WO2021254038A1 - 一种电致发光器件、显示基板及显示装置 - Google Patents

一种电致发光器件、显示基板及显示装置 Download PDF

Info

Publication number
WO2021254038A1
WO2021254038A1 PCT/CN2021/093301 CN2021093301W WO2021254038A1 WO 2021254038 A1 WO2021254038 A1 WO 2021254038A1 CN 2021093301 W CN2021093301 W CN 2021093301W WO 2021254038 A1 WO2021254038 A1 WO 2021254038A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
layer
transport layer
dot light
electric field
Prior art date
Application number
PCT/CN2021/093301
Other languages
English (en)
French (fr)
Inventor
李东
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/764,425 priority Critical patent/US20220344604A1/en
Publication of WO2021254038A1 publication Critical patent/WO2021254038A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver

Definitions

  • the present disclosure relates to the field of display technology, in particular to an electroluminescent device, a display substrate and a display device.
  • Quantum Dot As a new type of luminescent material has the advantages of high light color purity, high luminous quantum efficiency, adjustable luminous color, and long service life. It has become the current research on luminescent materials in new light-emitting diodes. Hot spot. Therefore, quantum dot light emitting diodes (Quantum Dot Light Emitting Diodes, QLED for short) that use quantum dot materials as the light-emitting layer have become the main direction of current research on new display devices.
  • QLED Quantum Dot Light Emitting Diodes
  • the ionic complex layer is located between the electron transport layer and the quantum dot light-emitting layer; wherein, there is a built-in electric field in the ionic complex layer.
  • the electroluminescent device has an inverted structure, and the electroluminescent device further includes: emitting light at the back of the electron transport layer and facing the quantum dot.
  • the base substrate on the side of the layer, the cathode located between the base substrate and the electron transport layer, the hole transport layer stacked in sequence on the side of the quantum dot light-emitting layer facing away from the base substrate, Hole injection layer and anode;
  • the ionic complex layer is an independent film layer located between the electron transport layer and the quantum dot light-emitting layer; the side of the built-in electric field close to the electron transport layer is a negative electrode, and it emits light close to the quantum dot One side of the layer is the positive electrode.
  • the quantum dot light-emitting layer includes quantum dots, ligands, and charge balance ions, and a group near one end of the quantum dot in the ligand is The quantum dot is connected, and the group of the ligand far from the quantum dot is the ionic complex of the ionic complex layer, and the charges of the ionic complex and the charge balance ion are opposite.
  • the electroluminescent device has an inverted structure, and the electroluminescent device further includes: emitting light at the back of the electron transport layer and facing the quantum dot.
  • the base substrate on the side of the layer, the cathode located between the base substrate and the electron transport layer, the hole transport layer stacked in sequence on the side of the quantum dot light-emitting layer facing away from the base substrate, Hole injection layer and anode;
  • the built-in electric field includes a first electric field between the electron transport layer and the quantum dot light-emitting layer, and a second electric field between the hole transport layer and the quantum dot light-emitting layer;
  • the side of the first electric field close to the electron transport layer is a negative electrode, and the side close to the quantum dot light-emitting layer is a positive electrode;
  • the side of the second electric field close to the hole transport layer is a negative electrode, and the side close to the quantum dot light-emitting layer is a positive electrode.
  • the electroluminescent device has an upright structure, and the electroluminescent device further includes: a light emitting layer of the quantum dot facing away from the electron
  • the base substrate on the side of the transport layer, the anode, the hole injection layer, and the hole transport layer which are sequentially stacked between the base substrate and the quantum dot light-emitting layer, and the back of the electron transport layer.
  • the cathode on one side of the base substrate;
  • the built-in electric field includes a third electric field between the hole transport layer and the quantum dot light-emitting layer, and a fourth electric field between the electron transport layer and the quantum dot light-emitting layer;
  • the side of the third electric field close to the hole transport layer is a positive electrode, and the side close to the quantum dot light-emitting layer is a negative electrode;
  • the side of the fourth electric field close to the electron transport layer is a positive electrode, and the side close to the quantum dot light-emitting layer is a negative electrode.
  • the material of the ionic complex layer is an organometallic complex.
  • the ionic complex layer includes a cationic part and an anionic part, wherein,
  • the cationic portion includes a central metal ion and a ligand of the central metal ion, the central metal ion includes one of Ir, La, Nd, Eu, Cu, In, Pb or Pt, and the central metal ion
  • the ligand includes one of o-phenanthroline, 2-phenylpyridine, phenyloxadiazole pyridine, fluorophenylpyridine or bipyridine;
  • the anion portion includes tetrakis(pentafluorophenyl)boronic acid, tetrakis[(trifluoromethyl)phenyl]boronic acid, tetrakis[bis(trifluoromethyl)phenyl]boronic acid, hexa(pentafluorophenyl)phosphoric acid, One of hexa[(trifluoromethyl)phenyl]phosphoric acid or hexa[bis(trifluoromethyl)phenyl]phosphoric acid.
  • the charge balance ions include positive charge balance ions and negative charge balance ions, wherein,
  • the positive charge balance ion includes the cation moiety, NH4+ or Na+, and the negative charge balance ion includes the anion moiety, Cl- or PF6-.
  • an embodiment of the present disclosure also provides a display substrate, including the above-mentioned electroluminescent device provided by the embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides a display device, including a display panel, and the display panel includes the above-mentioned display substrate provided by the embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides a method for manufacturing an electroluminescent device, including:
  • a built-in electric field is formed in the ionic complex layer.
  • the manufacturing method includes: sequentially forming a cathode, the electron transport layer, the independent ionic complex layer, the quantum dot light-emitting layer, and Hole transport layer, hole injection layer and anode; among them,
  • the formation of an independent layer of the ionic complex specifically includes:
  • an external electric field is applied, and the anions and cations inside the ionic complex film are aligned by the external electric field to form a built-in electric field inside the ionic complex film so that the built-in electric field is close to Anions are gathered on one side of the electron transport layer to form a negative electrode, and cations are gathered on one side of the quantum dot light-emitting layer to form a positive electrode;
  • the ionic complex film is baked through a baking process to form an independent ionic complex layer.
  • the manufacturing method includes: sequentially forming a cathode, the electron transport layer, the independent ionic complex layer, the quantum dot light-emitting layer, and Hole transport layer, hole injection layer and anode; among them,
  • the formation of an independent layer of the ionic complex specifically includes:
  • the ionic complex film is baked by a baking process, and an external electric field is applied during the baking process.
  • the external electric field causes the anions and cations inside the ionic complex film to be aligned in an orientation.
  • a built-in electric field is formed inside the ionic complex film, so that the built-in electric field gathers anions on the side close to the electron transport layer to form a negative electrode, and gathers cations on the side close to the quantum dot light-emitting layer to form a positive electrode. Ionic complex layer.
  • the method includes:
  • a quantum dot mixed solution of ionic complexes, quantum dots, ligands, and charge balance ions is formed on the electron transport layer by spin coating or inkjet printing; wherein the ligand is close to the quantum dots
  • the group at one end is connected to the quantum dot, the group at the end of the ligand away from the quantum dot is the ionic complex, and the charge of the ionic complex and the charge balance ion are opposite;
  • the method includes:
  • An anode, a hole injection layer and a hole transport layer are sequentially formed on the base substrate;
  • a quantum dot mixed solution of ionic complexes, quantum dots, ligands, and charge balance ions are formed on the hole transport layer by spin coating or inkjet printing; wherein the ligand is close to the quantum dots
  • the group at one end of the dot is connected to the quantum dot, the group at the end of the ligand away from the quantum dot is the ionic complex, and the charge of the ionic complex and the charge balance ion are opposite;
  • FIG. 1A is a schematic structural diagram of an electroluminescent device provided by an embodiment of the disclosure.
  • 1B is a schematic diagram of the energy levels of the electron transport layer and the quantum dot light-emitting layer in the electroluminescent device in the prior art
  • 1C is a schematic diagram of the energy levels of the electron transport layer and the quantum dot light-emitting layer in the electroluminescent device provided by the embodiment of the disclosure;
  • FIG. 2A is a schematic structural diagram of another electroluminescent device provided by an embodiment of the disclosure.
  • 2B is a schematic diagram of the energy levels of the electron transport layer, the hole transport layer and the quantum dot light-emitting layer in the electroluminescent device in the prior art;
  • 2C is a schematic diagram of the energy levels of the electron transport layer, the hole transport layer, and the quantum dot light-emitting layer in the electroluminescent device provided by an embodiment of the disclosure;
  • 3A is a schematic structural diagram of another electroluminescent device provided by an embodiment of the disclosure.
  • 3B is a schematic diagram of the energy levels of the hole transport layer, the electron transport layer and the quantum dot light-emitting layer in the electroluminescent device in the prior art;
  • 3C is a schematic diagram of the energy levels of the hole transport layer, the electron transport layer, and the quantum dot light-emitting layer in the electroluminescent device provided by the embodiments of the disclosure;
  • FIGS. 2A and 3A are schematic diagrams of a structure inside the quantum dot light-emitting layer in FIGS. 2A and 3A;
  • 4B is a schematic diagram of another structure inside the quantum dot light-emitting layer in 2A and 3A;
  • 5A is a schematic diagram of a spin coating process in a method of manufacturing an electroluminescent device provided by an embodiment of the disclosure
  • 5B is a schematic diagram of the baking process in the manufacturing method of the electroluminescent device provided by the embodiment of the disclosure.
  • 5C is a schematic diagram of the evaporation process in the manufacturing method of the electroluminescent device provided by the embodiment of the disclosure.
  • FIG. 6 is a schematic flow chart of a manufacturing method of an electroluminescent device provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic flow chart of another method for manufacturing an electroluminescent device according to an embodiment of the disclosure.
  • FIG. 8 is a schematic structural diagram of a display device provided by an embodiment of the disclosure.
  • AQLED active electro-quantum dot luminous display products
  • an embodiment of the present disclosure provides an electroluminescent device, as shown in FIG. 1A, FIG. 2A, and FIG. 3A, including:
  • the electron transport layer 1 and the quantum dot light-emitting layer 2 arranged in a stack;
  • the ionic complex layer 3 is located between the electron transport layer 1 and the quantum dot light-emitting layer 2; wherein, the ionic complex layer 3 has a built-in electric field.
  • an ionic complex layer 3 is arranged between the electron transport layer 1 and the quantum dot light-emitting layer 2, and since the ionic complex layer 3 has a built-in electric field, it is adjusted
  • the direction of the built-in electric field allows the built-in electric field to change the vacuum energy level at the interface between the quantum dot light-emitting layer 2 and the adjacent layer, reduce the energy barrier between the quantum dot light-emitting layer 2 and the adjacent layer, and improve electron or hole injection
  • the efficiency of the quantum dot light-emitting layer 2 improves the carrier balance in the quantum dot light-emitting layer 2.
  • the electroluminescent device has an inverted structure, and the electroluminescent device further includes: 1 Backing the base substrate 4 on the side of the quantum dot light-emitting layer 2, the cathode 5 between the base substrate 4 and the electron transport layer 1, and the quantum dot light-emitting layer 2 is stacked in turn on the side facing the base substrate 4 Hole transport layer 6, hole injection layer 7 and anode 8;
  • the ionic complex layer 3 is an independent film layer located between the electron transport layer 1 and the quantum dot light-emitting layer 2; as shown in Figure 1C, the built-in electric field E is the negative electrode on the side close to the electron transport layer 1 and is close to the quantum dot light-emitting layer 2 side is the positive electrode.
  • the material of the electron transport layer is generally ZnO, but when sputtered ZnO is used, the film-type ZnO material has a higher mobility and a deeper energy level ( The LUMO of the ZnO film is close to the LUMO of the cathode (ITO material), but is far from the LUMO of the quantum dot light-emitting layer), so it is difficult for the electrons of the cathode to be injected into the quantum dot light-emitting layer from ZnO, which affects the luminous efficiency.
  • the electroluminescent device with the inverted structure provides an independent ion-type complex layer 3 between the electron transport layer 1 and the quantum dot light-emitting layer 2, because the ion-type complex layer 3 is located in the electron transport layer 1.
  • the independent film layer between the quantum dot light-emitting layer 2, and the built-in electric field E of the ionic complex layer 3 is the negative electrode on the side close to the electron transport layer 1, and the positive electrode on the side close to the quantum dot light-emitting layer 2
  • Building an electric field can change the vacuum energy level at the interface between the quantum dot light-emitting layer 2 and the electron transport layer 1, and reduce the barrier between the LUMO energy levels of the two, as shown in Figure 1B and Figure 1C, which can increase the electron transfer from the electron transport layer 1 to the quantum dot
  • the injection into the light-emitting layer 2 balances the carriers in the quantum dot light-emitting layer 2, thereby improving the luminous efficiency and lifetime of the electroluminescent device.
  • the orbit with the lowest energy level of the unoccupied electron is called the lowest unoccupied orbit and is represented by LUMO.
  • the potential barrier of the LUMO energy level of the electron transport layer 1 and the LUMO energy level of the quantum dot light emitting layer 2 in FIG. 1A can theoretically be reduced from 0.6 to 1.0 eV by about 0.2 to 0.3 eV.
  • the specific The energy level of is related to the energy level of the electron transport layer and the quantum dot light-emitting layer itself.
  • the quantum dot light-emitting layer 2 includes quantum dots 21, ligands 22, and charge balance ions (not shown) , wherein the group X near the quantum dot 21 in the ligand 22 is connected to the quantum dot 21, and the group Y in the ligand 22 far from the quantum dot 21 is the ionic complex (Y) of the ionic complex layer 3 , The charge of the ionic complex Y and the charge balance ion are opposite.
  • FIG. 4A is a schematic diagram of the ionic complex (Y) being a cationic complex
  • FIG. 4B is a schematic diagram of the ionic complex (Y) being an anionic complex, and the types of the ionic complex are explained in detail later.
  • quantum dots 21 are generally spherical, ligands 22 are distributed on their spherical surfaces. Because the groups of ligands 22 far from the ends of quantum dots 21 are ionic complex layers The ionic complex Y of 3 is therefore equivalent to forming an ionic complex Y around the quantum dot 21, that is, between the quantum dot 21 and the electron transport layer 1 and between the quantum dot 21 and the hole transport layer. The ionic complex layer 3 is formed.
  • the quantum dot light-emitting layer 2 also includes a charge balance ion 23 with the opposite charge to the ionic complex Y, based on the principle of charge balance, the ionic complex Y is located close to the surface of the quantum dot 21, and the charge balance The ions 23 are located on the side close to the electron transport layer 1 and the hole transport layer. Therefore, an electric field in the opposite direction is formed between the quantum dot light emitting layer 2 and the electron transport layer 1 and between the quantum dot light emitting layer 2 and the hole transport layer.
  • This electric field can change the vacuum energy level at the interface between the quantum dot light-emitting layer 2 and the electron transport layer 1, and change the vacuum energy level at the interface between the quantum dot light-emitting layer 2 and the hole transport layer, so as to improve the efficiency of electron or hole injection.
  • the electroluminescent device has an inverted structure, and the electroluminescent device further includes: a base substrate located on the side of the electron transport layer 1 and the quantum dot light emitting layer 2 4.
  • the cathode 5 is located between the base substrate 4 and the electron transport layer 1, and the hole transport layer 6, the hole injection layer 7 and the anode 8 are sequentially stacked on the side of the quantum dot light-emitting layer 2 facing away from the base substrate 4 ;
  • an ionic complex layer 3 is formed between the quantum dot 21 and the electron transport layer 1 and between the quantum dot 21 and the hole transport layer;
  • the built-in electric field E includes a first electric field E1 between the electron transport layer 1 and the quantum dot light-emitting layer 2, and a second electric field E2 between the hole transport layer 6 and the quantum dot light-emitting layer 2. ;in,
  • the side of the first electric field E1 close to the electron transport layer 1 is a negative electrode, and the side close to the quantum dot light-emitting layer 2 is a positive electrode;
  • the side of the second electric field E2 close to the hole transport layer 6 is the negative electrode, and the side close to the quantum dot light-emitting layer 2 is the positive electrode.
  • the electroluminescent device with the above-mentioned inverted structure provided in the present disclosure adds an ionic complex layer 3 connected to the ligand of the quantum dot in the quantum dot light-emitting layer 2. Since the quantum dot light-emitting layer 2 also includes counter ions, by selecting Cation complexes and negatively charged counter ions can form a first electric field E1 between the quantum dot light-emitting layer 2 and the electron transport layer 1, and a second electric field E1 between the quantum dot light-emitting layer 2 and the hole transport layer 6 Electric field E2.
  • the first electric field E1 is the negative electrode on the side close to the electron transport layer 1 and the positive electrode on the side close to the quantum dot light-emitting layer 2.
  • the first electric field E1 can change the vacuum at the interface between the quantum dot light-emitting layer 2 and the electron transport layer 1 Energy level, lowering the barrier of the LUMO energy level of the two can increase the injection of electrons from the electron transport layer 1 into the quantum point light-emitting layer 2.
  • the second electric field E2 is the negative electrode on the side close to the hole transport layer 6, which is close to One side of the quantum dot light-emitting layer 2 is the positive electrode, and the second electric field E2 can change the vacuum energy level at the interface between the quantum dot light-emitting layer 2 and the hole transport layer 6, increase the barrier between the HOMO energy levels of the two, and reduce holes
  • the injection into the electron point light-emitting layer 2 from the hole transport layer 6 is shown in Figures 2B and 2C. In an electroluminescent device with an inverted structure, it is generally difficult to inject electrons and easier to inject holes.
  • the present disclosure introduces ionic complexes connected with quantum dot ligands, which can improve the efficiency of electron injection while reducing the efficiency of hole injection. Therefore, it can effectively balance the carriers in the quantum dot light-emitting layer 2 and improve electroluminescence. The luminous efficiency and lifetime of the device.
  • the electroluminescent device has an upright structure, and the electroluminescent device further includes: a substrate on the side of the quantum dot light-emitting layer 2 facing away from the electron transport layer 1.
  • the built-in electric field E includes a third electric field E3 between the hole transport layer 6 and the quantum dot light-emitting layer 2, and a fourth electric field E4 between the electron transport layer 1 and the quantum dot light-emitting layer 2. ;in,
  • the side of the third electric field E3 close to the hole transport layer 6 is the positive electrode, and the side close to the quantum dot light-emitting layer 2 is the negative electrode;
  • the side of the fourth electric field E4 close to the electron transport layer 1 is the positive electrode, and the side close to the quantum dot light-emitting layer 2 is the negative electrode.
  • the electroluminescent device with the above-mentioned upright structure provided by the present disclosure adds an ionic complex layer 3 connected to the ligand of the quantum dot in the quantum dot light-emitting layer 2. Since the quantum dot light-emitting layer 2 also includes counter ions, Choosing an anion complex and a positively charged counterion can form a third electric field E3 between the quantum dot light-emitting layer 2 and the hole transport layer 6, and a third electric field E3 between the quantum dot light-emitting layer 2 and the electron transport layer 1.
  • the third electric field E3 is the positive electrode on the side close to the hole transport layer 6 and the negative electrode on the side close to the quantum dot light-emitting layer 2.
  • the third electric field E3 can change the quantum dot light-emitting layer 2 and the hole transport layer 6
  • the vacuum level of the interface reduces the barrier between the HOMO level of the two, which can increase the injection of holes from the hole transport layer 6 into the quantum point light emitting layer 2.
  • the fourth electric field E4 is close to the side of the electron transport layer 1. It is the positive electrode, and the side close to the quantum dot light-emitting layer 2 is the negative electrode.
  • the fourth electric field E4 can change the vacuum energy level at the interface between the quantum dot light-emitting layer 2 and the electron transport layer 1 and increase the potential barrier between the LUMO energy levels of the two.
  • the present disclosure introduces ionic complexes connected to quantum dot ligands, which can improve hole injection efficiency while reducing electron injection efficiency, so it can effectively balance the carriers in the quantum dot light-emitting layer 2 and increase the electrical Luminous efficiency and lifetime of electroluminescent devices.
  • the orbit with the highest energy level of the occupied electron is called the highest occupied orbit, and is represented by HOMO.
  • the ligand 22 of the quantum dot light-emitting layer is generally an alkyl chain, and the group X near the end of the quantum dot 21 in the ligand 22 can be some such as -SH, -COOH,- NH2 and other groups that can bind to the quantum dot 21.
  • the material of the ionic complex layer may be an organometallic complex.
  • the ionic complex layer includes a cationic part and an anionic part, wherein,
  • the cation part includes the central metal ion and the ligand of the central metal ion, the central metal ion includes one of Ir, La, Nd, Eu, Cu, In, Pb or Pt, and the ligand of the central metal ion includes o-phenanthroline, One of 2-phenylpyridine, phenyloxadiazolepyridine, fluorophenylpyridine or bipyridine;
  • the anion part includes tetrakis(pentafluorophenyl)boronic acid, tetrakis[(trifluoromethyl)phenyl]boronic acid, tetrakis[bis(trifluoromethyl)phenyl]boronic acid, hexa(pentafluorophenyl)phosphoric acid, hexa[ One of (trifluoromethyl)phenyl]phosphoric acid or hexa[bis(trifluoromethyl)phenyl]phosphoric acid.
  • the cationic part can be one of the following structures:
  • the anion part can be one of the following structures:
  • the selection of the cation part and the anion part in FIG. 1A are materials with relatively large steric hindrance, which makes the anion and cation in the ionic coordination compound layer shown in FIG. 1A can be carried out under the action of an external electric field. Oriented arrangement, and after the external electric field is removed, due to the large steric hindrance effect of the anion and the cation, it is difficult to restore the disordered arrangement spontaneously due to the large steric hindrance effect of the anion and the cation itself, so the original configuration can be kept unchanged, thus Form a built-in electric field.
  • the built-in electric field can improve the injection of electrons from the electron transport layer into the quantum dot light-emitting layer (as shown in FIG. 1C), balance the carrier balance in the quantum dot light-emitting layer, and improve the efficiency of the device.
  • the anion and cation centers in the ionic complex layer of the electroluminescent device provided by the present disclosure can be designed as ions with different charges as required, and the molecules The larger dipole moment can form a stronger internal electric field.
  • the anion-cation type complex in the ion complex layer 3 may be any combination of anion and cation described above.
  • the selection of materials for the cation part and the anion part in FIGS. 2A and 3A can also be materials with relatively large steric hindrance.
  • the charge balance ions include positive charge balance ions and negative charge balance ions; specifically, as shown in FIG. 2A, the ions in the quantum dot light-emitting layer 2
  • the type complex is a cationic part, so the charge balance ion selects a negative charge balance ion; as shown in Figure 3A, the ionic complex in the quantum dot light-emitting layer 2 is an anion part, so the charge balance ion selects a positive charge balance ion;
  • the positive charge balance ion includes a cationic portion, NH4 + or Na +
  • the negative charge balance ion includes an anion portion, Cl - or PF 6- .
  • the ionic complex is a cationic complex, and the charge balance anion can be a large sterically hindered anionic complex, or a small molecule such as Cl- or PF 6-;
  • the ionic complex is an anionic complex, and the charge-balancing anion can be a cationic complex with a large steric hindrance, or a small molecule such as NH4 + or Na +.
  • the base substrate in the embodiments of the present disclosure may be glass or a flexible PET substrate, and the anode preparation material may be transparent ITO, FTO, conductive polymer, etc., or opaque metal electrodes such as Al and Ag;
  • the material of the electron transport layer is zinc oxide particles;
  • the material for the hole transport layer can be organic, such as PVK (polyvinyl carbazole), TFB (2,4,4'-trifluorobenzophenone), TPD, etc.
  • the material for preparing the hole injection layer can be an organic injection material, such as PEDOT: PSS, etc., or an inorganic oxide such as MoOx
  • the material for preparing the cathode can be a transparent electrode such as ITO, Thin Al, Ag, etc. can also be opaque electrodes, such as thick metal electrodes such as Al, Ag.
  • the embodiments of the present disclosure also provide a manufacturing method of an electroluminescent device, including:
  • a built-in electric field is formed in the ionic complex layer.
  • the manufacturing method of the above-mentioned electroluminescent device provided by the embodiments of the present disclosure is achieved by forming an ionic complex layer between the electron transport layer and the quantum dot light-emitting layer, and since the ionic complex layer has a built-in electric field, the internal electric field is adjusted.
  • the direction of the electric field is built so that the built-in electric field can change the vacuum energy level at the interface between the quantum dot light-emitting layer and the adjacent layer, reduce the energy barrier between the quantum dot light-emitting layer and the adjacent layer, and increase the electron or hole injection into the quantum dot to emit light The efficiency of the layer, thereby improving the carrier balance in the quantum dot light-emitting layer.
  • forming the electroluminescent device shown in FIG. 1A may specifically include: sequentially forming a cathode 5, an electron transport layer 1, an independent Ionic complex layer 3, quantum dot light-emitting layer 2, hole transport layer 6, hole injection layer 7 and anode 8; among them,
  • an independent ionic complex layer 3 may specifically include:
  • an external electric field is applied during the deposition process, and the external electric field causes the anions and cations in the ionic complex film to be aligned in an orientation to form a built-in electric field E inside the ionic complex film, so that The built-in electric field E gathers anions on the side close to the electron transport layer 1 to form a negative electrode, and gathers cations on the side close to the quantum dot light-emitting layer 2 to form a positive electrode;
  • the ionic complex film is baked by a baking process to form an independent ionic complex layer 3.
  • the above-mentioned formation of the independent ionic complex layer 3 in FIG. 1A can adopt an external electric field to be applied during the deposition and baking process.
  • forming the electroluminescent device shown in FIG. 1A may specifically include: sequentially forming a cathode 5, an electron transport layer 1, an independent Ionic complex layer 3, quantum dot light-emitting layer 2, hole transport layer 6, hole injection layer 7 and anode 8; among them,
  • an independent ionic complex layer 3 may specifically include:
  • an external electric field is applied during the deposition process, and the external electric field causes the anions and cations in the ionic complex film to be aligned in an orientation to form a built-in electric field E inside the ionic complex film, so that The built-in electric field E gathers anions on the side close to the electron transport layer 1 to form a negative electrode, and gathers cations on the side close to the quantum dot light-emitting layer 2 to form a positive electrode;
  • the ionic complex film is baked through a baking process to form an independent ionic complex layer 3.
  • the above-mentioned formation of the independent ionic complex layer 3 in FIG. 1A can also adopt the application of an external electric field only during the deposition process.
  • forming the electroluminescent device shown in FIG. 1A may specifically include: sequentially forming a cathode 5, an electron transport layer 1, an independent Ionic complex layer 3, quantum dot light-emitting layer 2, hole transport layer 6, hole injection layer 7 and anode 8; among them,
  • an independent ionic complex layer 3 may specifically include:
  • the ionic complex film is baked through a baking process.
  • an external electric field is applied.
  • the external electric field causes the anions and cations inside the ionic complex film to be aligned in an orientation.
  • a built-in electric field E is formed inside the thin film of the type complex, so that the built-in electric field E gathers anions on the side close to the electron transport layer 1 to form a negative electrode, and gathers cations on the side close to the quantum dot light-emitting layer 2 to form a positive electrode, forming an independent ionic complex layer 3. .
  • the above-mentioned formation of the independent ionic complex layer 3 in FIG. 1A can also adopt the application of an external electric field during the baking process.
  • the method of introducing an external electric field can be specifically as follows: taking the evaporation process as an example, it can be used in the evaporation process.
  • the positive and negative ends of the electrode are respectively connected to the stage of the source and the base substrate. Because these components are all metal, an electric field in a certain direction can be formed between the evaporation source and the substrate.
  • forming the electroluminescent device shown in FIG. 2A, as shown in FIG. 6, may specifically include:
  • S601 sequentially forming a cathode and an electron transport layer on a base substrate;
  • S602. Form a quantum dot mixed solution of ionic complexes, quantum dots, ligands, and charge balance ions on the electron transport layer by spin coating or inkjet printing; wherein the ligands are close to the quantum dots
  • the group at one end is connected to the quantum dot, the group at the end of the ligand away from the quantum dot is the ionic complex, and the charge of the ionic complex and the charge balance ion are opposite;
  • first electric field E1 between the electron transport layer 1 and the quantum dot light-emitting layer 2.
  • the side of the first electric field E1 close to the electron transport layer 1 is the negative electrode, and it is close to the quantum dot light-emitting layer 2.
  • One side is the positive electrode; and there is a second electric field E2 between the hole transport layer 6 and the quantum dot light emitting layer 2.
  • the second electric field E2 is the negative electrode on the side close to the hole transport layer 6 and the side close to the quantum dot light emitting layer 2 positive electrode.
  • the manufacturing method for forming the electroluminescent device shown in FIG. 2A provided by the embodiment of the present disclosure is based on the principle of charge balance.
  • the ionic complex Y is located close to the surface of the quantum dot 21, and the charge balance ion 23 is located close to the electron transport layer 1 and the void.
  • an electric field in the opposite direction is formed between the quantum dot light-emitting layer 2 and the electron transport layer 1, and between the quantum dot light-emitting layer 2 and the hole transport layer, that is, by selecting a cation complex and a negative charge balance Ions, a first electric field E1 can be formed between the quantum dot light-emitting layer 2 and the electron transport layer 1, and a first electric field E2 can be formed between the quantum dot light-emitting layer 2 and the hole transport layer 6, and the first electric field E1 is close to
  • the electron transport layer 1 side is the negative electrode, and the side close to the quantum dot light-emitting layer 2 is the positive electrode.
  • the first electric field E1 can change the vacuum energy level at the interface between the quantum dot light-emitting layer 2 and the electron transport layer 1 and reduce the LUMO energy level of the two
  • the potential barrier can increase the injection of electrons from the electron transport layer 1 into the quantum dot light-emitting layer 2.
  • the second electric field E2 is the negative electrode on the side close to the hole transport layer 6 and the positive electrode on the side close to the quantum dot light-emitting layer 2 ,
  • the second electric field E2 can change the vacuum energy level of the interface between the quantum dot light-emitting layer 2 and the hole transport layer 6, increase the barrier between the HOMO energy levels of the two, and reduce the electron dots of holes from the hole transport layer 6
  • the injection into the light-emitting layer 2, as shown in Figures 2B and 2C is generally difficult to inject electrons and easier to inject holes in electroluminescent devices with an inverted structure. Therefore, the present disclosure introduces connection with quantum dot ligands
  • the ionic complex can improve the efficiency of electron injection while reducing the efficiency of hole injection. Therefore, it can effectively balance the carriers in the quantum dot light-emitting layer 2 and improve the luminous efficiency and lifetime of the electroluminescent device.
  • forming the electroluminescent device shown in FIG. 3A, as shown in FIG. 7, may specifically include:
  • S702 Form a quantum dot mixed solution of ionic complexes, quantum dots, ligands, and charge balance ions on the hole transport layer by spin coating or inkjet printing; wherein the ligand is close to the quantum dots.
  • the group at one end of the dot is connected to the quantum dot, the group at the end of the ligand away from the quantum dot is the ionic complex, and the charge of the ionic complex and the charge balance ion are opposite;
  • FIG. 3A and FIG. 3C there is a third electric field E3 between the hole transport layer 6 and the quantum dot light-emitting layer 2.
  • the third electric field E3 is the positive electrode on the side close to the hole transport layer 6 and emits light close to the quantum dot.
  • the side of layer 2 is the negative electrode; and there is a fourth electric field E4 between the electron transport layer 1 and the quantum dot light-emitting layer 2.
  • the fourth electric field E4 is the positive electrode on the side close to the electron transport layer 1 and the side close to the quantum dot light emitting layer 2 negative electrode.
  • the manufacturing method for forming the electroluminescent device shown in FIG. 3A provided by the embodiment of the present disclosure is based on the principle of charge balance.
  • the ionic complex Y is located near the surface of the quantum dot 21, and the charge balance ion 23 is located near the electron transport layer 1 and the void.
  • an electric field in the opposite direction is formed between the quantum dot light-emitting layer 2 and the electron transport layer 1, and between the quantum dot light-emitting layer 2 and the hole transport layer, that is, by selecting an anion complex and a positively charged balance Ions, a third electric field E3 can be formed between the quantum dot light-emitting layer 2 and the hole transport layer 6, and a fourth electric field E4 can be formed between the quantum dot light-emitting layer 2 and the electron transport layer 1.
  • the third electric field E3 is close to One side of the hole transport layer 6 is the positive electrode, and the side close to the quantum dot light-emitting layer 2 is the negative electrode.
  • the third electric field E3 can change the vacuum energy level of the interface between the quantum dot light-emitting layer 2 and the hole transport layer 6 and reduce the HOMO of both
  • the energy level barrier can increase the injection of holes from the hole transport layer 6 into the quantum dot light-emitting layer 2.
  • the fourth electric field E4 is the positive electrode on the side close to the electron transport layer 1, and is close to the quantum dot light-emitting layer 2.
  • the fourth electric field E4 can change the vacuum energy level of the quantum dot light-emitting layer 2 and the electron transport layer 1 interface, increase the LUMO energy level of the two barriers, and reduce the electron transfer from the electron transport layer 1 to the quantum dot
  • the injection into the light-emitting layer 2 is shown in Figs. 3B and 3C.
  • the present disclosure introduces a quantum dot ligand
  • the connected ionic complex can increase the efficiency of hole injection while reducing the efficiency of electron injection, so it can effectively balance the carriers in the quantum dot light-emitting layer 2 and improve the luminous efficiency and lifetime of the electroluminescent device.
  • an embodiment of the present disclosure also provides a display substrate, including the above-mentioned electroluminescent device provided by the embodiment of the present disclosure. Since the principle of solving the problem of the display substrate is similar to that of the aforementioned electroluminescent device, the implementation of the display substrate can refer to the implementation of the aforementioned backlight module, and the repetition will not be repeated.
  • an embodiment of the present disclosure further provides a display device, including a display panel, and the display panel includes the above-mentioned display substrate provided by the embodiment of the present disclosure. Since the principle of solving the problem of the display device is similar to that of the aforementioned electroluminescent device, the implementation of the display device can refer to the implementation of the aforementioned backlight module, and the repetition will not be repeated.
  • the above-mentioned display device provided by the embodiment of the present disclosure may be a full-screen display device, or may also be a flexible display device, etc., which is not limited herein.
  • the above-mentioned display device provided by the embodiment of the present disclosure may be a full-screen mobile phone as shown in FIG. 8.
  • the above-mentioned display device provided by the embodiments of the present disclosure may also be any product or component with a display function, such as a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • the other indispensable components of the display device are understood by those of ordinary skill in the art, and will not be repeated here, nor should they be used as a limitation to the present invention.
  • an ionic complex layer is arranged between the electron transport layer and the quantum dot light-emitting layer, and since the ionic complex layer has a built-in electric field, By adjusting the direction of the built-in electric field, the built-in electric field can change the vacuum energy level at the interface between the quantum dot light-emitting layer and the adjacent layer, reduce the energy barrier between the quantum dot light-emitting layer and the adjacent layer, and improve electron or hole injection The efficiency of the quantum dot light-emitting layer, thereby improving the carrier balance in the quantum dot light-emitting layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电致发光器件、显示基板及显示装置,其中,电致发光器件包括:层叠设置的电子传输层(1)和量子点发光层(3);离子型配合物层(2),位于电子传输层(1)与量子点发光层(3)之间;其中,在离子型配合物层(2)内具有内建电场。

Description

一种电致发光器件、显示基板及显示装置
相关申请的交叉引用
本申请要求在2020年06月17日提交中国专利局、申请号为202010555558.1、申请名称为“一种电致发光器件、显示基板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,特别涉及一种电致发光器件、显示基板及显示装置。
背景技术
量子点(Quantum Dot,简称QD)作为新型的发光材料,具有光色纯度高、发光量子效率高、发光颜色可调、使用寿命长等优点,已成为目前新型发光二级管中发光材料的研究热点。因此,以量子点材料作为发光层的量子点发光二极管(Quantum Dot Light EmittingDiodes,简称QLED)成为了目前新型显示器件研究的主要方向。
发明内容
本公开实施例提供的显示模组,包括:
层叠设置的电子传输层和量子点发光层;
离子型配合物层,位于所述电子传输层与所述量子点发光层之间;其中,在所述离子型配合物层内具有内建电场。
可选地,在本公开实施例提供的上述电致发光器件中,所述电致发光器件为倒置结构,所述电致发光器件还包括:位于所述电子传输层背向所述量子点发光层一侧的衬底基板,位于所述衬底基板和所述电子传输层之间的阴极,位于所述量子点发光层背向所述衬底基板一侧依次层叠设置的空穴传输 层、空穴注入层和阳极;
所述离子型配合物层为位于所述电子传输层和所述量子点发光层之间的独立膜层;所述内建电场靠近所述电子传输层一侧为负极,靠近所述量子点发光层一侧为正极。
可选地,在本公开实施例提供的上述电致发光器件中,所述量子点发光层包括量子点、配体以及电荷平衡离子,所述配体中靠近所述量子点一端的基团与所述量子点连接,所述配体中远离所述量子点一端的基团为所述离子型配合物层的离子型配合物,所述离子型配合物和所述电荷平衡离子的电荷相反。
可选地,在本公开实施例提供的上述电致发光器件中,所述电致发光器件为倒置结构,所述电致发光器件还包括:位于所述电子传输层背向所述量子点发光层一侧的衬底基板,位于所述衬底基板和所述电子传输层之间的阴极,位于所述量子点发光层背向所述衬底基板一侧依次层叠设置的空穴传输层、空穴注入层和阳极;
所述内建电场包括位于所述电子传输层和所述量子点发光层之间的第一电场,以及位于所述空穴传输层和所述量子点发光层之间的第二电场;其中,
所述第一电场靠近所述电子传输层一侧为负极,靠近所述量子点发光层一侧为正极;
所述第二电场靠近所述空穴传输层一侧为负极,靠近所述量子点发光层一侧为正极。
可选地,在本公开实施例提供的上述电致发光器件中,所述电致发光器件为正置结构,所述电致发光器件还包括:位于所述量子点发光层背向所述电子传输层一侧的衬底基板,位于所述衬底基板和所述量子点发光层之间依次层叠设置的阳极、空穴注入层和空穴传输层,以及位于所述电子传输层背向所述衬底基板一侧的阴极;
所述内建电场包括位于所述空穴传输层和所述量子点发光层之间的第三电场,以及位于所述电子传输层和所述量子点发光层之间的第四电场;其中,
所第三电场靠近所述空穴传输层一侧为正极,靠近所述量子点发光层一侧为负极;
所第四电场靠近所述电子传输层一侧为正极,靠近所述量子点发光层一侧为负极。
可选地,在本公开实施例提供的上述电致发光器件中,所述离子型配合物层的材料为有机金属配合物。
可选地,在本公开实施例提供的上述电致发光器件中,所述离子型配合物层包括阳离子部分和阴离子部分,其中,
所述阳离子部分包括中心金属离子和所述中心金属离子的配体,所述中心金属离子包括Ir、La、Nd、Eu、Cu、In、Pb或者Pt中的一种,所述中心金属离子的配体包括邻菲咯啉、2-苯基吡啶、苯基恶二唑吡啶、氟代苯基吡啶或联吡啶中的一种;
所述阴离子部分包括四(五氟苯基)硼酸、四[(三氟甲基)苯基]硼酸、四[双(三氟甲基)苯基]硼酸、六(五氟苯基)磷酸、六[(三氟甲基)苯基]磷酸或六[双(三氟甲基)苯基]磷酸中的一种。
可选地,在本公开实施例提供的上述电致发光器件中,所述电荷平衡离子包括正电荷平衡离子和负电荷平衡离子,其中,
所述正电荷平衡离子包括所述阳离子部分、NH4+或Na+,所述负电荷平衡离子包括所述阴离子部分、Cl-或PF6-。
相应地,本公开实施例还提供了一种显示基板,包括本公开实施例提供的上述电致发光器件。
相应地,本公开实施例还提供了一种显示装置,包括显示面板,所述显示面板包括本公开实施例提供的上述显示基板。
相应地,本公开实施例还提供了一种电致发光器件的制作方法,包括:
形成层叠设置的电子传输层和量子点发光层,以及在所述电子传输层和所述量子点发光层之间形成离子配合物层;
其中,在所述离子型配合物层内形成内建电场。
可选地,在本公开实施例提供的上述制作方法中,包括:在衬底基板上依次形成阴极、所述电子传输层、独立的所述离子型配合物层、所述量子点发光层、空穴传输层、空穴注入层和阳极;其中,
形成独立的所述离子型配合物层,具体包括:
通过旋涂或蒸镀工艺在所述电子传输层上沉积一层离子型配合物薄膜;
在沉积过程中施加外部电场,通过外部电场使得所述离子型配合物薄膜内部的阴阳离子发生取向性排列,以在所述离子型配合物薄膜内部形成内建电场,使得所述内建电场靠近所述电子传输层一侧聚集阴离子形成负极,靠近所述量子点发光层一侧聚集阳离子形成正极;
在持续施加所述外部电场的条件下或撤去所述外部电场后,通过烘烤工艺对所述离子型配合物薄膜进行烘烤,形成独立的所述离子型配合物层。
可选地,在本公开实施例提供的上述制作方法中,包括:在衬底基板上依次形成阴极、所述电子传输层、独立的所述离子型配合物层、所述量子点发光层、空穴传输层、空穴注入层和阳极;其中,
形成独立的所述离子型配合物层,具体包括:
通过旋涂或蒸镀工艺在所述电子传输层上沉积一层离子型配合物薄膜;
通过烘烤工艺对所述离子型配合物薄膜进行烘烤,在烘烤过程中施加外部电场,通过所述外部电场使得所述离子型配合物薄膜内部的阴阳离子发生取向性排列,以在所述离子型配合物薄膜内部形成内建电场,使得所述内建电场靠近所述电子传输层一侧聚集阴离子形成负极,靠近所述量子点发光层一侧聚集阳离子形成正极,形成独立的所述离子型配合物层。
可选地,在本公开实施例提供的上述制作方法中,包括:
在衬底基板上依次形成阴极和所述电子传输层;
通过旋涂或喷墨印刷的方式将离子型配合物、量子点、配体以及电荷平衡离子的量子点混合溶液形成在所述电子传输层上;其中,所述配体中靠近所述量子点一端的基团与所述量子点连接,所述配体中远离所述量子点一端的基团为所述离子型配合物,所述离子型配合物和所述电荷平衡离子的电荷 相反;
对所述量子点混合溶液进行固化形成所述量子点发光层;
在所述量子点发光层上依次形成空穴传输层和空穴注入层;
其中,在所述电子传输层和所述量子点发光层之间具有第一电场,所述第一电场靠近所述电子传输层一侧为负极,靠近所述量子点发光层一侧为正极;以及在所述空穴传输层和所述量子点发光层之间具有第二电场,所述第二电场靠近所述空穴传输层一侧为负极,靠近所述量子点发光层一侧为正极。
可选地,在本公开实施例提供的上述制作方法中,包括:
在衬底基板上依次形成阳极、空穴注入层和空穴传输层;
通过旋涂或喷墨印刷的方式将离子型配合物、量子点、配体以及电荷平衡离子的量子点混合溶液形成在所述空穴传输层上;其中,所述配体中靠近所述量子点一端的基团与所述量子点连接,所述配体中远离所述量子点一端的基团为所述离子型配合物,所述离子型配合物和所述电荷平衡离子的电荷相反;
对所述量子点混合溶液进行固化形成所述量子点发光层;
在所述量子点发光层上依次形成电子传输层和阴极;
其中,在所述空穴传输层和所述量子点发光层之间具有第三电场,所第三电场靠近所述空穴传输层一侧为正极,靠近所述量子点发光层一侧为负极;以及在所述电子传输层和所述量子点发光层之间具有第四电场,所第四电场靠近所述电子传输层一侧为正极,靠近所述量子点发光层一侧为负极。
附图说明
图1A为本公开实施例提供的一种电致发光器件的结构示意图;
图1B为现有技术中电致发光器件中电子传输层与量子点发光层能级示意图;
图1C为本公开实施例提供的电致发光器件中电子传输层与量子点发光层能级示意图;
图2A为本公开实施例提供的又一种电致发光器件的结构示意图;
图2B为现有技术中电致发光器件中电子传输层、空穴传输层与量子点发光层能级示意图;
图2C为本公开实施例提供的电致发光器件中电子传输层、空穴传输层与量子点发光层能级示意图;
图3A为本公开实施例提供的又一种电致发光器件的结构示意图;
图3B为现有技术中电致发光器件中空穴传输层、电子传输层与量子点发光层能级示意图;
图3C为本公开实施例提供的电致发光器件中空穴传输层、电子传输层与量子点发光层能级示意图;
图4A为图2A和图3A中量子点发光层内部的一种结构示意图;
图4B为2A和图3A中量子点发光层内部的又一种结构示意图;
图5A为本公开实施例提供的电致发光器件的制作方法中旋涂工艺示意图;
图5B为本公开实施例提供的电致发光器件的制作方法中烘烤工艺示意图;
图5C为本公开实施例提供的电致发光器件的制作方法中蒸镀工艺示意图;
图6为本公开实施例提供的一种电致发光器件的制作方法流程示意图;
图7为本公开实施例提供的又一种电致发光器件的制作方法流程示意图;
图8为本公开实施例提供的显示装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属 领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
目前,主动式电致量子点发光显示产品(AMQLED)由于其在宽色域、高寿命等方面的潜在优势也得到了越来越广泛的关注,其研究日益深入,量子效率不断提升,基本达到产业化的水平,进一步采用新的工艺和技术来实现其产业化已成为未来的趋势。但是无论是正置还是倒置器件,载流子平衡都是影响器件效率的因素。
因此,为了解决AMQLED显示面板中载流子平衡的问题,本公开实施例提供了一种电致发光器件,如图1A、图2A和图3A所示,包括:
层叠设置的电子传输层1和量子点发光层2;
离子型配合物层3,位于电子传输层1与量子点发光层2之间;其中,在离子型配合物层3内具有内建电场。
本公开实施例提供的上述电致发光器件,通过在电子传输层1与量子点发光层2之间设置离子型配合物层3,且由于离子型配合物层3内具有内建电场,通过调整内建电场的方向,使该内建电场可以改变量子点发光层2与相邻层界面的真空能级,降低量子点发光层2与相邻层能级的势垒,提高电子或空穴注入量子点发光层2的效率,从而改善量子点发光层2中载流子平衡。
在一种可能的实施方式中,在本公开实施例提供的上述电致发光器件中,如图1A所示,该电致发光器件为倒置结构,该电致发光器件还包括:位于电 子传输层1背向量子点发光层2一侧的衬底基板4,位于衬底基板4和电子传输层1之间的阴极5,位于量子点发光层2背向衬底基板4一侧依次层叠设置的空穴传输层6、空穴注入层7和阳极8;
离子型配合物层3为位于电子传输层1和量子点发光层2之间的独立膜层;如图1C所示,内建电场E靠近电子传输层1一侧为负极,靠近量子点发光层2一侧为正极。
由于倒置结构的电致发光器件中的电子传输层通常采用溅射工艺制作,电子传输层的材料一般为ZnO,但是采用溅射ZnO时,由于薄膜型ZnO材料迁移率较大,能级更深(ZnO薄膜的LUMO与阴极(ITO材料)的LUMO接近,但是与量子点发光层的LUMO相差较远),因此阴极的电子很难由ZnO注入量子点发光层,影响发光效率。
然而,本公开提供的倒置结构的电致发光器件通过在电子传输层1和量子点发光层2之间设置独立的离子型配合物层3,由于离子型配合物层3为位于电子传输层1和量子点发光层2之间的独立膜层,且该离子型配合物层3的内建电场E靠近电子传输层1一侧为负极,靠近量子点发光层2一侧为正极,则该内建电场可以改变量子点发光层2与电子传输层1界面的真空能级,降低二者LUMO能级的势垒,如图1B和图1C所示,可以提高电子由电子传输层1向量子点发光层2之中的注入,平衡量子点发光层2中的载流子,从而提高电致发光器件的发光效率和寿命。
需要说明的是,未占有电子的能级最低的轨道称为最低未占轨道,用LUMO表示。
具体地,图1A中电子传输层1的LUMO能级的势垒和量子点发光层2的LUMO能级的势垒理论上可以由原来0.6~1.0eV减小约0.2~0.3eV,当然,具体的能级跟电子传输层和量子点发光层本身的能级有关。
在具体实施时,在本公开实施例提供的上述电致发光器件中,如图4A和图4B所示,量子点发光层2包括量子点21、配体22以及电荷平衡离子(未示出),其中,配体22中靠近量子点21一端的基团X与量子点21连接,配体22中远离量 子点21一端的基团Y为离子型配合物层3的离子型配合物(Y),离子型配合物Y和电荷平衡离子的电荷相反。
需要说明的是,如图4A为离子型配合物(Y)为阳离子配合物的示意图,如图4B为离子型配合物(Y)为阴离子配合物的示意图,后面详细解释离子配合物的类型。
具体地,如图4A和图4B所示,由于量子点21一般为球形,其球形表面均分布有配体22,由于该配体22中远离量子点21一端的基团为离子型配合物层3的离子型配合物Y,因此相当于在量子点21周围形成离子型配合物Y,即相当于在量子点21和电子传输层1之间以及在量子点21和空穴传输层之间均形成离子型配合物层3,由于量子点发光层2还包括与离子型配合物Y电荷相反的电荷平衡离子23,基于电荷平衡原理,离子型配合物Y位于靠近量子点21表面,则电荷平衡离子23位于靠近电子传输层1和空穴传输层一侧,因此在量子点发光层2和电子传输层1以及在量子点发光层2和空穴传输层之间形成方向相反的电场,通过调整该电场,可以改变量子点发光层2与电子传输层1界面的真空能级,以及改变量子点发光层2与空穴传输层界面的真空能级,以提高电子或空穴注入的效率。
在一种可能的实施方式中,如图2A所示,该电致发光器件为倒置结构,该电致发光器件还包括:位于电子传输层1背向量子点发光层2一侧的衬底基板4,位于衬底基板4和电子传输层1之间的阴极5,位于量子点发光层2背向衬底基板4一侧依次层叠设置的空穴传输层6、空穴注入层7和阳极8;根据上述内容可知在量子点21和电子传输层1之间以及在量子点21和空穴传输层之间均形成离子型配合物层3;
如图2C所示,内建电场E包括位于电子传输层1和量子点发光层2之间的第一电场E1,以及位于空穴传输层6和量子点发光层2之间的第二电场E2;其中,
第一电场E1靠近电子传输层1一侧为负极,靠近量子点发光层2一侧为正极;
第二电场E2靠近空穴传输层6一侧为负极,靠近量子点发光层2一侧为正 极。
本公开提供的上述倒置结构的电致发光器件通过在量子点发光层2内添加与量子点的配体连接的离子型配合物层3,由于该量子点发光层2还包括平衡离子,通过选择阳离子配合物和带负电荷的平衡离子,则可以在量子点发光层2和电子传输层1之间形成第一电场E1,以及在量子点发光层2和空穴传输层6之间形成第二电场E2,该第一电场E1靠近电子传输层1一侧为负极,靠近量子点发光层2一侧为正极,则该第一电场E1可以改变量子点发光层2与电子传输层1界面的真空能级,降低二者LUMO能级的势垒,可以提高电子由电子传输层1向量子点发光层2之中的注入,同时该第二电场E2靠近空穴传输层6一侧为负极,靠近量子点发光层2一侧为正极,则该第二电场E2可以改变量子点发光层2与空穴传输层6界面的真空能级,增大二者HOMO能级的势垒,可以降低空穴由空穴传输层6向量子点发光层2之中的注入,如图2B和图2C所示,由于倒置结构的电致发光器件中,一般电子注入较难,而空穴注入较容易,因此本公开引入与量子点配体连接的离子型配合物,可以在提高电子注入效率的同时降低空穴注入的效率,因此可以有效的平衡量子点发光层2中的载流子,提高电致发光器件的发光效率和寿命。
在一种可能的实施方式中,如图3A所示,该电致发光器件为正置结构,该电致发光器件还包括:位于量子点发光层2背向电子传输层1一侧的衬底基板4,位于衬底基板4和量子点发光层2之间依次层叠设置的阳极8、空穴注入层7和空穴传输层6,以及位于电子传输层1背向衬底基板4一侧的阴极5;
如图3C所示,内建电场E包括位于空穴传输层6和量子点发光层2之间的第三电场E3,以及位于电子传输层1和量子点发光层2之间的第四电场E4;其中,
第三电场E3靠近空穴传输层6一侧为正极,靠近量子点发光层2一侧为负极;
第四电场E4靠近电子传输层1一侧为正极,靠近量子点发光层2一侧为负极。
本公开提供的上述正置结构的电致发光器件通过在量子点发光层2内添 加与量子点的配体连接的离子型配合物层3,由于该量子点发光层2还包括平衡离子,通过选择阴离子配合物和带正电荷的平衡离子,则可以在量子点发光层2和空穴传输层6之间形成第三电场E3,以及在量子点发光层2和电子传输层1之间形成第四电场E4,该第三电场E3靠近空穴传输层6一侧为正极,靠近量子点发光层2一侧为负极,则该第三电场E3可以改变量子点发光层2与空穴传输层6界面的真空能级,降低二者HOMO能级的势垒,可以提高空穴由空穴传输层6向量子点发光层2之中的注入,同时该第四电场E4靠近电子传输层1一侧为正极,靠近量子点发光层2一侧为负极,则该第四电场E4可以改变量子点发光层2与电子传输层1界面的真空能级,增大二者LUMO能级的势垒,可以降低电子由电子传输层1向量子点发光层2之中的注入,如图3B和图3C所示,由于正置结构的电致发光器件中,一般空穴注入较难,而电子注入较容易,因此本公开引入与量子点配体连接的离子型配合物,可以在提高空穴注入效率的同时降低电子注入的效率,因此可以有效的平衡量子点发光层2中的载流子,提高电致发光器件的发光效率和寿命。
需要说明的是,已占有电子的能级最高的轨道称为最高已占轨道,用HOMO表示。
具体地,如图4A和图4B所示,量子点发光层的配体22一般为烷基链,配体22中靠近量子点21一端的基团X可以是一些如-SH、-COOH、-NH2等可以与量子点21结合的基团。
在具体实施时,在上述技术方案的基础上,作为一种优选实施方式,离子型配合物层的材料可以为有机金属配合物。
在具体实施时,在本公开实施例提供的上述电致发光器件中,离子型配合物层包括阳离子部分和阴离子部分,其中,
阳离子部分包括中心金属离子和中心金属离子的配体,中心金属离子包括Ir、La、Nd、Eu、Cu、In、Pb或者Pt中的一种,中心金属离子的配体包括邻菲咯啉、2-苯基吡啶、苯基恶二唑吡啶、氟代苯基吡啶或联吡啶中的一种;
阴离子部分包括四(五氟苯基)硼酸、四[(三氟甲基)苯基]硼酸、四[双 (三氟甲基)苯基]硼酸、六(五氟苯基)磷酸、六[(三氟甲基)苯基]磷酸或六[双(三氟甲基)苯基]磷酸中的一种。
具体的,阳离子部分可为以下结构中的一种:
Figure PCTCN2021093301-appb-000001
阴离子部分可为以下结构中的一种:
Figure PCTCN2021093301-appb-000002
需要说明的是,图1A中的阳离子部分和阴离子部分的选材均为较大空间位阻的材料,这使得图1A所示的离子型配位化合物层内的阴阳离子可在外部电场作用下进行取向性排列,且在撤去外部电场后由于阴阳离子本身的大位阻效应,既相互之间空间上的阻碍,很难自发的恢复无序的排列,因而可保持原有构型不变,从而形成内建电场。该内建电场可以提高电子由电子传输层向量子点发光层之中的注入(如图1C),平衡量子点发光层中的载流子平衡,提高了器件的效率。
需要说明的是,相比于传统的电中性偶极型分子,本公开提供的电致发光器件中离子型配合物层中阴阳离子中心可以根据需要设计成带不同电荷数 的离子,且分子偶极矩更大,可以形成更强的内部电场。
需要说明的是,在图1A所示的结构中,离子配合物层3内的阴阳离子型配合物可以是上述任意的阴阳离子组合。
需要说明的是,图2A和图3A中的阳离子部分和阴离子部分的选材也可以均为较大空间位阻的材料。
在具体实施时,在本公开实施例提供的上述电致发光器件中,电荷平衡离子包括正电荷平衡离子和负电荷平衡离子;具体地,如图2A所示,量子点发光层2内的离子型配合物为阳离子部分,因此电荷平衡离子选择负电荷平衡离子;如图3A所示,量子点发光层2内的离子型配合物为阴离子部分,因此电荷平衡离子选择正电荷平衡离子;其中,
正电荷平衡离子包括阳离子部分、NH4 +或Na +,负电荷平衡离子包括阴离子部分、Cl -或PF 6-
需要说明的是,在图2A所示的结构中,离子配合物为阳离子配合物,电荷平衡阴离子可以选用大位阻的阴离子型配合物,也可以选用Cl -或PF 6-等小分子;在图3A所示的结构中,离子配合物为阴离子配合物,电荷平衡阴离子可以选用大位阻的阳离子型配合物,也可以选用NH4 +或Na +等小分子。
具体的,本公开实施例中的衬底基板可以是玻璃或者是柔性PET基底,阳极的制备材料可以是透明的ITO、FTO或者导电聚合物等,也可以是不透明的Al、Ag等金属电极;电子传输层材料首选氧化锌粒子;空穴传输层的制备材料可以是有机物,如PVK(聚乙烯基咔唑)、TFB(2,4,4'-三氟苯甲酮)、TPD等,也可以是无机氧化物如NiOx、VOx等;空穴注入层的制备材料可以是有机注入材料,如PEDOT:PSS等,也可以是无机氧化物如MoOx;阴极的制备材料可以是透明电极如ITO、薄的Al、Ag等,也可以不透明电极,如Al、Ag等厚的金属电极。
基于同一发明构思,本公开实施例还提供了一种电致发光器件的制作方法,包括:
形成层叠设置的电子传输层和量子点发光层,以及在电子传输层和量子 点发光层之间形成离子配合物层;
其中,在离子型配合物层内形成内建电场。
本公开实施例提供的上述电致发光器件的制作方法,通过在电子传输层与量子点发光层之间形成离子型配合物层,且由于离子型配合物层内具有内建电场,通过调整内建电场的方向,使该内建电场可以改变量子点发光层与相邻层界面的真空能级,降低量子点发光层与相邻层能级的势垒,提高电子或空穴注入量子点发光层的效率,从而改善量子点发光层中载流子平衡。
在具体实施时,在本公开实施例提供的上述制作方法中,形成图1A所示的电致发光器件,具体可以包括:在衬底基板4上依次形成阴极5、电子传输层1、独立的离子型配合物层3、量子点发光层2、空穴传输层6、空穴注入层7和阳极8;其中,
形成独立的离子型配合物层3,具体可以包括:
通过旋涂或蒸镀工艺在电子传输层上沉积一层离子型配合物薄膜;
如图5A和图5C所示,在沉积过程中施加外部电场,通过外部电场使得离子型配合物薄膜内部的阴阳离子发生取向性排列,以在离子型配合物薄膜内部形成内建电场E,使得内建电场E靠近电子传输层1一侧聚集阴离子形成负极,靠近量子点发光层2一侧聚集阳离子形成正极;
如图5B所示,在持续施加外部电场的条件下,通过烘烤工艺对离子型配合物薄膜进行烘烤,形成独立的离子型配合物层3。
即上述形成图1A中独立的离子型配合物层3可以采用在沉积和烘烤工艺过程中一直施加外部电场。
在具体实施时,在本公开实施例提供的上述制作方法中,形成图1A所示的电致发光器件,具体可以包括:在衬底基板4上依次形成阴极5、电子传输层1、独立的离子型配合物层3、量子点发光层2、空穴传输层6、空穴注入层7和阳极8;其中,
形成独立的离子型配合物层3,具体可以包括:
通过旋涂或蒸镀工艺在电子传输层上沉积一层离子型配合物薄膜;
如图5A和图5C所示,在沉积过程中施加外部电场,通过外部电场使得离子型配合物薄膜内部的阴阳离子发生取向性排列,以在离子型配合物薄膜内部形成内建电场E,使得内建电场E靠近电子传输层1一侧聚集阴离子形成负极,靠近量子点发光层2一侧聚集阳离子形成正极;
撤去外部电场后,通过烘烤工艺对离子型配合物薄膜进行烘烤,形成独立的离子型配合物层3。
即上述形成图1A中独立的离子型配合物层3也可以采用仅在沉积过程中施加外部电场。
在具体实施时,在本公开实施例提供的上述制作方法中,形成图1A所示的电致发光器件,具体可以包括:在衬底基板4上依次形成阴极5、电子传输层1、独立的离子型配合物层3、量子点发光层2、空穴传输层6、空穴注入层7和阳极8;其中,
形成独立的离子型配合物层3,具体可以包括:
通过旋涂或蒸镀工艺在电子传输层上沉积一层离子型配合物薄膜;
如图5B所示,通过烘烤工艺对离子型配合物薄膜进行烘烤,在烘烤过程中施加外部电场,通过外部电场使得离子型配合物薄膜内部的阴阳离子发生取向性排列,以在离子型配合物薄膜内部形成内建电场E,使得内建电场E靠近电子传输层1一侧聚集阴离子形成负极,靠近量子点发光层2一侧聚集阳离子形成正极,形成独立的离子型配合物层3。
即上述形成图1A中独立的离子型配合物层3也可以采用在烘烤工艺过程中施加外部电场。
具体地,由于衬底基板一把置于载台上,旋涂、蒸镀或烘烤的设备也为金属部件,因此外部电场引入的方法具体可以为:以蒸镀工艺为例,可以在蒸发源和衬底基板的载台上分别连接电极的正负两端,因为这些部件都是金属,因此可以在蒸发源和基板之间形成一定方向的电场。
在具体实施时,在本公开实施例提供的上述制作方法中,形成图2A所示的电致发光器件,如图6所示,具体可以包括:
S601、在衬底基板上依次形成阴极和电子传输层;
S602、通过旋涂或喷墨印刷的方式将离子型配合物、量子点、配体以及电荷平衡离子的量子点混合溶液形成在电子传输层上;其中,所述配体中靠近所述量子点一端的基团与所述量子点连接,所述配体中远离所述量子点一端的基团为所述离子型配合物,所述离子型配合物和所述电荷平衡离子的电荷相反;
S603、对量子点混合溶液进行固化形成量子点发光层;
S604、在量子点发光层上依次形成空穴传输层和空穴注入层;
其中,如图2A和图2C所示,在电子传输层1和量子点发光层2之间具有第一电场E1,第一电场E1靠近电子传输层1一侧为负极,靠近量子点发光层2一侧为正极;以及在空穴传输层6和量子点发光层2之间具有第二电场E2,第二电场E2靠近空穴传输层6一侧为负极,靠近量子点发光层2一侧为正极。
本公开实施例提供的形成图2A所示的电致发光器件的制作方法,基于电荷平衡原理,离子型配合物Y位于靠近量子点21表面,则电荷平衡离子23位于靠近电子传输层1和空穴传输层一侧,因此在量子点发光层2和电子传输层1以及在量子点发光层2和空穴传输层之间形成方向相反的电场,即通过选择阳离子配合物和带负电荷的平衡离子,则可以在量子点发光层2和电子传输层1之间形成第一电场E1,以及在量子点发光层2和空穴传输层6之间形成第一电场E2,该第一电场E1靠近电子传输层1一侧为负极,靠近量子点发光层2一侧为正极,则该第一电场E1可以改变量子点发光层2与电子传输层1界面的真空能级,降低二者LUMO能级的势垒,可以提高电子由电子传输层1向量子点发光层2之中的注入,同时该第二电场E2靠近空穴传输层6一侧为负极,靠近量子点发光层2一侧为正极,则该第二电场E2可以改变量子点发光层2与空穴传输层6界面的真空能级,增大二者HOMO能级的势垒,可以降低空穴由空穴传输层6向量子点发光层2之中的注入,如图2B和图2C所示,由于倒置结构的电致发光器件中,一般电子注入较难,而空穴注入较容易,因此本公开引入与量子点配体连接的离子型配合物,可以在提高电子注入效率的同时降低空穴注 入的效率,因此可以有效的平衡量子点发光层2中的载流子,提高电致发光器件的发光效率和寿命。
在具体实施时,在本公开实施例提供的上述制作方法中,形成图3A所示的电致发光器件,如图7所示,具体可以包括:
S701、在衬底基板上依次形成阳极、空穴注入层和空穴传输层;
S702、通过旋涂或喷墨印刷的方式将离子型配合物、量子点、配体以及电荷平衡离子的量子点混合溶液形成在空穴传输层上;其中,所述配体中靠近所述量子点一端的基团与所述量子点连接,所述配体中远离所述量子点一端的基团为所述离子型配合物,所述离子型配合物和所述电荷平衡离子的电荷相反;
S703、对量子点混合溶液进行固化形成量子点发光层;
S704、在量子点发光层上依次形成电子传输层和阴极;
其中,如图3A和图3C所示,在空穴传输层6和量子点发光层2之间具有第三电场E3,第三电场E3靠近空穴传输层6一侧为正极,靠近量子点发光层2一侧为负极;以及在电子传输层1和量子点发光层2之间具有第四电场E4,第四电场E4靠近电子传输层1一侧为正极,靠近量子点发光层2一侧为负极。
本公开实施例提供的形成图3A所示的电致发光器件的制作方法,基于电荷平衡原理,离子型配合物Y位于靠近量子点21表面,则电荷平衡离子23位于靠近电子传输层1和空穴传输层一侧,因此在量子点发光层2和电子传输层1以及在量子点发光层2和空穴传输层之间形成方向相反的电场,即通过选择阴离子配合物和带正电荷的平衡离子,则可以在量子点发光层2和空穴传输层6之间形成第三电场E3,以及在量子点发光层2和电子传输层1之间形成第四电场E4,该第三电场E3靠近空穴传输层6一侧为正极,靠近量子点发光层2一侧为负极,则该第三电场E3可以改变量子点发光层2与空穴传输层6界面的真空能级,降低二者HOMO能级的势垒,可以提高空穴由空穴传输层6向量子点发光层2之中的注入,同时该第四电场E4靠近电子传输层1一侧为正极,靠近量子点发光层2一侧为负极,则该第四电场E4可以改变量子点发光层2与电子传输 层1界面的真空能级,增大二者LUMO能级的势垒,可以降低电子由电子传输层1向量子点发光层2之中的注入,如图3B和图3C所示,由于正置结构的电致发光器件中,一般空穴注入较难,而电子注入较容易,因此本公开引入与量子点配体连接的离子型配合物,可以在提高空穴注入效率的同时降低电子注入的效率,因此可以有效的平衡量子点发光层2中的载流子,提高电致发光器件的发光效率和寿命。
基于同一发明构思,本公开实施例还提供了一种显示基板,包括本公开实施例提供的上述电致发光器件。由于该显示基板解决问题的原理与前述一种电致发光器件相似,因此该显示基板的实施可以参见前述背光模组的实施,重复之处不再赘述。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括显示面板,显示面板包括本公开实施例提供的上述显示基板。由于该显示装置解决问题的原理与前述一种电致发光器件相似,因此该显示装置的实施可以参见前述背光模组的实施,重复之处不再赘述。
在具体实施时,本公开实施例提供的上述显示装置可以为全面屏显示装置,或者也可以为柔性显示装置等,在此不作限定。
在具体实施时,本公开实施例提供的上述显示装置可以为如图8所示的全面屏的手机。当然,本公开实施例提供的上述显示装置也可以为平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。
本公开实施例提供的上述电致发光器件、显示基板及显示装置,通过在电子传输层与量子点发光层之间设置离子型配合物层,且由于离子型配合物层内具有内建电场,通过调整内建电场的方向,使该内建电场可以改变量子点发光层与相邻层界面的真空能级,降低量子点发光层与相邻层能级的势垒,提高电子或空穴注入量子点发光层的效率,从而改善量子点发光层中载流子平衡。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种电致发光器件,其中,包括:
    层叠设置的电子传输层和量子点发光层;
    离子型配合物层,位于所述电子传输层与所述量子点发光层之间;其中,在所述离子型配合物层内具有内建电场。
  2. 如权利要求1所述的电致发光器件,其中,所述电致发光器件为倒置结构,所述电致发光器件还包括:位于所述电子传输层背向所述量子点发光层一侧的衬底基板,位于所述衬底基板和所述电子传输层之间的阴极,位于所述量子点发光层背向所述衬底基板一侧依次层叠设置的空穴传输层、空穴注入层和阳极;
    所述离子型配合物层为位于所述电子传输层和所述量子点发光层之间的独立膜层;所述内建电场靠近所述电子传输层一侧为负极,靠近所述量子点发光层一侧为正极。
  3. 如权利要求1所述的电致发光器件,其中,所述量子点发光层包括量子点、配体以及电荷平衡离子,所述配体中靠近所述量子点一端的基团与所述量子点连接,所述配体中远离所述量子点一端的基团为所述离子型配合物层的离子型配合物,所述离子型配合物和所述电荷平衡离子的电荷相反。
  4. 如权利要求3所述的电致发光器件,其中,所述电致发光器件为倒置结构,所述电致发光器件还包括:位于所述电子传输层背向所述量子点发光层一侧的衬底基板,位于所述衬底基板和所述电子传输层之间的阴极,位于所述量子点发光层背向所述衬底基板一侧依次层叠设置的空穴传输层、空穴注入层和阳极;
    所述内建电场包括位于所述电子传输层和所述量子点发光层之间的第一电场,以及位于所述空穴传输层和所述量子点发光层之间的第二电场;其中,
    所述第一电场靠近所述电子传输层一侧为负极,靠近所述量子点发光层一侧为正极;
    所述第二电场靠近所述空穴传输层一侧为负极,靠近所述量子点发光层一侧为正极。
  5. 如权利要求3所述的电致发光器件,其中,所述电致发光器件为正置结构,所述电致发光器件还包括:位于所述量子点发光层背向所述电子传输层一侧的衬底基板,位于所述衬底基板和所述量子点发光层之间依次层叠设置的阳极、空穴注入层和空穴传输层,以及位于所述电子传输层背向所述衬底基板一侧的阴极;
    所述内建电场包括位于所述空穴传输层和所述量子点发光层之间的第三电场,以及位于所述电子传输层和所述量子点发光层之间的第四电场;其中,
    所第三电场靠近所述空穴传输层一侧为正极,靠近所述量子点发光层一侧为负极;
    所第四电场靠近所述电子传输层一侧为正极,靠近所述量子点发光层一侧为负极。
  6. 如权利要求1所述的电致发光器件,其中,所述离子型配合物层的材料为有机金属配合物。
  7. 如权利要求6所述的电致发光器件,其中,所述离子型配合物层包括阳离子部分和阴离子部分,其中,
    所述阳离子部分包括中心金属离子和所述中心金属离子的配体,所述中心金属离子包括Ir、La、Nd、Eu、Cu、In、Pb或者Pt中的一种,所述中心金属离子的配体包括邻菲咯啉、2-苯基吡啶、苯基恶二唑吡啶、氟代苯基吡啶或联吡啶中的一种;
    所述阴离子部分包括四(五氟苯基)硼酸、四[(三氟甲基)苯基]硼酸、四[双(三氟甲基)苯基]硼酸、六(五氟苯基)磷酸、六[(三氟甲基)苯基]磷酸或六[双(三氟甲基)苯基]磷酸中的一种。
  8. 如权利要求7所述的电致发光器件,其中,所述电荷平衡离子包括正电荷平衡离子和负电荷平衡离子,其中,
    所述正电荷平衡离子包括所述阳离子部分、NH 4 +或Na +,所述负电荷平衡 离子包括所述阴离子部分、Cl -或PF 6-
  9. 一种显示基板,其中,包括如权利要求1-8任一项所述的电致发光器件。
  10. 一种显示装置,其中,包括显示面板,所述显示面板包括如权利要求9所述的显示基板。
  11. 一种电致发光器件的制作方法,其中,包括:
    形成层叠设置的电子传输层和量子点发光层,以及在所述电子传输层和所述量子点发光层之间形成离子配合物层;
    其中,在所述离子型配合物层内形成内建电场。
  12. 如权利要求11所述的制作方法,其中,在衬底基板上依次形成阴极、所述电子传输层、独立的所述离子型配合物层、所述量子点发光层、空穴传输层、空穴注入层和阳极;其中,
    形成独立的所述离子型配合物层,具体包括:
    通过旋涂或蒸镀工艺在所述电子传输层上沉积一层离子型配合物薄膜;
    在沉积过程中施加外部电场,通过外部电场使得所述离子型配合物薄膜内部的阴阳离子发生取向性排列,以在所述离子型配合物薄膜内部形成内建电场,使得所述内建电场靠近所述电子传输层一侧聚集阴离子形成负极,靠近所述量子点发光层一侧聚集阳离子形成正极;
    在持续施加所述外部电场的条件下或撤去所述外部电场后,通过烘烤工艺对所述离子型配合物薄膜进行烘烤,形成独立的所述离子型配合物层。
  13. 如权利要求11所述的制作方法,其中,在衬底基板上依次形成阴极、所述电子传输层、独立的所述离子型配合物层、所述量子点发光层、空穴传输层、空穴注入层和阳极;其中,
    形成独立的所述离子型配合物层,具体包括:
    通过旋涂或蒸镀工艺在所述电子传输层上沉积一层离子型配合物薄膜;
    通过烘烤工艺对所述离子型配合物薄膜进行烘烤,在烘烤过程中施加外部电场,通过所述外部电场使得所述离子型配合物薄膜内部的阴阳离子发生 取向性排列,以在所述离子型配合物薄膜内部形成内建电场,使得所述内建电场靠近所述电子传输层一侧聚集阴离子形成负极,靠近所述量子点发光层一侧聚集阳离子形成正极,形成独立的所述离子型配合物层。
  14. 如权利要求11所述的制作方法,其中,包括:
    在衬底基板上依次形成阴极和所述电子传输层;
    通过旋涂或喷墨印刷的方式将离子型配合物、量子点、配体以及电荷平衡离子的量子点混合溶液形成在所述电子传输层上;其中,所述配体中靠近所述量子点一端的基团与所述量子点连接,所述配体中远离所述量子点一端的基团为所述离子型配合物,所述离子型配合物和所述电荷平衡离子的电荷相反;
    对所述量子点混合溶液进行固化形成所述量子点发光层;
    在所述量子点发光层上依次形成空穴传输层和空穴注入层;
    其中,在所述电子传输层和所述量子点发光层之间具有第一电场,所述第一电场靠近所述电子传输层一侧为负极,靠近所述量子点发光层一侧为正极;以及在所述空穴传输层和所述量子点发光层之间具有第二电场,所述第二电场靠近所述空穴传输层一侧为负极,靠近所述量子点发光层一侧为正极。
  15. 如权利要求11所述的制作方法,其中,包括:
    在衬底基板上依次形成阳极、空穴注入层和空穴传输层;
    通过旋涂或喷墨印刷的方式将离子型配合物、量子点、配体以及电荷平衡离子的量子点混合溶液形成在所述空穴传输层上;其中,所述配体中靠近所述量子点一端的基团与所述量子点连接,所述配体中远离所述量子点一端的基团为所述离子型配合物,所述离子型配合物和所述电荷平衡离子的电荷相反;
    对所述量子点混合溶液进行固化形成所述量子点发光层;
    在所述量子点发光层上依次形成电子传输层和阴极;
    其中,在所述空穴传输层和所述量子点发光层之间具有第三电场,所第三电场靠近所述空穴传输层一侧为正极,靠近所述量子点发光层一侧为负极; 以及在所述电子传输层和所述量子点发光层之间具有第四电场,所第四电场靠近所述电子传输层一侧为正极,靠近所述量子点发光层一侧为负极。
PCT/CN2021/093301 2020-06-17 2021-05-12 一种电致发光器件、显示基板及显示装置 WO2021254038A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/764,425 US20220344604A1 (en) 2020-06-17 2021-05-12 Electroluminescent device, display substrate, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010555558.1A CN113809249B (zh) 2020-06-17 2020-06-17 一种电致发光器件、显示基板及显示装置
CN202010555558.1 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021254038A1 true WO2021254038A1 (zh) 2021-12-23

Family

ID=78943373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093301 WO2021254038A1 (zh) 2020-06-17 2021-05-12 一种电致发光器件、显示基板及显示装置

Country Status (3)

Country Link
US (1) US20220344604A1 (zh)
CN (1) CN113809249B (zh)
WO (1) WO2021254038A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963098A (zh) * 2018-08-03 2018-12-07 京东方科技集团股份有限公司 一种qled显示面板及其制备方法、显示装置
CN109427939A (zh) * 2017-08-24 2019-03-05 Tcl集团股份有限公司 一种qled器件及其制备方法
CN110299456A (zh) * 2018-03-21 2019-10-01 Tcl集团股份有限公司 Qled器件及其制备方法
CN110718637A (zh) * 2018-07-11 2020-01-21 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN111244308A (zh) * 2018-11-29 2020-06-05 Tcl集团股份有限公司 量子点发光层和量子点发光二极管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11150185B2 (en) * 2017-06-23 2021-10-19 Northwestern University Control of the electrostatic potential of nanoparticles
CN108933201B (zh) * 2017-12-12 2020-03-20 广东聚华印刷显示技术有限公司 发光器件及其制备方法
CN113227316A (zh) * 2018-11-16 2021-08-06 九州有机光材股份有限公司 电致发光显示器件及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109427939A (zh) * 2017-08-24 2019-03-05 Tcl集团股份有限公司 一种qled器件及其制备方法
CN110299456A (zh) * 2018-03-21 2019-10-01 Tcl集团股份有限公司 Qled器件及其制备方法
CN110718637A (zh) * 2018-07-11 2020-01-21 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN108963098A (zh) * 2018-08-03 2018-12-07 京东方科技集团股份有限公司 一种qled显示面板及其制备方法、显示装置
CN111244308A (zh) * 2018-11-29 2020-06-05 Tcl集团股份有限公司 量子点发光层和量子点发光二极管

Also Published As

Publication number Publication date
CN113809249B (zh) 2023-02-10
US20220344604A1 (en) 2022-10-27
CN113809249A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
Guo et al. The fabrication of color-tunable organic light-emitting diode displays via solution processing
CN101395734B (zh) 有机光电子结构元件
US10424754B2 (en) Organic light emitting diode device, display panel and display device
CN103367653B (zh) 倒置型有机发光二极管显示器件及其制备方法
EP3255673B1 (en) Display substrate and manufacturing method thereof, and display device
US20210249620A1 (en) Qled display panel and preparation method thereof and display apparatus
CN109585668B (zh) Oled显示器件、显示面板、oled显示器件的制备方法
Zhang et al. Color-tunable, spectra-stable flexible white top-emitting organic light-emitting devices based on alternating current driven and dual-microcavity technology
CN111446378B (zh) 一种透明有机电致发光二极管的制作方法
US20190044091A1 (en) Organic electroluminescence panel and method for manufacturing the same
US20180219174A1 (en) Organic electroluminescence panel
US10270055B2 (en) Flexible display device and method of manufacturing the same
CN103155204A (zh) 有机发光元件及其制备方法
WO2021254038A1 (zh) 一种电致发光器件、显示基板及显示装置
CN112038460A (zh) 一种发光器件、显示基板和显示装置
CN109378409B (zh) 一种电致发光器件及其制造方法
CN102203976B (zh) 发射辐射的有机器件和用于制造发射辐射的有机器件的方法
CN212257439U (zh) 一种发光器件、显示基板和显示装置
CN108448001A (zh) 一种发光器件、电致发光显示面板及显示装置
CN109285947A (zh) 印刷用led薄膜led衬底、led薄膜led器件及其制备方法
US10923673B2 (en) Organic light emitting panel, manufacturing method thereof, and organic light emitting device
CN112652726A (zh) Oled器件透明阴极及其制作方法
CN102593109A (zh) 一种堆叠式有机发光二极管
US11981845B2 (en) Quantum dot material and related applications
EP4355052A1 (en) Transparent and flexible multilayer diode device based on electrospun polymer fibers and organometallic compounds and process for manufacturing such device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825467

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21825467

Country of ref document: EP

Kind code of ref document: A1