WO2021253748A1 - 光固化3d打印方法及光固化3d打印系统 - Google Patents

光固化3d打印方法及光固化3d打印系统 Download PDF

Info

Publication number
WO2021253748A1
WO2021253748A1 PCT/CN2020/134575 CN2020134575W WO2021253748A1 WO 2021253748 A1 WO2021253748 A1 WO 2021253748A1 CN 2020134575 W CN2020134575 W CN 2020134575W WO 2021253748 A1 WO2021253748 A1 WO 2021253748A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
curing
printing
release medium
transmitting member
Prior art date
Application number
PCT/CN2020/134575
Other languages
English (en)
French (fr)
Inventor
邢永锋
黄鹤源
万欣
杨磊
桂培炎
Original Assignee
广州黑格智造信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州黑格智造信息科技有限公司 filed Critical 广州黑格智造信息科技有限公司
Publication of WO2021253748A1 publication Critical patent/WO2021253748A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • This application relates to the field of 3D printing technology, and in particular to a light-curing 3D printing method and a light-curing 3D printing system.
  • the printer After the printer completes one layer of printing, it needs to control the forming platform to move up a certain distance to separate the printed part from the release medium, thereby completing the peeling operation.
  • the cavity formed between the release medium and the light-transmitting member forms a positive pressure, and the release medium swells and swells upwards, which makes the release medium slack and soften, which facilitates the printing and separation.
  • the type of medium is peeled off, but this will make the forming platform need to walk a long distance to complete the peeling operation, which undoubtedly increases the printing time.
  • the purpose of this application is to provide a light-curing 3D printing method and a light-curing 3D printing system, which, to a certain extent, solves the problem of positive pressure in the cavity formed between the release medium and the light-transmitting member in the prior art. , Leading to technical problems that take too long to print.
  • This application provides a light-curing 3D printing method, which includes the following steps:
  • the forming platform moves down;
  • the cavity formed between the release medium and the light-transmitting member is extracted to the second negative pressure state, and the molding platform is moved up to perform the peeling operation.
  • the pressure of the cavity formed between the release medium and the light-transmitting member is defined as a1;
  • the pressure of the cavity formed between the release medium and the light-transmitting member is defined as a2;
  • the light-curing 3D printing method further includes the following steps:
  • the present application also provides a light-curing 3D printing system, which is applied to the light-curing 3D printing method described in any of the above technical solutions, and thus has all the beneficial technical effects of the device, which will not be repeated here.
  • the light curing 3D printing system includes a lifting mechanism, a forming platform, a material tray, an air pressure adjusting device, and a light source; wherein, the forming platform is connected to the lifting mechanism, and the lifting mechanism can Drive the forming platform close to or away from the material tray;
  • the tray includes a release medium and a light-transmitting member, a cavity is formed between the release medium and the light-transmitting member, and the cavity is in communication with the air pressure adjusting device;
  • the tray is provided with a light-transmitting part, and the light source can irradiate light to the light-transmitting member through the light-transmitting part.
  • the forming platform, the tray, and the light source are arranged from top to bottom along a vertical direction.
  • control device is respectively communicatively connected with the air pressure adjusting device, the light source, and the lifting mechanism.
  • the tray further includes a base and a clamping member; wherein the base is provided with a groove, and the groove penetrates the top surface of the base; the transparent The optical member is arranged in the groove; the release medium is arranged on the top surface of the base, and the release medium is pressed between the base and the clamping member;
  • the release medium, the inner wall of the groove, and the light-transmitting member surround the cavity, and the cavity is communicated with the air pressure adjusting device.
  • the clamping member is arranged above the release medium, and the clamping member and the base are connected by a fastener for connecting the release medium.
  • the medium is pressed on the base.
  • the light-transmitting member is light-transmitting glass.
  • FIG. 1 is a flowchart of a photocuring 3D printing method provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a light curing 3D printing system provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the structure of the tray provided by the embodiment of the application before exposure;
  • FIG. 4 is a schematic diagram of the structure of the material tray provided by the embodiment of the application when peeling off;
  • Fig. 5 is an enlarged schematic diagram of Fig. 4 at A.
  • 1- Lifting mechanism 2- Forming platform, 3- Material tray, 31- Base, 311- Through hole, 32- Clamping member, 4- Air pressure regulator, 5- Light source, 6-Release medium, 7- Transparency Component, 8-pipeline, 9-control device, 10-printing material, 11-printing, 12-cavity.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the light-curing 3D printing method and the light-curing 3D printing system according to some embodiments of the present application are described below with reference to FIGS. 1 to 5.
  • the embodiment of the present application provides a light curing 3D printing method, which includes the following steps:
  • the forming platform moves down;
  • the cavity formed between the release medium and the light-transmitting member is extracted to the second negative pressure state, and the molding platform is moved up to perform the peeling operation;
  • the air pressure in the cavity is adjusted to a negative pressure state, so that the release medium is attached to the upper surface of the light-transmitting member to provide sufficient flatness to ensure a uniform printing surface;
  • the air pressure in the cavity is also adjusted to a negative pressure state, so that the release medium and the printed part can be separated by moving a short distance on the forming platform, which reduces the printing time.
  • the release medium is more than in the past In the bulging state, the amount of deformation is smaller, which is beneficial to the reflow of printing materials such as resin, and further reduces the printing time.
  • the pressure of the cavity formed between the release medium and the light-transmitting member is defined as a1;
  • the pressure of the cavity formed between the release medium and the light-transmitting member is defined as a2;
  • the release medium can be slack and softened, which facilitates the separation of the printed part and the release medium, and at the same time reduces the moving distance of the forming platform, saves printing time, and improves the printing efficiency; and the release medium The deformation of is smaller, which is conducive to the reflow of the resin and further reduces the printing time.
  • the pressure in the chamber can be changed by an air pressure adjusting device, etc., to adjust to the required pressure;
  • the photocurable 3D printing method provided in this embodiment can greatly shorten the printing time and improve the printing efficiency.
  • the embodiment of the present application also provides a light-curing 3D printing system.
  • the light-curing 3D printing system includes: a lifting mechanism 1, a forming platform 2. Material tray 3, air pressure adjusting device 4 and light source 5; wherein, the forming platform 2 is connected to the lifting mechanism 1, and the lifting mechanism 1 can drive the forming platform 2 close to or away from the material tray 3; specifically, the forming platform 2, the material tray 3 And the light source 5 is arranged from top to bottom along the vertical direction.
  • the tray 3 includes a release medium 6 and a light-transmitting member 7, a cavity 12 is formed between the release medium 6 and the light-transmitting member 7, and the cavity 12 is in communication with the air pressure adjusting device 4;
  • the tray 3 is provided with a light-transmitting part, and the light source 5 can irradiate light to the light-transmitting member 7 through the light-transmitting part.
  • translucent in the light-transmitting member 7 means that an object has the characteristic of at least allowing the light that causes the polymerization reaction of the printing material 10 to pass.
  • transmitting can mean that an object can at least allow ultraviolet light.
  • the light-transmitting member 7 may be light-transmitting glass.
  • the printing material 10 needs to be placed in the space enclosed by the base 31 and the clamping member 32, and then the light-curing 3D printing system starts to work.
  • the specific working steps are as follows:
  • the lifting mechanism 1 drives the molding platform 2 to move down; the air pressure adjusting device 4 is used to extract the cavity 12 formed between the release medium 6 and the light-transmitting member 7 to the first negative pressure state, and then the light source 5 is used to sequentially pass through the base 31
  • the light-transmitting part and the light-transmitting member 7 irradiate the release medium 6 and perform exposure to perform photo-curing treatment on the printing material 10;
  • the lifting mechanism 1 drives the forming platform 2 to move up to drive the printed part 11 to move up, so that It is separated from the release medium 6 to perform a peeling operation; after the peeling operation is completed, if
  • the air pressure in the cavity 12 is adjusted to a negative pressure state, so that the release medium 6 is attached to the upper surface of the light-transmitting member 7 to provide sufficient flatness to ensure printing The surface is uniform; during peeling, the air pressure in the cavity 12 is also adjusted to a negative pressure state, so that the molded product table moves a short distance to complete the separation of the release medium 6 and the print 11, which reduces the printing time .
  • the release medium 6 has a smaller amount of deformation than the conventional swollen state, which facilitates the reflow of the printing material 10, such as resin, and further reduces the printing time.
  • the air pressure adjusting device 4 may be a pump body, or the air pressure adjusting device 4 may be a combined structure of a vacuum generator and a regulating valve.
  • the air pressure adjusting device 4 may be a pump body, or the air pressure adjusting device 4 may be a combined structure of a vacuum generator and a regulating valve.
  • a vacuum generator and a regulating valve.
  • it is not limited to this, and its structure can also be set according to actual needs.
  • the light curing 3D printing system further includes a control device 9 which is respectively connected to the air pressure adjusting device 4, the light source 5 and the lifting mechanism 1 in communication.
  • the control device 9 can control the operation of the air pressure adjusting device 4, the light source 5 and the lifting mechanism 1 respectively, and has strong controllability.
  • the tray 3 further includes a base 31 and a clamping member 32; wherein the base 31 is provided with a groove, and the groove penetrates the top surface of the base 31 The light-transmitting member 7 is provided in the groove; the release medium 6 is provided on the top surface of the base 31, and the release medium 6 is pressed between the base 31 and the clamping member 32;
  • the light-transmitting part is a through hole 311 provided in the middle of the base 31, and a light-transmitting member 7 is provided above the light-transmitting part, and a release medium 6 is provided above the light-transmitting member 7. A cavity 12 is formed between.
  • the structure of the light-transmitting part is not limited to this.
  • the light-transmitting part may also be a light-transmitting element embedded in the middle of the base 31, or a part or all of the base 31 is made of light-transmitting material.
  • the release medium 6, the light-transmitting member 7, and the top surface of the base 31 are surrounded by a cavity 12, and the cavity 12 is communicated with the air pressure adjusting device 4 through a ventilation channel opened on the base 31, specifically, the cavity 12 is
  • the pipeline 8 embedded in the channel communicates with the air pressure regulating device 4.
  • the air pressure adjusting device 4 adjusts the air pressure in the cavity 12 to the first negative pressure state by vacuuming; when peeling is required, the air pressure adjusting device 4 blows air into the cavity 12, The air pressure in the cavity 12 is adjusted to the second negative pressure state by the air pressure adjusting device 4 for peeling, or this step is omitted, and the peeling process is directly performed after exposure.
  • the clamping member 32 is arranged above the release medium 6, and the clamping member 32 and the base 31 are connected by fasteners for separating the The type medium 6 is pressed on the base 31. Fasteners are used to facilitate installation and disassembly.
  • the clamping member 32 has a quadrangular frame structure. It can not only press the periphery of the release medium 6 on the base 31 stably, but also avoid the forming platform 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种光固化3D打印方法及光固化3D打印系统,光固化3D打印方法包括如下步骤:成型平台(2)下移;将离型介质(6)和透光构件(7)之间所形成的空腔(12)抽取至第一负压状态,再进行曝光,以对打印材料(10)进行光固化处理;曝光完成后,将离型介质(6)和透光构件(7)之间所形成的空腔(12)抽取至第二负压状态,且成型平台(2)上移以进行剥离操作。该打印方法和打印系统可确保打印面均匀,并减少打印用时。

Description

光固化3D打印方法及光固化3D打印系统
相关申请的交叉引用
本申请基于申请号为202010545635.5、申请日为2020年06月15日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及3D打印技术领域,尤其是涉及一种光固化3D打印方法及光固化3D打印系统。
背景技术
目前,光固化3D打印过程中,打印机完成一层打印后,需要控制成型平台向上移动一段距离,使打印件和离型介质分离,由此完成剥离操作。然而现有技术中,在剥离时,离型介质和透光构件之间所形成的腔室形成正压,离型介质膨胀而往上鼓起,使得离型介质松弛软化,方便打印件和离型介质剥离,但这会使得成型平台需要走较长的一段距离来完成剥离操作,这无疑增加了打印用时。
发明内容
本申请的目的在于提供一种光固化3D打印方法及光固化3D打印系统,在一定程度上解决了现有技术中存在的由于离型介质和透光构件之间所形成的腔室形成正压,导致打印用时过长的技术问题。
本申请提供了一种光固化3D打印方法,包括如下步骤:
成型平台下移;
将离型介质和透光构件之间所形成的空腔抽取至第一负压状态,再进行曝光,以对打印材料进行光固化处理;
曝光完成后,将离型介质和透光构件之间所形成的空腔抽取至第二负压状态,且成型平台上移以进行剥离操作。
在上述技术方案中,进一步地,在所述第一负压状态下,所述离型介质和所述透光构件之间所形成的空腔的压力定义为a1;
在所述第二负压状态下,所述离型介质和透光构件之间所形成的空腔的压力定义为a2;
其中,a2≥a1。
在上述任一技术方案中,进一步地,所述光固化3D打印方法还包括如下步骤:
所述剥离操作完成后,继续打印或者停止打印。
本申请还提供了一种光固化3D打印系统,应用于上述任一技术方案所述的光固化3D打印方法,因而,具有该装置的全部有益技术效果,在此,不再赘述。
在上述技术方案中,进一步地,所述光固化3D打印系统包括升降机构、成型平台、料盘、气压调节装置以及光源;其中,所述成型平台连接于所述升降机构,所述升降机构能够驱动所述成型平台靠近或者远离所述料盘;
所述料盘包括离型介质以及透光构件,所述离型介质与所述透光构件之间形成空腔,且所述空腔与所述气压调节装置相连通;
所述料盘设置有透光部,所述光源能够将光通过所述透光部照射于所述透光构件。
在上述任一技术方案中,进一步地,所述成型平台、所述料盘以及所述光源沿着竖直方向从上向下设置。
在上述任一技术方案中,进一步地,所述控制装置分别与所述气压调节装置、所述光源以及所述升降机构通讯连接。
在上述任一技术方案中,进一步地,所述料盘还包括底座以及夹持构件;其中,所述底座设置有凹槽,且所述凹槽贯穿于所述底座的顶端面;所述透光构件设置在所述凹槽内;所述离型介质设置在所述底座的顶端面上,且所述离型介质压设在所述底座以及所述夹持构件之间;
所述离型介质、所述凹槽的内壁以及所述透光构件围设成所述空腔,且所述空腔与所述气压调节装置相连通。
在上述任一技术方案中,进一步地,所述夹持构件设置在所述离型介质的上方,且所述夹持构件与所述底座通过紧固件相连接,用于将所述离型介质压设于所述底座。
在上述任一技术方案中,进一步地,所述透光构件为透光玻璃。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的光固化3D打印方法的流程图;
图2为本申请实施例提供的光固化3D打印系统的结构示意图;
图3为本申请实施例提供的料盘进行曝光前的结构示意图;
图4为本申请实施例提供的料盘进行剥离时的结构示意图;
图5为图4在A处的放大示意图。
附图标记:
1-升降机构,2-成型平台,3-料盘,31-底座,311-通孔,32-夹持构件,4-气压调节装置,5-光源,6-离型介质,7-透光构件,8-管路,9-控制装置,10-打印材料,11-打印件,12-空腔。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。
通常在此处附图中描述和显示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。
基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况来理解上述术语在本申请中的具体含义。
下面参照图1至图5描述根据本申请一些实施例所述的光固化3D打印方法及光固化3D打印系统。
实施例一
参见图1所示,本申请的实施例提供了一种光固化3D打印方法,包括如下步骤:
成型平台下移;
将离型介质和透光构件之间所形成的空腔抽取至第一负压状态,再进行曝光,以对打印材料进行光固化处理;
曝光完成后,将离型介质和透光构件之间所形成的空腔抽取至第二负压状态,且成型平台上移以进行剥离操作;
剥离操作完成后,如果继续打印则重复上述步骤,否则停止打印。
由上述方法步骤可知,在曝光前,将上述空腔内的气压调节到负压状态,以使得离型介质贴合在透光构件的上表面,提供足够的平面度,确保打印面均匀;在剥离时,将上述空腔内的气压也调整到负压状态,因而使得成型平台上移一小段距离即可完成离型介质和打印件的分离,减少了打印用时,此外,离型介质较以往鼓起的状态而言形变量更小,有利于打印材料例如树脂的回流,进一步减少打印用时。
对于上述步骤中,也可以首先利用气压调节装置将离型介质和透光构件之间所形成的空腔抽取至第一负压状态,然后成型平台下移,再曝光处理。
在该实施例中,优选地,在第一负压状态下,所述离型介质和透光构件之间所形成的空腔的压力定义为a1;
在第二负压状态下,所述离型介质和透光构件之间所形成的空腔的压力定义为a2;
其中,a2≥a1。
当a2>a1时,既能够使得离型介质松弛软化,便于打印件与离型介质的剥离,同时减小了成型平台上移的距离,节省了打印用时,提高了打印效率;并且离型介质的形变量更小,有利于树脂回流,进一步减少打印用时,此处注意,可利用气压调节装置等改变腔室内的压力,调整到所需的压力;
当a2=a1时,无需在利用气压调节装置等改变腔室内的压力,即无需改变腔室内的压力状态,直接进行剥离,也能够减小成型品台上移的距离,节省打印用时,提高打印效率。
可见,本实施例提供的光固化3D打印方法中,能够大大缩短打印用时,提高打印效率。
实施例二
参见图2所示,本申请的实施例还提供一种光固化3D打印系统,基于上述任一实施例所述的光固化3D打印方法,本光固化3D打印系统包括:升降机构1、成型平台2、料盘3、气压调节装置4以及光源5;其中,成型平台2连接于升降机构1,升降机构1能够驱动成型平台2靠近或者远离料盘3;具体地,成型平台2、料盘3以及光源5沿着竖直方向从上向下设置。
料盘3包括离型介质6以及透光构件7,离型介质6与透光构件7之间形成空腔12,且空腔12与气压调节装置4相连通;
料盘3设置有透光部,光源5能够将光通过透光部照射于透光构件7。
对透光构件7中“透光”解释是,表示某物体具有至少可让使打印材料10发生聚合反应的光透过的特性,具体地,“透光”可表示某物体至少可让紫外光透过,可选地,透光构件7可为透光玻璃。
本光固化3D打印系统工作前,需要在底座31和夹持构件32之间围设成的空间内放置打印材料10,而后本光固化3D打印系统开始工作,具体工作步骤如下:
升降机构1驱动成型平台2下移;利用气压调节装置4将离型介质6和透光构件7之间所形成的空腔12抽取至第一负压状态,再利用光源5依次经过底座31的透光部、透光构件7照射离型介质6,进行曝光,以对打印材料10进行光固化处理;曝光完成后,利用气压调节装置4将离型介质6和透光构件7之间所形成的空腔12抽取至第二负压状态(此处注意,此时第二负压状态下的空腔12的压力a2>第一负压状态下的空腔12的压力a1,若a2=a1时,即剥离时腔室的气压和曝光时腔室的气压相同,可省略此步骤,直接进行下述的剥离操作),且升降机构1驱动成型平台2上移带动打印件11上移,使 其与离型介质6脱离,以进行剥离操作;剥离操作完成后,如果继续打印则重复上述步骤,否则停止打印。
对于上述步骤中,也可以是首先利用气压调节装置4将离型介质6和透光构件7之间所形成的空腔12抽取至第一负压状态,然后成型平台2下移,再曝光处理。
从上述工作步骤中可知,在曝光前,将上述空腔12内的气压调节到负压状态,以使得离型介质6贴合在透光构件7的上表面,提供足够的平面度,确保打印面均匀;在剥离时,将上述空腔12内的气压也调整到负压状态,因而使得成型品台上移一小段距离即可完成离型介质6和打印件11的分离,减少了打印用时。此外,离型介质6较以往鼓起的状态而言形变量更小,有利于打印材料10例如树脂的回流,进一步减少打印用时。
其中,可选地,气压调节装置4可为泵体,或者气压调节装置4为真空发生器与调节阀的组合结构,当然,不仅限于此,还可根据实际需要设置其结构。
在该实施例中,优选地,如图2所示,光固化3D打印系统还包括控制装置9,控制装置9分别与气压调节装置4、光源5以及升降机构1通讯连接。控制装置9能够分别控制气压调节装置4、光源5以及升降机构1工作,可控性强。
在该实施例中,优选地,如图3至图5所示,料盘3还包括底座31以及夹持构件32;其中,底座31设置有凹槽,且凹槽贯穿于底座31的顶端面;透光构件7设置在凹槽内;离型介质6设置在底座31的顶端面上,且离型介质6压设在底座31以及夹持构件32之间;
透光部为设于底座31中部的通孔311,而透光部的上方设有透光构件7,透光构件7的上方设置有离型介质6,离型介质6和透光构件7之间形成空腔12。其中,关于透光部的结构不仅限于此,透光部也可以是镶嵌在底座31中部的透光元件,或者底座31的部分或全部区域是由透光材质制成的。
离型介质6、透光构件7以及底座31的顶端面围设成空腔12,且此空腔12通过底座31上开设的通气通道与气压调节装置4相连通,具体地,空腔12是通过通道内嵌设的管路8与气压调节装置4相连通。
工作过程中,在曝光前,气压调节装置4将空腔12内的气压以抽真空的方式调节到第一负压状态;在需要剥离时,气压调节装置4向空腔12内通入空气,将空腔12内的气压通过气压调节装置4调节到第二负压状态,进行剥离,或者此步骤省略,曝光后直接进行剥离处理。
在该实施例中,优选地,如图3和图4所示,夹持构件32设置在离型介质6的上方,且夹持构件32与底座31通过紧固件相连接,用于将离型介质6压设于底座31。采用紧固件连接方便安装与拆卸。
在该实施例中,优选地,如图3和图4所示,夹持构件32具有四边形框架结构。既能将离型介质6的四周稳定地压设于底座31上,又能避让开成型平台2。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其进行限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种光固化3D打印方法,其中,包括如下步骤:
    成型平台下移;
    将离型介质和透光构件之间所形成的空腔抽取至第一负压状态,再进行曝光,以对打印材料进行光固化处理;
    曝光完成后,将离型介质和透光构件之间所形成的空腔抽取至第二负压状态,且成型平台上移以进行剥离操作。
  2. 根据权利要求1所述的光固化3D打印方法,其中,在所述第一负压状态下,所述离型介质和所述透光构件之间所形成的空腔的压力定义为a1;
    在所述第二负压状态下,所述离型介质和透光构件之间所形成的空腔的压力定义为a2;
    其中,a2≥a1。
  3. 根据权利要求1或2所述的光固化3D打印方法,其中,所述光固化3D打印方法还包括如下步骤:
    所述剥离操作完成后,继续打印或者停止打印。
  4. 一种光固化3D打印系统,其中,应用于如权利要求1至3中任一项所述的光固化3D打印方法。
  5. 根据权利要求4所述的光固化3D打印系统,其中,所述光固化3D打印系统包括升降机构、成型平台、料盘、气压调节装置以及光源;其中,所述成型平台连接于所述升降机构,所述升降机构能够驱动所述成型平台靠近或者远离所述料盘;
    所述料盘包括离型介质以及透光构件,所述离型介质与所述透光构件之间形成空腔,且所述空腔与所述气压调节装置相连通;
    所述料盘设置有透光部,所述光源能够将光通过所述透光部照射于所述透光构件。
  6. 根据权利要求5所述的光固化3D打印系统,其中,所述成型平台、所述料盘以及所述光源沿着竖直方向从上向下设置。
  7. 根据权利要求5所述的光固化3D打印系统,其中,所述光固化3D打印系统还包括控制装置,所述控制装置分别与所述气压调节装置、所述光源以及所述升降机构通讯连接。
  8. 根据权利要求5所述的光固化3D打印系统,其中,所述料盘还包括底座以及夹持构件;其中,所述底座设置有凹槽,且所述凹槽贯穿于所述底座的顶端面;所述透光构件设置在所述凹槽内;所述离型介质设置在所述底座的顶端面上,且所述离型介质压设在所述底座以及所述夹持构件之间;
    所述离型介质、所述透光构件以及所述底座的部分顶端面围设成所述空腔,且所述空腔通过底座上开设的通气通道与所述气压调节装置相连通。
  9. 根据权利要求8所述的光固化3D打印系统,其中,所述夹持构件设置在所述离型介质的上方,且所述夹持构件与所述底座通过紧固件相连接,用于将所述离型介质压设于所述底座。
  10. 根据权利要求4至9中任一项所述的光固化3D打印系统,其中,所述透光构件为透光玻璃。
PCT/CN2020/134575 2020-06-15 2020-12-08 光固化3d打印方法及光固化3d打印系统 WO2021253748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010545635.5 2020-06-15
CN202010545635.5A CN111469403B (zh) 2020-06-15 2020-06-15 光固化3d打印方法及光固化3d打印系统

Publications (1)

Publication Number Publication Date
WO2021253748A1 true WO2021253748A1 (zh) 2021-12-23

Family

ID=71763898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134575 WO2021253748A1 (zh) 2020-06-15 2020-12-08 光固化3d打印方法及光固化3d打印系统

Country Status (2)

Country Link
CN (1) CN111469403B (zh)
WO (1) WO2021253748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379080A (zh) * 2021-11-30 2022-04-22 杭州正向增材制造技术有限公司 3d打印系统及3d打印方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111469403B (zh) * 2020-06-15 2021-12-10 广州黑格智造信息科技有限公司 光固化3d打印方法及光固化3d打印系统
CN114905735A (zh) * 2021-02-07 2022-08-16 源秩科技(上海)有限公司 一种光固化三维打印方法和装置
CN114905736B (zh) * 2021-02-07 2024-05-28 源秩科技(上海)有限公司 一种光固化三维打印装置和打印方法
US11854429B2 (en) 2022-04-20 2023-12-26 Sinosteel Maanshan General Institute Of Mining Research Co., Ltd Portable simulated flood discharge culvert for surveying and mapping
WO2023246917A1 (zh) * 2022-06-23 2023-12-28 广州黑格智造信息科技有限公司 三维打印设备及其光源控制方法、装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2514139A (en) * 2013-05-14 2014-11-19 Aghababaie Lin & Co Ltd Apparatus for fabrication of three dimensional objects
US20170182716A1 (en) * 2015-12-29 2017-06-29 Young Optics Inc. Apparatus and method for three-dimensional printing
CN206937982U (zh) * 2017-05-31 2018-01-30 广东高登铝业有限公司 一种3d成形分离系统
CN108773067A (zh) * 2018-06-22 2018-11-09 大族激光科技产业集团股份有限公司 液槽装置、设有其的三维打印设备及打印模型分离方法
US10144205B2 (en) * 2014-02-20 2018-12-04 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
CN108943715A (zh) * 2018-06-22 2018-12-07 大族激光科技产业集团股份有限公司 液槽装置、设有其的三维打印设备及打印模型分离方法
CN109664507A (zh) * 2019-02-20 2019-04-23 广州黑格智造信息科技有限公司 3d打印料盘及3d打印料盘的曝光剥离工艺
CN210336901U (zh) * 2019-04-23 2020-04-17 大族激光科技产业集团股份有限公司 一种3d打印液槽装置
CN111469403A (zh) * 2020-06-15 2020-07-31 广州黑格智造信息科技有限公司 光固化3d打印方法及光固化3d打印系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022606A1 (de) * 2004-05-07 2005-12-15 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit verbesserter Trennung ausgehärteter Materialschichten von einer Bauebene
US10086535B2 (en) * 2014-04-02 2018-10-02 B9Creations, LLC Additive manufacturing device with sliding plate and peeling film
CH711890A1 (de) * 2015-12-04 2017-06-15 Coobx Ag Additive Fertigungsvorrichtung.
KR102233625B1 (ko) * 2016-08-23 2021-03-31 캐논 가부시끼가이샤 3차원 조형 장치 및 3차원 조형물의 제조 방법
CN109501250B (zh) * 2017-09-14 2020-10-30 三纬国际立体列印科技股份有限公司 光固化3d打印机及其剥离方法
CN209504918U (zh) * 2019-02-20 2019-10-18 广州黑格智造信息科技有限公司 3d打印料盘及3d打印设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2514139A (en) * 2013-05-14 2014-11-19 Aghababaie Lin & Co Ltd Apparatus for fabrication of three dimensional objects
US10144205B2 (en) * 2014-02-20 2018-12-04 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US20170182716A1 (en) * 2015-12-29 2017-06-29 Young Optics Inc. Apparatus and method for three-dimensional printing
CN206937982U (zh) * 2017-05-31 2018-01-30 广东高登铝业有限公司 一种3d成形分离系统
CN108773067A (zh) * 2018-06-22 2018-11-09 大族激光科技产业集团股份有限公司 液槽装置、设有其的三维打印设备及打印模型分离方法
CN108943715A (zh) * 2018-06-22 2018-12-07 大族激光科技产业集团股份有限公司 液槽装置、设有其的三维打印设备及打印模型分离方法
CN109664507A (zh) * 2019-02-20 2019-04-23 广州黑格智造信息科技有限公司 3d打印料盘及3d打印料盘的曝光剥离工艺
CN210336901U (zh) * 2019-04-23 2020-04-17 大族激光科技产业集团股份有限公司 一种3d打印液槽装置
CN111469403A (zh) * 2020-06-15 2020-07-31 广州黑格智造信息科技有限公司 光固化3d打印方法及光固化3d打印系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379080A (zh) * 2021-11-30 2022-04-22 杭州正向增材制造技术有限公司 3d打印系统及3d打印方法

Also Published As

Publication number Publication date
CN111469403A (zh) 2020-07-31
CN111469403B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2021253748A1 (zh) 光固化3d打印方法及光固化3d打印系统
CN112265262B (zh) 一种光固化型3d打印装置
CN210706051U (zh) 光固化成形控制装置
CN108773067A (zh) 液槽装置、设有其的三维打印设备及打印模型分离方法
TWI650238B (zh) 真空貼膜裝置及方法
CN109483882A (zh) 光固化3d打印系统及光固化3d打印方法
CN1997509A (zh) 用于通过固化材料层与构造面的改善的分离制造三维物体的方法
CN103847096B (zh) 真空加热加压密封成形装置及真空加热加压密封成形方法
CN105751673A (zh) 一种led封装印刷机以及led封装方法
KR20080046479A (ko) 임프린트 장치 및 임프린트 방법
CN110524877B (zh) 一种光固化成形控制装置及方法
CN112519222B (zh) 一种基于吸附腔的离型装置和方法
CN113386347B (zh) 3d打印方法
CN113547831A (zh) 光学胶贴合方法、显示屏及其制备方法
TWI695776B (zh) 立體列印裝置及其製造方法
CN206983287U (zh) 用于光固化面成型3d打印机的树脂池改进结构
CN111679554B (zh) 一种双腔式匀压纳米压印机构、纳米压印设备及方法
CN112497733B (zh) 一种光敏料脉动离型方法和装置
TWI391226B (zh) 真空形成設備及真空形成基板之方法
WO2020168808A1 (zh) 3d打印料盘、3d打印设备及曝光剥离工艺
CN209806182U (zh) 一种防止pcb板粘菲林的装置
CN209606769U (zh) 纳米压印装置
CN109656097B (zh) 纳米压印装置及纳米压印方法
CN207494497U (zh) 一种自动调节四边压点注蜡机
CN212860160U (zh) 曲面保护膜制备用模具及含该模具的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940922

Country of ref document: EP

Kind code of ref document: A1