WO2021254028A1 - Acier inoxydable à trempe secondaire martensitique, à ultra-haute résistance et renforcé par précipitation cohérente de nanoparticules b2 et son procédé de préparation - Google Patents

Acier inoxydable à trempe secondaire martensitique, à ultra-haute résistance et renforcé par précipitation cohérente de nanoparticules b2 et son procédé de préparation Download PDF

Info

Publication number
WO2021254028A1
WO2021254028A1 PCT/CN2021/092941 CN2021092941W WO2021254028A1 WO 2021254028 A1 WO2021254028 A1 WO 2021254028A1 CN 2021092941 W CN2021092941 W CN 2021092941W WO 2021254028 A1 WO2021254028 A1 WO 2021254028A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
strength
alloy
maraging stainless
maraging
Prior art date
Application number
PCT/CN2021/092941
Other languages
English (en)
Chinese (zh)
Inventor
王清
王镇华
董闯
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2021254028A1 publication Critical patent/WO2021254028A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention belongs to the field of high-strength stainless steel, and particularly relates to a BCC-based ultra-high-strength maraging stainless steel strengthened by the coherent precipitation of B2 nanoparticles and a preparation method thereof.
  • the strength exceeds 2.0 GPa and the elongation exceeds 8.0%.
  • maraging steel As an ultra-high-strength steel, maraging steel is widely used in cutting-edge fields such as aviation, aerospace and military, and has high engineering application value and scientific research significance.
  • Traditional maraging steel is based on ultra-low carbon (or carbon-free) lath martensite (BCC-based) with high density of dislocations. After aging treatment, it forms a variety of non-coherent or semi-coherent with the matrix. Intermetallic compounds (Ni 3 Ti, Ni 3 Mo and Fe 2 (Mo,Ti)) are strengthened. These precipitated phases often have a large interface energy with the matrix, have a high nucleation barrier, and are easy to nucleate at defects such as grain boundaries, resulting in low density and uneven precipitation of the strengthening phase.
  • the precipitated phases are easy to grow along the direction of low mismatch degree, which is easy to be coarsened, which makes the alloy extremely sensitive to the process; and there is a large lattice distortion between the precipitated phase and the matrix. It is easy to produce stress concentration in the process of misalignment, which induces crack initiation, resulting in extremely poor uniform plastic deformation ability of the alloy. And in order to increase the density of the precipitated phases, such steels are usually added with higher content of Ni and Co elements, which further increases the use cost of the steel. Therefore, traditional maraging steel has certain limitations.
  • the maraging steel with coherent precipitation strengthening of B2-NiAl nanoparticles avoids these limitations.
  • the lattice constant (0.2887nm) of the ordered superstructure of BCC B2-NiAl phase is similar to that of ⁇ -Fe (0.2866nm).
  • the coherent precipitated phase has lower interfacial energy and requires less nucleation work .
  • the present invention provides a new ultra-high-strength maraging stainless steel with good corrosion resistance and strong plastic matching with coherent precipitation strengthening of B2 nanoparticles, the strength of which exceeds 2.0 GPa, and the elongation is greater than 8.0%.
  • the present invention designs and develops a B2 nano particle coherent precipitation strengthening ultra-high-strength maraging stainless steel.
  • the purpose of the present invention is to realize uniform and coherent precipitation of high-density B2 nanoparticles on the martensite matrix, thereby designing a maraging stainless steel with ultra-high strength, good plasticity and corrosion resistance.
  • An ultra-high strength maraging stainless steel with coherent precipitation strengthening of B2 nanoparticles including Fe, Cr, Ni, Al, Mo, W, Nb, C, B elements, Si, Mn, S, P, O, N It is an impurity element, and the mass percentage (wt.%) of its alloy composition is as follows, Cr: 4.0 ⁇ 6.0, Ni: 13.0 ⁇ 15.0, Al: 3.0 ⁇ 4.0, Mo: 1.0 ⁇ 2.0, W: 0.3 ⁇ 0.7, Nb: 0.2 ⁇ 0.4, C: 0.03 ⁇ 0.05, B: 0.004 ⁇ 0.008, Si ⁇ 0.20, Mn ⁇ 0.20, S ⁇ 0.01, P ⁇ 0.02, O ⁇ 0.005, N ⁇ 0.02, Fe: balance; and Nb/C atom The percentage ratio is 1:1, and the atomic percentage ratio of Cr/(Mo+W) is 8:1.
  • the maraging stainless steel has a specific microstructure: high-density (>10 24 m -3 ) B2 phase nanoparticles (3-5 nm) are uniformly and coherently precipitated on the lath martensite matrix, making the The strength of steel is higher than 2.0GPa.
  • a preparation method of ultra-high-strength maraging stainless steel with coherent precipitation strengthening of B2 nanoparticles including the following contents: firstly, each alloy component is smelted at least four times in a vacuum arc according to its mass percentage to obtain an alloy ingot; Secondly, use a muffle furnace to homogenize the alloy ingot, the treatment temperature is 1250°C, the treatment time is 2h, and then it is cold rolled with multiple passes, the total deformation is about 70%; finally, annealing is carried out at 950°C Treat for 15min, and carry out aging treatment at 500°C for 4 ⁇ 48h.
  • the idea for realizing the above technical solution is to use the applicant's cluster composition design method to design the composition of maraging stainless steel.
  • the composition design method is based on the "cluster + connecting atom" structure model, and the stable solid solution structure is divided into clusters and connecting atoms.
  • the cluster is the nearest neighbor coordination polyhedron formed by a certain atom as the center.
  • the clusters in the FCC structure are cubic octahedrons with a coordination number of CN12, and the connecting atoms are placed in the gaps of the cluster stacking, usually located in the next adjacent shell of the cluster.
  • a simple cluster composition formula [cluster] (connecting atom) x can be determined, that is, a cluster matches x connecting atoms.
  • This cluster composition design method has been successfully applied to the design of high-temperature austenitic stainless steels, low-elastic ⁇ -Ti alloys and other engineering alloys, providing new ideas and methods for the composition design of high-performance engineering alloys.
  • austenite is directly related to the Ni equivalent and Cr equivalent of the alloy.
  • the addition of Mo element and W element not only plays a solid solution strengthening effect, but also improves the pitting corrosion resistance of steel. And in the Fe-Cr-Ni-Al quaternary system, the addition of Mo can also increase the lattice constant of the BCC matrix, thereby reducing the lattice mismatch between the BCC matrix and the precipitated phase B2, which is more conducive to the coherence of the B2 phase Precipitate out. Therefore, the addition of Mo and W is based on the atomic ratio of Cr/(Mo+W) of 8:1 instead of the Cr element in the cluster formula.
  • MC-type carbides can not only refine the original austenite grains, but also play a role of strengthening the second phase, but the excessive addition of C will cause the welding performance of the alloy to decrease, and at the same time reduce the plasticity of the steel. Therefore, the addition of C element is controlled between 0.03 and 0.05wt.%. At the same time, in order to suppress the precipitation of coarse and large Cr 23 C 6 carbides, it is necessary to add the same atomic percentage of Nb element. The addition of trace element B (0.004 ⁇ 0.008wt.%) can increase the grain boundary bonding force, thereby improving the plasticity of steel.
  • composition of the ultra-high-strength maraging stainless steel with coherent precipitation strengthening of B2 nanoparticles which is Fe-(4.0 ⁇ 6.0)Cr-(13.0 ⁇ 15.0)Ni-(3.0 ⁇ 4.0)Al-(1.0 ⁇ 2.0)Mo-(0.3 ⁇ 0.7)W-(0.2 ⁇ 0.4)Nb-(0.03 ⁇ 0.05)C-(0.004 ⁇ 0.008)B
  • Si, Mn, S, P, O, N are impurity elements: Si ⁇ 0.20 , Mn ⁇ 0.20, S ⁇ 0.01, P ⁇ 0.02, O ⁇ 0.005, N ⁇ 0.02 (wt.%).
  • the preparation method of the present invention is as follows: high-purity metal material is used, and ingredients are carried out according to mass percentage.
  • a vacuum non-consumable arc smelting furnace is used to melt the ingredients at least four times under the protection of an argon atmosphere to obtain an alloy ingot with a uniform composition and a mass of about 100g, and the mass loss during the smelting process does not exceed 0.1%.
  • the alloy ingot was homogenized with a muffle furnace. The homogenization temperature was 1250°C and the time was 2h. Subsequently, cold rolling is performed in multiple passes, and the reduction in each pass does not exceed 0.2 mm, and the total deformation is about 70%, and a plate sample with a thickness of about 3 mm is obtained.
  • the alloy sheet is annealed, the annealing temperature is 950°C, the annealing time is 15min, and finally the aging treatment is carried out at 500°C for 4 ⁇ 48h.
  • Use metallographic microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffractometer (XRD, Cu K ⁇ radiation, ⁇ 0.15406nm) to detect alloy structure and structure; use HVS-1000 dimension
  • the hardness tester is used to test the hardness of a series of alloys under different heat treatment conditions; the UTM5504 electronic universal tensile testing machine is used to test the tensile mechanical properties at room temperature; the CS350 electrochemical workstation is used to test the corrosion resistance of the alloy in 3.5wt.% NaCl aqueous solution .
  • the present invention is an ultra-high-strength maraging stainless steel strengthened by the coherent precipitation of B2 nanoparticles.
  • the mass percentage (wt.%) of the alloy composition is Cr: 4.0 ⁇ 6.0, Ni: 13.0 ⁇ 15.0, Al: 3.0 ⁇ 4.0, Mo: 1.0 ⁇ 2.0, W: 0.3 ⁇ 0.7, Nb: 0.2 ⁇ 0.4, C: 0.03 ⁇ 0.05, B: 0.004 ⁇ 0.008, Si ⁇ 0.20, Mn ⁇ 0.20, S ⁇ 0.01, P ⁇ 0.02, O ⁇ 0.005, N ⁇ 0.02, Fe: balance; and the atomic percentage ratio of Nb/C is 1: 1.
  • the atomic percentage ratio of Cr/(Mo+W) is 8:1.
  • the alloy is aged at 500°C (4 ⁇ 48h) After that, high-density (>10 24 m -3 ) B2 phase nanoparticles (3-5 nm) are uniformly and coherently precipitated on the lath martensite matrix.
  • the present invention designs and develops an ultra-high-strength maraging stainless steel with coherent precipitation strengthening of B2 nanoparticles based on our self-developed cluster composition method.
  • the present invention adopts the new concept of coherent precipitation strengthening, through the coherent precipitation of high-density B2 phase nanoparticles on the martensite matrix ,
  • the uniform precipitation and the coherent phase interface brought by the coherent precipitation coupled with the high density of movable dislocations in the lath martensite, hinder the initiation of cracks , Improve the uniform plastic deformation ability of the new horse-aged stainless steel.
  • the new maraging stainless steel uses cheap Al, Cr and other elements to replace the expensive elements Co and Ti in traditional maraging steels, and adds the C element avoided by traditional maraging steels.
  • the preparation process is simple. Material costs are greatly reduced.
  • a B2 nano-particle coherent precipitation-strengthened ultra-high-strength maraging stainless steel has been developed, and the mass percentage (wt.%) of the alloy composition is Cr: 4.0-6.0, Ni: 13.0 ⁇ 15.0, Al: 3.0 ⁇ 4.0, Mo: 1.0 ⁇ 2.0, W: 0.3 ⁇ 0.7, Nb: 0.2 ⁇ 0.4, C: 0.03 ⁇ 0.05, B: 0.004 ⁇ 0.008, Si ⁇ 0.20, Mn ⁇ 0.20, S ⁇ 0.01, P ⁇ 0.02, O ⁇ 0.005, N ⁇ 0.02, Fe: margin;
  • This new type of maraging stainless steel uses cheap Al, Cr and other elements to replace the expensive elements Co and Ti in traditional maraging steel.
  • the new maraging stainless steel has a strength higher than 2.0 through the coherent precipitation strengthening of high-density B2 phase particles. GPa's ultra-high strength, good uniform plastic deformation ability, and excellent corrosion resistance.
  • Fig. 1 is a TEM structure morphology of the alloy prepared in Example 1. High-density B2 phase nanoparticles are coherently precipitated on the martensite matrix.
  • Example 1 Fe-5.30Cr-13.47Ni-3.10Al-1.22Mo-0.50W-0.23Nb-0.03C-0.005B (wt.%) alloy
  • High-purity metal materials are used, and ingredients are carried out in accordance with mass percentage.
  • a vacuum non-consumable arc smelting furnace is used to melt the ingredients at least four times under the protection of an argon atmosphere to obtain an alloy ingot with a uniform composition and a mass of about 100g. The mass loss during the smelting process does not exceed 0.1%.
  • Use a muffle furnace to homogenize the alloy ingot at 1250°C/2h. Subsequently, cold rolling is performed in multiple passes, and the reduction in each pass does not exceed 0.2 mm, and the total deformation is about 70%, and a plate sample with a thickness of about 3 mm is obtained. After that, the alloy sheet is annealed at 950°C/15min, and finally aging at 500°C/8h.
  • Step 2 Alloy structure and mechanical properties and corrosion resistance test
  • High-purity metal materials are used, and ingredients are carried out in accordance with mass percentage.
  • a vacuum non-consumable arc smelting furnace is used to melt the ingredients at least four times under the protection of an argon atmosphere to obtain an alloy ingot with a uniform composition and a mass of about 100g, and the mass loss during the smelting process does not exceed 0.1%.
  • Use a muffle furnace to homogenize the alloy ingot at 1250°C/2h.
  • cold rolling is performed in multiple passes, and the reduction in each pass does not exceed 0.2 mm, and the total deformation is about 70%, and a plate sample with a thickness of about 3 mm is obtained.
  • the alloy sheet is annealed at 950°C/15min, and finally aged at 500°C/12h.
  • Step 2 Test the alloy structure and mechanical properties
  • OM, SEM, and XRD were used to detect the structure and structure of the alloy after stabilization.
  • the results showed that the alloy of the present invention was a lath martensite structure, and high-density B2 phase nanoparticles were co-precipitated on the martensite matrix.
  • Example 3 Fe-6.0Cr-13.0Ni-4.0Al-2.0Mo-0.50W-0.40Nb-0.05C-0.008B (wt.%) alloy
  • a vacuum non-consumable arc smelting furnace is used to melt the ingredients at least four times under the protection of an argon atmosphere to obtain an alloy ingot with a uniform composition and a mass of about 100g, and the mass loss during the smelting process does not exceed 0.1%.
  • Use a muffle furnace to homogenize the alloy ingot at 1250°C/2h.
  • cold rolling is performed in multiple passes, and the reduction in each pass does not exceed 0.2 mm, and the total deformation is about 70%, and a plate sample with a thickness of about 3 mm is obtained.
  • the alloy sheet is annealed at 950°C/15min, and finally aging at 500°C/48h.
  • Step 2 Alloy structure and mechanical properties and corrosion resistance test
  • the alloy of the present invention is a lath martensite structure, and high-density B2 phase nanoparticles are co-precipitated on the martensite matrix.

Abstract

La présente invention concerne un acier inoxydable à trempe secondaire martensitique, à ultra-haute résistance et renforcé par précipitation cohérente de nanoparticules B2, et son procédé de préparation, qui relèvent du domaine de l'acier inoxydable à haute résistance. L'acier inoxydable à trempe secondaire martensitique contient les éléments Fe, Cr, Ni, Al, Mo, W, Nb, C et B, Si, Mn, S, P, O et N étant des éléments d'impuretés. Le pourcentage en masse (% en poids) des composants de l'alliage est Cr : de 4,0 à 6,0, Ni : de 13,0 à 15,0, Al : de 3,0 à 4,0, Mo : de 1,0 à 2,0, W : de 0,3 à 0,7, Nb : de 0,2 à 0,4, C : de 0,03 à 0,05, B : de 0,004 à 0,008, Si ≤ 0,20, Mn ≤ 0,20, S ≤ 0,01, P ≤ 0,02, O ≤ 0,005, N ≤ 0,02, Fe : le reste. Le rapport des pourcentages atomiques de Nb/C est égal à 1:1. Le rapport des pourcentages atomiques de Cr/(Mo+W) est égal à 8:1. D'après la présente invention, une précipitation cohérente et uniforme de nanoparticules de phase B2 à haute densité sur une matrice de martensite est obtenue au moyen d'une conception des composants d'un alliage telle que l'alliage présente une résistance ultra-haute, supérieure à 2,0 GPa, une capacité de déformation plastique uniforme satisfaisante et une excellente résistance à la corrosion. De plus, le processus de préparation est simple, le coût des matériaux est considérablement réduit et un nouvel acier inoxydable à trempe secondaire martensitique à ultra-haute résistance est obtenu.
PCT/CN2021/092941 2020-06-17 2021-05-11 Acier inoxydable à trempe secondaire martensitique, à ultra-haute résistance et renforcé par précipitation cohérente de nanoparticules b2 et son procédé de préparation WO2021254028A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010555730.3A CN111593260B (zh) 2020-06-17 2020-06-17 一种b2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法
CN202010555730.3 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021254028A1 true WO2021254028A1 (fr) 2021-12-23

Family

ID=72184485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092941 WO2021254028A1 (fr) 2020-06-17 2021-05-11 Acier inoxydable à trempe secondaire martensitique, à ultra-haute résistance et renforcé par précipitation cohérente de nanoparticules b2 et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN111593260B (fr)
WO (1) WO2021254028A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480988A (zh) * 2021-12-27 2022-05-13 北京科技大学 一种多相复合高强高韧低密度钢及制备方法
CN114517276A (zh) * 2021-08-25 2022-05-20 哈尔滨工程大学 一种超低碳高性能马氏体时效不锈钢及其制备方法
CN114540708A (zh) * 2022-02-14 2022-05-27 厦门大学 一种富Co纳米颗粒强化型铁素体不锈钢及其制备方法
CN116121666A (zh) * 2022-12-05 2023-05-16 四川大学 一种1500MPa级超高强度马氏体耐热钢及其制备方法、应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4296379A1 (fr) * 2021-02-18 2023-12-27 NIPPON STEEL Stainless Steel Corporation Plaque d'acier inoxydable martensitique pour rotor de disque de frein, rotor de disque de frein et procédé de fabrication de plaque d'acier inoxydable martensitique pour rotor de disque de frein
CN113699463A (zh) * 2021-08-25 2021-11-26 哈尔滨工程大学 一种多相强化超高强马氏体时效不锈钢及其制备方法
CN114150232B (zh) * 2021-11-25 2022-11-29 香港理工大学深圳研究院 一种共格和非共格纳米相复合强化的超高强度马氏体时效钢及其制造方法
CN114672639B (zh) * 2022-02-28 2023-05-05 北京大学 通过纳米粒子熔解再析出提高材料抗辐照的方法
CN114717485B (zh) * 2022-03-08 2023-01-24 四川大学 一种纳米析出强化超高强高合金钢及其制备方法
CN115074601B (zh) * 2022-05-24 2023-12-26 湘潭大学 一种制备高体积分数b2强化铁素体合金的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017998A (ja) * 1996-07-02 1998-01-20 Nikko Kinzoku Kk 打ち抜き性良好な電子銃部品用Fe−Ni系合金素材及びその製造方法並びに加工部品
EP1935996A1 (fr) * 2002-11-04 2008-06-25 Paralloy Limited Alliages résistants à haute température
CA2612959A1 (fr) * 2008-01-15 2009-07-15 Gregory Vartanov Alliage d'acier martensitique resistant a la corrosion, a haute resistance mecanique et forte tenacite
CN103103327A (zh) * 2012-12-07 2013-05-15 无锡透平叶片有限公司 一种超高强度不锈钢热处理工艺
WO2014139451A1 (fr) * 2013-03-13 2014-09-18 香港城市大学 Acier ferritique haute résistance renforcé avec des nano-intermétalliques et son procédé de fabrication
CN105568151A (zh) * 2016-01-29 2016-05-11 北京科技大学 一种铝增强马氏体时效钢及其制备方法
CN106148651A (zh) * 2016-07-24 2016-11-23 钢铁研究总院 含Al节Co型高比强度二次硬化超高强度钢及制备方法
CN107829008A (zh) * 2017-11-01 2018-03-23 常州大学 一种细小均匀分布的bcc+b2双相合金及其制备方法
CN110777230A (zh) * 2019-11-13 2020-02-11 北京科技大学 基于目标等轴晶尺寸和比例的钢连铸坯凝固组织细化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605281A (zh) * 2007-07-11 2012-07-25 日立金属株式会社 马氏体时效钢和金属带用马氏体时效钢
FR2933990B1 (fr) * 2008-07-15 2010-08-13 Aubert & Duval Sa Acier martensitique durci a teneur faible en cobalt, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
JP6259579B2 (ja) * 2012-03-29 2018-01-10 新日鐵住金ステンレス株式会社 耐熱へたり性に優れた高強度ステンレス鋼線、高強度ばね並びにその製造方法
CN107254642B (zh) * 2017-06-02 2019-02-19 浙江大学 一种马氏体时效不锈钢及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017998A (ja) * 1996-07-02 1998-01-20 Nikko Kinzoku Kk 打ち抜き性良好な電子銃部品用Fe−Ni系合金素材及びその製造方法並びに加工部品
EP1935996A1 (fr) * 2002-11-04 2008-06-25 Paralloy Limited Alliages résistants à haute température
CA2612959A1 (fr) * 2008-01-15 2009-07-15 Gregory Vartanov Alliage d'acier martensitique resistant a la corrosion, a haute resistance mecanique et forte tenacite
CN103103327A (zh) * 2012-12-07 2013-05-15 无锡透平叶片有限公司 一种超高强度不锈钢热处理工艺
WO2014139451A1 (fr) * 2013-03-13 2014-09-18 香港城市大学 Acier ferritique haute résistance renforcé avec des nano-intermétalliques et son procédé de fabrication
CN105568151A (zh) * 2016-01-29 2016-05-11 北京科技大学 一种铝增强马氏体时效钢及其制备方法
CN106148651A (zh) * 2016-07-24 2016-11-23 钢铁研究总院 含Al节Co型高比强度二次硬化超高强度钢及制备方法
CN107829008A (zh) * 2017-11-01 2018-03-23 常州大学 一种细小均匀分布的bcc+b2双相合金及其制备方法
CN110777230A (zh) * 2019-11-13 2020-02-11 北京科技大学 基于目标等轴晶尺寸和比例的钢连铸坯凝固组织细化方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517276A (zh) * 2021-08-25 2022-05-20 哈尔滨工程大学 一种超低碳高性能马氏体时效不锈钢及其制备方法
CN114480988A (zh) * 2021-12-27 2022-05-13 北京科技大学 一种多相复合高强高韧低密度钢及制备方法
CN114540708A (zh) * 2022-02-14 2022-05-27 厦门大学 一种富Co纳米颗粒强化型铁素体不锈钢及其制备方法
CN116121666A (zh) * 2022-12-05 2023-05-16 四川大学 一种1500MPa级超高强度马氏体耐热钢及其制备方法、应用
CN116121666B (zh) * 2022-12-05 2023-11-28 四川大学 一种1500MPa级超高强度马氏体耐热钢及其制备方法、应用

Also Published As

Publication number Publication date
CN111593260B (zh) 2021-09-24
CN111593260A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2021254028A1 (fr) Acier inoxydable à trempe secondaire martensitique, à ultra-haute résistance et renforcé par précipitation cohérente de nanoparticules b2 et son procédé de préparation
US11390938B2 (en) Precipitation strengthening AlCrFeNiV system high entropy alloy and manufacturing method thereof
CN105568151B (zh) 一种铝增强马氏体时效钢及其制备方法
JP3689009B2 (ja) 高耐食性高強度オーステナイト系ステンレス鋼とその製法
US11242585B2 (en) Iron-based superalloy for high temperature 700 ° C. with coherent precipitation of cuboidal B2 nanoparticles
CN109136652B (zh) 核电关键设备用镍基合金大截面棒材及其制造方法
CN104195458B (zh) 一种低相对磁导率的不锈钢热轧板及其制备方法
CN114086049B (zh) 2.0GPa级超高屈服强度塑性CoCrNi基中熵合金及其制备方法
EP4257717A1 (fr) Acier inoxydable austénitique haute entropie et son procédé de préparation
CN113718152A (zh) 一种耐高温低密度Ni-Co-Cr-Fe-Al-Ti系高熵合金及其制备方法
CN113430444B (zh) 一种高塑性高强度的高熵合金及其制备方法
CN109554629A (zh) 一种超超临界火电机组用钢及其制备方法
CN110408850A (zh) 纳米金属间化合物析出强化的超级钢及其制备方法
CN109465565A (zh) 一种气体保护焊丝及其制造方法
CN107587080A (zh) 一种沉淀强化耐热钢及其制备工艺
Chang et al. Oxide dispersion strengthening of CoCrNi medium entropy alloy using TiO2 particles
CN109898028A (zh) 抗高温氧化的奥氏体耐热不锈钢及其制备方法与用途
CN113523282A (zh) 一种通过3d打印制备细小等轴晶钛合金的方法
CN106319382B (zh) 一种低镍型中铬铁素体不锈钢及其制造方法
CN113736966B (zh) 一种具有双重异质结构的FeCrAl基合金及其制备方法
CN109913758A (zh) 高温强度和成形性能良好的铁素体不锈钢板及其制备方法
CN111235491B (zh) 一种高强度高塑性的形状记忆钢及其制备方法
CN108103400A (zh) 一种纳米级金属间化合物析出强化的马氏体时效钢及其制备方法
CN115216588A (zh) 一种改善大厚度超高强海洋工程用钢心部韧性的热处理方法
CN114107777A (zh) 一种高强度耐热高熵合金及锻/轧成型方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826178

Country of ref document: EP

Kind code of ref document: A1