WO2021253826A1 - 自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法 - Google Patents

自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法 Download PDF

Info

Publication number
WO2021253826A1
WO2021253826A1 PCT/CN2021/073065 CN2021073065W WO2021253826A1 WO 2021253826 A1 WO2021253826 A1 WO 2021253826A1 CN 2021073065 W CN2021073065 W CN 2021073065W WO 2021253826 A1 WO2021253826 A1 WO 2021253826A1
Authority
WO
WIPO (PCT)
Prior art keywords
spin
orbit
magnetic random
transistor
string information
Prior art date
Application number
PCT/CN2021/073065
Other languages
English (en)
French (fr)
Inventor
邢国忠
林淮
王迪
刘龙
张锋
谢常青
李泠
刘明
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to US18/005,756 priority Critical patent/US20230280978A1/en
Priority to PCT/CN2021/073065 priority patent/WO2021253826A1/zh
Publication of WO2021253826A1 publication Critical patent/WO2021253826A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/57Arithmetic logic units [ALU], i.e. arrangements or devices for performing two or more of the operations covered by groups G06F7/483 – G06F7/556 or for performing logical operations
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices

Definitions

  • the present disclosure relates to the field of integrated circuits, and in particular to a spin-orbit moment magnetic random storage unit, an array, and a Hamming distance calculation method.
  • Hamming weight is defined as the number of non-zero characters in a binary string
  • Hamming distance is defined as the number of different characters at corresponding positions between two equal-length binary strings. It is used in image recognition, information coding and information security fields. Has a wide range of applications.
  • the present disclosure provides a spin-orbit moment magnetic random memory cell, an array, and a Hamming distance calculation method to solve the above-mentioned technical problems.
  • a spin-orbit moment magnetic random memory cell including: a magnetic tunnel junction, a first transistor, and a second transistor; the drain terminal of the first transistor and the bottom of the magnetic tunnel junction Connected; the drain terminal of the second transistor is connected to the top of the magnetic tunnel junction.
  • the magnetic tunnel junction includes from bottom to top: a spin-orbit coupling layer, a ferromagnetic free layer, a tunneling layer, a ferromagnetic reference layer, and a top electrode layer;
  • the drain terminal of the first transistor is connected to the spin-orbit coupling layer, and the drain terminal of the second transistor is connected to the top electrode layer.
  • the ferromagnetic free layer and the ferromagnetic reference layer are both perpendicular anisotropic magnetic materials, and the perpendicular anisotropic magnetic materials are CoFeB, Co 2 FeAl, Co, Any one of CoFe, Fe 3 GeTe 2 and Ni 3 GeTe 2.
  • the antisymmetric exchange coefficient between the spin-orbit coupling layer and the ferromagnetic free layer is 0.1-1 mJ/m 2 .
  • a spin-orbit-moment magnetic random memory array which includes: m write word lines, m read word lines, n write bit lines, n read bit lines, and n source lines And m rows and n columns of memory cells, wherein the memory cells are spin-orbit moment magnetic random memory cells as described above, and m and n are positive integers;
  • Each of the memory cells located in the same column is connected to the same write bit line, each of the memory cells located in the same column is connected to the same read bit line, and each of the memory cells located in the same column is connected to the same source line;
  • Each of the memory cells located in the same row is connected to the same write word line, and each of the memory cells located in the same row is connected to the same read word line.
  • a Hamming distance calculation method based on the above-mentioned spin-orbit moment magnetic random storage array including:
  • the first binary character string information and the second binary character string information are respectively encoded on the write bit line and the source line, the first transistor is turned on, and the first binary character string information and the Performing a memory exclusive OR operation on the second binary character string information, and storing the result of the memory exclusive OR operation in the spin-orbit moment magnetic random storage array;
  • the read bit line controls the second transistor to turn on, and according to the voltage difference existing between the source line and the read bit line, the memory stored in the spin-orbit moment magnetic random memory array is read. Determine the Hamming distance based on the result of the internal XOR operation.
  • the storage XOR operation result is stored in the spin-orbit-moment magnetic random storage unit where the diagonal of the spin-orbit-moment magnetic random storage array is located.
  • the first binary character string information and the second binary character string information include N-bit characters, where N is a positive integer.
  • a Hamming distance calculation method based on the above-mentioned spin-orbit moment magnetic random storage array including:
  • the second binary string information is then used to control the N-bit writing lines of a column of the spin-orbit-moment magnetic random storage array in parallel, and the first binary character
  • the string information and the second binary string information are written in the same way, so that the XOR operation of the two strings is performed, and the result of the XOR operation is stored in the spin-orbit magnetic random In a storage array; wherein, the first binary character string information and the second binary character string information include N-bit characters, where N is a positive integer;
  • the read bit line controls the second transistor to turn on, and according to the voltage difference existing between the source line and the read bit line, the memory stored in the spin-orbit moment magnetic random memory array is read. Determine the Hamming distance based on the result of the internal XOR operation.
  • the writing the Hamming weight of the first binary string information into the spin-orbit moment magnetic random storage array includes:
  • the first transistor When one character information in the first binary character string information is "1", the first transistor is turned on, and a write current is injected into the spin-orbit moment magnetic random storage unit corresponding to the character information; When one character information in the first binary character string information is "0", the first transistor is turned off.
  • the spin-orbit moment magnetic random memory cell, array, and Hamming distance calculation method of the present disclosure have at least one or part of the following beneficial effects:
  • the spin-orbit moment magnetic random memory cell provided in the present disclosure can realize deterministic spin magnetization flipping without external field under full electric field conditions, and has a nanosecond write speed, and can be used for nanoseconds based on a unique circuit design High-speed, low-write latency, storage-calculation integrated array is realized, and it has low power consumption.
  • the spin-orbit moment magnetic random storage array provided by the present disclosure can utilize voltage control to realize the Hamming weight storage and Hamming distance calculation of character strings within 2-3 operation cycles.
  • the spin-orbit moment magnetic random memory cell provided by the present disclosure has a simple structure, and the material system is compatible with the CMOS process, which facilitates large-scale preparation and integration.
  • the spin-orbit-moment magnetic random storage unit provided by the present disclosure is dependent on an external magnetic field and reconfigurable logic operation improves the flexibility of the storage-calculation integrated array of the spin-orbit-moment magnetic random storage unit, which is comparable to the prior art In contrast, the present disclosure can realize high-speed Hamming distance calculation and result storage with a smaller area overhead.
  • FIG. 1 is a schematic diagram of the structure of a spin-orbit moment magnetic random memory cell according to the first embodiment of the present disclosure
  • Figure 2 is a schematic diagram of the simulation results of the fully electrically controlled spin magnetization flip of the ferromagnetic free layer in the magnetic tunnel junction;
  • FIG. 3 is a schematic diagram of the layout design of a spin-orbit moment magnetic random memory cell according to the first embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a spin-orbit moment magnetic random memory array according to the first embodiment of the present disclosure
  • FIG. 5 is a block diagram of a Hamming distance calculation method according to the first embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the Hamming distance calculation method according to the first embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of reading data from the Hamming distance calculation result of the first embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the read data of the Hamming distance calculation result according to the second embodiment of the present disclosure.
  • the present disclosure provides a spin-orbit moment magnetic random memory cell, an array, and a Hamming distance calculation method.
  • the spin-orbit moment magnetic random memory cell includes a magnetic tunnel junction, a first transistor, and a second transistor.
  • the drain terminal is connected to the bottom of the magnetic tunnel junction, and the drain terminal of the second transistor is connected to the top of the magnetic tunnel junction.
  • the present disclosure realizes deterministic spin magnetization reversal without external magnetic field under full electric field conditions, and has the characteristic of using non-polar current to control resistance state change.
  • FIG. 1 is a schematic diagram of the structure of a spin-orbit moment magnetic random memory cell according to the first embodiment of the present disclosure.
  • the spin-orbit moment magnetic random memory cell of the present disclosure includes a magnetic tunnel junction, a first transistor 106, and a second transistor 107.
  • the drain terminal of the first transistor 106 is connected to the bottom of the magnetic tunnel junction, and the second transistor
  • the drain terminal of 107 is connected to the top of the magnetic tunnel junction.
  • the magnetic tunnel junction is a spin-orbit moment magnetic tunnel junction (SOT-MTJ).
  • the structure of the magnetic tunnel junction specifically includes from bottom to top: the spin-orbit coupling layer 105, the ferromagnetic free layer 104, the tunneling layer 103, the ferromagnetic reference layer 102, the top electrode layer 101; the drain terminal of the first transistor 106 It is connected to the spin-orbit coupling layer 105, and the drain terminal of the second transistor 107 is connected to the top electrode layer 101.
  • the materials of the ferromagnetic free layer 104 and the ferromagnetic reference layer 102 are both CoFeB, Co 2 FeAl, CO, or two-dimensional ferromagnetic materials Fe 3 GeTe 2 , Ni 3 GeTe 2 , which has a vertical in-plane
  • the easy magnetization direction is conducive to the reduction of device size and rapid magnetization reversal.
  • the gate voltage of the first transistor 106 is set to a high level. At this time, if there is a voltage drop across the spin-orbit moment magnetic random memory cell, a write current pulse will pass through the spin-orbit coupling layer 105, Due to the spin-orbit coupling effect of the heavy metals in the spin-orbit coupling layer 105, the injected current will generate a spin-orbit torque on the ferromagnetic free layer 104, which is usually described by the ratio of field-like torque and damping torque.
  • the gate voltage of the second transistor 107 is placed at a high level, and the second transistor 107 is turned on. At this time, a reading voltage difference is generated between the top electrode and the spin-orbit coupling layer 105. According to Kirchhoff’s law, The resistance state stored in the spin-orbital moment magnetic random memory cell is different, and the high resistance state and the low resistance state respectively produce different current values.
  • a second pulse identical to the first pulse is applied, and the magnetization direction is switched back to the original high resistance state, which verifies that under the negative current situation, there is no external field to assist the resistance state switching of the SOT-MRAM.
  • the third positive pulse is applied, and the current amplitude and pulse width are the same as the first and second pulses.
  • the magnetization change of the spin-orbit moment magnetic random memory cell shows exactly the same as the first pulse
  • the application effect of the spin-orbit moment magnetic random memory cell is switched from a high-resistance state to a low-resistance state.
  • the fourth pulse which is the same as the third pulse, is applied, and the resistance state is also changed.
  • the above-mentioned current operation further verifies the non-polar write operation of the spin-orbit moment magnetic random memory cell.
  • the present disclosure enables the switching of the resistance state to depend only on the presence or absence of the pulse, and not on the amplitude of the current pulse or the current The polarity. Compared with the memristor whose amplitude is determined or polarity is determined, the design is simpler.
  • FIG. 3 is a schematic diagram of the layout design of a spin-orbit moment magnetic random memory cell according to the first embodiment of the present disclosure.
  • the gate terminal of the first transistor 106 is connected to the write word line WWL
  • the gate of the second transistor 107 is connected to the read word line RWL
  • the magnetic tunnel junction is not One end connecting the first transistor 106 and the second transistor 107 is connected to the source line SL.
  • a spin-orbit moment magnetic random memory array is also provided.
  • 4 is a schematic diagram of a spin-orbit moment magnetic random memory array according to the first embodiment of the disclosure.
  • the spin-orbit moment magnetic random memory array provided by the present disclosure includes: m write word lines WWL, m read word lines RWL, n write bit lines WBL, n read bit lines RBL, and n sources Line SL and memory cells in m rows and n columns, wherein the memory cells are spin-orbit moment magnetic random memory cells as described above, and m and n are positive integers.
  • Each memory cell located in the same column is connected to the same write bit line WBL, each memory cell located in the same column is connected to the same read bit line RBL, and each memory cell located in the same column is connected to the same source Line SL.
  • Each of the memory cells located in the same row is connected to the same write word line WWL, and each of the memory cells located in the same row is connected to the same read word line RWL.
  • a Hamming distance calculation method based on the above-mentioned spin-orbit moment magnetic random storage array is also provided.
  • Fig. 5 is a block diagram of the Hamming distance calculation method according to the first embodiment of the present disclosure. As shown in FIG. 5, the Hamming distance calculation method provided in the first embodiment of the present disclosure includes:
  • the second transistor is turned on, and an initialization current is injected, so that the magnetic tunnel junction generates a spin torque effect, and the magnetic tunnel junction forms a high resistance state.
  • the memory cell needs to be initialized before writing and calculation.
  • the read word line RWL is set to a high level, and a gate voltage is applied to the second transistor to turn on the second transistor.
  • the initialization current passes through the magnetic tunnel junction, and through the spin transfer torque effect, reverses the magnetization direction of the ferromagnetic free layer 104 so that it is opposite to the magnetization direction of the reference layer.
  • the tunnel junction writes "0", that is, the magnetic tunnel junction is in the high resistance state HRS at this time.
  • the first binary character string information and the second binary character string information are respectively encoded on the write bit line and the source line, the first transistor is turned on, and the first binary character string is The information and the second binary character string information are subjected to a memory XOR operation, and the result of the memory XOR operation is stored in the spin-orbit moment magnetic random storage array.
  • a memory XOR operation when one character in the first binary character string information or the second binary character string information is "0", it represents low level, and one character is "1" represents high level. .
  • the spin-orbit coupling of the spin-orbit-moment magnetic random storage unit There is no potential difference between the two ends of the layer 105. At this time, the data stored in the spin-orbit-moment magnetic random storage unit remains unchanged and is still in a high-resistance state.
  • the spin-orbit-magnet random storage unit If the first binary character string information is different from the second binary character string information, that is, one character is "0" and the other character is "1", the spin-orbit-magnet random storage unit's self An electric potential difference is generated at both ends of the spin-orbit coupling layer 105, and the current flows through the spin-orbit coupling layer 105 with a small resistance, and the spin current is generated through the spin-orbit coupling effect, and the ferromagnetic material of the ferromagnetic free layer 104 of the magnetic tunnel junction is generated. Under the action of torque, the data stored in the spin-orbit moment magnetic random storage unit is switched from a high-resistance state to a low-resistance state.
  • the first binary character string information S1 01101001
  • the second binary character string information S2 0111010011
  • the above operation realizes the first and second equal lengths
  • the XOR logic operation of each character between the binary string information S1 and the second binary string information S2, and the operation result "10111010" is stored in the diagonal storage unit of the MRAM array, where the operation result "1"
  • the number of " is the Hamming distance between the first binary character string information S1 and the second binary character string information S2.
  • the read bit line controls the second transistor to turn on, and according to the voltage difference existing between the source line and the read bit line, read the memory stored in the spin-orbit-magnet random memory array
  • the result of the exclusive OR operation determines the Hamming distance.
  • the write word line WWL is set to low level, and the read word line RWL is set to high level, the first transistor is turned off, and the second transistor is turned on.
  • the source line SL is applied
  • the read voltage generates a voltage drop between the read bit line RBL and the source line SL.
  • the resistance state stored in the magnetic tunnel junction can be read.
  • the high-resistance state (HRS) and the low-resistance state (LRS) respectively correspond to the read current of a single spin-orbit moment magnetic random memory cell in the high-resistance state and the low-resistance state. Read and distinguish, so as to realize the reading of the Hamming distance calculation result stored in the Hamming SOT-MRAM.
  • the above operations can be performed in parallel, and the number of arrays is not limited to 8 ⁇ 8, which speeds up the efficiency of data processing.
  • a Hamming distance calculation method based on the above-mentioned spin-orbit moment magnetic random memory array is provided.
  • the difference between the Hamming distance calculation method of this embodiment is that the first binary character string information and the second binary character string information are asynchronously encoded in the writing line .
  • the first binary string information controls the m-bit writing line of a certain column of the spin-orbit-moment magnetic random storage array in parallel, and when the one-bit character information is "1", the first transistor is turned on , The write current is injected into the spin-orbit moment magnetic random storage array; and when the one-bit character information is "0", the first transistor is turned off, no current flows through the MRAM, and its original information remains unchanged.
  • the Hamming weight of the first binary string information S1 is written into the MRAM array.
  • the second binary character string information controls the writing line of a certain column of the storage array in parallel to realize the exclusive OR operation of the first binary character string information and the second binary character string information, and the result is Stored in the corresponding spin-orbit moment magnetic random storage unit.
  • the spin-orbit moment magnetic random memory cell needs to be initialized before writing and calculation. This operation is the same as that in the first embodiment, and will not be repeated here.
  • the character string is used as the WWL signal of the writing line, and it is written and calculated by controlling the gate voltage of the first transistor, as shown in Figure 8b:
  • the word line WWL When the character is "0", the word line WWL is at low level and the first transistor is turned off; when the character is "1", the word line WWL is at high level and the first transistor is turned on.
  • the first binary string information is first input into the spin-orbit-moment magnetic random storage array in the same column, and each character corresponds to a spin-orbit-moment magnetic random storage unit.
  • the character in the first binary string information is "0”
  • the first transistor corresponding to the spin-orbital moment magnetic random storage unit is turned off. At this time, the data stored in the spin-orbital moment magnetic random storage array remains unavailable.
  • the first transistor When the character in the first binary string information is "1", the first transistor is turned on, and the current flows through the spin-orbit coupling layer 105, and the spin-orbit coupling effect produces self The swirling current exerts a torque effect on the ferromagnetic material of the ferromagnetic free layer 104 in the magnetic tunnel junction. At this time, the data stored in the spin-orbit moment magnetic random storage unit is switched from a high-resistance state to a low-resistance state. This operation The Hamming weight information (that is, the number of "1"s) in the first binary string information is stored.
  • the second binary character string information is used as the gate control voltage to be written into the above-mentioned spin-orbit moment magnetic random storage array, when the character in the first binary character string information is "0"
  • the first transistor corresponding to the spin-orbital moment magnetic random storage unit is turned off.
  • the data stored in the spin-orbital moment magnetic random storage array remains unchanged, and the stored resistance state is the same after the end of the first write cycle.
  • the first transistor When the character in the first binary character string information is "1", the first transistor is turned on, and the current flows through the spin-orbit coupling layer 105, and the spin current is generated through the spin-orbit coupling effect, which affects the magnetic tunnel junction
  • the ferromagnetic material of the ferromagnetic free layer 104 generates torque.
  • the data stored in the spin-orbit-moment magnetic random storage unit is switched, which is different from the result after the end of the first write cycle. In this way, the XOR operation of the corresponding characters in the first binary string information and the second binary string information is realized.
  • the first binary character string information S1 01101001
  • the second binary character string information S2 0111010011
  • the stored information in the spin-orbital moment magnetic random storage array is "01101001”
  • the stored information in the spin-orbital moment magnetic random storage array is "10111010”
  • the number of "1"s stored is the Hamming distance of the two strings.
  • the word line WWL of the column where the calculation is performed is set to low level, and the read word line RWL is set to high level, the first transistor is turned off, the second transistor is turned on, and the read voltage is applied to the source line. Then a voltage drop is generated between the read bit line and the source line. According to the total current flowing through the magnetic tunnel junction (as shown by the arrow in Figure 8c), the number of low resistance states stored in the magnetic tunnel junction can be reflected, and the Hamming distance can be obtained. .
  • FIG. 9 is a schematic diagram of the read data of the Hamming distance calculation result according to the second embodiment of the present disclosure.
  • the spin-orbit-moment magnetic random storage array calculation result is "11111111", and the spin-orbit-moment magnetic random storage unit is all low In the resistive state, the total current obtained is about 90 ⁇ A, at this time, the corresponding Hamming distance is "8"; in the remaining intermediate cases, the generated current and the Hamming distance calculation result reflected by the current are shown in Figure 9.
  • the utilization rate of the array is increased.
  • the shape of the storage unit can also be simply replaced with a rectangular parallelepiped, ring, etc.
  • the present disclosure provides a spin-orbit moment magnetic random memory cell, array, and Hamming distance calculation method, which can realize high-speed Hamming distance calculation and result storage with a smaller area overhead, and has important applications prospect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

本公开提供了一种自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法,其自旋轨道矩磁随机存储单元包括:磁隧道结、第一晶体管和第二晶体管,第一晶体管的漏极端与磁隧道结的底部连接,第二晶体管的漏极端与磁隧道结的顶部连接。本公开在全电场条件下实现无外磁场确定性自旋磁化翻转,同时具有利用非极性电流控制阻态变化的特性,自旋轨道矩磁随机存储单元构成的阵列可在外围电路控制下,实现存算一体的异或逻辑,进而可用于可重构高并行计算的硬件实现中,如存内的汉明权重以及汉明距离运算。

Description

自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法 技术领域
本公开涉及集成电路领域,尤其涉及一种自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法。
背景技术
汉明权重定义为二进制字符串中非零字符的数目,汉明距离定义为两个等长二进制字符串之间,对应位置的不同字符的个数,其在图像识别、信息编码以及信息安全领域有着广泛的应用。
而在数据处理需求量日益加大,处理速度要求日益提高的信息化时代中,基于“冯诺依曼”架构的计算系统的发展,日益受到内存与处理器速度差距导致的“内存墙”问题,限制数据处理速度与带宽的进一步提升。
本领域技术人员亟需研发一种利于突破内存墙限制的基于非易失存储器设计的存算一体架构,以提升信息处理能力。
发明内容
(一)要解决的技术问题
本公开提供了一种自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法,以解决以上所提出的技术问题。
(二)技术方案
根据本公开的一个方面,提供了一种自旋轨道矩磁随机存储单元,包括:磁隧道结、第一晶体管和第二晶体管;所述第一晶体管的漏极端与所述磁隧道结的底部连接;所述第二晶体管的漏极端与所述磁隧道结的顶部连接。
在本公开的一些实施例中,所述磁隧道结自下而上包括:自旋轨道耦合层、铁磁自由层、隧穿层、铁磁参考层、顶电极层;
所述第一晶体管的漏极端与所述自旋轨道耦合层连接,所述第二晶体管的漏极端与所述顶电极层连接。
在本公开的一些实施例中,所述铁磁自由层与所述铁磁参考层均为垂直各项异性的磁性材料,所述垂直各项异性的磁性材料为CoFeB、Co 2FeAl、Co、CoFe、Fe 3GeTe 2和Ni 3GeTe 2中任一种。
在本公开的一些实施例中,所述自旋轨道耦合层和所述铁磁自由层间的反对称交换作用系数为0.1-1mJ/m 2
根据本公开的一个方面,还提供了一种自旋轨道矩磁随机存储阵列,包括:m条写字线、m条读字线、n条写位线、n条读位线、n条源线以及m行n列存储单元,其中,所述存储单元为如上所述的自旋轨道矩磁随机存储单元,m和n为正整数;
位于同一列的每个所述存储单元连接同一条写位线,位于同一列的每个所述存储单元连接同一条读位线,位于同一列的每个所述存储单元连接同一条源线;
位于同一行的每个所述存储单元连接同一条写字线,位于同一行的每个所述存储单元连接同一条读字线。
根据本公开的一个方面,还提供了一种基于如上所述的自旋轨道矩磁随机存储阵列的汉明距离计算方法,包括:
开启所述第二晶体管,注入初始化电流,使所述磁隧道结产生自旋转矩效应,使所述磁隧道结初始化为高阻态;
第一二进制字符串信息和第二二进制字符串信息分别被编码于所述写位线与所述源线,开启第一晶体管,对所述第一二进制字符串信息和所述第二二进制字符串信息进行存内异或运算,并将存内异或运算结果存储在所述自旋轨道矩磁随机存储阵列中;
所述读位线控制所述第二晶体管打开,根据所述源极线和所述读位线间存在的电压差,读取存储在所述自旋轨道矩磁随机存储阵列中的所述存内异或运算结果,确定汉明距离。
在本公开的一些实施例中,所述存内异或运算结果存储在所述自旋轨道矩磁随机存储阵列对角线所在的所述自旋轨道矩磁随机存储单元中。
在本公开的一些实施例中,所述第一二进制字符串信息和所述第二二进制字符串信息包括N位字符,其中,N为正整数。
根据本公开的一个方面,还提供了一种基于如上所述的自旋轨道矩磁随机存储阵列的汉明距离计算方法,包括:
开启所述第二晶体管,注入初始化电流,使所述磁隧道结产生自旋转矩效应,使所述磁隧道结初始化为高阻态;
采用所述第一二进制字符串信息,并行控制所述自旋轨道矩磁随机存储阵列一列的N位写字线,将所述第一二进制字符串信息的汉明权重写入所述自旋轨道矩磁随机存储阵列中;再采用所述第二二进制字符串信息并行控制所述自旋轨道矩磁随机存储阵列一列的N位写字线,对所述第一二进制字符串信息和所述第二二进制字符串信息通过同样方式写入,以此进行两个字符串存内异或运算,并将存内异或运算结果存储在所述自旋轨道矩磁随机存储阵列 中;其中,所述第一二进制字符串信息和所述第二二进制字符串信息包括N位字符,其中,N为正整数;
所述读位线控制所述第二晶体管打开,根据所述源极线和所述读位线间存在的电压差,读取存储在所述自旋轨道矩磁随机存储阵列中的所述存内异或运算结果,确定汉明距离。
在本公开的一些实施例中,所述将所述第一二进制字符串信息的汉明权重写入所述自旋轨道矩磁随机存储阵列中包括:
所述第一二进制字符串信息中一个字符信息为“1”时,所述第一晶体管导通,写电流注入该字符信息对应的所述自旋轨道矩磁随机存储单元中;所述第一二进制字符串信息中一个字符信息为“0”时,所述第一晶体管关断。
(三)有益效果
从上述技术方案可以看出,本公开自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法至少具有以下有益效果其中之一或其中一部分:
(1)本公开提供的自旋轨道矩磁随机存储单元能够在全电场条件下实现无外场确定性自旋磁化翻转,同时具有纳秒级写入速度,进而基于独特的电路设计可用于纳秒级高速、低写延时存算一体阵列的实现中,且具有较低功耗。
(2)本公开提供的自旋轨道矩磁随机存储阵列可利用电压控制,在2-3个操作周期内实现字符串的汉明权重存储以及汉明距离计算。
(3)本公开提供的自旋轨道矩磁随机存储单元结构简单,材料体系与CMOS工艺可兼容,利于大规模制备和集成。
(4)本公开提供的自旋轨道矩磁随机存储单元,对外磁场的依赖,可重构逻辑运算提高了自旋轨道矩磁随机存储单元的存算一体阵列的灵活性,与现有技术相比,本公开能够在更小的面积开销下实现高速的汉明距离计算以及结果存储。
附图说明
图1为本公开第一实施例自旋轨道矩磁随机存储单元的结构示意图;
图2为磁隧道结中铁磁自由层实现全电控自旋磁化翻转的仿真结果示意图;
图3为本公开第一实施例自旋轨道矩磁随机存储单元版图设计示意图;
图4为本公开第一实施例自旋轨道矩磁随机存储阵列示意图;
图5为本公开第一实施例汉明距离计算方法框图;
图6为本公开第一实施例汉明距离计算方法示意图;
图7为本公开第一实施例汉明距离计算结果读取数据示意图;
图8为本公开第二实施例汉明距离计算方法示意图;
图9为本公开第二实施例汉明距离计算结果读取数据示意图。
具体实施方式
本公开提供了一种自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法,其自旋轨道矩磁随机存储单元包括:磁隧道结、第一晶体管和第二晶体管,第一晶体管的漏极端与磁隧道结的底部连接,第二晶体管的漏极端与磁隧道结的顶部连接。本公开在全电场条件下实现无外磁场确定性自旋磁化翻转,同时具有利用非极性电流控制阻态变化的特性。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
本公开某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本公开的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本公开满足适用的法律要求。
在本公开的第一个示例性实施例中,提供了一种自旋轨道矩磁随机存储单元。图1为本公开第一实施例自旋轨道矩磁随机存储单元的结构示意图。如图1所示,本公开自旋轨道矩磁随机存储单元包括:磁隧道结、第一晶体管106和第二晶体管107,第一晶体管106的漏极端与磁隧道结的底部连接,第二晶体管107的漏极端与磁隧道结的顶部连接。其中,磁隧道结为自旋轨道矩磁隧道结(SOT-MTJ)。
其中关于磁隧道结的结构具体自下而上包括:自旋轨道耦合层105、铁磁自由层104、隧穿层103、铁磁参考层102、顶电极层101;第一晶体管106的漏极端与自旋轨道耦合层105连接,第二晶体管107的漏极端与顶电极层101连接。
其中,铁磁自由层104与铁磁参考层102的材料均选用CoFeB、Co 2FeAl、CO、或二维铁磁材料Fe 3GeTe 2、Ni 3GeTe 2中任一种,具有垂直于面内的易磁化方向,有利于器件尺寸的微缩以及快速磁化翻转。
在写入过程中,第一晶体管106的栅电压置于高电平,此时若自旋轨道矩磁随机存储单元两端存在压降,则有写入电流脉冲通过自旋轨道耦合层105,由于自旋轨道耦合层105中重金属具有的自旋轨道耦合效应,注入的电流会对铁磁自由层104产生自旋轨道力矩的作用,通常用类场力矩以及类阻尼力矩之比描述。通过DM(Dzyaloshinskii-Moriya,反对称)相互作用与自由层类场力矩和类阻尼力矩的比值λ FLDL,两者共同作用可以实现的自由层中磁化方向的无外场翻转。具体操作现象将在图2中进行描述。当铁磁自由层104的磁化方向与铁磁参考层102相同时,MRAM呈现低阻态,可以用二进制信息“1”表示;当铁磁自由层104 的磁化方向与铁磁参考层102相反时,MRAM呈现高阻态,可以用二进制信息“0”表示。
在读取过程中,第二晶体管107栅电压置于高电平,第二晶体管107打开,此时顶电极与自旋轨道耦合层105之间产生读电压差,根据基尔霍夫定律,自旋轨道矩磁随机存储单元中所存阻态的不同,高阻态和低阻态分别产生不同的电流值。
具体的写入过程如图2所示。通过mumax3软件仿真,调制DM相互作用系数D=0.3mJ/m 2,图中无外场翻转时所需λ FLDL为0.02。为了描述翻转过程,将自旋轨道矩磁随机存储单元起始转态设置为高阻态,铁磁自由层104垂直磁化分量与饱和磁化分量之比M z/M s为1。此时在铁磁自由层104中注入第一脉冲,其中第一脉冲的电流密度Jc=-2.78×10 8A/cm 2,第一脉冲的电流方向从第一晶体管106到磁隧道结为正(反之为负),第一脉冲的脉宽为0.3ns。第一脉冲施加的过程中,铁磁自由层104的磁化方向从自旋向上变化到平面内,即M z/M s=0,并在脉冲施加完毕后驰豫到与初始时刻相反的位置,即磁化方向向下,即M z/M s=-1,实现了自旋轨道矩磁随机存储单元阻态从高阻到低阻的变化,且整体切换时间<2ns。第4ns时施加与第一脉冲完全相同的第二脉冲,磁化方向切换回原来的高阻态,验证了负向电流情况下,无外场辅助SOT-MRAM的阻态切换。第8ns时,施加正向的第三脉冲,电流幅值、脉宽与第一脉冲、第二脉冲相同,此时自旋轨道矩磁随机存储单元的磁化变化显出了与第一脉冲完全相同的施加效果,将自旋轨道矩磁随机存储单元从高阻态切换到低阻态。最后施加与第三脉冲相同的第四脉冲,同样实现阻态的变化。上述电流操作进一步验证了该自旋轨道矩磁随机存储单元的非极性写入操作,本公开使得阻态的切换只取决于脉冲的有无,而不依赖于电流脉冲的幅值或是电流的极性。相比较于幅值决定或是极性决定的忆阻器而言,设计更加简单。
本领域技术人员可以理解的是,上述参数根据材料体系以及物理尺寸等条件而存在差别,不作为具体限定。
图3为本公开第一实施例自旋轨道矩磁随机存储单元版图设计示意图。如图3所示,本公开提供的自旋轨道矩磁随机存储单元中第一晶体管106的栅极端与写字线WWL相连,第二晶体管107的栅极与读字线RWL相连,磁隧道结未连接第一晶体管106和第二晶体管107的一端与与源极线SL相连。
在本公开的第一个示例性实施例中,还提供了一种自旋轨道矩磁随机存储阵列。图4为本公开第一实施例自旋轨道矩磁随机存储阵列示意图。如图4所示,本公开提供的自旋轨道矩磁随机存储阵列包括:m条写字线WWL、m条读字线RWL、n条写位线WBL、n条读位线RBL、n条源线SL以及m行n列存储单元,其中,所述存储单元为如上所述的自旋轨道矩磁随机存储单元,m和n为正整数。位于同一列的每个所述存储单元连接同一条写位线WBL,位于同一列的每个所述存储单元连接同一条读位线RBL,位于同一列的每个所述存储 单元连接同一条源线SL。位于同一行的每个所述存储单元连接同一条写字线WWL,位于同一行的每个所述存储单元连接同一条读字线RWL。
在本公开的第一个示例性实施例中,还提供了一种基于如上所述的自旋轨道矩磁随机存储阵列的汉明距离计算方法。图5为本公开第一实施例汉明距离计算方法框图。如图5所示,本公开第一实施例中提供的汉明距离计算方法包括:
操作S510,开启第二晶体管,注入初始化电流,使磁隧道结产生自旋转矩效应,使磁隧道结形成高阻态。结合图6a所示,存储单元进行写入以及计算前需要进行初始化,此时读字线RWL置于高电平,在第二晶体管外加栅压,开启第二晶体管。此时的初始化电流通过磁隧道结,并通过自旋转移矩效应,翻转铁磁自由层104的磁化方向,使其与参考层磁化方向相反,将自旋轨道矩磁随机存储阵列中选中的磁隧道结写“0”,即此时的磁隧道结处于高阻态HRS。
操作S520,第一二进制字符串信息和第二二进制字符串信息分别被编码于所述写位线与所述源线,开启第一晶体管,对所述第一二进制字符串信息和所述第二二进制字符串信息进行存内异或运算,并将存内异或运算结果存储在所述自旋轨道矩磁随机存储阵列中。结合如图6b所示,当第一二进制字符串信息或第二二进制字符串信息中的一位字符为“0”代表低电平,一位字符为“1”代表高电平。则如果第一二进制字符串信息与第二二进制字符串信息对字符相同,即同为“0”或者同为“1”,则自旋轨道矩磁随机存储单元的自旋轨道耦合层105两端不存在电势差,此时自旋轨道矩磁随机存储单元当中存储的数据保持不变,依然为高阻态。如果第一二进制字符串信息与第二二进制字符串信息对字符不相同,即一个字符为“0”,另一个字符为“1”,则自旋轨道矩磁随机存储单元的自旋轨道耦合层105两端产生电势差,电流流经电阻较小的自旋轨道耦合层105,通过自旋轨道耦合效应产生自旋流,对磁隧道结的铁磁自由层104的铁磁材料产生力矩的作用,此时自旋轨道矩磁随机存储单元当中存储的数据产生切换,从高阻态变化为低阻态。
以N=8的八位字符串为例,第一二进制字符串信息S1=“01101001”,第二二进制字符串信息S2=“11010011”,上述的操作实现了等长第一二进制字符串信息S1与第二二进制字符串信息S2之间各个字符的XOR逻辑运算,并将运算结果“10111010”存储在MRAM阵列的对角线存储单元之中,其中运算结果“1”的数目即为第一二进制字符串信息S1与第二二进制字符串信息S2的汉明距离。
操作S530,读位线控制第二晶体管打开,根据所述源极线和所述读位线间存在的电压差,读取存储在所述自旋轨道矩磁随机存储阵列中的所述存内异或运算结果,确定汉明距离。
如图6c所示,读取操作时,写字线WWL置于低电平,而读字线RWL置于高电平,第 一晶体管关断,第二晶体管导通,此时在源线SL施加读电压,则在读位线RBL与源线SL之间产生电压降,根据流过磁隧道结的读电流,可以读取磁隧道结存储的阻态。结合图7所示,高阻态(HRS)、低阻态(LRS)分别对应单个自旋轨道矩磁随机存储单元在高阻态和低阻态的读电流,通过外围放大电路可以对两者进行读取与区分,从而实现汉明该SOT-MRAM所存汉明距离运算结果的读取。上述操作皆可并行进行,且阵列数目不局限于8×8,加快了数据处理的效率。
在本公开的第二个示例性实施例中,提供了一种基于如上所述的自旋轨道矩磁随机存储阵列的汉明距离计算方法。与第一实施例的汉明距离计算方法相比,本实施例汉明距离计算方法的区别在于:第一二进制字符串信息和第二二进制字符串信息异步被编码于写字线中。具体的,第一个周期里,第一二进制字符串信息并行控制自旋轨道矩磁随机存储阵列某一列的m位写字线,一位字符信息为“1”时,第一晶体管导通,写电流注入自旋轨道矩磁随机存储阵列;而一位字符信息为“0”时,第一晶体管关断,无电流通过MRAM,其原有信息保持不变。由此将第一二进制字符串信息S1的汉明权重写入MRAM阵列中。第二个周期里,第二二进制字符串信息并行控制存储阵列某一列的写字线,实现第一二进制字符串信息与第二二进制字符串信息的异或运算,并将结果存储在对应自旋轨道矩磁随机存储单元中。
如图8a所示,自旋轨道矩磁随机存储单元进行写入以及计算前需要进行初始化,该操作与第一实施例中相同,这里不再赘述。
字符串作为写字线WWL信号,通过控制第一晶体管的栅压,进行写入与计算,如图8b所示:
字符为“0”时,写字线WWL位于低电平,第一晶体管关断;字符为“1”时,写字线WWL位于高电平,第一晶体管导通。在第一个写入周期内,第一二进制字符串信息首先输入同列自旋轨道矩磁随机存储阵列,每个字符对应一个自旋轨道矩磁随机存储单元。当第一二进制字符串信息中的字符为“0”时,对应自旋轨道矩磁随机存储单元的第一晶体管关断,此时自旋轨道矩磁随机存储阵列当中存储的数据保持不变,依然为高阻态;当第一二进制字符串信息中的字符为“1”时,第一晶体管导通,电流流经自旋轨道耦合层105,通过自旋轨道耦合效应产生自旋流,对磁隧道结中铁磁自由层104的铁磁材料产生力矩的作用,此时自旋轨道矩磁随机存储单元中存储的数据产生切换,从高阻态变化为低阻态,该操作存储了第一二进制字符串信息中汉明权重的信息(即“1”的数目)。第二个写入周期,第二二进制字符串信息作为栅控电压,写入上述的自旋轨道矩磁随机存储阵列中,当第一二进制字符串信息中的字符为“0”时,对应自旋轨道矩磁随机存储单元的第一晶体管关断,此时自旋轨道矩磁随机存储阵列中存储的数据不变,与第一个写入周期结束后,所存阻态相同。当第一二进 制字符串信息中的字符为“1”时,第一晶体管导通,电流流经自旋轨道耦合层105,通过自旋轨道耦合效应产生自旋流,对磁隧道结的铁磁自由层104的铁磁材料产生力矩的作用,此时自旋轨道矩磁随机存储单元中存储的数据产生切换,与第一个写入周期结束后的结果相异。从而实现第一二进制字符串信息与第二二进制字符串信息中,对应字符的异或运算操作。
同样以N=8的八位字符串为例,第一二进制字符串信息S1=“01101001”,第二二进制字符串信息S2=“11010011”。第一写入周期结束后,自旋轨道矩磁随机存储阵列中存储信息为“01101001”;第二写入周期结束后,自旋轨道矩磁随机存储阵列中存储信息为“10111010”,其中,第二周期结束后,所存“1”的个数即为两个字符串的汉明距离。
在读取时,进行计算的所在列的写字线WWL置于低电平,而读字线RWL置于高电平,第一晶体管关断,第二晶体管导通,在源线施加读电压,则在读位线与源线之间产生电压降,根据流过磁隧道结的总电流(如图8c中箭头所示),可以反映磁隧道结存储的低阻态数目,从而得出汉明距离。
图9为本公开第二实施例汉明距离计算结果读取数据示意图。如图9所示,第一二进制字符串信息和第二二进制字符串信息均为N=8的八位字符串,其所有字符对应相同时,自旋轨道矩磁随机存储阵列计算结果为“00000000”,皆为高阻态,所得到的总电流约60μA,此时,对应汉明距离为“0”。第一二进制字符串信息和第二二进制字符串信息所有字符对应不相同时,自旋轨道矩磁随机存储阵列计算结果为“11111111”,自旋轨道矩磁随机存储单元皆为低阻态,所得到的总电流约90μA,此时,对应汉明距离为“8”;其余中间情况,产生的电流以及电流反映的汉明距离计算结果如图9所示。利用自旋轨道矩磁随机存储阵列某列进行计算,相比于第一实施例中利用对角线所在单元操作的方法,在并行写入字符串的同时,增加了阵列的利用率。
为了达到简要说明的目的,上述第一实施例中任何可作相同应用的技术特征叙述皆并于此,无需再重复相同叙述。
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换,例如:
存储单元形状还可以以长方体、环形等形状做简单替换。
依据以上描述,本领域技术人员应当对本公开自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法有了清楚的认识。
综上所述,本公开提供一种自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法,能 够在更小的面积开销下实现高速的汉明距离计算以及结果存储,具有重要的应用前景。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。
并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近似值,能够根据通过本公开的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的含量、反应条件等等的数字,应理解为在所有情况中是受到“约”的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。
再者,单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。
说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。
此外,除非特别描述或必须依序发生的步骤,上述步骤的顺序并无限制于以上所列,且可根据所需设计而变化或重新安排。并且上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。
类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围内。

Claims (10)

  1. 一种自旋轨道矩磁随机存储单元,包括:
    磁隧道结;
    第一晶体管,所述第一晶体管的漏极端与所述磁隧道结的底部连接;以及
    第二晶体管,所述第二晶体管的漏极端与所述磁隧道结的顶部连接。
  2. 根据权利要求1所述的自旋轨道矩磁随机存储单元,其中,所述磁隧道结自下而上包括:自旋轨道耦合层、铁磁自由层、隧穿层、铁磁参考层、顶电极层;
    所述第一晶体管的漏极端与所述自旋轨道耦合层连接,所述第二晶体管的漏极端与所述顶电极层连接。
  3. 根据权利要求2所述的自旋轨道矩磁随机存储单元,其中,所述铁磁自由层与所述铁磁参考层均为垂直各项异性的磁性材料,所述垂直各项异性的磁性材料为CoFeB、Co 2FeAl、Co、CoFe、Fe 3GeTe 2和Ni 3GeTe 2中任一种。
  4. 根据权利要求2所述的自旋轨道矩磁随机存储单元,其中,所述自旋轨道耦合层和所述铁磁自由层间的反对称交换作用系数为0.1-1mJ/m 2
  5. 一种自旋轨道矩磁随机存储阵列,包括:m条写字线、m条读字线、n条写位线、n条读位线、n条源线以及m行n列存储单元,其中,所述存储单元为如权利要求1至4中任一项所述的自旋轨道矩磁随机存储单元,m和n为正整数;
    位于同一列的每个所述存储单元连接同一条写位线,位于同一列的每个所述存储单元连接同一条读位线,位于同一列的每个所述存储单元连接同一条源线;
    位于同一行的每个所述存储单元连接同一条写字线,位于同一行的每个所述存储单元连接同一条读字线。
  6. 一种基于如权利要求5所述的自旋轨道矩磁随机存储阵列的汉明距离计算方法,包括:
    开启所述第二晶体管,注入初始化电流,使所述磁隧道结产生自旋转矩效应,使所述磁隧道结初始化为高阻态;
    第一二进制字符串信息和第二二进制字符串信息分别被编码于所述写位线与所述源线, 开启第一晶体管,对所述第一二进制字符串信息和所述第二二进制字符串信息进行存内异或运算,并将存内异或运算结果存储在所述自旋轨道矩磁随机存储阵列中;以及
    所述读位线控制所述第二晶体管打开,根据所述源极线和所述读位线间存在的电压差,读取存储在所述自旋轨道矩磁随机存储阵列中的所述存内异或运算结果,确定汉明距离。
  7. 根据权利要求6所述的汉明距离计算方法,其中,所述存内异或运算结果存储在所述自旋轨道矩磁随机存储阵列对角线所在的所述自旋轨道矩磁随机存储单元中。
  8. 根据权利要求6所述的汉明距离计算方法,其中,所述第一二进制字符串信息和所述第二二进制字符串信息包括N位字符,其中,N为正整数。
  9. 一种基于如权利要求5所述的自旋轨道矩磁随机存储阵列的汉明距离计算方法,包括:
    开启所述第二晶体管,注入初始化电流,使所述磁隧道结产生自旋转矩效应,使所述磁隧道结初始化为高阻态;
    采用所述第一二进制字符串信息,并行控制所述自旋轨道矩磁随机存储阵列一列的N位写字线,将所述第一二进制字符串信息的汉明权重写入所述自旋轨道矩磁随机存储阵列中;再采用所述第二二进制字符串信息并行控制所述自旋轨道矩磁随机存储阵列一列的N位写字线,对所述第一二进制字符串信息和所述第二二进制字符串信息通过同样方式写入,以此进行两个字符串存内异或运算,并将存内异或运算结果存储在所述自旋轨道矩磁随机存储阵列中;其中,所述第一二进制字符串信息和所述第二二进制字符串信息包括N位字符,其中,N为正整数;以及
    所述读位线控制所述第二晶体管打开,根据所述源极线和所述读位线间存在的电压差,读取存储在所述自旋轨道矩磁随机存储阵列中的所述存内异或运算结果,确定汉明距离。
  10. 根据权利要求9所述的汉明距离计算方法,其中,所述将所述第一二进制字符串信息的汉明权重写入所述自旋轨道矩磁随机存储阵列中包括:
    所述第一二进制字符串信息中一个字符信息为“1”时,所述第一晶体管导通,写电流注入该字符信息对应的所述自旋轨道矩磁随机存储单元中;所述第一二进制字符串信息中一个字符信息为“0”时,所述第一晶体管关断。
PCT/CN2021/073065 2021-01-21 2021-01-21 自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法 WO2021253826A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/005,756 US20230280978A1 (en) 2021-01-21 2021-01-21 Spin orbit torque magnetic random access memory cell, spin orbit torque magnetic random access memory array, and method for calculating hamming distance
PCT/CN2021/073065 WO2021253826A1 (zh) 2021-01-21 2021-01-21 自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073065 WO2021253826A1 (zh) 2021-01-21 2021-01-21 自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法

Publications (1)

Publication Number Publication Date
WO2021253826A1 true WO2021253826A1 (zh) 2021-12-23

Family

ID=79269120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073065 WO2021253826A1 (zh) 2021-01-21 2021-01-21 自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法

Country Status (2)

Country Link
US (1) US20230280978A1 (zh)
WO (1) WO2021253826A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130270661A1 (en) * 2012-04-16 2013-10-17 Ge Yi Magnetoresistive random access memory cell design
CN112002722A (zh) * 2020-07-21 2020-11-27 中国科学院微电子研究所 自旋电子器件、sot-mram存储单元、存储阵列以及存算一体电路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130270661A1 (en) * 2012-04-16 2013-10-17 Ge Yi Magnetoresistive random access memory cell design
CN112002722A (zh) * 2020-07-21 2020-11-27 中国科学院微电子研究所 自旋电子器件、sot-mram存储单元、存储阵列以及存算一体电路

Also Published As

Publication number Publication date
US20230280978A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
Fong et al. Spin-transfer torque memories: Devices, circuits, and systems
Zhang et al. Stateful reconfigurable logic via a single-voltage-gated spin hall-effect driven magnetic tunnel junction in a spintronic memory
US11790968B2 (en) Spintronic device, SOT-MRAM storage cell, storage array and in-memory computing circuit
Trinh et al. Magnetic adder based on racetrack memory
CN112767980B (zh) 自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法
CN112599161B (zh) 多阻态自旋电子器件、读写电路及存内布尔逻辑运算器
US10802827B2 (en) Memory device having in-situ in-memory stateful vector logic operation
Patil et al. Spintronic logic gates for spintronic data using magnetic tunnel junctions
WO2022073311A1 (zh) 一种自参考存储结构和存算一体电路
WO2023015662A1 (zh) 一种磁阻存储器单元、写控制方法及存算模块
CN111986717A (zh) 无外磁场定向自旋翻转的sot-mram及阵列
Agrawal et al. Magnetoresistive circuits and systems: Embedded non-volatile memory to crossbar arrays
Zhao et al. Racetrack memory based reconfigurable computing
Deng Design and development of low-power and reliable logic circuits based on spin-transfer torque magnetic tunnel junctions
Wang et al. Efficient time-domain in-memory computing based on TST-MRAM
Fan Low power in-memory computing platform with four terminal magnetic domain wall motion devices
WO2021253826A1 (zh) 自旋轨道矩磁随机存储单元、阵列及汉明距离计算方法
Prajapati et al. High-performance computing-in-memory architecture based on single-level and multilevel cell differential spin Hall MRAM
CN113451505B (zh) 磁性随机存储单元、存储器及设备
US7872904B2 (en) Magnetic random access memory
CN114038991A (zh) 自旋电子器件、存储单元、存储阵列和读写电路
Bai et al. A novel in-memory computing scheme based on toggle spin torque MRAM
Hu et al. Process variation model and analysis for domain wall-magnetic tunnel junction logic
WO2022141226A1 (zh) 多阻态自旋电子器件、读写电路及存内布尔逻辑运算器
WO2022155828A1 (zh) 三态自旋电子器件、存储单元、存储阵列及读写电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826775

Country of ref document: EP

Kind code of ref document: A1