WO2021253409A1 - 一种高效反硝化滤池系统及工作方法 - Google Patents

一种高效反硝化滤池系统及工作方法 Download PDF

Info

Publication number
WO2021253409A1
WO2021253409A1 PCT/CN2020/097123 CN2020097123W WO2021253409A1 WO 2021253409 A1 WO2021253409 A1 WO 2021253409A1 CN 2020097123 W CN2020097123 W CN 2020097123W WO 2021253409 A1 WO2021253409 A1 WO 2021253409A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
backwash
working
filter
denitrification
Prior art date
Application number
PCT/CN2020/097123
Other languages
English (en)
French (fr)
Inventor
周碧波
蔡健明
梁鹏
Original Assignee
中清信益环境(南京)有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中清信益环境(南京)有限公司, 清华大学 filed Critical 中清信益环境(南京)有限公司
Publication of WO2021253409A1 publication Critical patent/WO2021253409A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations

Definitions

  • the invention relates to the fields of environmental protection and sewage treatment, in particular to a high-efficiency denitrification filter system and a working method.
  • 200920209690.6 a utility model patent named "a kind of air-lifting denitrification biological continuous sand filter device", using pneumatic lifting technology to improve the fixed bed of the traditional denitrification biological filter into a "moving bed”, in order to realize the filter bed
  • high-pressure air is required to circulate the filter bed in the reactor.
  • the use of air causes the overall dissolved oxygen concentration in the system to be high, the denitrification microbial activity is inhibited, and the overall reaction rate is low.
  • Application number 201810645395.9 an invention patent entitled “An enhanced sulfur autotrophic denitrification sewage deep denitrification device and method”, combines the microbial electrolytic cell with the sulfur autotrophic denitrification system to improve the denitrification efficiency;
  • the addition of a carbon source eliminates the risk of COD exceeding the standard; however, in order to ensure higher efficiency, frequent backwashing and flushing are required to avoid electrode clogging, and the cleaning time is between 45min and 70min each time, which greatly reduces the efficiency of the system.
  • the application number 201910993975.1 an invention patent named "a backwashing system for pyrite coupling device" introduces a kind of reactor with sulphur particles, limestone particles, pyrite particles and immobilized particles of denitrifying bacteria as fillers.
  • the backwashing system includes: gas backwashing system, water backwashing system, ultrasonic stripping module, vibration module.
  • the present invention provides a high-efficiency denitrification biological filter system.
  • submerging the outflow and inflow water in the middle of the reactor avoids the process of "dropping water” and oxygenation, so that the dissolved oxygen in the inflow water is lower; low-intensity water washing is used to make the filter bed in a micro-expansion state to achieve the purpose of purging gas ; High-intensity water flushing, so that the filter bed is in a vulcanized state, to achieve the purpose of backwashing and de-filming.
  • a high-efficiency denitrification filter system includes a tank body, a filter plate, a water distribution system, a working water inlet pipe, a working drain pipe, and a backwash drain pipe; the filter plate is arranged inside the tank body, and the filter plate passes through the first vertical direction Support and the second vertical support; the filter plate is provided with a supporting layer and a filling system from bottom to top; a water distribution system is installed above the filling system; the working water inlet pipe is connected to the water distribution system, and the working drain pipe is used to drain The sewage of the filling system and the supporting layer; the backwash drain pipe is used to discharge the water after the backwash.
  • the water inlet end of the working water inlet pipe is set lower than the filter plate, and the height of the water outlet end of the working water inlet pipe is level with the water distribution system.
  • the water distribution system includes a water distributor, a water distributor main pipe, and a water distributor branch pipe.
  • the water distributor main pipe is provided with several water distributor pipes, and the water distributor pipe is provided with several water distributors; the water distributor outlet An arc reflecting plate is arranged at the end, and the arc reflecting plate is concentric with the outlet of the water distributor.
  • the water inlet of the working drainage pipe is arranged below the filter plate, and the water outlet of the working drainage pipe is arranged above the lowest point of the composite denitrification packing layer.
  • the backwash drain port of the backwash drain pipe is arranged above the tank; the backwash drain port of the backwash drain pipe is arranged in the L-shaped drain groove.
  • the diameter of the outlet of the water distributor is 15mm-20mm, and the flow rate of the water outlet is 2.0m/s; several filter heads are evenly distributed on the filter plate.
  • a working method of a high-efficiency denitrification filter system including the following modes:
  • Sewage denitrification mode the sewage is passed into the water distribution system through the working water inlet pipe for water distribution.
  • the sewage flows from top to bottom through the filler system to consume the electron donor and inorganic carbon in the sewage.
  • the sewage is passed through after denitrification of nitrate. Drain from the working drain;
  • Backwash mode In the process of sewage denitrification, the filler system will intercept the suspended solids and aging biofilms in the sewage when the sewage flows down, and the sewage filter channel will gradually be blocked, and the water level in the tank will rise; when it rises to the highest water level, The water level signal is transmitted to the backwash water pump control system, the working water inlet pump is closed, and the water outlet electric valve is closed; the backwash water inlet pump is turned on, and the water enters the tank from the backwash water inlet and starts the backwash mode.
  • Fig. 1 is a schematic structural diagram of a high-efficiency denitrification filter system according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the structure of the water distribution system
  • Fig. 3 is a schematic cross-sectional view of A-A in Fig. 2;
  • Figure 4 is a schematic diagram of the filter plate structure
  • Figure 5 is a schematic diagram of the structure of Figure 4 after the filter head is set
  • Figure 6 is a schematic diagram of the structure of the filter plate and the filter head after assembly.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed can be a fixed connection or a detachable connection.
  • integrally connected it can be a mechanical connection or an electrical connection
  • it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • a high-efficiency denitrification filter system includes a basic channel steel 1, a first vertical support 2, a second vertical support 3, a tank body 7, a filter plate 4, and a water distribution system 5 , Working water inlet pipe 10, working drainage pipe 11 and backwash drainage pipe 12; among them, the foundation channel steel 1 is set on the ground plane, the foundation channel steel 1 is welded with a bottom plate 8, and the bottom plate 8 is installed with a tank body 7, and the tank body A circular filter plate 4 is installed in the filter plate 4, and the filter plate 4 is provided with a hole with a diameter of 33.5 mm, which is used to install the water cloth filter head 13.
  • the installation density of the filter head 13 is 36 to 49 per square meter; the filter plate 4 passes the first A vertical support 2 and a second vertical support 3 support. With reference to Figure 5, it can be clearly seen how the first vertical support 2 and the second vertical support 3 support the filter plate 4;
  • the filter plate 4 is provided with a supporting layer.
  • Above the supporting layer is a packing system.
  • the packing system is divided into two layers, F4 and F5 from bottom to top.
  • F5 is a 1500mm thick high-efficiency composite denitrification filler.
  • the high-efficiency composite denitrification filler is mainly composed of biological sulfur particles, which can be reproduced according to different water quality. With other fillers, the elemental sulfur content of the compound filler shall not be less than 35%.
  • the water distribution system 5 includes a water distribution main pipe 51, a water distribution branch pipe 52 and a water distributor.
  • the water distribution main pipe 51 is provided with several water distribution branch pipes 52, Several water distributors are arranged on the branch pipe 52; the outlet end of the water distributor is provided with an arc reflecting plate 53, and the arc reflecting plate 53 is concentric with the outlet of the water distributor.
  • the diameter of the outlet of the water distributor is 15mm-20mm
  • the flow rate of the water outlet is 2.0m/s
  • the outlet is equipped with an arc-shaped reflector 53
  • the installation density is 4 pieces/m2.
  • the purpose of installing the arc-shaped reflector 53 is to enter the water. When the water flow forms a scattering flow through the reflection arc, the water is distributed evenly in the whole pool; when backwashing, the reflection arc at the bottom of the water distributor acts as a guide to prevent particles from blocking the water distribution hole.
  • the working water inlet pipe 10 in a high-efficiency denitrification filter system communicates with the water distribution system 5, the water inlet end of the working water inlet pipe 10 is lower than the filter plate 4, and the height of the water outlet end of the working water inlet pipe 10 is equal to that of the water distribution system 5.
  • the purpose of this design is: the position of the outlet end of the working water inlet pipe 10 is 150mm ⁇ 300mm higher than the top surface of the filling system, and the inlet end of the working water inlet pipe 10 is submerged below the lowest working water level of the tank, so as to form a submerged outflow to avoid falling
  • the water is oxygenated.
  • the working drainage pipe 11 is used to discharge sewage that has passed through the filling system and the supporting layer.
  • the water inlet of the working drainage pipe 11 is set lower than the filter plate 4, and the water outlet of the working drainage pipe 11 is set above the bottom point of the composite denitrification filler. And it is 300mm ⁇ 500mm lower than the top surface of the filling system.
  • the purpose is to ensure that the lowest water level in the tank is higher than the top surface of the tank, prevent the filter material from being directly exposed to the atmosphere, and avoid the adverse effects of atmospheric reoxygenation on the denitrification system.
  • An electric valve is installed on the vertical pipe section of the working drain pipe 11 to automatically close the electric valve when the system is backwashed; after the backwashing process is completed, the electric valve is automatically opened.
  • the backwash drain port of the backwash drain pipe 12 is set above the tank body 7, the backwash drain port of the backwash drain pipe 12 is set in the L-shaped drain tank 6, and the backwash drain port of the backwash drain pipe 12 is set higher than 1.5m from the top of the packing system.
  • V2 and V4 both represent valves; P1 and P2 both represent pressure gauges for observing water loss to control backwashing; N1, N2, N3, N4 and N5 represent respectively The water inlet of the water distribution system, the water inlet of the working drain pipe 11 or the working drain outlet, N3 represents the backwash water inlet, that is, during the backwash process, the backwash water flow enters from the N3 port, and N4 represents the backwash drain
  • the backwash water flow enters the backwash drain pipe 12 from the N4 port, and N5 represents the manhole, which is for the convenience of observation;
  • the filter head 13 is an ABS filter head, and the filter head 13 is installed in the filter
  • the hole opened in the plate 4 and the gap between the filter head 13 and the steel pipe are filled with two-component sealing packing; in Fig. 5, the gap between the filter plate 4 and the tank 7 is filled with the two-component sealing packing.
  • a high-efficiency denitrification biological filter working process the sewage is evenly distributed through the working water inlet pipe submerged below the lowest working water level of the tank, and flows downward through the packing system, consuming electron donors and inorganic carbon, and realizing the denitrification of nitrates , And then drain through the working drain.
  • the filler When the water flows downward, the filler will intercept the suspended solids and aging biofilm in the sewage, the sewage filter channel will be gradually blocked, and the water level in the filter will rise.
  • the water level signal is transmitted to the backwash water pump control system, close the working water inlet pump, close the electric water outlet valve; turn on the backwash water inlet pump, backwashing time is 3min ⁇ 5min, close the backwash water inlet pump, and open the electric water outlet valve ,
  • the water level gradually drops.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

本发明公开了一种高效反硝化滤池系统及工作方法,涉及环境保护、污水处理领域,包括罐体、滤板、布水系统、工作进水管、工作排水管和反洗排水管;所述滤板设置在罐体内部,滤板下方通过第一竖向支撑和第二竖向支撑;滤板上方从下至上依次设置有承托层和填料系统;填料系统上方设置有布水系统;所述工作进水管与布水系统相通,工作排水管用来排出经过填料系统和承托层的污水;所述反洗排水管用来排出反洗后的水。本发明采用低强度水冲洗使滤床处于微膨胀状态,达到驱气的目的;高强度水冲洗,使滤床处于硫化状态,达到反冲洗脱膜的目的。整个过程没有空气参与,系统反硝化速率不受进水和反冲洗的影响。

Description

一种高效反硝化滤池系统及工作方法 技术领域
本发明涉及环境保护、污水处理领域,具体涉及到一种高效反硝化滤池系统及工作方法。
背景技术
为提高地表水环境质量,多地出台文件,要求城镇水处理厂TN指标值控制在10mg/L以下,甚至更低。针对这种需求,环境工作者开发了一系列反硝化生物滤池。申请号201820716870.2,名为“一种反硝化滤池”的实用新型专利,对传统的小阻力布水滤池的反冲洗方式和补水系统进行改进,提高反洗布水均匀性和气反冲的效率,从而或得良好的处理效果;申请号201921030158.8,名为“反硝化滤池设备”的实用新型专利,提出了与申请号为201820716870.2的实用新型专利不同的反冲洗布水、布气系统。上述两种专利术采用下向流,污水从池子上部进入滤池,不可避免的会造成“跌水”充氧,消耗碳源,影响反硝化反应。反冲采用了空气反冲洗,也会造成反洗后一段时间内反硝化速率降低。申请号CN201911200931.5,名为一种浅床反硝化滤池的专利,介绍了一种独特的向上与向下双流向过滤工艺设计,滤料为铁质填料和生物滤料,操作复杂。申请号201720382126.9,名为“反硝化双层滤池”的实用新型专利,将反硝化生物滤池的单层滤料改良为双层滤料,解决了反冲洗时生物膜过度脱落,系统反硝化效果降低的问题;该专利的布水系统会因为“跌水充氧”导致进水中的溶解氧升高,影响异氧反硝化微生物的活性,额外增加碳源的投加量。申请号200920209690.6,名为“一种气提式反硝化生物连续砂滤装置”的实用新型专利,利用气力提升技术将传统反硝化生物滤池的固定床改良为“移动床”,为了实现滤床的移动,需采用高压空气为动力使滤床在反应器内循环,空气的使用导致系统中的溶解氧浓度总体偏高,反硝微生物活性受到抑制,总体的反应速率较低。
上述所有专利技术都以外加碳源为电子供体,都存在COD超标的风险。
申请号201810645395.9,名为“一种增强型硫自养反硝化污水深度脱氮装置及方法”的发明专利,将微生物电解池与硫自养反硝化系统结合,提高了脱氮效率;由于不需要外加碳源,杜绝了COD超标的风险;但其为了保证较高的效率,需要频繁反洗和冲刷,以避免电极堵塞,且每次清洗时间在45min~70min,大大降低系统的使用效率。申请号201910993975.1,名为“一种用于硫铁耦合装置的反冲洗系统”的发明专利,介绍了一种以硫磺颗粒、石灰石颗粒、硫铁矿颗粒和反硝化菌固定化颗粒为填料的反硝化生物滤池,反冲洗系统包括:气体反冲系统、水反冲系统、超声脱膜组件、振动组件。
上述两种专利技术都不需要外加碳源为电子供体,杜绝了COD超标的风险,但系统过于 复杂,能耗较高;都有空气参与,抑制了自养反硝化微生物活性。
发明内容
针对上述问题,本发明提供了一种高效反硝生物滤池系统。本发明在反应器中间淹没出流进水避免了“跌水”充氧的过程,使进水中的溶解氧更低;采用低强度水冲洗使滤床处于微膨胀状态,达到驱气的目的;高强度水冲洗,使滤床处于硫化状态,达到反冲洗脱膜的目的。整个过程没有空气参与,系统反硝化速率不受进水和反冲洗的影响。
本发明的目的是通过以下技术方案来实现的。
一种高效反硝化滤池系统,包括罐体、滤板、布水系统、工作进水管、工作排水管和反洗排水管;所述滤板设置在罐体内部,滤板通过第一竖向支撑和第二竖向支撑;滤板上从下至上依次设置有承托层和填料系统;填料系统上方设置有布水系统;所述工作进水管与布水系统相通,工作排水管用来排出经过填料系统和承托层的污水;所述反洗排水管用来排出反洗后的水。
进一步的,所述工作进水管进水端低于滤板设置,所述工作进水管出水端的高度与布水系统平齐。
进一步的,所述布水系统包括布水器、布水主管和布水支管,所述布水主管上设置有数个布水支管,布水支管上设置有数个布水器;所述布水器出口端设置有弧形反射板,且弧形反射板与布水器出口同圆心。
进一步的,所述承托层分为三层,从下至上依次为d=16~32mm砾石、d=8~16mm砾石和d=4~8mm砾石。
进一步的,所述填料系统分为两层,从下至上依次为d=2~4mm砾石和复合脱氮填料层。
进一步的,所述工作排水管的进水口低于滤板设置,工作排水管的出水口设置在复合脱氮填料层最低点的上方。
进一步的,所述反洗排水管的反洗排水口设置在罐体上方;所述反洗排水管的反洗排水口设置在L型排水槽内。
进一步的,所述布水器出口直径为15mm~20mm,出水口流速2.0m/s;所述滤板上均布有数个滤头。
一种高效反硝化滤池系统的工作方法,包括如下模式:
污水反硝化模式:通过工作进水管将污水通入布水系统进行布水,污水从上至下流通经过填料系统消耗掉污水中的电子供体和无机碳,污水实现硝酸盐的反硝化后通过工作排水管排出;
反冲洗模式:污水反硝化过程中,污水流向下流时填料系统会拦截污水中的悬浮物和老化的生物膜,污水过滤通道逐渐被堵塞,罐体内的水位会上升;当上升到最高水位时,水位信号传递给反洗水泵控制系统,关闭工作进水泵,关闭出水电动阀;开启反洗进水泵,水从反洗进水口进入罐体内,开始反冲洗模式。
附图说明
图1为根据本发明实施例的一种高效反硝化滤池系统结构示意图;
图2为布水系统结构示意图;
图3为图2的A-A剖视示意图;
图4为滤板结构示意图;
图5为图4上设置滤头后的结构示意图;
图6为滤板与滤头装配后的结构示意图。
附图标记:
1-基础槽钢;2-第一竖向支撑;3-第二竖向支撑;4-滤板;5-布水系统;51-布水主管;52-布水支管;53-弧形反射板;6-L型排水槽;8-底板;10-工作进水管;11-工作排水管;12-反洗排水管;13-滤头。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个 元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面首先结合附图具体描述根据本发明实施例的
结合附图1、4和5,一种高效反硝化滤池系统,包括基础槽钢1、第一竖向支撑2、第二竖向支撑3、罐体7、滤板4、布水系统5、工作进水管10、工作排水管11和反洗排水管12;其中,基础槽钢1设置在地平面上,基础槽钢1上方焊接有底板8,底板8上安装有罐体7,罐体7内设置有圆形的滤板4,滤板4上开设有孔径为33.5mm的孔,用于安装布水滤头13,滤头13安装密度36~49个/㎡;滤板4通过第一竖向支撑2和第二竖向支撑3支撑,结合附图5,可以很清楚的看出第一竖向支撑2和第二竖向支撑3是如何支撑滤板4的;
滤板4上设置有承托层,承托层分为三层,从下至上分别为F1、F2和F3,其中,F1为200mm厚d=16~32mm砾石,F2为100mm厚d=8~16mm砾石、F3为100mm厚d=4~8mm砾石,承托层上方为填料系统,填料系统分为两层,从下至上分别为F4和F5,其中F4为700mm厚d=2~4mm砾石(或石英石、或生物陶粒、或其他同等粒径的滤料)、F5为1500mm厚高效复合脱氮填料,其中,高效复合脱氮填料,主要成分为生物硫颗粒,根据不同的水质可以复配其他填料,但复配的填料单质硫的含量不得低于35%。
结合附图2和3,填料系统上方设置有布水系统5,布水系统5包括布水主管51、布水支管52和布水器,布水主管51上设置有数个布水支管52,布水支管52上设置有数个布水器;布水器出口端设置有弧形反射板53,且弧形反射板53与布水器出口同圆心。具体的,布水器出口直径为15mm~20mm,出水口流速2.0m/s,出口设有弧形反射板53,安装密度为4个/㎡,安装弧形反射板53的目的在于,进水时,水流通过反射弧形成散射流,全池均匀布水;反冲洗时,布水器底部的反射弧起导流作用,避免颗粒堵住布水孔。
另外,一种高效反硝化滤池系统中的工作进水管10与布水系统5相通,工作进水管10的进水端低于滤板4,工作进水管10出水端高度与布水系统5平齐,这样设计的目的在于:工作进水管10出水端的位置高于填料系统顶面150mm~300mm,工作进水管10进水端淹没在罐体最低工作水位以下,目的在于形成淹没出流,避免跌水充氧。
工作排水管11用来排出经过填料系统和承托层的污水,工作排水管11的进水口低于滤板4设置,工作排水管11的出水口设置在复合脱氮填料最底点的上方,且低于填料系统顶面300mm~500mm,目的在于保证罐体内的最低水位高于罐体顶面,防治滤料直接暴露在大气中,避免大气复氧对反硝化系统造成不利影响。工作排水管11的竖直管段上安装有电动阀门,目的在于系统反冲洗时,能自动关闭电动阀;反冲洗过程完成后,自动开电动阀。
反洗排水管12的反洗排水口设置在罐体7上方,反洗排水管12的反洗排水口设置在L 型排水槽6内,反洗排水管12的反洗排水口设置在高于填料系统顶部1.5m处。
需要进一步说明的是:附图1中,有关字母的含义:V2、V4均表示阀门;P1、P2均表示观测水损控制反洗的压力表;N1、N2、N3、N4和N5中分别表示布水系统的进水口、工作排水管11的进水口或者称作工作排水出水口、N3表示反洗进水口,即反洗过程中,反洗水流是从N3口进入的、N4表示反洗排水口,反洗水流是从N4这个口进入反洗排水管12内的、N5表示人孔,该孔是为了方便观察;附图6中,滤头13为ABS滤头,滤头13安装在滤板4开设的孔内,且滤头13与钢管之间的缝隙内填充双组份密封填料;附图5中,滤板4与罐体7之间的缝隙填充双组份密封填料。
一种高效反硝生物滤池工作流程:污水通过淹没在罐体最低工作水位以下的工作进水管均匀布水,向下流动经过填料系统,消耗电子供体和无机碳,实现硝酸盐的反硝化,然后通过工作排水管排出。水流下向流时填料会拦截污水中的悬浮物和老化的生物膜,污水过滤通道逐渐被堵塞,滤池内的水位会上升。当上升到最高水位时,水位信号传递给反洗水泵控制系统,关闭工作进水泵,关闭出水电动阀;开启反洗进水泵,反冲洗时间3min~5min,关闭反洗进水泵,开启出水电动阀,水位逐渐下降。当水位下降到最低水位时,开启工作水泵,进入下一个工作周期。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (9)

  1. 一种高效反硝化滤池系统,其特征在于,包括罐体(7)、滤板(4)、布水系统(5)、工作进水管(10)、工作排水管(11)和反洗排水管(12);所述滤板(4)设置在罐体(7)内部,滤板(4)通过第一竖向支撑(2)和第二竖向支撑(3)支撑;滤板(4)上从下至上依次设置有承托层和填料系统;填料系统上方设置有布水系统(5);所述工作进水管(10)与布水系统(5)相通,工作排水管(11)用来排出经过填料系统和承托层的污水;所述反洗排水管(12)用来排出反洗后的水。
  2. 根据权利要求1所述的高效反硝化滤池系统,其特征在于,所述工作进水管(10)进水端低于滤板(4)设置,所述工作进水管出水端的高度与布水系统(5)平齐。
  3. 根据权利要求1或者2任一项所述的高效反硝化滤池系统,其特征在于,所述布水系统(5)包括布水器、布水主管(51)和布水支管(52),所述布水主管(51)上设置有数个布水支管(52),布水支管(52)上设置有数个布水器;所述布水器出口端设置有弧形反射板(53),且弧形反射板(53)与布水器出口同圆心。
  4. 根据权利要求1所述的高效反硝化滤池系统,其特征在于,所述承托层分为三层,从下至上依次为d=16~32mm砾石、d=8~16mm砾石和d=4~8mm砾石。
  5. 根据权利要求1所述的高效反硝化滤池系统,其特征在于,所述填料系统分为两层,从下至上依次为d=2~4mm砾石和复合脱氮填料层。
  6. 根据权利要求5所述的高效反硝化滤池系统,其特征在于,所述工作排水管的进水口低于滤板(4)设置,工作排水管(11)的出水口设置在复合脱氮填料层最低点的上方。
  7. 根据权利要求1所述的高效反硝化滤池系统,其特征在于,所述反洗排水管的反洗排水口设置在罐体(7)上方;所述反洗排水管(12)的反洗排水口设置在L型排水槽(6)内。
  8. 根据权利要求3所述的高效反硝化滤池系统,其特征在于,所述布水器出口直径为15mm~20mm,出水口流速2.0m/s;所述滤板(4)上均布有数个滤头(13)。
  9. 一种高效反硝化滤池系统的工作方法,其特征在于,包括如下模式:
    污水反硝化模式:通过工作进水管(10)将污水通入布水系统(5)进行布水,污水从上至下流通经过填料系统消耗掉污水中的电子供体和无机碳,污水实现硝酸盐的反硝化后通过工作排水管排出;
    反冲洗模式:污水反硝化过程中,污水流向下流时填料系统会拦截污水中的悬浮物和老化的生物膜,污水过滤通道逐渐被堵塞,罐体(7)内的水位会上升;当上升到最高水位时,水位信号传递给反洗水泵控制系统,关闭工作进水泵,关闭出水电动阀;开启反洗进水泵,水从反洗进水口进入罐体(7)内,开始反冲洗模式。
PCT/CN2020/097123 2020-06-19 2020-06-19 一种高效反硝化滤池系统及工作方法 WO2021253409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010563848.0A CN111704239A (zh) 2020-06-19 2020-06-19 一种高效反硝化滤池系统及工作方法
CN202010563848.0 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021253409A1 true WO2021253409A1 (zh) 2021-12-23

Family

ID=72541297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097123 WO2021253409A1 (zh) 2020-06-19 2020-06-19 一种高效反硝化滤池系统及工作方法

Country Status (2)

Country Link
CN (1) CN111704239A (zh)
WO (1) WO2021253409A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114307591A (zh) * 2021-12-30 2022-04-12 南京科盛环保技术有限公司 一种石化废水深度脱氮的工艺及装置
CN114620907A (zh) * 2022-04-15 2022-06-14 合肥工业大学 一种利用污泥产硫化氢自养深度脱氮的方法
CN114835353A (zh) * 2022-06-17 2022-08-02 北控水务(中国)投资有限公司 一种污水深度处理系统
CN115253471A (zh) * 2022-07-25 2022-11-01 江苏省环境科学研究院 一种双向流过滤滤池及其处理工艺
CN115403186A (zh) * 2022-09-13 2022-11-29 中建安装集团有限公司 一种用于软化后废水处理的过滤装置
CN115520964A (zh) * 2022-09-28 2022-12-27 旭彤环保科技南通有限公司 一种可实现自动反冲洗的反硝化滤池及其使用方法
CN115677029A (zh) * 2023-01-05 2023-02-03 河北协同水处理技术有限公司 一种脉冲式进水反硝化滤池深度脱氮装置及方法
CN115745158A (zh) * 2022-10-30 2023-03-07 北京中电加美环保科技有限公司 布水布气砖及其应用
CN115991540A (zh) * 2023-03-23 2023-04-21 中侨启迪(山东)新材料科技有限公司 一种自养反硝化脱氮污水处理设备
CN116002857A (zh) * 2022-10-27 2023-04-25 北京沃尔德斯水务科技有限公司 一种改造型反硝化深床滤池及改造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759073A (zh) * 2020-11-26 2021-05-07 北京中科圣泰环境科技有限公司 一种反硝化生物滤池的反洗方法
CN113003701B (zh) * 2021-02-08 2022-12-16 哈尔滨工业大学 电耦生物滤池深度净化铅锌矿尾矿库废水装置
CN117326688A (zh) * 2022-07-25 2024-01-02 哈尔滨工业大学(深圳) 一种定向调控硫基填料自养反硝化滤池的方法
CN115367872B (zh) * 2022-09-13 2023-07-25 四川发展环境科学技术研究院有限公司 一种基于硫自养反硝化基质的污水脱氮处理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496786A (zh) * 2013-10-22 2014-01-08 南京大学 一种低能耗的反硝化生物滤池装置及其处理方法
CN203498162U (zh) * 2013-10-22 2014-03-26 南京大学 一种低能耗的反硝化生物滤池装置
JP2014111251A (ja) * 2012-10-31 2014-06-19 Swing Corp 汚水の浄化方法、浄化装置およびそれらに用い得る粒状活性炭
CN203976470U (zh) * 2013-11-26 2014-12-03 深圳市深港产学研环保工程技术股份有限公司 一种用于处理低碳氮比污水的反硝化渗滤系统
CN107024139A (zh) * 2017-05-27 2017-08-08 中冶京诚工程技术有限公司 溢流布水器和水池内水均匀更新的系统
CN206787380U (zh) * 2017-05-27 2017-12-22 中冶京诚工程技术有限公司 溢流布水器和水池内水均匀更新的系统
CN210367142U (zh) * 2019-08-06 2020-04-21 四川宇阳环境工程有限公司 一种集成式一体化深度反硝化滤池装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111251A (ja) * 2012-10-31 2014-06-19 Swing Corp 汚水の浄化方法、浄化装置およびそれらに用い得る粒状活性炭
CN103496786A (zh) * 2013-10-22 2014-01-08 南京大学 一种低能耗的反硝化生物滤池装置及其处理方法
CN203498162U (zh) * 2013-10-22 2014-03-26 南京大学 一种低能耗的反硝化生物滤池装置
CN203976470U (zh) * 2013-11-26 2014-12-03 深圳市深港产学研环保工程技术股份有限公司 一种用于处理低碳氮比污水的反硝化渗滤系统
CN107024139A (zh) * 2017-05-27 2017-08-08 中冶京诚工程技术有限公司 溢流布水器和水池内水均匀更新的系统
CN206787380U (zh) * 2017-05-27 2017-12-22 中冶京诚工程技术有限公司 溢流布水器和水池内水均匀更新的系统
CN210367142U (zh) * 2019-08-06 2020-04-21 四川宇阳环境工程有限公司 一种集成式一体化深度反硝化滤池装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114307591A (zh) * 2021-12-30 2022-04-12 南京科盛环保技术有限公司 一种石化废水深度脱氮的工艺及装置
CN114620907A (zh) * 2022-04-15 2022-06-14 合肥工业大学 一种利用污泥产硫化氢自养深度脱氮的方法
CN114835353A (zh) * 2022-06-17 2022-08-02 北控水务(中国)投资有限公司 一种污水深度处理系统
CN115253471A (zh) * 2022-07-25 2022-11-01 江苏省环境科学研究院 一种双向流过滤滤池及其处理工艺
CN115253471B (zh) * 2022-07-25 2024-04-26 江苏省环境科学研究院 一种双向流过滤滤池及其处理工艺
CN115403186A (zh) * 2022-09-13 2022-11-29 中建安装集团有限公司 一种用于软化后废水处理的过滤装置
CN115403186B (zh) * 2022-09-13 2024-03-12 中建安装集团有限公司 一种用于软化后废水处理的过滤装置
CN115520964A (zh) * 2022-09-28 2022-12-27 旭彤环保科技南通有限公司 一种可实现自动反冲洗的反硝化滤池及其使用方法
CN116002857A (zh) * 2022-10-27 2023-04-25 北京沃尔德斯水务科技有限公司 一种改造型反硝化深床滤池及改造方法
CN115745158B (zh) * 2022-10-30 2023-12-29 北京中电加美环保科技有限公司 布水布气砖及其应用
CN115745158A (zh) * 2022-10-30 2023-03-07 北京中电加美环保科技有限公司 布水布气砖及其应用
CN115677029A (zh) * 2023-01-05 2023-02-03 河北协同水处理技术有限公司 一种脉冲式进水反硝化滤池深度脱氮装置及方法
CN115991540A (zh) * 2023-03-23 2023-04-21 中侨启迪(山东)新材料科技有限公司 一种自养反硝化脱氮污水处理设备

Also Published As

Publication number Publication date
CN111704239A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2021253409A1 (zh) 一种高效反硝化滤池系统及工作方法
CN202516410U (zh) 一种复合沉淀过滤池
CN205294949U (zh) 一种高效曝气生物滤池
CN101746931B (zh) 一种脱氮除磷生物处理与过滤一体化的污水处理系统及其方法
CN204151131U (zh) 一种防堵塞曝气生物滤池
CN103833129A (zh) 反硝化滤布滤池
CN201598224U (zh) 一种脱氮除磷生物处理与过滤一体化的污水处理系统
CN110745943B (zh) 基于短期饥饿进行反硝化的方法及反硝化生物滤池系统
CN203946948U (zh) 曝气生物滤池
CN204369736U (zh) 小城镇一体化给水处理装置
CN110117062B (zh) 一种新型的生物滤池反洗布气管道系统和曝气生物滤池
CN111302486A (zh) 一种上向流的轻质滤料生物滤池
CN218841834U (zh) 一种自养异养协同脱氮的废水处理装置
CN103253837A (zh) 一种反硝化滤池系统及其过滤方法
KR101378871B1 (ko) 액상 유기성 폐수의 고효율 혐기소화 반응기
CN211999029U (zh) 一种上向流的轻质滤料生物滤池
CN109650652A (zh) 生化池mbbr工艺耦合反硝化深床滤池脱氮除磷系统及方法
CN108751623A (zh) 一种多功能双层滤池
CN205442795U (zh) 一种用于火炸药废水处理的高效曝气生物滤池装置
CN212403641U (zh) 一种高效反硝化滤池系统
CN212246397U (zh) 一种基于有机高分子载体的新型反硝化滤池装置
CN209583901U (zh) 生化池mbbr工艺耦合反硝化深床滤池脱氮除磷系统
CN204162573U (zh) 一种污水处理系统
CN103318999A (zh) 可调式曝气生物滤池
CN112777728A (zh) 一种膜生物曝气滤池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940657

Country of ref document: EP

Kind code of ref document: A1