WO2021254124A1 - 显示基板、其制作方法及显示装置 - Google Patents

显示基板、其制作方法及显示装置 Download PDF

Info

Publication number
WO2021254124A1
WO2021254124A1 PCT/CN2021/096425 CN2021096425W WO2021254124A1 WO 2021254124 A1 WO2021254124 A1 WO 2021254124A1 CN 2021096425 W CN2021096425 W CN 2021096425W WO 2021254124 A1 WO2021254124 A1 WO 2021254124A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
metal layer
away
pixel defining
Prior art date
Application number
PCT/CN2021/096425
Other languages
English (en)
French (fr)
Inventor
赵梦
樊宜冰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/921,323 priority Critical patent/US20230180581A1/en
Publication of WO2021254124A1 publication Critical patent/WO2021254124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80523Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display substrate, a manufacturing method thereof, and a display device.
  • organic electroluminescent display panels (Organic Electro Luminesecent Display, OLED) have gradually become the mainstream of the display field due to their excellent performance such as low power consumption, high color saturation, wide viewing angle, thin thickness, and flexibility. It is applied to terminal products such as smart phones, tablet computers, and TVs.
  • embodiments of the present disclosure provide a method for manufacturing a display substrate, including:
  • a sacrificial layer and a photoresist layer are formed on the surface of the light-emitting layer away from the substrate, wherein the orthographic projection of the sacrificial layer on the substrate and the orthographic projection of the opening on the substrate at least partially overlap ,
  • the photoresist layer is located on the surface of the sacrificial layer away from the substrate;
  • a second metal layer is formed in the opening and on the surface of the first metal layer away from the substrate, and the first metal layer and the second metal layer are jointly configured as a cathode of the display substrate.
  • the orthographic projection of the sacrificial layer on the substrate is within a range of the orthographic projection of the photoresist layer on the substrate.
  • the distance between the surface of the photoresist layer close to the substrate and the surface of the pixel defining layer away from the substrate is greater than the thickness of the first metal layer.
  • the orthographic projection of the sacrificial layer on the substrate covers the orthographic projection of the opening on the substrate.
  • the sacrificial layer satisfies at least one of the following conditions:
  • Materials include fluorine-containing polymer materials
  • the thickness is 0.2 ⁇ m to 1.5 ⁇ m.
  • the thickness of the photoresist layer is 0.5 ⁇ m-2 ⁇ m.
  • forming the sacrificial layer and the photoresist layer on the surface of the light-emitting layer away from the substrate specifically includes:
  • the first prefabricated film layer that is not covered by the photoresist layer is removed to obtain the sacrificial layer.
  • embodiments of the present disclosure provide a display substrate, including a substrate, a pixel defining layer, a light emitting layer, and a cathode, the pixel defining layer defines an opening, and the cathode includes:
  • a first metal layer the first metal layer being disposed on the surface of the pixel defining layer away from the substrate;
  • a second metal layer, the second metal layer is disposed in the opening and on the surface of the first metal layer away from the substrate.
  • a portion of the pixel defining layer between adjacent openings is a regular trapezoid in a cross section perpendicular to the surface of the substrate;
  • the first metal layer only covers the top surface of the regular trapezoid.
  • the second metal layer covers the top surface and sidewalls of the first metal layer, and the regular trapezoidal sidewalls.
  • the thickness of the first metal layer is not less than 10 nm.
  • the first metal layer is 20 nm to 30 nm; the thickness of the second metal layer is 5 nm to 15 nm.
  • the thickness of the first metal layer is greater than the thickness of the second metal layer.
  • an embodiment of the present disclosure provides a display device including the display substrate of the second aspect.
  • FIG. 1 is a schematic flowchart of a manufacturing method of a display substrate provided by an embodiment of the present disclosure
  • 2a to 2f are respectively structural schematic diagrams after each step in the manufacturing method of the display substrate provided by an embodiment of the present disclosure is completed;
  • FIG. 3 is a schematic diagram of a cross-sectional structure of a sacrificial layer and a photoresist layer provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic view of a process of forming a sacrificial layer and a photoresist layer on the surface of the light-emitting layer away from the substrate according to an embodiment of the present disclosure
  • 5a to 5d are respectively structural schematic diagrams after each step of forming a sacrificial layer and a photoresist layer on the surface of the light-emitting layer away from the substrate provided by an embodiment of the present disclosure is completed.
  • the mainstream products of OLED display are small products such as mobile phone screens.
  • the main restrictive factors for the application of OLED display substrates in larger display devices are the light output efficiency of the current display substrates and the display substrates.
  • the problem of pressure drop in the cathode Specifically, in the current commonly used top-emitting OLED display substrates, the cathode usually uses a metal film (such as Mg/Ag, etc.) on the entire surface, but due to the restriction of transmittance, the thickness of the cathode cannot be too high, otherwise it will affect the OLED Shows the light output efficiency of the substrate.
  • the cathode is vapor-deposited on the entire surface of the OLED display substrate, the Vss signal required by the cathode is input from the bottom metal into the cathode from the contact groove areas on both sides of the screen.
  • the resistance of the cathode is relatively large.
  • the large voltage drop (IR drop) of the cathode on the entire surface will result in a large difference between the center of the display screen and the surrounding display.
  • the solution in the related art is usually to layout the cathode, that is, the thickness of the central area of the pixel (that is, the opening defined by the pixel defining layer of the display substrate) is thinner and thinner by using a metal mask.
  • the thicker cathode in the connection area between the pixels (that is, on the surface of the pixel defining layer) can reduce the overall resistance of the cathode and at the same time make the display effect better.
  • a metal mask is used to make the above-mentioned cathode, since the metal film layer deposited on the metal mask cannot be removed from the mask, one mask is scrapped once the cathode is made, which is too costly. Not conducive to actual industrialization.
  • the present disclosure provides a method for manufacturing a display substrate.
  • the method may include the following steps:
  • a pixel defining layer 200 is formed on the surface of one side of the substrate 100, and the pixel defining layer 200 defines an opening 210 (refer to FIG. 2a for the structural schematic diagram).
  • the specific process for forming the pixel defining layer 200 defining the opening 210 on the surface of the substrate 100 is not particularly limited.
  • it may be formed by evaporation or a patterning process.
  • the specific process conditions and parameters are Those skilled in the art can make flexible selections according to actual needs, and will not be repeated here. Therefore, the operation is simple, convenient, easy to realize, and easy to industrialized production.
  • the specific process for forming the light-emitting layer 300 in the opening 210 may be inkjet printing or vacuum evaporation.
  • the specific process conditions and parameters can be flexibly selected by those skilled in the art according to actual needs. To repeat it too much. Therefore, the operation is simple, convenient, easy to realize, and easy to industrialized production.
  • the specific materials and thicknesses of the substrate 100, the pixel defining layer 200, the light-emitting layer 300, etc. can be flexibly selected by those skilled in the art according to actual needs, and will not be repeated here.
  • the light-emitting layer 300 may specifically include multiple layers, for example, including an electron transport layer, a light-emitting material layer, a hole transport layer, and the like.
  • S300 forming a sacrificial layer 400 and a photoresist layer 500 on the surface of the light emitting layer 300 away from the substrate 100, wherein the orthographic projection of the sacrificial layer 400 on the substrate 100 and the orthographic projection of the opening on the substrate 100 at least partially overlap, and the photolithography
  • the adhesive layer 500 is located on the surface of the sacrificial layer 400 away from the substrate 100 (refer to FIG. 2c for the structural diagram).
  • the manner in which the sacrificial layer 400 and the photoresist layer 500 are formed is not particularly limited.
  • the following takes a specific embodiment in the present disclosure as an example to illustrate the sacrificial layer 400 in the present disclosure. And the specific formation method of the photoresist layer 500.
  • the step of forming the sacrificial layer 400 and the photoresist layer 500 on the surface of the light-emitting layer 300 away from the substrate 100 further includes:
  • the specific process for forming the first pre-film layer 399 on the surface of the pixel defining layer 200 and the light-emitting layer 300 away from the substrate 100 may be coating.
  • the specific conditions and parameters of the coating can be determined by those skilled in the art. Choose flexibly according to actual needs, so I won’t repeat them here.
  • the coating of the first pre-film layer 399 may be performed under the protection of an inert gas, and the inert gas may specifically be nitrogen. Therefore, the operation is simple, convenient, easy to realize, and easy to industrialized production.
  • the specific process of forming the entire second prefabricated film layer 499 on the surface of the first prefabricated film layer 399 away from the substrate 100 may be coating.
  • the specific conditions and parameters of the coating are those of a person skilled in the art. You can choose flexibly according to actual needs, so I won't repeat them here. Therefore, the operation is simple, convenient, easy to realize, and easy to industrialized production.
  • S330 Perform a patterning process on the second prefabricated film layer 499 through a patterning process to obtain a photoresist layer 500 (refer to FIG. 5c for the structural schematic diagram).
  • the patterning process may include the steps of exposing and developing the second pre-film layer 499 to form the photoresist layer 500.
  • the characteristics of the photoresist may be different. , That is, the difference between the positive photoresist and the negative photoresist, to select the exposure position; after the exposure step, develop in the developer solution, in addition, the specific process parameters of each step in the patterning process are equal These are the process parameters of the conventional patterning process, so I won’t repeat them here. Therefore, the manufacturing process is simple, convenient, easy to realize, and easy to industrialized production.
  • S340 Remove the first prefabricated film layer 399 that is not covered by the photoresist layer 500 to obtain a sacrificial layer 400 (refer to FIG. 5d for the structural schematic diagram).
  • the specific process for removing the first pre-film layer 399 that is not covered by the photoresist layer 500 can be based on the previous photoresist layer 500 as a mask, so that the first pre-film layer 399 is treated by a developer. 399 is developed to obtain the sacrificial layer 400. Therefore, the manufacturing process is simple, convenient, easy to realize, easy to industrialized production, and the specific structure of the previous sacrificial layer 400 can be disclosed at a better topographic cost, which is beneficial to subsequent applications.
  • the sacrificial layer 400 and the photoresist layer 500 are formed on the surface of the light-emitting layer 300 away from the substrate 100.
  • the cathode of the display substrate can be formed in two steps, namely:
  • the specific process of forming the first metal layer 600 on the surface of the pixel defining layer 200 and the photoresist layer 500 away from the substrate 100 may include vacuum evaporation or chemical vapor deposition, etc., vacuum evaporation, chemical vapor deposition, etc.
  • the process parameters of deposition etc. are all process parameters of conventional vacuum evaporation, chemical vapor deposition, etc., and will not be repeated here. Therefore, the manufacturing process is simple, convenient, easy to realize, and easy to industrialized production.
  • the thickness of the first metal layer 600 may not be less than 10 nm, and the thickness of the first metal layer 600 is within the above range, which can solve the voltage drop problem of the cathode of the display substrate produced.
  • the thickness of the metal layer 600 may be 20 nm to 30 nm, and specifically, may be 20 nm, 22 nm, 24 nm, 26 nm, 28 nm, 30 nm, or the like. Therefore, the thickness of the cathode of the produced display substrate on the surface of the pixel defining layer 200 can be made thicker, and its conductivity can be further improved, so that the resistance of the cathode is smaller and the voltage drop is lower, so that the screen can be displayed smoothly.
  • the uniformity is high, and the display effect is good; at the same time, the thickness of the cathode is not too thick, which is in line with the development trend of thinner and lighter display substrates.
  • the material of the first metal layer 600 may include the material of the cathode of a conventional display substrate, such as metallic magnesium, metallic silver, etc., which will not be repeated here. As a result, materials are widely sourced, easily available, and low in cost.
  • S500 Remove the sacrificial layer 400, the photoresist layer 500, and the first metal layer 600 on the surface of the photoresist layer 500 away from the substrate 100, exposing the opening 210 (refer to FIG. 2e for the structural diagram).
  • the specific process for removing the sacrificial layer 400, the photoresist layer 500, and the first metal layer 600 on the surface of the photoresist layer 500 away from the substrate 100 may be to place them on a surface capable of dissolving the sacrificial layer 400.
  • the stripping liquids only dissolves the sacrificial layer 400, does not dissolve the photoresist layer 500, and does not affect the resistance of the first metal layer 600.
  • the material of the stripping liquid can be a stripping liquid for fluorine-based polymer materials produced by Orthogonal of the United States, and specifically can be hydrofluoroether. Therefore, after the sacrificial layer 400 is dissolved, the photoresist layer 500 and the first metal layer 600 on the surface can be removed at the same time, and the operation is simple, convenient, easy to implement, and easy to industrialized production.
  • a second metal layer 700 is formed in the opening and on the surface of the first metal layer 600 away from the substrate 100.
  • the first metal layer 600 and the second metal layer 700 together constitute the cathode of the display substrate (for a structural schematic view, refer to FIG. 2f).
  • the specific process of forming the second metal layer 700 in the opening and on the surface of the first metal layer 600 away from the substrate 100 may include vacuum evaporation or chemical vapor deposition, etc., vacuum evaporation, chemical vapor deposition, etc.
  • the process parameters of are all process parameters of conventional vacuum evaporation, chemical vapor deposition, etc., and will not be repeated here. Therefore, the manufacturing process is simple, convenient, easy to realize, and easy to industrialized production.
  • the thickness of the second metal layer 700 may be 5nm-15nm, specifically, it may be 5nm, 7nm, 9nm, 10nm, 11nm, 12nm, 15nm, or the like. In addition, the thickness of the second metal layer 700 is generally smaller than the thickness of the first metal layer 600.
  • the cathode of the display substrate produced can be made thinner in the opening, and the light extraction efficiency can be high, so that the display effect can be good; and the thickness of the cathode on the surface of the pixel defining layer 200 can be thicker, which can simultaneously achieve high light extraction efficiency and The resistance of the cathode is small and the voltage drop is low, so that the uniformity of the picture during display can be high, the display effect is good, and the mask will not be wasted and the cost is low.
  • the material of the second metal layer 700 may include the material of the cathode of a conventional display substrate, such as metallic magnesium, metallic silver, etc., which will not be repeated here. As a result, materials are widely sourced, easily available, and low in cost.
  • the sacrificial layer 400 and the photoresist layer 500 are formed on at least a part of the surface of the light-emitting layer 300 away from the substrate 100, thereby forming a layer on the surface of the light-emitting layer 300.
  • the layer can be removed in the subsequent steps as a mask; and the photoresist layer can function as a mask.
  • the cathode can be formed in two steps: First, when the opening is When the sacrificial layer 400 and the photoresist layer 400 are provided, a first metal layer is formed.
  • the photoresist layer 500 can make the first metal layer that should be formed in the opening be formed on the surface of the photoresist layer 500 away from the substrate 100; After the sacrificial layer 400, the photoresist layer 500, and the first metal layer formed on the surface of the photoresist layer 500 away from the substrate 100 are removed, the second metal layer is formed. At this time, there is no photolithography in the opening. If the glue layer 500 is shielded, the second metal layer can be normally formed in the opening.
  • the produced display substrate has a thinner cathode in the opening and a thicker thickness on the surface of the pixel defining layer 200, which can simultaneously achieve high light extraction efficiency, low resistance of the cathode, and low voltage drop, so that the picture can be displayed smoothly.
  • the uniformity is high, the display effect is good, the mask will not be wasted, and the cost is low.
  • the relative positional relationship between the previous sacrificial layer 400 and the photoresist layer 500 has a relatively important influence on the subsequent formation of the first metal layer and the second metal layer.
  • the inventor has conducted a large number of experiments. After research, it is believed that the orthographic projection of the sacrificial layer 400 on the substrate 100 can be within the orthographic projection of the photoresist layer 500 on the substrate 100 (refer to FIG. 2c for the structural diagram); in other embodiments of the present disclosure, it can also be It is the orthographic projection of the photoresist layer 500 on the substrate 100 in the orthographic projection of the sacrificial layer 400 on the substrate 100 (refer to FIG. 3 for the structural diagram).
  • the photoresist layer 500 is on the substrate
  • the photoresist layer 500 is on the substrate
  • the contour line of the orthographic projection on 100 is formed on the contour line of the orthographic projection of the sacrificial layer 400 on the substrate 100.
  • the first metal layer 600 is formed, it is formed on the surface of the pixel defining layer 200 away from the substrate 100.
  • the first metal layer 600 and the first metal layer 600 formed on the surface of the photoresist layer 500 away from the substrate 100 can be completely disconnected, so in the subsequent steps, the photoresist layer 500 can be better separated
  • the first metal layer 600 on the surface of the substrate 100 is completely removed, which can make the cathodes on the surface of the pixel defining layer 200 thicker in the fabricated display substrate, which further reduces the voltage drop of the cathodes, so that the uniformity of the picture during display is high. , The display effect is good.
  • the first metal layer 600 on the surface of the photoresist layer 500 away from the substrate 100 in the subsequent steps can be completely removed, referring to FIG.
  • the distance h between the surface of the resist layer 500 close to the substrate 100 and the surface of the pixel defining layer 200 away from the substrate 100 is greater than the thickness d of the first metal layer 600 formed. Therefore, even after the first metal layer 600 is formed, there is still a distance between the lower surface of the photoresist layer 500 and the upper surface of the first metal layer 600. Therefore, in the subsequent steps, the photoresist layer 500 is removed. And the first metal layer 600 on the surface, it will not affect the first metal layer 600 on the surface of the pixel defining layer 200 at all. Furthermore, in the display substrate produced, the voltage drop of the cathode is lower and the display effect is better. good.
  • the thickness of the sacrificial layer 400 and the photoresist layer 500 is lower than that of the first metal layer formed on the surface of the photoresist layer 500 away from the substrate 100. Whether it can be completely removed also has a certain impact.
  • the thickness of the sacrificial layer 400 may be 0.2 ⁇ m to 1.5 ⁇ m, specifically, it may be 0.2 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, etc.; in addition, the thickness of the photoresist layer 500 may be It is 0.5 ⁇ m to 2 ⁇ m, specifically, it may be 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, or the like.
  • the first metal layer 600 located on the surface of the photoresist layer 500 away from the substrate 100 is easier to remove, which is beneficial for subsequent applications.
  • the orthographic projection of the sacrificial layer 400 on the substrate 100 covers the orthographic projection of the opening on the substrate 100.
  • the sacrificial layer 400 can better protect the opening from forming the first metal layer, thereby making the thickness of the cathode located in the opening of the display substrate made thinner, and further improving the light extraction efficiency of the display substrate. higher.
  • the inventors conducted rigorous screening and experiments on the specific forming materials of the sacrificial layer 400 and found that when the material of the sacrificial layer 400 includes a fluorine-containing polymer material, the sacrificial layer 400 emits light. The entire process of being formed on the surface of the layer 300 and then removed will not cause damage to the light-emitting layer 300, and will not affect the display effect of the obtained display substrate.
  • the specific types of fluorine-containing polymer materials are not particularly limited. For example, fluorine-based polymer materials developed by Orthogonal Corporation of the United States can be used.
  • the present disclosure provides a display substrate.
  • the display substrate is manufactured by the previous method. Referring to FIG. 2f, the display substrate includes a substrate 100, a pixel defining layer 200, a light emitting layer 300, and a cathode.
  • the pixel defining layer 200 defines an opening 210, wherein ,
  • the cathode includes:
  • a first metal layer 600, the first metal layer 600 is disposed on the surface of the pixel defining layer 200 away from the substrate 100;
  • the second metal layer 700 is disposed in the opening 210 and on the surface of the first metal layer 600 away from the substrate 100.
  • the cathode of the display substrate has a thinner thickness in the opening and a thicker thickness on the surface of the pixel defining layer, which can simultaneously achieve high light extraction efficiency, low resistance of the cathode, and low voltage drop, so that the uniformity of the picture during display can be high. , The display effect is good, and it will not cause the waste of the mask at the same time, and the cost is low.
  • the part of the pixel defining layer 200 between adjacent openings 210 is a regular trapezoid in a cross section perpendicular to the surface of the substrate 100 (ie a trapezoid with a narrow upper surface and a wide lower surface); the first metal layer 600 only covers The top surface of a regular trapezoid.
  • the second metal layer 700 covers the top surface and sidewalls of the first metal layer 600, as well as the regular trapezoidal sidewalls.
  • the thickness of the first metal layer 600 may not be less than 10 nm, and further, the thickness of the first metal layer 600 may be 20 nm-30 nm;
  • the thickness of the second metal layer 700 may be 5 nm to 15 nm.
  • the thickness of the first metal layer 600 is generally greater than the thickness of the second metal layer 700, and the details are the same as those described in the method for manufacturing the display substrate, and will not be repeated here. .
  • the display substrate may also include other necessary structures and components, such as pixel electrodes, etc.
  • pixel electrodes etc.
  • Those skilled in the art can supplement and design according to the specific types and use requirements of the display substrate. Go into details.
  • the present disclosure provides a display device.
  • the display device includes a front display substrate.
  • the display device has high picture uniformity during display, good display effect, and low cost.
  • the display device in addition to the front display substrate, can also include other necessary structures and compositions. Those skilled in the art can supplement and design according to the specific types and use requirements of the display device, and will not be repeated here. Too much repeat.
  • the specific type of the display device is not particularly limited, and includes, but is not limited to, a mobile phone, a tablet computer, a wearable device, a game console, a television, or a car display, for example.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示基板、其制作方法及显示装置。该方法包括:在基板一侧的表面上形成像素界定层,其限定出开口;在开口中形成发光层;在发光层远离基板的表面上形成牺牲层和光刻胶层,牺牲层在基板上的正投影与开口在基板上的正投影至少部分重叠,光刻胶层位于牺牲层远离基板的表面上;在像素界定层和光刻胶层远离基板的表面上形成第一金属层;去除牺牲层、光刻胶层和位于光刻胶层远离基板的表面上的第一金属层,暴露出开口;在开口中和第一金属层远离基板的表面上形成第二金属层。该方法制作的显示基板阴极在开口中厚度较薄,在像素界定层表面厚度较厚,出光效率高且压降较低,显示效果好,成本低廉。

Description

显示基板、其制作方法及显示装置
相关申请的交叉引用
本公开要求在2020年06月18日提交中国专利局、申请号为202010562356.X、申请名称为“制作显示背板的方法、显示背板和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤指一种显示基板、其制作方法及显示装置。
背景技术
目前,有机电致发光显示面板(Organic Electro Luminesecent Display,OLED)凭借其低功耗、高色饱和度、广视角、薄厚度、能实现柔性化等优异性能,逐渐成为显示领域的主流,可以广泛应用于智能手机、平板电脑、电视等终端产品。
发明内容
第一方面,本公开实施例提供了一种显示基板的制作方法,包括:
在基板一侧的表面上形成像素界定层,所述像素界定层限定出开口;
在所述像素限定层背离所述基板的一侧形成发光层;
在所述发光层远离所述基板的表面上形成牺牲层和光刻胶层,其中,所述牺牲层在所述基板上的正投影与所述开口在所述基板上的正投影至少部分重叠,所述光刻胶层位于所述牺牲层远离所述基板的表面上;
在所述像素界定层和所述光刻胶层远离所述基板的表面上形成第一金属层;
去除所述牺牲层、所述光刻胶层和位于所述光刻胶层远离所述基板的表面上的所述第一金属层,暴露出所述开口;
在所述开口中和所述第一金属层远离所述基板的表面上形成第二金属层,所述第一金属层和所述第二金属层共同构造成所述显示基板的阴极。
可选地,所述牺牲层在所述基板上的正投影位于所述光刻胶层在所述基板上的正投影所在范围内。
可选地,所述光刻胶层在所述基板上的正投影的轮廓线与所述牺牲层在所述基板上的正投影的轮廓线之间具有间隙。
可选地,所述光刻胶层靠近所述基板的表面与所述像素界定层远离所述基板的表面之间的间距大于所述第一金属层的厚度。
可选地,所述牺牲层在所述基板上的正投影覆盖所述开口在所述基板上的正投影。
可选地,所述牺牲层满足以下条件的至少之一:
材料包括含氟高分子材料;
厚度为0.2μm~1.5μm。
可选地,所述光刻胶层的厚度为0.5μm~2μm。
可选地,在所述发光层远离所述基板的表面上形成所述牺牲层和所述光刻胶层,具体包括:
在所述像素界定层和所述发光层远离所述基板的表面上形成第一预制膜层;
在所述第一预制膜层远离所述基板的表面上形成整层的第二预制膜层;
通过构图工艺对所述第二预制膜层进行图案化处理,得到所述光刻胶层;
去除对未被所述光刻胶层覆盖的所述第一预制膜层,得到所述牺牲层。
第二方面,本公开实施例提供了一种显示基板,包括基板、像素界定层、发光层和阴极,所述像素界定层限定出开口,所述阴极包括:
第一金属层,所述第一金属层设置在所述像素界定层远离所述基板的表面上;
第二金属层,所述第二金属层设置在所述开口中和所述第一金属层远离所述基板的表面上。
可选地,所述像素限定层在相邻开口之间的部分在垂直于所述基板表面的截面为正梯形;
所述第一金属层仅覆盖所述正梯形的顶面。
可选地,所述第二金属层覆盖所述第一金属层的顶面和侧壁,以及所述正梯形的侧壁。
可选地,所述第一金属层的厚度不小于10nm。
可选地,所述第一金属层为20nm~30nm;所述第二金属层的厚度为5nm~15nm。
可选地,所述第一金属层的厚度大于所述第二金属层的厚度。
第三方面,本公开实施例提供了一种显示装置,包括第二方面的显示基板。
附图说明
图1为本公开一个实施例提供的显示基板的制作方法的流程示意图;
图2a至图2f分别为本公开一个实施例提供的显示基板的制作方法中各步骤完成后的结构示意图;
图3为本公开一个实施例提供的牺牲层和光刻胶层的剖面结构示意图;
图4为本公开一个实施例提供的在发光层远离基板的表面上形成牺牲层和光刻胶层的流程示意图;
图5a至图5d分别为本公开一个实施例提供的在发光层远离基板的表面上形成牺牲层和光刻胶层的各步骤完成后的结构示意图。
具体实施方式
OLED显示的主流产品是手机屏幕等小型产品,在相关技术中,OLED显示基板在较大尺寸显示装置中(如笔记本电脑等产品)应用的主要制约因素是目前的显示基板的出光效率以及显示基板中阴极的压降问题。具体而言,目前常用的顶发射OLED显示基板中,阴极通常是采用整面的金属膜(例如 Mg/Ag等),但由于透过率的制约,阴极的厚度不能过高,否则将影响OLED显示基板的出光效率。然而,由于阴极在OLED显示基板上是整面蒸镀的,阴极所需的Vss信号由底层金属从屏幕两侧的接触槽区域输入进阴极,在阴极厚度很薄时,阴极的电阻较大,整面阴极的压降(IR drop)较大,则会导致显示画面的中心与四周的显示差异很大。
针对上述技术问题,相关技术中的解决办法通常是排版阴极,也即通过使用金属掩膜版制作得到在像素中心区(也即显示基板的像素界定层限定出的开口中)厚度较薄、且在像素间的连接区域(也即像素界定层的表面上)厚度较厚的阴极,从而可以降低阴极整体的电阻,同时使得显示效果较佳。然而,当使用金属掩膜版制作上述阴极时,由于沉积到金属掩膜版上的金属膜层无法从掩膜版上去除,因此制作一次阴极就要报废一张掩膜版,成本过高,不利于实际产业化。
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本公开的一个方面,本公开提供了一种显示基板的制作方法。根据本公开的实施例,参照图1和图2a、图2b、图2c、图2d、图2e、图2f,该方法可以包括以下步骤:
S100:在基板100一侧的表面上形成像素界定层200,像素界定层200限定出开口210(结构示意图参照图2a)。
根据本公开的实施例,在基板100一侧的表面上形成限定出开口210的像素界定层200的具体工艺不受特别限制,例如可以是蒸镀或者通过构图工艺形成,其具体工艺条件和参数,本领域技术人员可以根据实际需要进行灵活选择,在此不再过多赘述。由此,操作简单、方便,容易实现,且易于工业化生产。
S200:在像素限定层200背离基板100的一侧形成发光层300(结构示意 图参照图2b)。
根据本公开的实施例,在开口210中形成发光层300的具体工艺可以是喷墨打印或者真空蒸镀,其具体工艺条件和参数,本领域技术人员可以根据实际需要进行灵活选择,在此不再过多赘述。由此,操作简单、方便,容易实现,且易于工业化生产。
根据本公开的实施例,前面的基板100、像素界定层200、发光层300等的具体材料、厚度等,本领域技术人员可以根据实际需要进行灵活选择,在此不再过多赘述。
指的注意的是,发光层300可以具体包括多层,例如包括电子传输层,发光材料层、空穴传输层等。
S300:在发光层300远离基板100的表面上形成牺牲层400和光刻胶层500,其中,牺牲层400在基板100上的正投影与开口在基板100上的正投影至少部分重叠,光刻胶层500位于牺牲层400远离基板100的表面上(结构示意图参照图2c)。
根据本公开的实施例,更具体而言,牺牲层400与光刻胶层500的形成方式不受特别限制,下面以本公开中一个具体的实施例为例,来说明本公开中牺牲层400与光刻胶层500的具体形成方式。
根据本公开的实施例,参照图4和图5a、图5b、图5c、图5d,在发光层300远离基板100的表面上形成牺牲层400和光刻胶层500的步骤进一步包括:
S310:在像素界定层200和发光层300远离基板100的表面上形成第一预制膜层399(结构示意图参照图5a)。
根据本公开的实施例,在像素界定层200和发光层300远离基板100的表面上形成第一预制膜层399的具体工艺可以是涂覆,涂覆的具体条件和参数,本领域技术人员可以根据实际需要进行灵活选择,在此不再过多赘述。另外,需要说明的是,为保护发光层300不受到损伤,在涂覆第一预制膜层399时,可以是在惰性气体保护的条件下进行的,惰性气体具体可以是氮气。由此,操作简单、方便,容易实现,且易于工业化生产。
S320:在第一预制膜层399远离基板100的表面上形成整层的第二预制膜层499(结构示意图参照图5b)。
根据本公开的实施例,在第一预制膜层399远离基板100的表面上形成整层的第二预制膜层499的具体工艺可以是涂覆,涂覆的具体条件和参数,本领域技术人员可以根据实际需要进行灵活选择,在此不再过多赘述。由此,操作简单、方便,容易实现,且易于工业化生产。
S330:通过构图工艺对第二预制膜层499进行图案化处理,得到光刻胶层500(结构示意图参照图5c)。
根据本公开的实施例,构图工艺可以包括对第二预制膜层499曝光、显影等步骤,从而形成光刻胶层500,具体而言,在进行曝光步骤时,可以根据光刻胶的特性不同,也即正性光刻胶和负性光刻胶之不同,来选择进行曝光的位置;在进行曝光步骤以后,在显影液中进行显影,另外,构图工艺中各个步骤的具体工艺参数等均为常规构图工艺的工艺参数,在此不再过多赘述。由此,制作工艺简单、方便,容易实现,易于工业化生产。
S340:去除未被光刻胶层500覆盖的第一预制膜层399,得到牺牲层400(结构示意图参照图5d)。
根据本公开的实施例,去除未被光刻胶层500覆盖的第一预制膜层399的具体工艺可以是以前面的光刻胶层500为掩膜,从而利用显影液对第一预制膜层399进行显影,进而得到牺牲层400。由此,制作工艺简单、方便,容易实现,易于工业化生产,且可以较好地形成本公开前面的牺牲层400的具体结构,利于后续应用。
由此,在发光层300远离基板100的表面上形成了牺牲层400和光刻胶层500,在形成上述结构以后,可以开始分两步形成显示基板的阴极,即:
S400:在像素界定层200和光刻胶层500远离基板100的表面上形成第一金属层600(结构示意图参照图2d)。
根据本公开的实施例,在像素界定层200和光刻胶层500远离基板100的表面上形成第一金属层600的具体工艺可以包括真空蒸镀或者化学气相沉 积等,真空蒸镀、化学气相沉积等的工艺参数均为常规真空蒸镀、化学气相沉积等的工艺参数,在此不再过多赘述。由此,制作工艺简单、方便,容易实现,易于工业化生产。
根据本公开的实施例,第一金属层600的厚度可以不小于10nm,第一金属层600的厚度在上述范围内,可以解决制作得到的显示基板阴极的压降问题,更进一步地,第一金属层600的厚度可以是20nm~30nm,具体而言,可以是20nm、22nm、24nm、26nm、28nm或者30nm等。由此,可以使得制作得到的显示基板的阴极在像素界定层200表面的厚度较厚,可以进一步提高其导电率,以实现阴极的电阻更小、压降更低,从而可以使得显示时画面的均匀度高,显示效果好;同时,阴极的厚度也不会过厚,符合显示基板轻薄化的发展趋势。
根据本公开的实施例,第一金属层600的材料可以包括常规显示基板的阴极的材料,例如金属镁、金属银等,在此不再过多赘述。由此,材料来源广泛、易得,且成本较低。
S500:去除牺牲层400、光刻胶层500和位于光刻胶层500远离基板100的表面上的第一金属层600,暴露出开口210(结构示意图参照图2e)。
根据本公开的实施例,去除牺牲层400、光刻胶层500和位于光刻胶层500远离基板100的表面上的第一金属层600的具体工艺可以是将其放置于能够溶解牺牲层400的剥离液中,该剥离液只会溶解牺牲层400,不会溶解光刻胶层500,也不会影响第一金属层600的电阻。具体而言,剥离液的材料可以选用美国Orthogonal公司所生产的针对氟基高分子材料的剥离液,具体可以是氢氟醚。由此,当牺牲层400溶解以后,可以同时去除光刻胶层500及其表面上的第一金属层600,且操作简单、方便,容易实现,易于工业化生产。
S600:在开口中和第一金属层600远离基板100的表面上形成第二金属层700,第一金属层600和第二金属层700共同构成显示基板的阴极(结构示意图参照图2f)。
根据本公开的实施例,在开口中和第一金属层600远离基板100的表面 上形成第二金属层700的具体工艺可以包括真空蒸镀或者化学气相沉积等,真空蒸镀、化学气相沉积等的工艺参数均为常规真空蒸镀、化学气相沉积等的工艺参数,在此不再过多赘述。由此,制作工艺简单、方便,容易实现,易于工业化生产。
根据本公开的实施例,第二金属层700的厚度可以是5nm~15nm,具体而言,可以是5nm、7nm、9nm、10nm、11nm、12nm或者15nm等。并且,第二金属层700的厚度一般小于第一金属层600的厚度。由此,可以使得制作得到的显示基板的阴极在开口中厚度较薄,出光效率高,从而可以使得显示效果好;且在像素界定层200表面的阴极厚度较厚,可以同时实现出光效率高且阴极的电阻较小、压降较低,从而可以使得显示时画面的均匀度高,显示效果好,同时也不会造成掩膜版的浪费,成本低廉。
根据本公开的实施例,第二金属层700的材料可以包括常规显示基板的阴极的材料,例如金属镁、金属银等,在此不再过多赘述。由此,材料来源广泛、易得,且成本较低。
根据本公开的实施例,综合前面,在本公开中,通过在发光层300远离基板100的至少部分表面上形成牺牲层400和光刻胶层500,从而在发光层300的表面上形成了一层在后续步骤中可以被去除掉的掩膜版;而光刻胶层可以起到掩膜版的作用,具体而言,在后续步骤中,阴极可以分为两步形成:首先,当开口中具有牺牲层400和光刻胶层400时,形成第一金属层,光刻胶层500可以使得本应在开口中形成的第一金属层形成于光刻胶层500远离基板100的表面上;直至将牺牲层400、光刻胶层500,以及形成在光刻胶层500远离基板100的表面上的第一金属层去除以后,再形成第二金属层,此时由于开口中没有了光刻胶层500的遮挡,则可以正常在开口中形成第二金属层。由此,在像素界定层200远离基板100的表面上具有两层金属层,即第一金属层和第二金属层;而在开口中仅具有一层金属层,即第二金属层,从而使得制作得到的显示基板的阴极在开口中厚度较薄、在像素界定层200表面的厚度较厚,可以同时实现出光效率高且阴极的电阻较小、压降较低,从 而可以使得显示时画面的均匀度高,显示效果好,同时也不会造成掩膜版的浪费,成本低廉。
根据本公开的实施例,进一步地,前面的牺牲层400和光刻胶层500的相对位置关系对于后续形成第一金属层和第二金属层时具有较为重要的影响,发明人进行了大量实验研究后认为,牺牲层400在基板100上的正投影既可以位于光刻胶层500在基板100上的正投影内(结构示意图参照图2c);在本公开的另一些实施例中,也可以是光刻胶层500在基板100上的正投影位于牺牲层400在基板100上的正投影内(结构示意图参照图3)。
根据本公开的实施例,具体而言,当按照图2c所示出的方式形成牺牲层400和光刻胶层500后,参照图2d,由于在前面的基础上,光刻胶层500在基板100上的正投影的轮廓线与牺牲层400在基板100上的正投影的轮廓线之间还具有间隙,在形成第一金属层600的时候,形成在像素界定层200远离基板100的表面上的第一金属层600以及形成在光刻胶层500远离基板100的表面上的第一金属层600是可以完全间断开的,故而在后续步骤中可以较好地将位于光刻胶层500远离基板100的表面上的第一金属层600完全去除,可以使得制作得到的显示基板中,像素界定层200表面上的阴极均较厚,进一步降低阴极的压降,使得显示时画面的均匀度高,显示效果好。
根据本公开的实施例,在前面的基础上,如欲进一步使得后续步骤中光刻胶层500远离基板100的表面上的第一金属层600可以完全去除,则参照图2d,还可以使得光刻胶层500靠近基板100的表面与像素界定层200远离基板100的表面之间的间距h大于形成的第一金属层600的厚度d。由此,由于即使在形成第一金属层600以后,光刻胶层500的下表面与第一金属层600的上表面仍然是存在一段间距的,因此在后续步骤中,去除光刻胶层500以及其表面上的第一金属层600时,完全不会影响到位于像素界定层200表面上的第一金属层600,进而在制作得到的显示基板中,阴极的压降更低,显示效果更好。
根据本公开的实施例,另外,由图2d所示出的结构可知,牺牲层400和 光刻胶层500的厚度对于后续形成在光刻胶层500远离基板100的表面上的第一金属层能否完全去除也具有一定的影响。在本公开的一些实施例中,牺牲层400的厚度可以为0.2μm~1.5μm,具体而言,可以是0.2μm、0.5μm、1μm或者1.5μm等;另外,光刻胶层500的厚度可以为0.5μm~2μm,具体而言,可以是0.5μm、1μm、1.5μm或者2μm等。当牺牲层400和光刻胶层500的厚度在上述范围内时,在后续步骤中,位于光刻胶层500远离基板100的表面上的第一金属层600更易去除,利于后续应用。
根据本公开的实施例,具体而言,在另一种具体的实施方式中,参照图3,牺牲层400在基板100上的正投影覆盖开口在基板100上的正投影,由于在形成第一金属层的时候,牺牲层400能够更好地保护开口中不形成第一金属层,进而可以使得制作得到的显示基板中,位于开口中的阴极的厚度均较薄,进一步使得显示基板的出光效率更高。
根据本公开的实施例,更进一步地,对于牺牲层400的具体形成材料,发明人进行了严格的筛选与实验后发现,当牺牲层400材料包括含氟高分子材料时,牺牲层400在发光层300的表面上形成以后再被去除掉的整个过程,不会对发光层300造成损伤,不会影响制作得到的显示基板的显示效果。具体而言,含氟高分子材料的具体种类不受特别限制,例如,其可以选用美国Orthogonal公司开发研制出的氟基高分子材料。
在本公开的另一个方面,本公开提供了一种显示基板。根据本公开的实施例,该显示基板是通过前面的方法制作得到的,参照图2f,显示基板包括基板100、像素界定层200、发光层300和阴极,像素界定层200限定出开口210,其中,阴极包括:
第一金属层600,第一金属层600设置在像素界定层200远离基板100的表面上;
第二金属层700,第二金属层700设置在开口210中和第一金属层600远离基板100的表面上。
该显示基板的阴极在开口中厚度较薄、在像素界定层表面的厚度较厚, 可以同时实现出光效率高且阴极的电阻较小、压降较低,从而可以使得显示时画面的均匀度高,显示效果好,同时也不会造成掩膜版的浪费,成本低廉。
根据本公开的实施例,本领域技术人员可以理解,前面的基板100、像素界定层200、发光层300等的相对位置关系如前所述,在此不再过多赘述。
具体地,如图2f所示,像素限定层200在相邻开口210之间的部分在垂直于基板100表面的截面为正梯形(即上面窄下面宽的梯形);第一金属层600仅覆盖正梯形的顶面。第二金属层700覆盖第一金属层600的顶面和侧壁,以及正梯形的侧壁。
根据本公开的实施例,如前所述,在本公开的显示基板中,第一金属层600的厚度可以不小于10nm,更进一步地,第一金属层600的厚度可以是20nm~30nm;第二金属层700的厚度可以是5nm~15nm,第一金属层600的厚度一般大于第二金属层700的厚度,具体则与制作该显示基板的方法中相关描述相同,在此不再过多赘述。
根据本公开的实施例,该显示基板还可以包括其他必要的结构和组成,例如像素电极等,本领域技术人员可根据显示基板的具体种类和使用要求进行补充和设计,在此不再过多赘述。
在本公开的又一个方面,本公开提供了一种显示装置。根据本公开的实施例,该显示装置包括前面的显示基板。该显示装置在显示时画面的均匀度高,显示效果好,且成本低廉。
根据本公开的实施例,该显示装置除前面的显示基板以外,还可以包括其他必要的结构和组成,本领域技术人员可根据显示装置的具体种类和使用要求进行补充和设计,在此不再过多赘述。
根据本公开的实施例,该显示装置的具体种类不受特别限制,例如包括但不限于手机、平板电脑、可穿戴设备、游戏机、电视机或者车载显示器等。
在本公开的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一 个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种显示基板的制作方法,其中,包括:
    在基板一侧的表面上形成像素界定层,所述像素界定层限定出开口;
    在所述像素限定层背离所述基板的一侧形成发光层;
    在所述发光层远离所述基板的表面上形成牺牲层和光刻胶层,其中,所述牺牲层在所述基板上的正投影与所述开口在所述基板上的正投影至少部分重叠,所述光刻胶层位于所述牺牲层远离所述基板的表面上;
    在所述像素界定层和所述光刻胶层远离所述基板的表面上形成第一金属层;
    去除所述牺牲层、所述光刻胶层和位于所述光刻胶层远离所述基板的表面上的所述第一金属层,暴露出所述开口;
    在所述开口中和所述第一金属层远离所述基板的表面上形成第二金属层,所述第一金属层和所述第二金属层共同构成所述显示基板的阴极。
  2. 根据权利要求1所述的方法,其中,所述牺牲层在所述基板上的正投影位于所述光刻胶层在所述基板上的正投影所在范围内。
  3. 根据权利要求2所述的方法,其中,所述光刻胶层在所述基板上的正投影的轮廓线与所述牺牲层在所述基板上的正投影的轮廓线之间具有间隙。
  4. 根据权利要求1所述的方法,其中,所述光刻胶层靠近所述基板的表面与所述像素界定层远离所述基板的表面之间的间距大于所述第一金属层的厚度。
  5. 根据权利要求1所述的方法,其中,所述牺牲层在所述基板上的正投影覆盖所述开口在所述基板上的正投影。
  6. 根据权利要求1所述的方法,其中,所述牺牲层满足以下条件的至少之一:
    材料包括含氟高分子材料;
    厚度为0.2μm~1.5μm。
  7. 根据权利要求1所述的方法,其中,所述光刻胶层的厚度为0.5μm~2μm。
  8. 根据权利要求1-7任一项所述的方法,其中,在所述发光层远离所述基板的表面上形成所述牺牲层和所述光刻胶层,具体包括:
    在所述像素界定层和所述发光层远离所述基板的表面上形成第一预制膜层;
    在所述第一预制膜层远离所述基板的表面上形成整层的第二预制膜层;
    通过构图工艺对所述第二预制膜层进行图案化处理,得到所述光刻胶层;
    去除未被所述光刻胶层覆盖的所述第一预制膜层,得到所述牺牲层。
  9. 一种显示基板,其中,包括基板、像素界定层、发光层和阴极,所述像素界定层限定出开口;
    所述阴极包括:
    第一金属层,所述第一金属层设置在所述像素界定层远离所述基板的表面上;
    第二金属层,所述第二金属层设置在所述开口中和所述第一金属层远离所述基板的表面上。
  10. 根据权利要求9所述的显示基板,其中,所述像素限定层在相邻开口之间的部分在垂直于所述基板表面的截面为正梯形;
    所述第一金属层仅覆盖所述正梯形的顶面。
  11. 根据权利要求10所述的显示基板,其中,所述第二金属层覆盖所述第一金属层的顶面和侧壁,以及所述正梯形的侧壁。
  12. 根据权利要求9所述的显示基板,其中,所述第一金属层的厚度不小于10nm。
  13. 根据权利要求12所述的显示基板,其中,所述第一金属层为20nm~30nm;所述第二金属层的厚度为5nm~15nm。
  14. 根据权利要求9-13任一项所述的显示基板,其中,所述第一金属层的厚度大于所述第二金属层的厚度。
  15. 一种显示装置,其中,包括如权利要求9~14任一项所述的显示基板。
PCT/CN2021/096425 2020-06-18 2021-05-27 显示基板、其制作方法及显示装置 WO2021254124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/921,323 US20230180581A1 (en) 2020-06-18 2021-05-27 Display substrate, fabrication method therefor, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010562356.X 2020-06-18
CN202010562356.XA CN111668386A (zh) 2020-06-18 2020-06-18 制作显示背板的方法、显示背板和显示装置

Publications (1)

Publication Number Publication Date
WO2021254124A1 true WO2021254124A1 (zh) 2021-12-23

Family

ID=72388674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096425 WO2021254124A1 (zh) 2020-06-18 2021-05-27 显示基板、其制作方法及显示装置

Country Status (3)

Country Link
US (1) US20230180581A1 (zh)
CN (1) CN111668386A (zh)
WO (1) WO2021254124A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668386A (zh) * 2020-06-18 2020-09-15 京东方科技集团股份有限公司 制作显示背板的方法、显示背板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107492560A (zh) * 2016-06-10 2017-12-19 三星显示有限公司 有机发光显示设备及其制造方法
US20180233703A1 (en) * 2015-10-13 2018-08-16 Samsung Display Co., Ltd. Organic light emitting display panel and method of manufacturing the same
CN109962090A (zh) * 2017-12-26 2019-07-02 三星显示有限公司 显示设备
CN110168736A (zh) * 2019-03-29 2019-08-23 京东方科技集团股份有限公司 发光基板及其制作方法、电子装置
CN110752243A (zh) * 2019-10-31 2020-02-04 上海天马有机发光显示技术有限公司 一种显示面板、其制作方法及显示装置
CN111668386A (zh) * 2020-06-18 2020-09-15 京东方科技集团股份有限公司 制作显示背板的方法、显示背板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180233703A1 (en) * 2015-10-13 2018-08-16 Samsung Display Co., Ltd. Organic light emitting display panel and method of manufacturing the same
CN107492560A (zh) * 2016-06-10 2017-12-19 三星显示有限公司 有机发光显示设备及其制造方法
CN109962090A (zh) * 2017-12-26 2019-07-02 三星显示有限公司 显示设备
CN110168736A (zh) * 2019-03-29 2019-08-23 京东方科技集团股份有限公司 发光基板及其制作方法、电子装置
CN110752243A (zh) * 2019-10-31 2020-02-04 上海天马有机发光显示技术有限公司 一种显示面板、其制作方法及显示装置
CN111668386A (zh) * 2020-06-18 2020-09-15 京东方科技集团股份有限公司 制作显示背板的方法、显示背板和显示装置

Also Published As

Publication number Publication date
CN111668386A (zh) 2020-09-15
US20230180581A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
JP6219685B2 (ja) 発光ディスプレイバックプレーン、ディスプレイデバイス、及び画素定義層の製造方法
US10957751B2 (en) Pixel defining layer and manufacturing method thereof, display substrate, display panel
CN107611280B (zh) 有机发光二极管基板及其制造方法
WO2019179371A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
WO2021078095A1 (zh) 背板及其制造方法、芯片绑定方法、显示装置
WO2020173102A1 (zh) 阵列基板及其制造方法、显示面板及显示装置
WO2019010986A1 (zh) 显示面板及其制造方法、显示装置
JP2009041054A (ja) 蒸着用マスクおよびその製造方法ならびに表示装置の製造方法
CN110402496B (zh) 显示基板、显示设备、制造显示基板的方法
CN110890406A (zh) 一种有机发光显示背板、其制作方法及显示装置
US20230006024A1 (en) Display substrate, manufacturing method and display device
US12063833B2 (en) Display panel, manufacturing method thereof and display device
CN113097259B (zh) 一种显示面板、显示面板制程方法及显示装置
WO2021093681A1 (zh) 显示背板及其制作方法和显示装置
WO2022088948A1 (zh) 显示面板、显示装置和显示面板的制作方法
US20210027705A1 (en) Pixel unit and method for manufacturing the same, and double-sided oled display device
CN109065764A (zh) 显示面板的制造方法及显示面板
WO2021254124A1 (zh) 显示基板、其制作方法及显示装置
JP2013065830A (ja) 有機el装置
WO2020191661A1 (zh) 显示基板、显示装置、掩模板和制造方法
WO2019218822A1 (zh) 薄膜晶体管及其制备方法、阵列基板、显示装置
JP2006002243A (ja) マスク、マスクの製造方法、成膜方法、電子デバイス、及び電子機器
KR20240041993A (ko) 표시 장치, 표시 모듈, 전자 기기, 및 표시 장치의 제작 방법
JP2015143375A (ja) メタルマスクおよびその製造方法、ならびに表示装置の製造方法
JP2011181208A (ja) 大型メタルマスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825926

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21825926

Country of ref document: EP

Kind code of ref document: A1