ref document: EP

Kind code of ref document: A1