WO2021251360A1 - 下引層用組成物、下引層並びに下引層を備える排ガス浄化用触媒及び排ガス浄化装置 - Google Patents

下引層用組成物、下引層並びに下引層を備える排ガス浄化用触媒及び排ガス浄化装置 Download PDF

Info

Publication number
WO2021251360A1
WO2021251360A1 PCT/JP2021/021686 JP2021021686W WO2021251360A1 WO 2021251360 A1 WO2021251360 A1 WO 2021251360A1 JP 2021021686 W JP2021021686 W JP 2021021686W WO 2021251360 A1 WO2021251360 A1 WO 2021251360A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin oxide
undercoat layer
exhaust gas
gas purification
base material
Prior art date
Application number
PCT/JP2021/021686
Other languages
English (en)
French (fr)
Inventor
彦睦 渡邉
雅人 松澤
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to DE112021002332.2T priority Critical patent/DE112021002332T5/de
Priority to US18/008,887 priority patent/US20230211317A1/en
Priority to JP2022530566A priority patent/JPWO2021251360A1/ja
Priority to CN202180041159.6A priority patent/CN115916398A/zh
Publication of WO2021251360A1 publication Critical patent/WO2021251360A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/653500-1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2094Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Definitions

  • the present invention relates to a composition for an undercoat layer, an undercoat layer formed by the composition for an undercoat layer, and an exhaust gas purification catalyst and an exhaust gas purification device provided with the undercoat layer.
  • HC hydrocarbons
  • CO carbon monoxide
  • NOx nitrogen oxides
  • a three-way catalyst having catalytic activity that oxidizes HC and CO and converts them into water and carbon dioxide, and also reduces NOx and converts them into nitrogen. in use.
  • Patent Document 1 describes a methane oxidation catalyst in which platinum and iridium are supported on tin oxide.
  • the methane oxidation catalyst described in Patent Document 1 can effectively oxidize and remove methane in a low temperature region (500 ° C. or lower, particularly 350 to 450 ° C.).
  • the exhaust gas purification catalyst includes a base material and a catalyst layer provided on the base material.
  • the base material has a honeycomb structure composed of a plurality of cells
  • the catalyst layer formed at the corners of the cells (the corners of the cells when the base material is viewed in a plan view from the axial direction of the base material) is in contact with the exhaust gas.
  • the efficiency is low and the catalyst performance may not be fully exhibited.
  • the undercoat layer may be easily peeled off from the base material.
  • the present invention relates to a composition for an undercoat layer capable of forming an undercoat layer that does not easily peel off from the substrate, an undercoat layer formed by the composition for the undercoat layer, and the undercoat layer. It is an object of the present invention to provide an exhaust gas purification catalyst and an exhaust gas purification device.
  • the composition for the undercoat layer which is 8% by mass or more and 30% by mass or less based on the above.
  • An exhaust gas purification catalyst comprising a base material, a undercoat layer formed on the base material according to the above [2], and a catalyst layer formed on the undercoat layer.
  • An exhaust gas purification device provided with the exhaust gas purification catalyst according to the above [3].
  • a composition for an undercoat layer capable of forming an undercoat layer that does not easily peel off from a substrate, an undercoat layer formed by the composition for the undercoat layer, and the undercoat layer.
  • a catalyst for purifying exhaust gas and an exhaust gas purifying device are provided.
  • FIG. 1 is a partial cross-sectional view of an exhaust gas purification device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • composition for the undercoat layer of the present invention contains tin oxide microparticles and tin oxide nanoparticles.
  • Tin oxide microparticles are a matrix component, and tin oxide nanoparticles are a binder component. That is, when the undercoat layer composition of the present invention is used to form the undercoat layer on the substrate, the tin oxide microparticles constitute the base material of the undercoat layer, and the tin oxide nanoparticles are the base. The material and the tin oxide nanoparticles are bonded, and the tin oxide nanoparticles are bonded to each other.
  • the tin oxide particles contain tin oxide.
  • the tin oxide include tin oxide (II) (SnO), tin oxide (III) (Sn 2 O 3 ), tin oxide (IV) (SnO 2 ), tin oxide (VI) (SnO 3 ) and the like. Of these, tin oxide (IV) (SnO 2 ) is preferable.
  • the tin oxide particles may contain one kind of tin oxide or two or more kinds of tin oxide.
  • the content of tin oxide in the tin oxide particles is usually 75% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more, based on the mass of the tin oxide particles.
  • the "content of tin oxide” means the content of the one kind of tin oxide
  • the tin oxide particles contain two or more kinds of tin oxide.
  • "tin oxide content” means the total content of the two or more kinds of tin oxide.
  • the upper limit is theoretically 100% by mass, but in consideration of the presence of unavoidable impurities, it can actually be less than 100% by mass (for example, 99.5% by mass or less). Inevitable impurities are, for example, trace elements that are inevitably mixed in when tin oxide particles are produced.
  • the content of tin (IV) oxide in the tin oxide particles is preferably 75% by mass or more, more preferably 80% by mass, based on the mass of the tin oxide particles. As mentioned above, it is even more preferably 90% by mass or more.
  • the amount of elements contained in the tin oxide particles can be measured by using a conventional method such as inductively coupled plasma emission spectroscopy (ICP-AES).
  • ICP-AES inductively coupled plasma emission spectroscopy
  • the shape of the tin oxide particles is preferably spherical.
  • the spherical shape includes a true spherical shape, an elliptical spherical shape, and the like.
  • Tin oxide microparticles and tin oxide nanoparticles are each composed of a plurality of tin oxide particles.
  • the above description of the tin oxide particles applies to both the tin oxide particles constituting the tin oxide microparticles and the tin oxide particles constituting the tin oxide nanoparticles.
  • the tin oxide microparticles and tin oxide nanoparticles may each be composed of a plurality of tin oxide particles having the same composition, or may be composed of a plurality of tin oxide particles having different compositions.
  • the tin oxide microparticles have a micrometer-sized median diameter D 50
  • the tin oxide nanoparticles have a nanometer-sized median diameter D 50 .
  • the median diameter D 50 of the tin oxide microparticles means the particle size at which the cumulative volume is 50% in the volume-based particle size distribution of the tin oxide microparticles, and the median diameter D 50 of the tin oxide nanoparticles is the tin oxide nano. It means the particle size at which the cumulative volume is 50% in the particle size distribution based on the volume of the particles.
  • the volume-based particle size distribution of tin oxide microparticles is measured by the dynamic light scattering method.
  • a volume-based particle size distribution of tin oxide microparticles is measured using a particle size distribution measuring device "Zetasizer Nano ZS" manufactured by Malvern Panasonicical.
  • the particle size distribution is measured by dispersing tin oxide microparticles in water.
  • the volume-based particle size distribution of tin oxide nanoparticles is measured by the small-angle X-ray scattering method.
  • a preferred embodiment of the small-angle X-ray scattering method is as follows. A sample is prepared by filling a glass sample plate having a recess having a depth of 0.2 ⁇ m with a powder containing tin oxide nanoparticles in an arbitrary ratio. In order to obtain an X-ray small-angle scattering profile, the X-ray small-angle scattering specification is applied as an optical system to the fully automatic multipurpose X-ray diffractometer SmartLab manufactured by Rigaku Co., Ltd., and the X-ray small-angle scattering profile of the sample is measured by the transmission method. ..
  • a Cu target is used as the X-ray source and a scintillation counter is used as the detector.
  • profile analysis of the X-ray small-angle scattering profile of the sample was carried out using the analysis software NANO-Solver manufactured by Rigaku Co., Ltd., assuming that the particle shape is spherical and the variation in particle size is given by the gamma distribution function. do.
  • the apparent particle size is measured. That is, when the particles exist in the state of primary particles, the primary particle size is measured, and when the primary particles exist in the state of aggregated secondary particles, the secondary particle size is measured.
  • the primary particle diameter is measured regardless of whether the particles are primary particles or secondary particles.
  • the secondary particles are aggregated particles formed by agglutinating the primary particles.
  • the volume-based particle size distribution of the tin oxide microparticles and the tin oxide nanoparticles may be measured before the tin oxide microparticles and the tin oxide nanoparticles are mixed, or the tin oxide microparticles and the tin oxide nanoparticles may be measured. May be performed after mixing. Volume-based particle size distribution measurements of tin oxide microparticles and tin oxide nanoparticles are typically measured using the undercoat layer composition of the present invention (ie, tin oxide microparticles and tin oxide nanoparticles are mixed). It is done (in the state).
  • the median diameter D 50 of the tin oxide microparticles is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, still more preferably 1.8 ⁇ m or more, from the viewpoint of improving the gas flowability in the undercoat layer. From the viewpoint of more effectively preventing the undercoat layer from peeling from the substrate, it is preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 40 ⁇ m or less (for example, 30 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less. 10 ⁇ m or less, 5 ⁇ m or less).
  • Median diameter D 50 of the tin oxide nanoparticles from the viewpoint of improving the gas flow of the undercoat layer is preferably 1nm or more, more preferably 2nm or more, while even more preferably 3nm or more, from the substrate From the viewpoint of more effectively preventing peeling of the undercoat layer, it is preferably 20 nm or less, more preferably 15 nm or less, and even more preferably 10 nm or less.
  • the median diameter D 50 of tin oxide microparticles, the ratio median diameter D 50 of the tin oxide nanoparticles improves the sinterability of the tin oxide nanoparticles, the peeling of the undercoat layer from the substrate more effectively From the viewpoint of prevention, it is preferably 50 or more, more preferably 100 or more, still more preferably 200 or more, while from the viewpoint of improving the gas flowability in the undercoat layer, it is preferably 100,000 or less, still more preferably 30,000 or less. , Even more preferably 10,000 or less.
  • the particles constituting the tin oxide microparticles may be primary particles or secondary particles.
  • Tin oxide microparticles are usually composed of a mixture of primary particles and secondary particles, mainly secondary particles.
  • the particles constituting the tin oxide nanoparticles may be primary particles or secondary particles.
  • the tin oxide nanoparticles before being mixed with the tin oxide microparticles are usually composed of primary particles or a mixture of primary particles and secondary particles mainly composed of primary particles, but are oxidized.
  • the tin oxide nanoparticles after being mixed with the tin microparticles may be adsorbed on the tin oxide microparticles and aggregated.
  • the median diameter D 50 (average primary particle diameter) of the primary particles constituting the tin oxide microparticles is preferably 15 nm or more and 100 nm or less, more preferably 16 nm or more and 40 nm or less (for example, from the viewpoint of obtaining an appropriate specific surface area as a catalyst carrier). , 16 nm or more and 35 nm or less, 16 nm or more and 30 nm or less, 16 nm or more and 25 nm or less).
  • the median diameter D 50 of the primary particles constituting the tin oxide microparticles means a particle size at which the cumulative volume is 50% in the volume-based particle size distribution of the primary particles constituting the tin oxide microparticles.
  • the volume-based particle size distribution of the primary particles constituting the tin oxide microparticles is measured by the small-angle X-ray scattering method.
  • a preferred embodiment of the small-angle X-ray scattering method is as described above.
  • the volume-based particle size distribution of the primary particles constituting the tin oxide microparticles and the volume-based particle size distribution of the tin oxide nanoparticles do not overlap (that is, the volume-based particle size distribution of the primary particles constituting the tin oxide microparticles).
  • the minimum particle size in the above is larger than the maximum particle size in the volume-based particle size distribution of tin oxide nanoparticles).
  • the volume-based particle size distribution of the primary particles constituting the tin oxide microparticles can be measured not only before the tin oxide microparticles and the tin oxide nanoparticles are mixed, but also with the tin oxide microparticles and the tin oxide nanoparticles. Can also be done after mixing.
  • the specific surface area of the tin oxide microparticles is preferably 1 m 2 / g or more, more preferably 10 m 2 / g or more, still more preferably 30 m 2 from the viewpoint of supporting the noble metal in a fine particle size and improving the purification performance.
  • it is preferably 120 m 2 / g or less, more preferably 90 m 2 / g or less, still more preferably 70 m. It is 2 / g or less.
  • the specific surface area of the tin oxide microparticles is measured according to "(3.5) One-point method" in “6.2 Flow method” of JIS R1626 "Method for measuring specific surface area by gas adsorption BET method of fine ceramic powder".
  • gas a nitrogen-helium mixed gas containing 30% by volume of nitrogen as an adsorbed gas and 70% by volume of helium as a carrier gas is used.
  • BELSORP-MR6 manufactured by Microtrack Bell is used.
  • the content of the tin oxide nanoparticles is preferably 8% by mass or more and 30% by mass or less based on the total content of the tin oxide nanoparticles and the tin oxide nanoparticles. ..
  • the amount of tin oxide nanoparticles as a binder component is insufficient, tin oxide microparticles are likely to peel off from the substrate.
  • the binder performance of the tin oxide nanoparticles deteriorates due to the aggregation of the tin oxide nanoparticles (for example, aggregation by sintering), and the tin oxide nanoparticles are released from the substrate. Easy to peel off. If the tin oxide microparticles are peeled off from the base material and the catalyst layer is formed on the base material instead of on the undercoat layer, the catalyst layer may not sufficiently exhibit the catalytic performance.
  • the base material when the base material has a honeycomb structure, it is formed at the corner of the cell of the base material (the corner of the cell when the base material is viewed from the axial direction (exhaust gas flow direction) of the base material) in the catalyst layer.
  • the contact efficiency with the exhaust gas is low in the removed portion, and the catalytic performance may not be sufficiently exhibited.
  • the tin oxide microparticles are easily peeled off from the base material, even if the catalyst layer is formed on the undercoat layer, the catalyst layer is easily peeled off from the base material together with the undercoat layer, and the catalyst performance may not be sufficiently exhibited. There is.
  • the tin oxide nanoparticles are the base material. It can be prevented from peeling from. Therefore, the catalyst layer is formed on the base material, not on the undercoat layer (especially at the corners of the cells of the base material, the catalyst layer is formed on the base material, not on the undercoat layer. ), And the catalyst layer can be prevented from peeling from the base material together with the undercoat layer, and the catalytic performance of the catalyst layer can be effectively exhibited.
  • the content of the tin oxide nanoparticles is more preferably 9 mass based on the total content of the tin oxide microparticles and the tin oxide nanoparticles. % Or more and 25% by mass or less, and even more preferably 10% by mass or more and 20% by mass or less.
  • the dispersion liquid contains tin oxide microparticles, tin oxide nanoparticles and a dispersion medium.
  • the dispersion liquid has various viscosities depending on the content of the solid content, and can have various forms such as ink, slurry, and paste depending on the viscosity.
  • the form of the dispersion is preferably a slurry.
  • Examples of the dispersion medium contained in the dispersion liquid include water, an organic solvent and the like.
  • the dispersion medium may be one kind of solvent or a mixture of two or more kinds of solvents. Examples of the mixture of two or more kinds of solvents include a mixture of water and one kind or two or more kinds of organic solvents, and a mixture of two or more kinds of organic solvents.
  • composition for the undercoat layer of the present invention can be prepared, for example, by mixing tin oxide powder composed of tin oxide microparticles and tin oxide sol containing tin oxide nanoparticles.
  • the form of the composition for the undercoat layer thus prepared is a dispersion liquid, preferably a slurry.
  • a tin oxide sol containing tin oxide powder composed of tin oxide microparticles and tin oxide nanoparticles can be produced according to a conventional method.
  • the tin oxide powder composed of tin oxide microparticles can be obtained, for example, by pulverizing a fired product obtained by heat treatment of tin oxide.
  • the pulverized product can be pulverized by a dry method or a wet method using, for example, a jet mill, a ball mill, a bead mill or the like.
  • an organic solvent such as a hydrocarbon solvent can be used as the solvent.
  • classification may be performed using a sieve having a predetermined opening. The crushing conditions, the opening of the sieve used for classification, and the like can be appropriately adjusted according to the median diameters D 50 , D 90 , and D 10 to be realized.
  • the tin oxide sol containing the tin oxide nanoparticles can be produced, for example, by a method of obtaining a tin oxide sol using tin oxide powder, a method of forming tin oxide in a solvent to obtain a tin oxide sol, or the like. .. Examples of the latter method include the methods described in Japanese Patent Application Laid-Open No. 2011-26172, Japanese Patent Application Laid-Open No. 2012-148928, and the like.
  • the tin oxide sol containing the tin oxide nanoparticles is preferably a monodisperse system.
  • the composition for the undercoat layer of the present invention may contain a solid content other than tin oxide microparticles and tin oxide nanoparticles.
  • the solid content other than the tin oxide microparticles and the tin oxide nanoparticles include metal oxide particles other than the tin oxide particles. The metal oxide particles will be described later.
  • composition for the undercoat layer of the present invention contains solids other than tin oxide microparticles and tin oxide nanoparticles, the content thereof may be 2% by mass or less with respect to the mass of the composition cited below. preferable.
  • the undercoat layer of the present invention is formed by the composition for the undercoat layer of the present invention.
  • the undercoat layer of the present invention is, for example, a dried product or a fired product of the composition for the undercoat layer of the present invention.
  • the mode pore diameter of the undercoat layer of the present invention is preferably 200 nm or more and 1000 nm or less, more preferably 300 nm or more and 800 nm or less, from the viewpoint of the balance between the gas flowability in the undercoat layer and the peeling prevention effect of the undercoat layer. It is even more preferably 350 nm or more and 600 nm or less.
  • the most frequent pore diameter of the undercoat layer is 200 nm or more and 1000 nm or less
  • the mode of the most frequent pore diameter of the undercoat layer was peeled off from the substrate when the undercoat layer was formed on the substrate by using the undercoat layer when the undercoat layer was present alone. If a catalyst layer is formed on the undercoat layer using the later undercoat layer, use the undercoat layer after removing the catalyst layer to measure the void distribution with a mercury intrusion porosimeter. Can be measured by.
  • the mode of the mode pore diameter of the undercoat layer may be measured using a fragment of the undercoat layer (for example, a fragment of the undercoat layer exfoliated from the substrate).
  • the mercury intrusion porosimeter utilizes the large surface tension of mercury to infiltrate mercury by applying pressure to the measurement target, and the void volume diameter and logarithmic differential void volume distribution are obtained from the pressure at that time and the amount of injected mercury. It is a device for measuring. Therefore, the target voids are only open pores (voids communicating with the outside), and closed pores (independent voids) are not included in the target.
  • the mode pore diameter of the undercoat layer of the present invention can be adjusted by adjusting the content and specific surface area of tin oxide microparticles, firing conditions, and the like.
  • the undercoat layer of the present invention is obtained by applying the composition for the undercoat layer of the present invention to a substrate and drying (in this case, the undercoat layer of the present invention is the drying of the composition for the undercoat layer of the present invention). It can be formed by firing (in this case, the undercoat layer of the present invention is a calcined product of the composition for the undercoat layer of the present invention) after drying.
  • the drying temperature is usually 80 ° C. or higher and 400 ° C. or lower, preferably 100 ° C. or higher and 300 ° C. or lower, and the drying time is usually 1 hour or longer and 15 hours or lower, preferably 3 hours or longer and 12 hours or lower.
  • the firing temperature is usually 400 ° C. or higher and 1000 ° C. or lower, preferably 500 ° C. or higher and 800 ° C. or lower, and the firing time is usually 1 hour or longer and 10 hours or lower, preferably 2 hours or longer and 5 hours or lower. Firing can be performed, for example, in an atmospheric atmosphere.
  • the fact that the undercoat layer of the present invention is formed by the composition for the undercoat layer of the present invention is observed at three locations arbitrarily selected from the cross section of the undercoat layer, and tin oxide microparticles are observed at each location.
  • the undercoat layer formed on the base material is cut in a plane perpendicular to the axial direction (exhaust gas flow direction) of the base material, the cross section is processed with a cold cross section polisher, and then SEM observation is performed at a magnification of 2000 times. This makes it possible to observe the cross section of the undercoat layer.
  • the average value of the percentage is preferably 1.7% or more and 44% or less, more preferably 2% or more and 40% or less. It is even more preferably 2.5% or more and 35% or less, and even more preferably 5.0% or more and 10% or less.
  • the exhaust gas purification catalyst of the present invention includes a base material, an undercoat layer of the present invention formed on the base material, and a catalyst layer formed on the undercoat layer.
  • the base material can be appropriately selected from the base materials generally used as the base material of the exhaust gas purification catalyst.
  • Examples of the base material include a wall flow type base material and a flow-through type base material.
  • the material constituting the base material can be appropriately selected from the materials generally used as the base material of the exhaust gas purification catalyst.
  • the material constituting the base material is preferably a material capable of stably maintaining the shape of the base material even when the base material is exposed to high temperature (for example, 400 ° C. or higher) exhaust gas.
  • Examples of the material of the base material include ceramic materials and metal materials.
  • Examples of the ceramic material include cordierite, cordierite-alpha alumina, silicon nitride, zirconmullite, spodium, alumina-silica magnesia, zircon silicate, silimanite, magnesium silicate, zircon, petalite, alpha alumina, and aluminosilicate.
  • Examples include fire resistant ceramic materials.
  • Examples of the metal material include refractory metal materials such as stainless steel and iron-based alloys.
  • the base material preferably has a honeycomb structure.
  • a honeycomb structure made of a ceramic material such as cordierite, a honeycomb structure made of a metal material such as stainless steel (metal honeycomb), or the like can be used.
  • a monolith type base material having a large number of fine gas flow passages (channels) parallel to the inside of the base material may be used so that the fluid flows inside the base material. can.
  • the shape of the base material is not particularly limited, and examples thereof include a tubular shape, a pellet shape, and a spherical shape.
  • examples of the tubular shape include a cylindrical shape, an elliptical tubular shape, a polygonal tubular shape, and the like.
  • the mass of the undercoat layer per unit volume of the base material (hereinafter referred to as "coating amount of the catalyst layer (WC2)") of the mass of the catalyst layer per unit volume of the base material (hereinafter referred to as “undercoat layer”).
  • the ratio (WC2 / WC1) to the coating amount (WC1) is preferably 0.1 or more and 10 or less, more preferably 0.5 or more and 5 or less, and further preferably 1 or more and 3 or less. ..
  • the contact probability between the component in the exhaust gas for example, methane
  • the noble metal in the catalyst increases, and the catalytic performance of the catalyst layer (for example, methane purification performance) is effectively improved. It can be demonstrated.
  • the catalyst layer contains one or more catalytically active ingredients.
  • the catalytically active component is, for example, one selected from platinum (Pt) element, palladium (Pd) element, rhodium (Rh) element, ruthenium (Ru) element, iridium (Ir) element, osmium (Os) element and the like. Contains two or more noble metal elements.
  • the catalytically active ingredient containing a noble metal element is, for example, a noble metal, an oxide of a noble metal, an alloy containing a noble metal element, or the like.
  • the mass of the catalytically active ingredient per unit volume of the base material (when the catalyst layer contains two or more kinds of catalytically active ingredients, the total mass of two or more kinds of catalytically active ingredients) is a balance between exhaust gas purification performance and cost, etc. Can be adjusted as appropriate in consideration of.
  • the mass of the catalytically active ingredient per unit volume of the substrate is usually 1 g / L or more and 30 g / L or less, preferably 3 g / L or more and 20 g / L or less.
  • the method for measuring the mass of the catalytically active ingredient per unit volume of the base material is as follows.
  • the exhaust gas purification catalyst is cut in a plane perpendicular to the axial direction of the base material (exhaust gas flow direction), and the cut piece C1 including the catalyst layer is prepared.
  • the cut piece C1 has a predetermined size. The diameter and length of the cut piece C1 can be adjusted as appropriate.
  • the length of the catalyst layer contained in the cut piece C1 is equal to the length of the cut piece C1 (that is, the catalyst layer extends from one end to the other end of the cut piece C1).
  • the mass of the catalytically active component contained in the fragment C1 is measured, and based on the following formula, the mass of the catalytically active component per unit volume of the fragment C1 is measured. Calculate the mass of the catalytically active component.
  • Mass of catalytically active component per unit volume of cut piece C1 mass of catalytically active component contained in cut piece C1 / volume of cut piece C1
  • the mass of the catalytically active component per unit volume of the cut piece C1 is calculated, and the average value thereof is taken as the mass of the catalytically active component per unit volume of the substrate.
  • the catalyst layer contains one or more kinds of carriers, and the catalytically active ingredient is supported on the carrier.
  • the catalytically active ingredient is supported on the carrier means a state in which the catalytically active ingredient is physically or chemically adsorbed or retained on the outer surface or the inner surface of the pores of the carrier.
  • EDS energy dispersive spectroscope
  • the catalytically active component is supported on the carrier. It can be judged that it is.
  • the catalytically active component is supported on the carrier by measuring the particle size using a scanning electron microscope (SEM).
  • the average particle size of the catalytically active ingredient present on the surface of the carrier is preferably 10% or less, more preferably 3% or less, and even more preferably 1% or less, based on the average particle size of the carrier. It is even more preferable to have.
  • the average particle size referred to here is an average value of the ferret diameters of 30 or more particles when observed by SEM.
  • the mass of the carrier per unit volume of the base material (when the catalyst layer contains two or more types of carriers, the total mass of two or more types of carriers) is appropriately adjusted in consideration of the balance between exhaust gas purification performance and cost. can do.
  • the mass of the carrier per unit volume of the base material is usually 30 g / L or more and 300 g / L or less, preferably 50 g / L or more and 200 g / L or less.
  • the method for measuring the mass of the carrier per unit volume of the substrate is the same as the method for measuring the mass of the catalytically active component per unit volume of the substrate.
  • the carrier examples include metal oxide particles.
  • the metal oxide constituting the metal oxide particles may be a metal oxide having an oxygen storage capacity (OSC: Oxygen Storage Capacity) (hereinafter, may be referred to as an “oxygen storage component”), or other than the oxygen storage component. It may be an inorganic oxide of.
  • OSC Oxygen Storage Capacity
  • the median diameter D 50 of the metal oxide particles is usually 1 ⁇ m or more and 100 ⁇ m or less, preferably 1.5 ⁇ m or more and 50 ⁇ m or less.
  • the median diameter D 50 of the metal oxide particles means a particle size at which the cumulative volume is 50% in the volume-based particle size distribution of the metal oxide particles.
  • the method for measuring the volume-based particle size distribution of the metal oxide particles is the same as the method for measuring the volume-based particle size distribution of the tin oxide microparticles.
  • the metal oxide particles are preferably porous because it is easy to support the catalytically active ingredient.
  • the specific surface area of the metal oxide particles is usually 10 m 2 / g or more and 120 m 2 / g or less, preferably 20 m 2 / g or more and 90 m 2 / g or less.
  • the method for measuring the specific surface area of the metal oxide particles is the same as the method for measuring the specific surface area of the tin oxide microparticles.
  • the oxygen storage component examples include metal oxides containing a cerium (Ce) element.
  • the metal oxide containing a cerium element may be a composite oxide containing a cerium oxide (CeO 2 ), a cerium (Ce) element and a zirconium (Zr) element (hereinafter referred to as "CeO 2- ZrO 2 system composite oxide"). .) Etc. can be mentioned.
  • inorganic oxides other than the oxygen storage component examples include tin oxide, alumina, silica, silica-alumina, alumino-silicate, alumina-zirconia, alumina-chromia, alumina-ceria, alumina-lanthana, and titania.
  • tin oxide is the same as above.
  • the carrier contains tin oxide and the catalytically active ingredient contains platinum element.
  • the exhaust gas purification catalyst according to this embodiment is useful as a methane oxidation catalyst that oxidizes methane in exhaust gas.
  • the temperature at which the methane oxidation catalyst is used is, for example, 250 ° C. or higher and 500 ° C. or lower, preferably 300 ° C. or higher and 450 ° C. or lower.
  • the carrier containing tin oxide is, for example, tin oxide particles.
  • the catalytically active component containing a platinum element is, for example, a platinum metal, an alloy containing a platinum element, or the like.
  • the catalytically active component may contain one or more noble metal elements (for example, iridium element) other than the platinum element.
  • the catalytically active ingredient containing an iridium element is, for example, an iridium metal, an alloy containing an iridium element, or the like.
  • the exhaust gas purification catalyst of the present invention may further include a third layer provided on the catalyst layer.
  • a third layer provided on the catalyst layer.
  • composition of the third layer can be appropriately adjusted according to the functions and the like required for the third layer.
  • the third layer contains, for example, one or more metal oxide particles.
  • the description of the metal oxide particles is the same as above.
  • the third layer may contain one or more components other than the metal oxide particles.
  • the third layer contains tin oxide particles.
  • the description of the tin oxide particles is the same as above.
  • This embodiment is preferably combined with the above embodiment in which the carrier contains tin oxide and the catalytically active ingredient contains platinum element.
  • the exhaust gas purification catalyst according to the combined embodiment is useful as a methane oxidation catalyst that oxidizes methane in exhaust gas.
  • the third layer is a dried or fired composition of the undercoat layer composition of the present invention. As a result, it is possible to prevent the third layer from peeling off from the catalyst layer, and the catalytic performance of the catalyst layer can be effectively exhibited.
  • the exhaust gas purification catalyst of the present invention is formed by forming the undercoat layer of the present invention on a substrate, applying the composition for an exhaust gas purification catalyst on the undercoat layer, drying and firing. Can be done.
  • the drying temperature is usually 80 ° C. or higher and 400 ° C. or lower, preferably 100 ° C. or higher and 300 ° C. or lower, and the drying time is usually 1 hour or longer and 15 hours or lower, preferably 3 hours or longer and 12 hours or lower.
  • the firing temperature is usually 400 ° C. or higher and 800 ° C. or lower, preferably 500 ° C. or higher and 600 ° C. or lower, and the firing time is usually 1 hour or longer and 10 hours or lower, preferably 2 hours or longer and 5 hours or lower. Firing can be performed, for example, in an atmospheric atmosphere.
  • the form of the exhaust gas purification catalyst composition is, for example, a dispersion liquid, preferably a slurry.
  • the dispersion medium contained in the dispersion liquid include water, an organic solvent and the like.
  • the dispersion medium may be one kind of solvent or a mixture of two or more kinds of solvents.
  • the mixture of two or more kinds of solvents include a mixture of water and one kind or two or more kinds of organic solvents, and a mixture of two or more kinds of organic solvents.
  • the composition of the exhaust gas purification catalyst composition can be appropriately adjusted according to the composition of the exhaust gas purification catalyst.
  • the composition for a catalyst for purifying exhaust gas contains, for example, a source of a catalytically active ingredient, a carrier, and the like.
  • the source of the catalytically active ingredient is, for example, a precious metal salt.
  • the noble metal salt (including the noble metal ion generated by ionization of the noble metal salt) is preferably impregnated in the carrier.
  • the carrier By mixing the noble metal salt-containing solution and the carrier, the carrier can be impregnated with the noble metal salt (including the noble metal ion generated by the ionization of the noble metal salt).
  • the noble metal salt include nitrates, ammine complex salts, chloride salts and the like.
  • the content of the source of the catalytically active component in the composition for exhaust gas purification catalyst is usually 0.5% by mass or more and 20% by mass or less, preferably 1% by mass or more, based on the mass of the exhaust gas purification catalyst composition. It is 15% by mass or less.
  • the content of the carrier in the exhaust gas purification catalyst composition is usually 5% by mass or more and 40% by mass or less, preferably 10% by mass or more and 30% by mass or less, based on the mass of the exhaust gas purification catalyst composition.
  • the composition for a catalyst for purifying exhaust gas may contain a binder component.
  • the binder component include metal oxide sol such as colloidal silica, colloidal alumina, titanium oxide sol, cerium oxide sol, and tin oxide sol.
  • the content of the binder component in the exhaust gas purification catalyst composition is usually 8% by mass or more and 30% by mass or less, preferably 10% by mass or more and 20% by mass or less, based on the mass of the exhaust gas purification catalyst composition. ..
  • the exhaust gas purification device of the present invention includes the exhaust gas purification catalyst of the present invention.
  • FIG. 1 is a partial cross-sectional view of an exhaust gas purification device 1 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • the exhaust gas purification device 1 is arranged in an exhaust path of, for example, a gasoline engine (for example, a GDI engine or the like), a boiler, a heating furnace, a gas engine, a gas turbine, or the like.
  • a gasoline engine for example, a GDI engine or the like
  • a boiler for example, a GDI engine or the like
  • a heating furnace for example, a gas engine, a gas turbine, or the like.
  • the exhaust gas purification device 1 includes an exhaust pipe 10 and an exhaust gas purification catalyst 20 provided in the exhaust pipe 10.
  • the exhaust gas flows through the exhaust passage in the exhaust pipe 10 from one end to the other end of the exhaust pipe 10, and is purified by the exhaust gas purification catalyst 20 provided in the exhaust pipe 10.
  • the exhaust gas distribution direction is indicated by reference numeral X.
  • the upstream side of the exhaust gas flow direction X may be referred to as the “exhaust gas inflow side”
  • the downstream side of the exhaust gas flow direction X may be referred to as the “exhaust gas outflow side”.
  • the exhaust gas purification catalyst 20 includes an exhaust gas 21, an undercoat layer 22 formed on the substrate 21, and a catalyst layer 23 formed on the undercoat layer 22.
  • the purification catalyst 20 is the exhaust gas purification catalyst of the present invention
  • the undercoat layer 22 is the undercoat layer of the present invention.
  • the base material 21 is, for example, a flow-through type base material having a honeycomb structure.
  • the base material 21 has a plurality of cells 211 and a partition wall portion 212 for partitioning the plurality of cells 211.
  • a partition wall portion 212 exists between two adjacent cells 211, and the two adjacent cells 211 are partitioned by the partition wall portion 212.
  • the base material 21 includes a tubular portion (not shown) that defines the outer shape of the base material 21, and the partition wall portion 212 is formed in the tubular portion.
  • the shape of the tubular portion is, for example, a cylindrical shape, but other shapes may be used. Examples of other shapes include an elliptical cylinder and a polygonal cylinder.
  • the axial direction of the tubular portion coincides with the axial direction of the base material 21.
  • the base material 21 is formed with a plurality of holes in which both the exhaust gas inflow side and the exhaust gas outflow side are open, and the cell 211 is formed by the space in these holes.
  • each of the plurality of cells 211 extends in the exhaust gas flow direction X, and has an end on the exhaust gas inflow side in the exhaust gas flow direction X and an end on the exhaust gas outflow side in the exhaust gas flow direction X.
  • both the end portion of the exhaust gas flow direction X on the exhaust gas inflow side and the end portion of the exhaust gas flow direction X on the exhaust gas outflow side are open.
  • the end portion of the cell 211 on the exhaust gas inflow side may be referred to as an “exhaust gas inflow side opening”
  • the end portion of the cell 211 on the exhaust gas outflow side may be referred to as an “exhaust gas outflow side opening”.
  • the shape of the openings on the exhaust gas inflow side and the exhaust gas outflow side of the cell 211 is, for example, a square, a parallelogram, a rectangle, a trapezoid, or the like. Examples include polygons such as rectangles, triangles, hexagons and octagons, and various geometric shapes such as circles and ellipses.
  • the area of the opening on the exhaust gas inflow side of the cell 211 in the plan view and the area of the opening on the exhaust gas outflow side of the cell 211 in the plan view may be the same or different.
  • the cell density per square inch of the base material 21 is, for example, 100 cells or more and 1200 cells or less.
  • the cell density per square inch of the base material 21 is the total number of cells 211 per square inch in a cross section obtained by cutting the base material 21 in a plane perpendicular to the exhaust gas flow direction X.
  • the thickness of the partition wall 212 is, for example, 10 ⁇ m or more and 80 ⁇ m or less. If the thickness of the partition wall 212 is not constant, the average value of the thicknesses measured at a plurality of points is taken as the thickness of the partition wall portion 212.
  • the undercoat layer 22 is formed on both sides of the partition wall portion 212 along the exhaust gas flow direction X from the end portion of the partition wall portion 212 on the exhaust gas inflow side to the end portion of the partition wall portion 212 on the exhaust gas outflow side. Has been done.
  • the undercoat layer 22 may be formed in a part of the partition wall 212 along the exhaust gas flow direction X from the end portion of the partition wall portion 212 on the exhaust gas inflow side. Further, the undercoat layer 22 may be formed in a part of the partition wall 212 along the direction opposite to the exhaust gas flow direction X from the end portion of the partition wall portion 212 on the exhaust gas outflow side.
  • the catalyst layer 23 is formed on the undercoat layer 22 from the end portion of the partition wall portion 212 on the exhaust gas inflow side to the end portion of the partition wall portion 212 on the exhaust gas outflow side along the exhaust gas flow direction X. ing.
  • the catalyst layer 23 may be formed on the entire undercoat layer 22 or may be formed on a part of the undercoat layer 22.
  • Tin oxide (Mitsui Mining & Smelting Co., Ltd., Pastoran 6010) was calcined at 900 ° C. for 3 hours in an air atmosphere to prepare tin oxide microparticles.
  • Tin oxide sol (Taki Chemical Co., Ltd., tin oxide sol S-8), which is an inorganic binder, was prepared.
  • the median diameter D 50 of the tin oxide nanoparticles contained in the tin oxide sol was 6 nm.
  • a stainless steel metal honeycomb was prepared as the base material.
  • the substrate was cut in a plane perpendicular to the axial direction of the substrate to prepare cut pieces of the substrate (number of cells: 400 cells, diameter: 20 mm, length: 12.5 mm, volume: 3.9 mL).
  • the cut pieces of the base material were fired at 700 ° C. for 1 hour to remove oil and dust adhering to the base material.
  • Tin oxide microparticles and tin oxide sol are mixed and stirred for 2 hours so that the content of tin oxide nanoparticles is 8% by mass based on the total content of tin oxide nanoparticles and tin oxide nanoparticles.
  • median diameter D 50 of the primary particles constituting the tin oxide micro particles present in the slurry for undercoat layer was measured.
  • tin oxide pasttran 6010 manufactured by Mitsui Mining & Smelting Co., Ltd.
  • tin oxide particles for a carrier Median diameter D 50, the pore diameter and BET specific surface area of the carrier for the tin oxide particles, 2.0 .mu.m, was 20nm and 40 m 2 / g.
  • tin oxide particles and tin oxide sol for the carrier are added, and the mixture is stirred for 2 hours, and platinum (Pt) element, iridium (Ir) element, tin oxide particles for the carrier and A slurry for a catalyst layer was prepared in which the contents of the tin oxide sol were 12 parts by mass, 1.2 parts by mass, 76.8 parts by mass and 10 parts by mass, respectively.
  • the cut pieces of the base material are immersed in the slurry for the undercoat layer, the excess slurry in the cell is removed by air blowing, dried, and then fired at 500 ° C. for 3 hours in the air atmosphere to unit the cut pieces of the base material.
  • a slurry layer having a mass per volume of 60 g / L was formed.
  • Fragments of the undercoat layer were collected from the substrate on which the undercoat layer was formed, and the pore size of the collected fragments of the undercoat layer was evaluated by mercury porosymmetry. As a result, the mode pore diameter was 380 nm.
  • the cut pieces of the base material were immersed in the slurry for the catalyst layer, the excess slurry in the cell was removed by air blowing, dried, and then calcined at 500 ° C. for 3 hours in an air atmosphere.
  • a catalyst layer having a mass per unit volume of a cut piece of the base material of 125 g / L was formed on the slurry layer. In this way, a catalyst sample was prepared.
  • the supported amounts of platinum element and iridium element per unit volume of the cut pieces of the base material were 15 g / L and 1.5 g / L, respectively, in terms of metal.
  • the catalyst sample was placed in a quartz tube having a diameter of about 21 mm.
  • methane 2000 ppm
  • oxygen 10 vol%
  • carbon dioxide 5 vol%
  • water vapor 10 vol%
  • nitrogen balanced composition
  • the space velocity is the flow rate of the gas flowing through the volume of the honeycomb catalyst sample per hour.
  • the catalyst sample was heated to 340 ° C. in a tube furnace installed around a quartz tube, and then the concentration of methane was measured.
  • the measurement method is as follows.
  • Table 1 shows the measurement results of the methane purification rate and the peeling rate.
  • Examples 2 to 4 and Comparative Examples 1 to 3 The tin oxide microparticles and the tin oxide sol are mixed so that the content of the tin oxide nanoparticles is the ratio shown in Table 1 based on the total content of the tin oxide nanoparticles and the tin oxide nanoparticles.
  • a catalyst sample was prepared in the same manner as in Example 1 except that a slurry for pulling layers was prepared. At the same time, the methane purification rate and the peeling rate were measured. The measurement results are shown in Table 1.
  • the content of tin oxide nanoparticles in the undercoat layer slurry is 8% by mass or more based on the total content of tin oxide nanoparticles and tin oxide nanoparticles in the undercoat layer slurry.
  • it is mass% or less (Examples 1 to 4)
  • it is possible to prevent the undercoat layer and the catalyst layer from peeling from the base material, and the catalytic performance (methane purification performance) of the catalyst layer is effectively exhibited. I was able to.
  • Examples 5 to 8 The content of tin oxide nanoparticles in the undercoat layer slurry was set to 10% by mass based on the total content of tin oxide microparticles and tin oxide nanoparticles, and the unit volume of the cut pieces of the base material.
  • the mass of the undercoat layer (hereinafter sometimes referred to as “coating amount of the undercoat layer (WC1)”) and the mass of the catalyst layer per unit volume of the cut pieces of the base material (hereinafter “coating amount of the catalyst layer (WC1)”).
  • a catalyst sample was prepared in the same manner as in Example 1 except that WC2) ”was adjusted to the ratio shown in Table 2. At the same time, the methane purification rate and the peeling rate were measured. The measurement results are shown in Table 3.
  • the supported amounts of platinum element and iridium element per unit volume of the cut pieces of the base material were fixed at 15 g / L and 1.5 g / L, respectively, in terms of metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本発明は、基材から容易に剥離しない下引層を形成することができる下引層用組成物、該下引層用組成物によって形成された下引層、並びに、該下引層を備える排ガス浄化用触媒及び排ガス浄化装置を提供することを目的とし、かかる目的を達成するために、酸化錫マイクロ粒子及び酸化錫ナノ粒子を含有する下引層用組成物であって、前記酸化錫ナノ粒子の含有量が、前記酸化錫マイクロ粒子及び前記酸化錫ナノ粒子の合計含有量を基準として、8質量%以上30質量%以下である、前記下引層用組成物、該下引層用組成物によって形成された下引層、並びに、該下引層を備える排ガス浄化用触媒及び排ガス浄化装置を提供する。

Description

下引層用組成物、下引層並びに下引層を備える排ガス浄化用触媒及び排ガス浄化装置
 本発明は、下引層用組成物、該下引層用組成物によって形成された下引層、並びに、該下引層を備える排ガス浄化用触媒及び排ガス浄化装置に関する。
 自動車、バイク、ボイラー、加熱炉、ガスエンジン、ガスタービン等から排出される排ガス中には、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分が含まれている。これらの有害成分を浄化して無害化する排ガス浄化用触媒として、HC及びCOを酸化して水及び二酸化炭素に変換するとともに、NOxを還元して窒素に変換する触媒活性を有する三元触媒が使用されている。
 三元触媒は、排ガス中のメタンに対しては有効に作用しない場合がある。このため、メタン酸化触媒が開発されている。例えば、特許文献1には、酸化錫に白金及びイリジウムを担持させてなるメタン酸化触媒が記載されている。特許文献1に記載のメタン酸化触媒は、低温域(500℃以下、特に350~450℃)においてメタンを有効に酸化除去することができる。
特開2006-272079号公報
 排ガス浄化用触媒は、基材と、基材上に設けられた触媒層とを備える。基材が複数のセルからなるハニカム構造を有する場合、セルの角部(基材を基材の軸方向から平面視したときのセルの角部)に形成された触媒層は、排ガスとの接触効率が低く、触媒性能を十分に発揮しない場合がある。このことを防止するため、基材上に下引層を形成し、下引層上に触媒層を形成することが考えられる。
 しかしながら、下引層の組成によっては、下引層が基材から容易に剥離する場合がある。
 そこで、本発明は、基材から容易に剥離しない下引層を形成することができる下引層用組成物、該下引層用組成物によって形成された下引層、並びに、該下引層を備える排ガス浄化用触媒及び排ガス浄化装置を提供することを目的とする。
 上記課題を解決するために、本発明は、以下の発明を提供する。
[1]酸化錫マイクロ粒子及び酸化錫ナノ粒子を含有する下引層用組成物であって、前記酸化錫ナノ粒子の含有量が、前記酸化錫マイクロ粒子及び前記酸化錫ナノ粒子の合計含有量を基準として、8質量%以上30質量%以下である、前記下引層用組成物。
[2]上記[1]に記載の下引層用組成物によって形成された下引層。
[3]基材と、該基材上に形成された上記[2]に記載の下引層と、該下引層上に形成された触媒層とを備える、排ガス浄化用触媒。
[4]上記[3]に記載の排ガス浄化用触媒を備える、排ガス浄化装置。
 本発明によれば、基材から容易に剥離しない下引層を形成することができる下引層用組成物、該下引層用組成物によって形成された下引層、並びに、該下引層を備える排ガス浄化用触媒及び排ガス浄化装置が提供される。
図1は、本発明の一実施形態に係る排ガス浄化装置の一部断面図である。 図2は、図1のA-A線断面図である。
 以下、本発明について詳細に説明する。
≪下引層用組成物≫
 本発明の下引層用組成物は、酸化錫マイクロ粒子及び酸化錫ナノ粒子を含有する。
 酸化錫マイクロ粒子はマトリックス成分であり、酸化錫ナノ粒子はバインダー成分である。すなわち、本発明の下引層用組成物を使用して基材上に下引層を形成する際、酸化錫マイクロ粒子は、下引層の母材を構成し、酸化錫ナノ粒子は、基材と酸化錫マイクロ粒子とを結合させるとともに、酸化錫マイクロ粒子同士を結合させる。
 酸化錫粒子は、酸化錫を含有する。酸化錫としては、例えば、酸化錫(II)(SnO)、酸化錫(III)(Sn)、酸化錫(IV)(SnO)、酸化錫(VI)(SnO)等が挙げられるが、これらのうち、酸化錫(IV)(SnO)が好ましい。酸化錫粒子は、1種の酸化錫を含有していてもよいし、2種以上の酸化錫を含有していてもよい。
 酸化錫粒子における酸化錫の含有量は、酸化錫粒子の質量を基準として、通常75質量%以上、好ましくは80質量%以上、さらに好ましくは90質量%以上である。なお、酸化錫粒子が1種の酸化錫を含有する場合、「酸化錫の含有量」は当該1種の酸化錫の含有量を意味し、酸化錫粒子が2種以上の酸化錫を含有する場合、「酸化錫の含有量」は当該2種以上の酸化錫の合計含有量を意味する。上限値は、理論上は100質量%であるが、不可避的不純物の存在を考慮すると、実際には100質量%未満(例えば99.5質量%以下)となり得る。不可避的不純物は、例えば、酸化錫粒子を製造する際に不可避的に混入される微量元素である。
 酸化錫粒子が酸化錫(IV)を含有する場合、酸化錫粒子における酸化錫(IV)の含有量は、酸化錫粒子の質量を基準として、好ましくは75質量%以上、さらに好ましくは80質量%以上、さらに一層好ましくは90質量%以上である。
 酸化錫粒子に含有される元素の量は、誘導結合プラズマ発光分光分析法(ICP-AES)等の常法を使用して測定することができる。
 酸化錫粒子の形状は、球状であることが好ましい。球状には、真球状、楕円球状等が包含される。
 酸化錫マイクロ粒子及び酸化錫ナノ粒子は、それぞれ、複数の酸化錫粒子で構成される。酸化錫粒子に関する上記説明は、酸化錫マイクロ粒子を構成する酸化錫粒子及び酸化錫ナノ粒子を構成する酸化錫粒子の両方に適用される。
 酸化錫マイクロ粒子及び酸化錫ナノ粒子は、それぞれ、同一の組成を有する複数の酸化錫粒子で構成されていてもよいし、異なる組成を有する複数の酸化錫粒子で構成されていてもよい。
 酸化錫マイクロ粒子は、マイクロメートルサイズのメジアン径D50を有し、酸化錫ナノ粒子は、ナノメートルサイズのメジアン径D50を有する。
 酸化錫マイクロ粒子のメジアン径D50は、酸化錫マイクロ粒子の体積基準の粒度分布において、累積体積が50%となる粒径を意味し、酸化錫ナノ粒子のメジアン径D50は、酸化錫ナノ粒子の体積基準の粒度分布において、累積体積が50%となる粒径を意味する。
 酸化錫マイクロ粒子の体積基準の粒度分布は、動的光散乱法により測定される。動的光散乱法では、例えば粒度分布測定装置Malvern Panalytical社製「ゼータサイザーナノ ZS」を使用して、酸化錫マイクロ粒子の体積基準の粒度分布を測定する。粒度分布は、酸化錫マイクロ粒子を水に分散させて測定する。
 酸化錫ナノ粒子の体積基準の粒度分布は、X線小角散乱法により測定される。X線小角散乱法の好ましい実施形態は、次の通りである。酸化錫ナノ粒子が任意の割合で含まれる粉体を0.2μmの深さのくぼみを持つガラス製試料板に充填して試料を調製する。X線小角散乱プロファイルを得るために、株式会社リガク製全自動多目的X線回折装置SmartLabに、光学系としてX線小角散乱仕様を適用し、透過法にて試料のX線小角散乱プロファイルを測定する。X線源としてCuターゲットを使用し、検出器としてシンチレーションカウンターを使用する。次いで、試料のX線小角散乱プロファイルのプロファイル解析を、粒子形状を球形とし、粒子サイズのバラつきがガンマ分布関数で与えられると仮定して、株式会社リガク製解析ソフト NANO-Solverを使用して実施する。プロファイル解析の対象角度範囲は、2θ=4degまでとする。
 動的光散乱法では、見かけの粒子径が測定される。すなわち、粒子が一次粒子の状態で存在する場合には、一次粒子径が測定され、一次粒子が凝集した二次粒子の状態で存在する場合には、二次粒子径が測定される。一方、X線小角散乱法では、粒子が一次粒子であっても二次粒子であっても、一次粒子径が測定される。なお、二次粒子は、一次粒子が凝集して形成された凝集粒子である。
 酸化錫マイクロ粒子及び酸化錫ナノ粒子の体積基準の粒度分布の測定は、酸化錫マイクロ粒子と酸化錫ナノ粒子とを混合する前に行ってもよいし、酸化錫マイクロ粒子と酸化錫ナノ粒子とを混合した後に行ってもよい。酸化錫マイクロ粒子及び酸化錫ナノ粒子の体積基準の粒度分布の測定は、通常、本発明の下引層用組成物を使用して(すなわち、酸化錫マイクロ粒子と酸化錫ナノ粒子とが混合された状態で)行われる。
 酸化錫マイクロ粒子のメジアン径D50は、下引層中のガス流通性を向上させる観点から、好ましくは1μm以上、さらに好ましくは1.5μm以上、さらに一層好ましくは1.8μm以上である一方、基材からの下引層の剥離をより効果的に防止する観点から、好ましくは100μm以下、さらに好ましくは60μm以下、さらに一層好ましくは40μm以下(例えば、30μm以下、25μm以下、20μm以下、15μm以下、10μm以下、5μm以下)である。
 酸化錫ナノ粒子のメジアン径D50は、下引層中のガス流通性を向上させる観点から、好ましくは1nm以上、さらに好ましくは2nm以上、さらに一層好ましくは3nm以上である一方、基材からの下引層の剥離をより効果的に防止する観点から、好ましくは20nm以下、さらに好ましくは15nm以下、さらに一層好ましくは10nm以下である。
 酸化錫マイクロ粒子のメジアン径D50の、酸化錫ナノ粒子のメジアン径D50に対する比は、酸化錫ナノ粒子の焼結性を向上させ、基材からの下引層の剥離をより効果的に防止する観点から、好ましくは50以上、さらに好ましくは100以上、さらに一層好ましくは200以上である一方、下引層中のガス流通性を向上させる観点から、好ましくは100000以下、さらに好ましくは30000以下、さらに一層好ましくは10000以下である。
 酸化錫マイクロ粒子を構成する粒子は、一次粒子であってもよいし、二次粒子であってもよい。酸化錫マイクロ粒子は、通常、二次粒子を主体とする、一次粒子と二次粒子との混合物で構成される。
 酸化錫ナノ粒子を構成する粒子は、一次粒子であってもよいし、二次粒子であってもよい。酸化錫マイクロ粒子と混合する前の酸化錫ナノ粒子は、通常、一次粒子で構成されるか、あるいは、一次粒子を主体とする、一次粒子と二次粒子との混合物で構成されるが、酸化錫マイクロ粒子と混合した後の酸化錫ナノ粒子は、酸化錫マイクロ粒子に吸着し、凝集する場合がある。
 酸化錫マイクロ粒子を構成する一次粒子のメジアン径D50(平均一次粒子径)は、触媒担体として適切な比表面積を得る観点から、好ましくは15nm以上100nm以下、さらに好ましくは16nm以上40nm以下(例えば、16nm以上35nm以下、16nm以上30nm以下、16nm以上25nm以下)である。
 酸化錫マイクロ粒子を構成する一次粒子のメジアン径D50は、酸化錫マイクロ粒子を構成する一次粒子の体積基準の粒度分布において、累積体積が50%となる粒径を意味する。
 酸化錫マイクロ粒子を構成する一次粒子の体積基準の粒度分布は、X線小角散乱法により測定される。X線小角散乱法の好ましい実施形態は、上記の通りである。
 酸化錫マイクロ粒子を構成する一次粒子の体積基準の粒度分布と、酸化錫ナノ粒子の体積基準の粒度分布とは重ならないこと(すなわち、酸化錫マイクロ粒子を構成する一次粒子の体積基準の粒度分布における最小粒径が、酸化錫ナノ粒子の体積基準の粒度分布における最大粒径よりも大きいこと)が好ましい。これにより、酸化錫マイクロ粒子を構成する一次粒子の体積基準の粒度分布の測定を、酸化錫マイクロ粒子と酸化錫ナノ粒子とを混合する前だけでなく、酸化錫マイクロ粒子と酸化錫ナノ粒子とを混合した後にも行うことができる。
 酸化錫マイクロ粒子の比表面積は、貴金属を微小な粒子サイズで担持して浄化性能を向上させる観点から、好ましくは1m/g以上、さらに好ましくは10m/g以上、さらに一層好ましくは30m/g以上である一方、下引層中のガス流通性を向上させ、排ガス浄化性能を向上させる観点から、好ましくは120m/g以下、さらに好ましくは90m/g以下、さらに一層好ましくは70m/g以下である。
 酸化錫マイクロ粒子の比表面積は、JIS R1626「ファインセラミック粉体の気体吸着BET法による比表面積測定方法」の「6.2流動法」における「(3.5)一点法」に従って測定される。気体としては、吸着ガスである窒素を30容量%、キャリアガスであるヘリウムを70容量%含有する窒素-ヘリウム混合ガスが使用される。測定装置としては、マイクロトラック・ベル製の「BELSORP-MR6」が使用される。
 本発明の下引層用組成物において、酸化錫ナノ粒子の含有量は、酸化錫マイクロ粒子及び酸化錫ナノ粒子の合計含有量を基準として、8質量%以上30質量%以下であることが好ましい。
 バインダー成分である酸化錫ナノ粒子の量が不十分であると、酸化錫マイクロ粒子が基材から剥離しやすい。バインダー成分である酸化錫ナノ粒子の量が過剰であると、酸化錫ナノ粒子の凝集(例えば、焼結による凝集)によって酸化錫ナノ粒子のバインダー性能が低下し、酸化錫マイクロ粒子が基材から剥離しやすい。酸化錫マイクロ粒子が基材から剥離し、触媒層が下引層上ではなく、基材上に形成されると、触媒層が触媒性能を十分に発揮しないおそれがある。特に、基材がハニカム構造を有する場合、触媒層のうち、基材のセルの角部(基材を基材の軸方向(排ガス流通方向)から平面視したときのセルの角部)に形成された部分は、排ガスとの接触効率が低く、触媒性能を十分に発揮しないおそれがある。また、酸化錫マイクロ粒子が基材から剥離しやすいと、触媒層が下引層上に形成されても、触媒層が下引層とともに基材から剥離しやすく、触媒性能を十分に発揮しないおそれがある。
 これに対して、酸化錫ナノ粒子の含有量が、酸化錫マイクロ粒子及び酸化錫ナノ粒子の合計含有量を基準として、8質量%以上30質量%以下であると、酸化錫マイクロ粒子が基材から剥離することを防止することができる。したがって、触媒層が下引層上ではなく、基材上に形成されること(特に、基材のセルの角部において、触媒層が下引層上ではなく、基材上に形成されること)、及び、触媒層が下引層とともに基材から剥離することを防止することができ、触媒層の触媒性能を効果的に発揮させることができる。
 基材からの下引層の剥離をより効果的に防止する観点から、酸化錫ナノ粒子の含有量は、酸化錫マイクロ粒子及び酸化錫ナノ粒子の合計含有量を基準として、さらに好ましくは9質量%以上25質量%以下、さらに一層好ましくは10質量%以上20質量%以下である。
 本発明の下引層用組成物の形態としては、例えば、粉末、分散液等が挙げられる。分散液は、酸化錫マイクロ粒子、酸化錫ナノ粒子及び分散媒を含有する。分散液は、固形分の含有量に応じて種々の粘度を有し、粘度に応じてインク、スラリー、ペースト等の種々の形態を有することができる。分散液の形態は、好ましくはスラリーである。分散液に含有される分散媒としては、例えば、水、有機溶媒等が挙げられる。分散媒は、1種の溶媒であってもよいし、2種以上の溶媒の混合物であってもよい。2種以上の溶媒の混合物としては、例えば、水と1種又は2種以上の有機溶媒との混合物、2種以上の有機溶媒の混合物等が挙げられる。
 本発明の下引層用組成物は、例えば、酸化錫マイクロ粒子で構成される酸化錫粉末と、酸化錫ナノ粒子を含有する酸化錫ゾルとを混合することにより調製することができる。こうして調製される下引層用組成物の形態は、分散液、好ましくはスラリーである。
 酸化錫マイクロ粒子で構成される酸化錫粉末及び酸化錫ナノ粒子を含有する酸化錫ゾルは、常法に従って製造することができる。
 酸化錫マイクロ粒子で構成される酸化錫粉末は、例えば、酸化錫の熱処理によって得られた焼成物を粉砕することにより得ることができる。焼成物の粉砕は、例えば、ジェットミル、ボールミル、ビーズミル等を使用して乾式又は湿式で行うことができる。粉砕を湿式で行う場合、溶媒として、例えば、炭化水素系溶媒等の有機溶媒を使用することができる。粉砕後、所定の目開きの篩を使用して分級を行ってもよい。粉砕条件、分級に使用される篩の目開き等は、実現すべきメジアン径D50、D90、D10に応じて適宜調整することができる。
 酸化錫ナノ粒子を含有する酸化錫ゾルは、例えば、酸化錫粉末を使用して酸化錫ゾルを得る方法、溶媒中で酸化錫を形成させて酸化錫ゾルを得る方法等により製造することができる。後者の方法としては、例えば、2011-26172号公報、特開2012-148928号公報等に記載の方法が挙げられる。酸化錫ナノ粒子を含有する酸化錫ゾルは、単分散系であることが好ましい。
 本発明の下引層用組成物は、酸化錫マイクロ粒子及び酸化錫ナノ粒子以外の固形分を含有してもよい。酸化錫マイクロ粒子及び酸化錫ナノ粒子以外の固形分としては、例えば、酸化錫粒子以外の金属酸化物粒子等が挙げられる。金属酸化物粒子に関しては後述する。
 本発明の下引層用組成物が、酸化錫マイクロ粒子及び酸化錫ナノ粒子以外の固形分を含有する場合、その含有量は下引用組成物の質量に対して2質量%以下であることが好ましい。
≪下引層≫
 本発明の下引層は、本発明の下引層用組成物によって形成されている。本発明の下引層は、例えば、本発明の下引層用組成物の乾燥物又は焼成物である。
 本発明の下引層の最頻細孔径は、下引層中のガス流通性と下引層の剥離防止効果とのバランスの観点から、好ましくは200nm以上1000nm以下、さらに好ましくは300nm以上800nm以下、さらに一層好ましくは350nm以上600nm以下である。
 「下引層の最頻細孔径が200nm以上1000nm以下である」とは、水銀圧入ポロシメータにより測定される下引層の対数微分空隙容積分布(空隙容積径の測定範囲:3nm~100μm)において、空隙容積径200nm~1000nmの範囲に、最も高いピークが存在することを意味する。なお、ピークが存在しないと仮定した場合のライン、すなわちバックグラウンドからの垂直高さが0.002mL/g未満のピークは、ノイズであると考えられるため、「ピーク」に該当するものではない。
 下引層の最頻細孔径は、下引層が単独で存在する場合には当該下引層を使用して、下引層が基材上に形成されている場合には基材から剥離した後の下引層を使用して、下引層上に触媒層が形成されている場合には触媒層を除去した後の下引層を使用して、水銀圧入ポロシメータで空隙分布を測定することにより測定することができる。下引層の最頻細孔径の測定は、下引層の断片(例えば、基材から剥離された下引層の断片)を使用して行ってもよい。
 水銀圧入ポロシメータは、水銀の表面張力が大きいことを利用して、測定対象に圧力を加えて水銀を浸入させ、その時の圧力と圧入された水銀量とから空隙容積径及び対数微分空隙容積分布を測定する装置である。したがって、対象とする空隙は、オープンポア(外と連通している空隙)だけで、クローズドポア(独立した空隙)は対象に含まれない。
 「空隙容積径」は、空隙を円柱近似した際の底面の直径を意味し、次の式により算出される。
 dr=-4σcosθ/p(σ:表面張力、θ:接触角、p:圧力)
 この式において、水銀の表面張力は既知であり、接触角は装置毎で固有の値を示すため、圧入した水銀の圧力から空隙容積径を算出することができる。
 本発明の下引層の最頻細孔径は、酸化錫マイクロ粒子の含有量及び比表面積、焼成条件等を調整することにより調整することができる。
 本発明の下引層は、本発明の下引層用組成物を基材に塗布し、乾燥することにより(この場合、本発明の下引層は本発明の下引層用組成物の乾燥物であり)、あるいは、乾燥後、焼成することにより(この場合、本発明の下引層は本発明の下引層用組成物の焼成物である)、形成することができる。
 乾燥温度は、通常80℃以上400℃以下、好ましくは100℃以上300℃以下であり、乾燥時間は、通常1時間以上15時間以下、好ましくは3時間以上12時間以下である。焼成温度は、通常400℃以上1000℃以下、好ましくは500℃以上800℃以下であり、焼成時間は、通常1時間以上10時間以下、好ましくは2時間以上5時間以下である。焼成は、例えば、大気雰囲気下で行うことができる。
 本発明の下引層が、本発明の下引層用組成物によって形成されていることは、下引層の断面から任意に選択された3箇所を観察し、それぞれの箇所において、酸化錫マイクロ粒子及び酸化錫ナノ粒子によって形成される部分の総面積Tに対する酸化錫ナノ粒子によって形成される部分の面積Nの百分率S(%)をS=100×N/Tの式により算出し、当該百分率の平均値に基づいて確認することができる。基材上に形成された下引層を基材の軸方向(排ガス流通方向)と垂直な平面で切断し、冷間クロスセクションポリッシャで断面を加工したのち2000倍の拡大率でSEM観察を行うことにより、下引層の断面観察を行うことができる。本発明の下引層が本発明の下引層用組成物によって形成されている場合、当該百分率の平均値は、好ましくは1.7%以上44%以下、さらに好ましくは2%以上40%以下、さらに一層好ましくは2.5%以上35%以下、さらに一層好ましくは5.0%以上10%以下である。
≪排ガス浄化用触媒≫
 本発明の排ガス浄化用触媒は、基材と、該基材上に形成された本発明の下引層と、該下引層上に形成された触媒層とを備える。
 基材は、排ガス浄化用触媒の基材として一般的に使用されている基材から適宜選択することができる。基材としては、例えば、ウォールフロー型基材、フロースルー型基材等が挙げられる。
 基材を構成する材料は、排ガス浄化用触媒の基材の材料として一般的に使用されている材料から適宜選択することができる。基材を構成する材料は、基材が高温(例えば400℃以上)の排ガスに曝露された場合にも基材の形状が安定して維持され得る材料であることが好ましい。
 基材の材料としては、例えば、セラミック材料、金属材料等が挙げられる。セラミック材料としては、例えば、コージェライト、コージェライト-アルファアルミナ、窒化ケイ素、ジルコンムライト、スポジュメン、アルミナ-シリカマグネシア、ケイ酸ジルコン、シリマナイト、ケイ酸マグネシウム、ジルコン、ペタライト、アルファアルミナ、アルミノシリケート等の耐火性セラミック材料が挙げられる。金属材料としては、例えば、ステンレス鋼、鉄基合金等の耐火性金属材料が挙げられる。
 基材は、ハニカム構造を有することが好ましい。ハニカム構造を有する基材としては、例えば、コージェライト等のセラミック材料で構成されるハニカム構造体、ステンレス鋼等の金属材料で構成されるハニカム構造体(メタルハニカム)等を使用することができる。また、ハニカム構造を有する基材としては、例えば、基材内部を流体が流通するように、基材内部に平行で微細な気体流通路(チャンネル)を多数有するモノリス型基材を使用することができる。
 基材の形状は特に限定されず、例えば、筒状、ペレット状、球状等が挙げられる。筒状としては、例えば、円筒状、楕円筒状、多角筒状等が挙げられる。
 基材の単位体積当たりの触媒層の質量(以下「触媒層のコート量(WC2)」という場合がある。)の、基材の単位体積当たりの下引層の質量(以下「下引層のコート量(WC1)」という場合がある。)に対する比(WC2/WC1)は、好ましくは0.1以上10以下、さらに好ましくは0.5以上5以下、さらに一層好ましくは1以上3以下である。WC2/WC1が上記範囲内であると、排気ガス中の成分(例えば、メタン)と触媒中の貴金属との接触確率が高くなり、触媒層の触媒性能(例えば、メタン浄化性能)を効果的に発揮させることができる。
 触媒層は、1種又は2種以上の触媒活性成分を含有する。触媒活性成分は、例えば、白金(Pt)元素、パラジウム(Pd)元素、ロジウム(Rh)元素、ルテニウム(Ru)元素、イリジウム(Ir)元素、オスミウム(Os)元素等から選択された1種又は2種以上の貴金属元素を含有する。貴金属元素を含有する触媒活性成分は、例えば、貴金属、貴金属の酸化物、貴金属元素を含有する合金等である。
 基材の単位体積当たりの触媒活性成分の質量(触媒層が2種以上の触媒活性成分を含有する場合、2種以上の触媒活性成分の合計質量)は、排ガス浄化性能とコストとのバランス等を考慮して適宜調整することができる。基材の単位体積当たりの触媒活性成分の質量は、通常1g/L以上30g/L以下、好ましくは3g/L以上20g/L以下である。
 基材の単位体積当たりの触媒活性成分の質量の測定方法は、以下の通りである。
 排ガス浄化用触媒を基材の軸方向(排ガス流通方向)と垂直な平面で切断し、触媒層を含む切断片C1を準備する。切断片C1は、所定のサイズを有する。切断片C1の直径及び長さは適宜調整することができる。切断片C1に含まれる触媒層の長さは、切断片C1の長さと等しい(すなわち、触媒層は、切断片C1の一端から他端まで延在している)。
 誘導結合プラズマ発光分光分析法(ICP-AES)等の常法を使用して、切断片C1に含まれる触媒活性成分の質量を測定し、下記式に基づいて、切断片C1の単位体積当たりの触媒活性成分の質量を算出する。
 切断片C1の単位体積当たりの触媒活性成分の質量=切断片C1に含まれる触媒活性成分の質量/切断片C1の体積
 5個の切断片C1に関して、切断片C1の単位体積当たりの触媒活性成分の質量を算出し、それらの平均値を、基材の単位体積当たりの触媒活性成分の質量とする。
 触媒層は、1種又は2種以上の担体を含有し、触媒活性成分は、担体に担持されていることが好ましい。
 「触媒活性成分が担体に担持されている」とは、担体の外表面又は細孔内表面に、触媒活性成分が物理的又は化学的に吸着又は保持されている状態を意味する。例えば、触媒層の断面をエネルギー分散型分光器(EDS)で分析して得られた元素マッピングにおいて、触媒活性成分と担体とが同じ領域に存在している場合、触媒活性成分が担体に担持されていると判断することができる。また、走査型電子顕微鏡(SEM)を使用した粒径の測定により、触媒活性成分が担体に担持されていることを確認することができる。
 担体の表面上に存在している触媒活性成分の平均粒径は、担体の平均粒径に対して、10%以下であることが好ましく、3%以下であることがさらに好ましく、1%以下であることがさらに一層好ましい。ここでいう平均粒径は、SEMで観察した時の30個以上の粒子のフェレ径の平均値である。
 基材の単位体積当たりの担体の質量(触媒層が2種以上の担体を含有する場合、2種以上の担体の合計質量)は、排ガス浄化性能とコストとのバランス等を考慮して適宜調整することができる。基材の単位体積当たりの担体の質量は、通常30g/L以上300g/L以下、好ましくは50g/L以上200g/L以下である。基材の単位体積当たりの担体の質量の測定方法は、基材の単位体積当たりの触媒活性成分の質量の測定方法と同様である。
 担体としては、例えば、金属酸化物粒子が挙げられる。金属酸化物粒子を構成する金属酸化物は、酸素貯蔵能(OSC:Oxygen Storage Capacity)を有する金属酸化物(以下「酸素貯蔵成分」という場合がある)であってもよいし、酸素貯蔵成分以外の無機酸化物であってもよい。
 金属酸化物粒子のメジアン径D50は、通常1μm以上100μm以下、好ましくは1.5μm以上50μm以下である。金属酸化物粒子のメジアン径D50は、金属酸化物粒子の体積基準の粒度分布において、累積体積が50%となる粒径を意味する。金属酸化物粒子の体積基準の粒度分布の測定方法は、酸化錫マイクロ粒子の体積基準の粒度分布の測定方法と同様である。
 触媒活性成分を担持させやすいことから、金属酸化物粒子は、多孔質体であることが好ましい。金属酸化物粒子の比表面積は、通常10m/g以上120m/g以下、好ましくは20m/g以上90m/g以下である。金属酸化物粒子の比表面積の測定方法は、酸化錫マイクロ粒子の比表面積の測定方法と同様である。
 酸素貯蔵成分としては、例えば、セリウム(Ce)元素を含む金属酸化物等が挙げられる。セリウム元素を含む金属酸化物としては、酸化セリウム(CeO)、セリウム(Ce)元素及びジルコニウム(Zr)元素を含む複合酸化物(以下「CeO-ZrO系複合酸化物」という場合がある。)等が挙げられる。
 酸素貯蔵成分以外の無機酸化物としては、例えば、酸化錫、アルミナ、シリカ、シリカ-アルミナ、アルミノ-シリケート、アルミナ-ジルコニア、アルミナ-クロミア、アルミナ-セリア、アルミナ-ランタナ、チタニア等が挙げられる。酸化錫に関する説明は上記と同様である。
 一実施形態において、担体は酸化錫を含有し、触媒活性成分は白金元素を含有する。この実施形態に係る排ガス浄化用触媒は、排ガス中のメタンを酸化するメタン酸化触媒として有用である。メタン酸化触媒が使用される温度は、例えば、250℃以上500℃以下、好ましくは300℃以上450℃以下である。
 酸化錫を含有する担体は、例えば、酸化錫粒子である。白金元素を含有する触媒活性成分は、例えば、白金金属、白金元素を含有する合金等である。触媒活性成分は、白金元素以外の1種又は2種以上の貴金属元素(例えば、イリジウム元素)を含有してもよい。イリジウム元素を含有する触媒活性成分は、例えば、イリジウム金属、イリジウム元素を含有する合金等である。
 本発明の排ガス浄化用触媒は、触媒層上に設けられた第3の層をさらに備えてもよい。触媒層上に第3の層が設けられることにより、排ガス中の成分が触媒層に付着することにより生じる触媒活性成分の被毒を防止することができ、触媒層の触媒性能を効果的に発揮させることができる。
 第3の層の組成は、第3の層に求められる機能等に応じて適宜調整することができる。
 第3の層は、例えば、1種又は2種以上の金属酸化物粒子を含む。金属酸化物粒子に関する説明は上記と同様である。第3の層は、金属酸化物粒子以外の1種又は2種以上の成分を含んでもよい。
 一実施形態において、第3の層は、酸化錫粒子を含む。酸化錫粒子に関する説明は上記と同様である。この実施形態は、担体が酸化錫を含有し、触媒活性成分が白金元素を含有する上記実施形態と組み合わせることが好ましい。組み合わせられた実施形態に係る排ガス浄化用触媒は、排ガス中のメタンを酸化するメタン酸化触媒として有用である。
 一実施形態において、第3の層は、本発明の下引層用組成物の乾燥物又は焼成物である。これにより、第3の層が触媒層から剥離することを防止することができ、触媒層の触媒性能を効果的に発揮させることができる。
 本発明の排ガス浄化用触媒は、本発明の下引層を基材上に形成した後、排ガス浄化用触媒用組成物を下引層上に塗布し、乾燥し、焼成することにより形成することができる。
 乾燥温度は、通常80℃以上400℃以下、好ましくは100℃以上300℃以下であり、乾燥時間は、通常1時間以上15時間以下、好ましくは3時間以上12時間以下である。焼成温度は、通常400℃以上800℃以下、好ましくは500℃以上600℃以下であり、焼成時間は、通常1時間以上10時間以下、好ましくは2時間以上5時間以下である。焼成は、例えば、大気雰囲気下で行うことができる。
 排ガス浄化用触媒用組成物の形態は、例えば、分散液、好ましくはスラリーである。分散液に含有される分散媒としては、例えば、水、有機溶媒等が挙げられる。分散媒は、1種の溶媒であってもよいし、2種以上の溶媒の混合物であってもよい。2種以上の溶媒の混合物としては、例えば、水と1種又は2種以上の有機溶媒との混合物、2種以上の有機溶媒の混合物等が挙げられる。
 排ガス浄化用触媒用組成物の組成は、排ガス浄化用触媒の組成に応じて適宜調整することができる。排ガス浄化用触媒用組成物は、例えば、触媒活性成分の供給源、担体等を含有する。
 触媒活性成分の供給源は、例えば、貴金属塩である。貴金属塩(貴金属塩の電離により生じた貴金属イオンを含む)は、担体に含浸していることが好ましい。貴金属塩含有溶液と担体とを混合することにより、貴金属塩(貴金属塩の電離により生じた貴金属イオンを含む)を担体に含浸させることができる。貴金属塩としては、例えば、硝酸塩、アンミン錯体塩、塩化物塩等が挙げられる。
 排ガス浄化用触媒用組成物における触媒活性成分の供給源の含有量は、排ガス浄化用触媒用組成物の質量を基準として、通常0.5質量%以上20質量%以下、好ましくは1質量%以上15質量%以下である。
 排ガス浄化用触媒用組成物における担体の含有量は、排ガス浄化用触媒用組成物の質量を基準として、通常5質量%以上40質量%以下、好ましくは10質量%以上30質量%以下である。
 排ガス浄化用触媒用組成物は、バインダー成分を含有してもよい。バインダー成分としては、例えば、コロイダルシリカ、コロイダルアルミナ、酸化チタンゾル、酸化セリウムゾル、酸化錫ゾル等の金属酸化物ゾルが挙げられる。
 排ガス浄化用触媒用組成物におけるバインダー成分の含有量は、排ガス浄化用触媒用組成物の質量を基準として、通常8質量%以上30質量%以下、好ましくは10質量%以上20質量%以下である。
≪排ガス浄化装置≫
 本発明の排ガス浄化装置は、本発明の排ガス浄化用触媒を備える。
 以下、図1及び図2に基づいて、本発明の排ガス浄化装置の実施形態について説明する。図1は、本発明の一実施形態に係る排ガス浄化装置1の一部断面図であり、図2は、図1のA-A線断面図である。
 排ガス浄化装置1は、例えば、ガソリンエンジン(例えば、GDIエンジン等)、ボイラー、加熱炉、ガスエンジン、ガスタービン等の排気経路に配置される。
 図1に示すように、排ガス浄化装置1は、排気管10と、排気管10内に設けられた排ガス浄化用触媒20とを備える。排ガスは、排気管10の一端から他端に向けて排気管10内の排気通路を流通し、排気管10内に設けられた排ガス浄化用触媒20で浄化される。図1において、排ガス流通方向は、符号Xで示されている。本明細書において、排ガス流通方向Xの上流側を「排ガス流入側」、排ガス流通方向Xの下流側を「排ガス流出側」という場合がある。
 図2に示すように、排ガス浄化用触媒20は、基材21と、基材21上に形成された下引層22と、下引層22上に形成された触媒層23とを備える、排ガス浄化用触媒20は、本発明の排ガス浄化用触媒であり、下引層22は、本発明の下引層である。
 基材21は、例えば、ハニカム構造を有するフロースルー型基材である。
 図2に示すように、基材21は、複数のセル211と、複数のセル211を仕切る隔壁部212とを有する。基材21において、隣接する2つのセル211の間には、隔壁部212が存在し、隣接する2つのセル211は、隔壁部212によって仕切られている。なお、基材21は、基材21の外形を規定する筒状部(不図示)を備え、隔壁部212は、筒状部内に形成されている。筒状部の形状は、例えば、円筒状であるが、その他の形状であってもよい。その他の形状としては、例えば、楕円筒状、多角筒状等が挙げられる。筒状部の軸方向は、基材21の軸方向と一致する。
 図2に示すように、基材21には、排ガス流入側及び排ガス流出側がともに開口する複数の孔部が形成されており、これらの孔部内の空間によってセル211が形成されている。
 図2に示すように、複数のセル211は、それぞれ、排ガス流通方向Xに延在しており、排ガス流通方向Xの排ガス流入側の端部及び排ガス流通方向Xの排ガス流出側の端部を有する。図2に示すように、排ガス流通方向Xの排ガス流入側の端部及び排ガス流通方向Xの排ガス流出側の端部はともに開口している。以下、セル211の排ガス流入側の端部を「排ガス流入側の開口部」、セル211の排ガス流出側の端部を「排ガス流出側の開口部」という場合がある。
 セル211の排ガス流入側及び排ガス流出側の開口部の平面視形状(基材21を排ガス流通方向Xから平面視した時の形状)としては、例えば、正方形、平行四辺形、長方形、台形等の矩形、三角形、六角形、八角形等の多角形、円形、楕円形等の種々の幾何学形状が挙げられる。
 セル211の排ガス流入側の開口部の平面視形状の面積と、セル211の排ガス流出側の開口部の平面視形状の面積とは、同一であってもよいし、異なっていてもよい。
 基材21の1平方インチあたりのセル密度は、例えば、100セル以上1200セル以下である。基材21の1平方インチあたりのセル密度は、基材21を排ガス流通方向Xと垂直な平面で切断して得られた断面における1平方インチあたりのセル211の合計個数である。
 隔壁部212の厚みは、例えば、10μm以上80μm以下である。なお、隔壁部212の厚みが一定でない場合、複数箇所で測定した厚みの平均値を隔壁部212の厚みとする。
 図2に示すように、下引層22は、隔壁部212の両側に、隔壁部212の排ガス流入側の端部から隔壁部212の排ガス流出側の端部まで排ガス流通方向Xに沿って形成されている。
 下引層22は、隔壁部212の排ガス流入側の端部から排ガス流通方向Xに沿って隔壁212の一部に形成されていてもよい。また、下引層22は、隔壁部212の排ガス流出側の端部から排ガス流通方向Xとは反対の方向に沿って隔壁212の一部に形成されていてもよい。
 図2に示すように、触媒層23は、下引層22上に、隔壁部212の排ガス流入側の端部から隔壁部212の排ガス流出側の端部まで排ガス流通方向Xに沿って形成されている。触媒層23は、下引層22の全体に形成されていてもよいし、下引層22の一部に形成されていてもよい。
〔実施例1〕
 酸化錫(三井金属鉱業株式会社製,パストラン6010)を、大気雰囲気中、900℃で3時間焼成し、酸化錫マイクロ粒子を調製した。酸化錫マイクロ粒子のメジアン径D50、細孔径及びBET比表面積は、それぞれ、2.0μm、30nm及び30m/gであった。
 無機系バインダーである酸化錫ゾル(株式会社多木化学製,酸化錫ゾルS-8)を準備した。酸化錫ゾルに含有される酸化錫ナノ粒子のメジアン径D50は6nmであった。
 基材として、ステンレス製メタルハニカムを準備した。基材を、基材の軸方向と垂直な平面で切断し、基材の切断片(セル数:400セル,直径:20mm,長さ:12.5mm、体積:3.9mL)を調製した。基材の切断片を700℃で1時間焼成し、基材に付着していた油分及び粉塵を取り除いておいた。
 酸化錫ナノ粒子の含有量が、酸化錫マイクロ粒子及び酸化錫ナノ粒子の合計含有量を基準として、8質量%となるように、酸化錫マイクロ粒子及び酸化錫ゾルを混合し、2時間撹拌して、下引層用スラリーを調製した。
 ここで、上述した動的光散乱法に従って、下引層用スラリーに存在する酸化錫マイクロ粒子のメジアン径D50を測定し、上述したX線小角散乱法に従って、下引層用スラリーに存在する酸化錫ナノ粒子のメジアン径D50を測定したところ、それぞれ2.0μm、6nmであることが確認された。
 また、上述したX線小角散乱法に従って、下引層用スラリーに存在する酸化錫マイクロ粒子を構成する一次粒子のメジアン径D50(平均一次粒子径)を測定したところ、19nmであることが確認された。
 次いで、酸化錫(三井金属鉱業株式会社製,パストラン6010)を、大気雰囲気中、600℃で3時間焼成し、担体用酸化錫粒子を調製した。担体用酸化錫粒子のメジアン径D50、細孔径及びBET比表面積は、2.0μm、20nm及び40m/gであった。
 硝酸白金溶液、硝酸イリジウム溶液及び純水を混合した後、担体用酸化錫粒子及び酸化錫ゾルを加え、2時間撹拌し、白金(Pt)元素、イリジウム(Ir)元素、担体用酸化錫粒子及び酸化錫ゾルの含有量が、それぞれ、12質量部、1.2質量部、76.8質量部及び10質量部である触媒層用スラリーを調製した。
 基材の切断片を下引層用スラリーに浸漬し、エアブローでセル中の余剰スラリーを除去し、乾燥させた後、大気雰囲気中、500℃で3時間焼成し、基材の切断片の単位体積当たりの質量が60g/Lである下引層を形成した。
 下引層を形成した基材から下引層の断片を採取し、採取した下引層の断片について水銀ポロシメトリーによる細孔径評価を行ったところ、最頻細孔径は380nmであった。
 下引層を形成した後、基材の切断片を触媒層用スラリーに浸漬し、エアブローでセル中の余剰スラリーを除去し、乾燥させた後、大気雰囲気中、500℃で3時間焼成し、基材の切断片の単位体積当たりの質量が125g/Lである触媒層を下引層上に形成した。こうして、触媒サンプルを作製した。
 作製した触媒サンプルにおいて、基材の切断片の単位体積当たりの白金元素及びイリジウム元素の担持量は、それぞれ、金属換算で、15g/L及び1.5g/Lであった。
<評価>
 触媒サンプルに関して、340℃におけるメタン浄化率(%)を測定した。測定結果を表1に示す。測定方法は以下の通りである。
 直径約21mmの石英管に触媒サンプルを設置した。模擬排気ガスとしてメタン:2000ppm、酸素:10vol%、二酸化炭素:5vol%、水蒸気:10vol%、窒素:バランスの組成とし、空間速度40000h-1のガス流量とした。ここで空間速度とは、ハニカム触媒サンプルの体積を1時間あたりに流れるガスの流量である。石英管の周囲に設置した管状炉で触媒サンプルを340℃まで昇温した後にメタンの濃度を測定した。
 触媒サンプルに関して、下引層及び触媒層の剥離率(%)を測定した。測定結果を表1に示す。測定方法は以下の通りである。
 触媒サンプルを、150℃で1時間、乾燥した。乾燥後、触媒サンプルの質量W1を測定した。質量W1の測定後、エアガンを使用してエアブローを3回行った。エアブローは、エアー圧力:0.4Mpa、エアガンと触媒サンプルとの距離:5cm、時間:10秒の条件で行った。3回目のエアブロー後、触媒サンプルの質量W2を測定した。
 下記式に基づいて、下引層及び触媒層の剥離率(%)を算出した。
 下引層及び触媒層の剥離率(%)=(質量W1-質量W2)/質量W1×100
 メタン浄化率及び剥離率の測定結果を表1に示す。
〔実施例2~4及び比較例1~3〕
 酸化錫ナノ粒子の含有量が、酸化錫マイクロ粒子及び酸化錫ナノ粒子の合計含有量を基準として、表1に記載の割合となるように、酸化錫マイクロ粒子及び酸化錫ゾルを混合し、下引層用スラリーを調製した点を除き、実施例1と同様に触媒サンプルを作製した。併せて、メタン浄化率及び剥離率を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、下引層用スラリーにおける酸化錫ナノ粒子の含有量が、下引層用スラリーにおける酸化錫マイクロ粒子及び酸化錫ナノ粒子の合計含有量を基準として、8質量%以上30質量%以下である場合(実施例1~4)、下引層及び触媒層が基材から剥離することを防止することができ、触媒層の触媒性能(メタン浄化性能)を効果的に発揮させることができた。
 なお、比較例2においては、下引層用スラリーにおける酸化錫ナノ粒子の含有量が過剰であったため、剥離率が1.1%と比較的低い値となっているものの下地層から部分的に剥離が生じており、メタン浄化率に乏しいものとなった。
<断面観察>
 実施例2の下引層の断面から任意に選択された3箇所(視野1~3)を観察し、それぞれの箇所において、酸化錫マイクロ粒子及び酸化錫ナノ粒子によって形成される部分の総面積(S1)に対する酸化錫ナノ粒子によって形成される部分の面積(S2)の百分率(P)を算出し、当該百分率の平均値を算出した。比較例1の下引層及び比較例2の下引層に関しても同様に、当該百分率の平均値を算出した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
〔実施例5~8〕
 下引層用スラリー中の酸化錫ナノ粒子の含有量を、酸化錫マイクロ粒子及び酸化錫ナノ粒子の合計含有量を基準として、10質量%とした点、並びに、基材の切断片の単位体積当たりの下引層の質量(以下「下引層のコート量(WC1)」という場合がある。)及び基材の切断片の単位体積当たりの触媒層の質量(以下「触媒層のコート量(WC2)」という場合がある。)を、表2に記載の割合となるように調整した点を除き、実施例1と同様に触媒サンプルを作製した。併せて、メタン浄化率及び剥離率を測定した。測定結果を表3に示す。なお、実施例5~8において、基材の切断片の単位体積当たりの白金元素及びイリジウム元素の担持量は、それぞれ、金属換算で、15g/L及び1.5g/Lに固定した。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、触媒層のコート量が少なくなるほど、すなわち、触媒層に含まれる貴金属濃度が高くなるほど(実施例5~8)、排気ガス中のメタンと触媒中の貴金属との接触確率が高くなり、触媒層の触媒性能(メタン浄化性能)を効果的に発揮させることができた。

Claims (13)

  1.  酸化錫マイクロ粒子及び酸化錫ナノ粒子を含有する下引層用組成物であって、
     前記酸化錫ナノ粒子の含有量が、前記酸化錫マイクロ粒子及び前記酸化錫ナノ粒子の合計含有量を基準として、8質量%以上30質量%以下である、前記下引層用組成物。
  2.  前記酸化錫マイクロ粒子のメジアン径D50の、前記酸化錫ナノ粒子のメジアン径D50に対する比が50以上100000以下である、請求項1に記載の下引層用組成物。
  3.  前記酸化錫マイクロ粒子のメジアン径D50が1μm以上100μm以下であり、前記酸化錫ナノ粒子のメジアン径D50が1nm以上20nm以下である、請求項1又は2に記載の下引層用組成物。
  4.  前記酸化錫マイクロ粒子の比表面積が1m/g以上120m/g以下である、請求項1~3のいずれか一項に記載の下引層用組成物。
  5.  請求項1~4のいずれか一項に記載の下引層用組成物によって形成された下引層。
  6.  前記下引層の最頻細孔径が200nm以上1000nm以下である、請求項5に記載の下引層。
  7.  基材と、前記基材上に形成された請求項5又は6に記載の下引層と、前記下引層上に形成された触媒層とを備える、排ガス浄化用触媒。
  8.  前記基材がハニカム構造を有する、請求項7に記載の排ガス浄化用触媒。
  9.  前記基材の単位体積当たりの前記触媒層の質量の、前記基材の単位体積当たりの前記下引層の質量に対する比が0.1以上10以下である、請求項7又は8に記載の排ガス浄化用触媒。
  10.  前記触媒層が、担体と、前記担体に担持された触媒活性成分とを含有する、請求項7~9のいずれか一項に記載の排ガス浄化用触媒。
  11.  前記担体が酸化錫を含有し、前記触媒活性成分が白金元素を含有する、請求項10に記載の排ガス浄化用触媒。
  12.  前記排ガス浄化用触媒が、排ガス中のメタンを酸化するメタン酸化触媒である、請求項11に記載の排ガス浄化用触媒。
  13.  請求項7~12のいずれか一項に記載の排ガス浄化用触媒を備える、排ガス浄化装置。
PCT/JP2021/021686 2020-06-09 2021-06-08 下引層用組成物、下引層並びに下引層を備える排ガス浄化用触媒及び排ガス浄化装置 WO2021251360A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021002332.2T DE112021002332T5 (de) 2020-06-09 2021-06-08 Zusammensetzung zur bildung einer grundierungsschicht, eine grundierungsschicht sowie ein abgasreinigungskatalysator und eine abgasreinigungsvorrichtung einschliesslich grundierungsschicht
US18/008,887 US20230211317A1 (en) 2020-06-09 2021-06-08 Composition for forming undercoat layer, undercoat layer, as well as exhaust gas purification catalyst and exhaust gas purification apparatus including undercoat layer
JP2022530566A JPWO2021251360A1 (ja) 2020-06-09 2021-06-08
CN202180041159.6A CN115916398A (zh) 2020-06-09 2021-06-08 底涂层用组合物、底涂层、以及具备底涂层的废气净化用催化剂和废气净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100418 2020-06-09
JP2020100418 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021251360A1 true WO2021251360A1 (ja) 2021-12-16

Family

ID=78845656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021686 WO2021251360A1 (ja) 2020-06-09 2021-06-08 下引層用組成物、下引層並びに下引層を備える排ガス浄化用触媒及び排ガス浄化装置

Country Status (5)

Country Link
US (1) US20230211317A1 (ja)
JP (1) JPWO2021251360A1 (ja)
CN (1) CN115916398A (ja)
DE (1) DE112021002332T5 (ja)
WO (1) WO2021251360A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237214A (ja) * 2001-12-03 2002-08-23 Mitsubishi Materials Corp 導電性塗料組成物
JP2003144935A (ja) * 2001-11-07 2003-05-20 Honda Motor Co Ltd 排ガス浄化触媒
JP2005207896A (ja) * 2004-01-22 2005-08-04 Osaka Gas Co Ltd ガス警報器
JP2006521203A (ja) * 2003-03-27 2006-09-21 ズード−ヘミー・インコーポレイテッド メタンの低温酸化用触媒
JP2021067552A (ja) * 2019-10-23 2021-04-30 アルプスアルパイン株式会社 複合金属酸化物粒子の製造方法、ガス感応層の製造方法、複合金属酸化物粒子、ガス感応層及びガスセンサ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4244712C2 (de) * 1992-02-14 1996-09-05 Degussa Beschichtungsdispersion zur Herstellung von kalysefördernden Überzügen auf einem inerten, strukturverstärkenden Körper
US6632528B1 (en) * 2001-05-18 2003-10-14 Ensci Inc Metal oxide coated nano substrates
EP1591421A1 (en) * 2004-04-29 2005-11-02 Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, C.S.G.I Process for preparing nano- and micro-sized particles of inorganic compounds using a water-structure modifier
US7431992B2 (en) * 2004-08-09 2008-10-07 Ppg Industries Ohio, Inc. Coated substrates that include an undercoating
JP4429950B2 (ja) 2005-03-28 2010-03-10 東京瓦斯株式会社 燃焼排ガス中のメタンの酸化除去用触媒及び排ガス浄化方法
US7655595B2 (en) * 2006-06-02 2010-02-02 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Sol-gel based oxidation catalyst and coating system using same
US20070297966A1 (en) * 2006-06-22 2007-12-27 Nissan Chemical Industries, Ltd. Conductive tin oxide sol and process for producing same
DE102009031305A1 (de) * 2009-06-30 2011-01-05 Uhde Gmbh Katalysatorbeschichteter Träger, Verfahren zu dessen Herstellung, ein damit ausgestatteter Reaktor und dessen Verwendung
JP5330918B2 (ja) 2009-07-27 2013-10-30 三井金属鉱業株式会社 酸化スズ粒子及び酸化スズゾルの製造方法
JP5711981B2 (ja) 2011-01-19 2015-05-07 三井金属鉱業株式会社 酸化スズ粒子及びその製造方法
JP2018040017A (ja) * 2015-05-13 2018-03-15 エリコンメテコジャパン株式会社 溶射用粉末、溶射方法及び溶射皮膜
JP6670386B2 (ja) * 2016-08-17 2020-03-18 三井金属鉱業株式会社 メタン酸化触媒
US20190338141A1 (en) * 2016-12-19 2019-11-07 3M Innovative Properties Company Article with hardcoat
JP6820739B2 (ja) * 2016-12-27 2021-01-27 株式会社キャタラー 排ガス浄化触媒
JP7197484B2 (ja) * 2017-08-22 2022-12-27 三井金属鉱業株式会社 メタン酸化触媒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144935A (ja) * 2001-11-07 2003-05-20 Honda Motor Co Ltd 排ガス浄化触媒
JP2002237214A (ja) * 2001-12-03 2002-08-23 Mitsubishi Materials Corp 導電性塗料組成物
JP2006521203A (ja) * 2003-03-27 2006-09-21 ズード−ヘミー・インコーポレイテッド メタンの低温酸化用触媒
JP2005207896A (ja) * 2004-01-22 2005-08-04 Osaka Gas Co Ltd ガス警報器
JP2021067552A (ja) * 2019-10-23 2021-04-30 アルプスアルパイン株式会社 複合金属酸化物粒子の製造方法、ガス感応層の製造方法、複合金属酸化物粒子、ガス感応層及びガスセンサ

Also Published As

Publication number Publication date
US20230211317A1 (en) 2023-07-06
CN115916398A (zh) 2023-04-04
DE112021002332T5 (de) 2023-01-26
JPWO2021251360A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
US10183276B2 (en) Rhodium-containing catalysts for automotive emissions treatment
JP6925351B2 (ja) 内燃機関のための多層触媒組成物
CN102470348B (zh) 废气净化用催化剂及其制造方法
JP2020508845A (ja) コロイド状白金族金属ナノ粒子を含む触媒組成物
JPWO2018016606A1 (ja) 内燃機関の排気ガスの浄化用触媒および該触媒を用いた排気ガスの浄化方法
JP6803497B2 (ja) 排ガス浄化触媒用多孔質構造体及びそれを用いた排ガス浄化触媒並びに排ガス浄化方法
WO2021251360A1 (ja) 下引層用組成物、下引層並びに下引層を備える排ガス浄化用触媒及び排ガス浄化装置
JP6637794B2 (ja) 排ガス浄化触媒
JP6594328B2 (ja) 排ガス浄化用触媒
WO2022209534A1 (ja) 排ガス浄化用触媒組成物及び排ガス浄化用触媒
WO2021075316A1 (ja) 排気ガス浄化用触媒、排気ガスの浄化方法、及び排気ガス浄化用触媒の製造方法
JP7238211B2 (ja) 排ガス浄化触媒用粒子
WO2024014409A1 (ja) 排ガス浄化用触媒組成物、排ガス浄化用触媒及び排ガス浄化システム
JP6010325B2 (ja) 排ガス浄化用触媒および触媒担持構造体ならびにこれらの製造方法
WO2022209154A1 (ja) 排ガス浄化用触媒及び排ガス浄化システム
JP2007319795A (ja) 排ガス浄化用触媒及びその製造方法
CN117098602A (zh) 废气净化用催化剂组合物和废气净化用催化剂
JPWO2021107120A1 (ja) 排ガス浄化用触媒
JP6398917B2 (ja) 排気ガス浄化用触媒材の製造方法及び排気ガス浄化用触媒材並びに同排気ガス浄化用触媒材を含む排気ガス浄化用触媒
JP2021065818A (ja) 排気ガス浄化用触媒、排気ガスの浄化方法、及び排気ガス浄化用触媒の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530566

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21822992

Country of ref document: EP

Kind code of ref document: A1