WO2021251305A1 - コンパレータ及びアナログ-デジタル変換器 - Google Patents

コンパレータ及びアナログ-デジタル変換器 Download PDF

Info

Publication number
WO2021251305A1
WO2021251305A1 PCT/JP2021/021434 JP2021021434W WO2021251305A1 WO 2021251305 A1 WO2021251305 A1 WO 2021251305A1 JP 2021021434 W JP2021021434 W JP 2021021434W WO 2021251305 A1 WO2021251305 A1 WO 2021251305A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
circuit
comparison circuit
input signal
differential input
Prior art date
Application number
PCT/JP2021/021434
Other languages
English (en)
French (fr)
Inventor
雄貴 八木下
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022530538A priority Critical patent/JPWO2021251305A1/ja
Publication of WO2021251305A1 publication Critical patent/WO2021251305A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type

Definitions

  • the present disclosure relates to comparators and analog-to-digital converters.
  • a sequential comparison analog-to-digital converter (hereinafter, sequential comparison ADC) equipped with a sampling switch, a comparator to which two differential input signal pairs are input, and a digital-analog converter (hereinafter, DAC) is known.
  • sequential comparison ADC sequential comparison analog-to-digital converter
  • DAC digital-analog converter
  • This type of comparator holds a signal corresponding to the difference signal of one differential input signal pair and the difference signal of the other differential input signal pair.
  • the DAC is controlled by the signal held by the comparator, and two differential input signal pairs are generated based on the output signal of the DAC.
  • a comparator that generates a difference signal of one differential input signal pair and a comparator that generates a difference signal of the other differential input signal pair are provided inside the comparator.
  • Gain mismatch occurs due to manufacturing variations of the constituent transistors. Gain mismatch also occurs when the common voltage of one differential input signal pair and the common voltage of the other differential input signal pair deviate from each other. When a gain mismatch occurs, the S / N ratio of the ADC decreases or the stability deteriorates. Therefore, the present disclosure provides a comparator and an analog-to-digital converter capable of detecting a gain mismatch.
  • a first comparison circuit for comparing the first differential input signal pair and a first comparison circuit are used.
  • a second comparison circuit that compares the second differential input signal pair, The first comparison circuit compares the first differential input signal pair and the second comparison circuit compares the second differential input signal pair, or the first comparison circuit and the second comparison circuit.
  • a comparator comprising a switching circuit for switching whether to compare the gain difference with the comparison circuit is provided.
  • a correction circuit for correcting the gain of the first comparison circuit and the gain of the second comparison circuit may be provided.
  • the correction circuit may correct the gain of the first comparison circuit and the gain of the second comparison circuit so that the gain difference becomes smaller.
  • the correction circuit includes the discharge rate of the discharge path from one node of the comparison output node pair to the reference potential node through the switching circuit and the first comparison circuit so that the gain difference becomes smaller.
  • the discharge rate of the discharge path from the other node of the comparison output node pair to the reference potential node through the switching circuit and the second comparison circuit may be adjusted.
  • the first variable capacitance connected between the first comparison circuit and the reference potential node It comprises a second variable capacitance connected between the second comparison circuit and the reference potential node.
  • the correction circuit may adjust the discharge rate by adjusting the capacitance value of at least one of the first variable capacitance and the second variable capacitance.
  • the first comparison circuit is The first transistor pair that generates the difference signal of the first differential input signal pair, It has a first switching circuit for switching whether or not to connect the first transistor pair and the reference potential node.
  • the second comparison circuit is The second transistor pair that generates the difference signal of the second differential input signal pair, It has a second switching circuit for switching whether or not to connect the second transistor pair and the reference potential node.
  • the correction circuit may adjust the discharge rate by adjusting the timing of switching at least one of the first switching circuit and the second switching circuit.
  • the first comparison circuit has a first current source capable of adjusting the current flowing through the reference potential node according to the difference signal of the first differential input signal pair.
  • the second comparison circuit has a second current source capable of adjusting the current flowing through the reference potential node according to the difference signal of the second differential input signal pair.
  • the correction circuit may adjust the discharge rate by adjusting the current flowing from at least one of the first current source and the second current source to the reference potential node.
  • the first comparison circuit has a first transistor pair that produces a first differential output signal pair corresponding to the difference signal of the first differential input signal pair.
  • the second comparison circuit has a second transistor pair that produces a second differential output signal pair corresponding to the difference signal of the second differential input signal pair.
  • the correction circuit may adjust the discharge rate by adjusting the gate width of at least one transistor in the first transistor pair and the second transistor pair.
  • the first comparison circuit has a first transistor pair that produces a first differential output signal pair corresponding to the difference signal of the first differential input signal pair.
  • the second comparison circuit has a second transistor pair that produces a second differential output signal pair corresponding to the difference signal of the second differential input signal pair.
  • the gain difference is the product of the transconductance of the first transistor pair and the common voltage of the first differential input signal pair, the transconductance of the second transistor pair, and the second differential input signal pair. It may be the difference from the product with the common voltage.
  • a pair of comparative output nodes that transmit the differential signal switched by the switching circuit, and A latch circuit for holding the differential signal of the comparative output node pair may be provided.
  • the latch circuit may hold a differential signal waveform-shaped by the first waveform shaping circuit and the second waveform shaping circuit.
  • Each of the first waveform shaping circuit and the second waveform shaping circuit may be an inverter.
  • the latch circuit is The differential signal on the comparative output node pair when comparing the first differential input signal pair in the first comparison circuit and comparing the second differential input signal pair in the second comparison circuit.
  • the first latch part that holds the It may have a second latch portion that holds the differential signal on the comparison output node pair when comparing the gain difference between the first comparison circuit and the second comparison circuit.
  • the latch circuit may be connected between a power supply voltage node having a higher voltage level than the comparative output node pair and the comparative output node pair.
  • the switching circuit has a first operation mode in which the first differential input signal pair is compared in the first comparison circuit and the second differential input signal pair is compared in the second comparison circuit, and the first operation mode.
  • the second operation mode for comparing the gain difference between the first comparison circuit and the second comparison circuit may be alternately repeated.
  • the switching circuit may perform the first operation mode at the start of operation, and then repeat the switching operation in the order of the second operation mode and the first operation mode.
  • the switching circuit may perform the second operation mode at the start of operation, and then repeat the switching operation in the order of the first operation mode and the second operation mode.
  • the first comparison circuit has a first transistor pair that produces a first differential output signal pair corresponding to the difference signal of the first differential input signal pair.
  • the second comparison circuit has a second transistor pair that produces a second differential output signal pair corresponding to the difference signal of the second differential input signal pair.
  • the first comparison circuit has a first output node and a second output node.
  • the second comparison circuit has a third output node and a fourth output node.
  • the switching circuit compares the first differential input signal pair in the first comparison circuit, and when comparing the second differential input signal pair in the second comparison circuit, the first output.
  • the node and the third output node are connected to one node of the comparative output node pair, and the second output node and the fourth output node are connected to the other node of the comparative output node pair.
  • the first output node and the second output node are connected to one node of the comparison output node pair, and the third output node is connected.
  • the fourth output node may be connected to the other node of the comparative output node pair.
  • a first sampling switch that switches whether to sample one signal of the differential input signal pair and A first digital-to-analog converter that converts one of the sampled signals into a digital signal consisting of multiple bits in order, one bit at a time, and outputs a signal with a voltage level corresponding to the unconverted bits.
  • a second sampling switch that switches whether to sample the other signal of the differential input signal pair, and A second digital-to-analog converter that converts the other sampled signal into a digital signal consisting of a plurality of bits one bit at a time and outputs a signal with a voltage level corresponding to the unconverted bits.
  • a filter circuit that samples and outputs the output signal of the first digital-to-analog converter and the output signal of the second digital-to-analog converter.
  • the difference signal of the first differential input signal pair that pairs the output signal of the first digital-analog converter and the output signal of the second digital-analog converter, and the second difference output from the filter circuit.
  • a comparator that outputs the difference signal of the dynamic input signal pair and the corresponding signal, and The comparator includes a control circuit for controlling the first digital-to-analog converter and the second digital-to-analog converter based on the output signal of the comparator.
  • a first comparison circuit that compares the first differential input signal pair
  • a second comparison circuit that compares the second differential input signal pair
  • the first comparison circuit compares the first differential input signal pair and the second comparison circuit compares the second differential input signal pair, or the first comparison circuit and the second comparison circuit.
  • An analog-to-digital converter having a switching circuit for switching whether to compare a gain difference with a comparison circuit is provided.
  • FIG. 5 is a voltage waveform diagram of the output node voltage of the first DAC and the output node voltage of the second DAC in FIG.
  • the timing diagram which shows the operation timing of the ADC of FIG.
  • the flowchart which shows the processing procedure of ADC of FIG.
  • the flowchart which shows one modification of the process process of ADC of FIG.
  • the circuit diagram of the comparator according to the second embodiment The circuit diagram of the comparator according to the third embodiment.
  • FIG. 1 is a circuit diagram of a comparator 1 according to the first embodiment.
  • FIG. 2 is a circuit diagram of the comparator 101 according to a comparative example.
  • the comparators 1 and 101 of FIGS. 1 and 2 are used, for example, in a successive approximation type ADC, but the uses of the comparators 1 and 101 of FIGS. 1 and 2 are not necessarily limited to the ADC.
  • Two differential input signal pairs (hereinafter referred to as a first differential input signal pair Vin_p, Vin_n and a second differential input signal pair Vns_p, Vns_n) are input to the comparators 1 and 101 of FIGS. 1 and 2. To.
  • the comparators 1 and 101 output the differential output signal pairs Vout_p and Vout_n corresponding to the difference signal of the first differential input signal pair Vin_p and Vin_n and the difference signal of the second differential input signal pair Vns_p and Vns_n.
  • the comparators 1 and 101 of FIGS. 1 and 2 are dynamic comparators that perform a comparison operation of two differential input signal pairs (Vin_p, Vin_n) and (Vns_p, Vns_n).
  • the comparator 101 of FIG. 2 includes a first comparison circuit 2 and a second comparison circuit 3.
  • the first comparison circuit 2 outputs the first differential output signal pair corresponding to the difference signal between the first differential input signal pair Vin_p and Vin_n.
  • the first comparison circuit 2 has a first differential input signal pair Vin_p, a first transistor pair Q11 and Q12 in which Vin_n is input to the gate, and a transistor Q13 that functions as a switch.
  • a clock signal Clk is input to the gate of the transistor Q13, the transistor Q13 is turned on when the clock signal Clk is at a high potential, and the first comparison circuit 2 performs a comparison operation.
  • the second comparison circuit 3 outputs a second differential output signal pair corresponding to the difference signal between the second differential input signal pair Vns_p and Vns_n.
  • the second comparison circuit 3 has a second differential input signal pair Vns_p, a second transistor pair Q21 and Q22 in which Vns_n is input to the gate, and a transistor Q23 that functions as a switch.
  • the second comparison circuit 3 performs a comparison operation.
  • Each drain of the first transistor pair Q11 and Q12 is connected to the comparison output node pair n1 and n2.
  • the drains of the second transistor pairs Q21 and Q22 are also connected to the same comparative output node pairs n1 and n2.
  • the voltage signals on the comparative output node pairs n1 and n2 are referred to as comparative output signal pairs Vgm_p and Vgm_n.
  • a pull-up circuit 4 and a latch circuit 5 are connected to the comparative output nodes n1 and n2.
  • the pull-up circuit 4 has a transistor pair Q1 and Q2, and when the clock signal Clk is at a low level, the comparison output node pair n1 and n2 are pulled up to a high potential. In this way, the pull-up circuit 4 pulls up the comparison output node pairs n1 and n2 to a high potential when the first comparison circuit 2 and the second comparison circuit 3 are not performing the comparison operation.
  • the latch circuit 5 has transistors Q31 to Q40.
  • the latch circuit 5 determines the logic of the latch output according to the difference in the discharge rates between the comparative output nodes and n1 and n2. More specifically, of the comparative output ode vs. n1 and n2, the node having the faster discharge rate has the high potential, and the node having the slower discharge rate has the low potential.
  • the comparator 101 of FIG. 2 starts the comparison operation. While the clock signal Clk is at low level, the comparative output node pairs n1 and n2 are pulled up to a high potential. When the clock signal Clk transitions to a high level, the potentials Vgm_p and Vgm_n on the comparative output nodes vs. n1 and n2 are such that one transistor of the first transistor pair Q11 and Q12 and one transistor of the second transistor pair Q21 and Q22 By turning it on, it decreases due to discharge.
  • the discharge rates of the comparative output signals vs. Vgm_p, Vgm_n are the potentials of the first differential input signal vs. Vin_p, Vin_n and the second differential input signal vs. Vns_p, Vns_n, and the first transistor pairs Q11, Q12 and No. It depends on the transconductance of the two-transistor pair Q21 and Q22.
  • FIG. 3A and 3B are waveform diagrams of the comparative output signal pair Vgm_p and Vgm_n during the comparative operation of the comparator 101.
  • FIG. 3A is a waveform diagram when (Vin_p ⁇ gm_in + Vns_p ⁇ gm_ns) > (Vin_n ⁇ gm_in + Vns_n ⁇ gm_ns), and FIG. be.
  • the comparators 1 and 101 of FIGS. 1 and 2 can be used inside the sequential comparison ADC as described later.
  • the sequential comparison type ADC the differential analog input signal to be A / D converted is sampled, and the voltage digitally converted from the most significant bit side is defined as the first differential input signal pair Vin_p and Vin_n, and the capacitance described later.
  • the differential signals after filtering the voltage remaining in the DAC are set as the second differential input signal pairs Vns_p and Vns_n, and comparison operations are performed by the comparators 1 and 101.
  • the gain of the first comparison circuit 2 for comparing the first differential input signal pair Vin_p and Vin_n and the second comparison circuit 3 for comparing the second differential input signal pair Vns_p and Vns_n can be a problem.
  • FIG. 4 is a diagram comparing the gain of the first comparison circuit 2 and the gain of the second comparison circuit 3 in the comparator 101 of FIG.
  • the horizontal axis of FIG. 4 is the potential difference between the second differential input signal vs. Vns_p and Vns_n
  • the vertical axis is the potential difference between the first differential input signal vs. Vin_p and Vin_n.
  • the broken line w1 in FIG. 4 shows the case where the absolute value of the potential difference between the first differential input signal vs. Vin_p and Vin_n is equal to the absolute value of the potential difference between the second differential input signal vs. Vns_p and Vns_n.
  • the region above the broken line w1 in FIG. 4 is a case where the absolute value of the potential difference between the first differential input signal vs. Vin_p and Vin_n is larger than the absolute value of the potential difference between the second differential input signal vs. Vns_p and Vns_n.
  • the output potential Vout_p of the latch circuit 5 is a high potential
  • Vout_n is a low potential
  • the absolute value of the potential difference between the first differential input signal vs. Vin_p and Vin_n is smaller than the absolute value of the potential difference between the second differential input signal vs. Vns_p and Vns_n.
  • the output potential Vout_p of the latch circuit 5 is a low potential
  • Vout_n is a high potential.
  • the product gm_in ⁇ Vin_cm of the transconductance gm_in of the first transistor pairs Q11 and Q12 in the first comparison circuit 2 and the common voltage Vin_cm of the first differential input signal pair Vin_p and Vin_n is the second comparison circuit 3. If the product of the transconductance gm_ns of the second transistor pair Q21 and Q22 and the common voltage Vns_cm of the second differential input signal pair Vns_p and Vns_n is equal to gm_ns ⁇ Vns_cm, the characteristic of the broken line w1 in FIG. 4 can be obtained.
  • gm_in ⁇ Vin_cm is not the same as gm_ns ⁇ Vns_cm, and has the characteristics shown in the solid line w2 in FIG. 4, for example.
  • Vout_p the output voltage Vout_p of the comparator 101 is a high potential.
  • Vout_n has a low potential. If Vin_p-Vin_n ⁇ 1.1 mV, Vout_p has a low potential and Vout_n has a high potential.
  • the characteristic as shown by the solid line w2 in FIG. 4 is caused by the gain difference, that is, the gain mismatch between the first comparison circuit 2 and the second comparison circuit 3 in the comparator 101.
  • the gain difference more accurately, means that there is a difference between gm_in ⁇ Vin_cm and gm_ns ⁇ Vns_cm.
  • the comparator 101 having the characteristics as shown by the solid line w2 in FIG. 4 is a non-ideal comparator.
  • a comparator having a gain difference may have poor performance such as S / N and poor stability. Therefore, a comparator that suppresses the gain mismatch as much as possible is desirable.
  • the main reason for the gain difference is that gm_in ⁇ Vin_cm and gm_ns ⁇ Vns_cm do not match.
  • One of the factors is the variation in the manufacturing process when the comparator 101 is formed on the semiconductor substrate. Due to variations in the manufacturing process, the transconductance gm_in of the first transistor pairs Q11 and Q12 and the transconductance gm_ns of the second transistor pairs Q21 and Q22 deviate from each other.
  • the common voltage Vin_cm of the first differential input signal vs. Vin_p and Vin_n and the common voltage Vns_cm of the second differential input signal vs. Vns_p and Vns_n deviate from each other.
  • the common voltage Vin_cm of the first differential input signal pair Vin_p and Vin_n depends on the common voltage of the differential input signal pair input to the ADC, and the common voltage Vns_cm of the second differential input signal pair Vns_p and Vns_n is the ADC. Since it depends on the characteristics of the filter circuit inside, there is no guarantee that both common voltages will match.
  • the transconductance gm_in and gm_ns of the first transistor pair Q11 and Q12 in the first comparison circuit 2 and the second transistor pair Q21 and Q22 in the second comparison circuit 3 are ⁇ Cox ⁇ (W / L) ⁇ (Vgs-Vth). It is expressed by the formula. ⁇ is mobility, Cox is gate oxide film thickness, W is gate width, L is gate length, Vgs is gate-source voltage, and Vth is threshold voltage. Of these, mobility ⁇ , oxide film thickness Cox, gate width W, gate length L, and threshold voltage Vth are parameters that change due to manufacturing variations.
  • the gate-source voltage Vgs is a parameter that depends on the common voltage of the first differential input signal vs. Vin_p, Vin_n and the second differential input signal vs. Vns_p, Vns_n.
  • manufacturing variations and fluctuations in the common voltage may cause a gain difference, that is, a gain mismatch in the comparator 101, resulting in a decrease in the S / N ratio of the comparator 1 and a deterioration in stability.
  • Comparator 1 in FIG. 1 is characterized in that measures are taken against manufacturing variations and common voltage fluctuations.
  • the comparator 1 of FIG. 1 includes a first comparison circuit 2, a second comparison circuit 3, and a switching circuit 6.
  • the first comparison circuit 2 compares the first differential input signal pair Vin_p and Vin_n.
  • the first comparison circuit 2 has first transistor pairs Q11 and Q12 that generate a first differential output signal pair corresponding to a difference signal between the first differential input signal pair Vin_p and Vin_n.
  • the second comparison circuit 3 compares the second differential input signal pairs Vns_p and Vns_n.
  • the second comparison circuit 3 has second transistor pairs Q21 and Q22 that generate a second differential output signal pair corresponding to the difference signal between the second differential input signal pair Vns_p and Vns_n.
  • the switching circuit 6 compares the first differential input signal pairs Vin_p and Vin_n in the first comparison circuit 2 and compares the second differential input signal pairs Vns_p and Vns_n in the second comparison circuit 3 or It is switched whether to compare the gain difference between the first comparison circuit 2 and the second comparison circuit 3.
  • the comparator 1 includes a correction circuit 7.
  • the correction circuit 7 corrects the gain of the first comparison circuit 2 and the gain of the second comparison circuit 3.
  • the correction circuit 7 corrects the gain of the first comparison circuit 2 and the gain of the second comparison circuit 3 so that the gain difference becomes smaller.
  • the correction circuit 7 can be built in the control circuit in the ADC, as will be described later.
  • the comparator 1 includes comparative output node pairs n1 and n2 for transmitting the differential signal switched by the switching circuit 6.
  • the correction circuit 7 discharges the voltage of one of the comparison output nodes n1 and n2 to the reference potential node through the switching circuit 6 and the first comparison circuit 2 so that the gain difference becomes smaller.
  • the discharge rate and the discharge rate when the voltage of the other node n2 of the comparative output node vs. n1 and n2 is discharged to the reference potential node through the switching circuit 6 and the second comparison circuit 3 are adjusted.
  • the first comparison circuit 2 in FIG. 1 has first transistor pairs Q11 and Q12 that generate a differential output signal pair corresponding to a difference signal between the first differential input signal pair Vin_p and Vin_n.
  • the first transistor pair Q11 and Q12 are, for example, a pair of HCl transistors. In the present specification, it is assumed that the transconductance gm_in of the pair of Now transistors constituting the first transistor pair Q11 and Q12 is equal to each other.
  • An msgid transistor that functions as a switch is connected between the source of the first transistor pairs Q11 and Q12 and the reference potential node (for example, a grounded node).
  • a clock signal Clk is input to the gate of this transistor.
  • the second comparison circuit 3 in FIG. 1 has second transistor pairs Q21 and Q22 that generate a differential output signal pair corresponding to the difference signal between the second differential input signal pair Vns_p and Vns_n.
  • the second transistor pair Q21 and Q22 are, for example, a pair of HCl transistors. In the present specification, it is assumed that the transconductance gm_ns of the pair of Now transistors constituting the second transistor pair Q21 and Q22 are equal to each other.
  • An msgid transistor that functions as a switch is connected between the source of the second transistor pairs Q21 and Q22 and the reference potential node (for example, a grounded node).
  • a clock signal Clk is input to the gate of this transistor.
  • the first comparison circuit 2 and the second comparison circuit 3 do not perform a comparison operation, and when the clock signal Clk transitions from a low potential to a high potential, the first comparison circuit 2 and the second comparison circuit 2 are compared. The circuit 3 starts the comparison operation.
  • the output node pair of the first comparison circuit 2 and the output node pair of the second comparison circuit 3 are connected to the comparison output node pairs n1 and n2 via the switching circuit 6.
  • the first differential output signal pair is output from the output node pair of the first comparison circuit 2
  • the second differential output signal pair is output from the output node pair of the second comparison circuit 3.
  • the switching circuit 6 of FIG. 1 compares the first differential input signal pairs Vin_p and Vin_n in the first comparison circuit 2, and compares the second differential input signal pairs Vns_p and Vns_n in the second comparison circuit 3.
  • a second operation mode (hereinafter, gain comparison) for switching between a first operation mode for comparison (hereinafter, also referred to as a normal comparison mode) and a gain difference between the first comparison circuit 2 and the second comparison circuit 3. (Also called mode) is switched.
  • the switching circuit 6 has first to fourth switch pairs 6a, 6b, 6c, 6d.
  • the two switches SW1 and SW2 constituting the first switch pair 6a and the two switches SW3 and SW4 constituting the second switch pair 6b are normally turned on in the comparison mode.
  • One end of the switch SW1 is connected to the drain of the transistor Q11, and the other end is connected to the comparison output node n1.
  • One end of the switch SW2 is connected to the drain of the transistor Q12, and the other end is connected to the comparison output node n2.
  • One end of the switch SW3 is connected to the drain of the transistor Q21, and the other end is connected to the comparison output node n1.
  • One end of the switch SW4 is connected to the drain of the transistor Q22, and the other end is connected to the comparison output node n2.
  • the two switches SW5 and SW6 constituting the third switch pair 6c and the two switches SW7 and SW8 constituting the fourth switch pair 6d are turned on in the gain comparison mode.
  • One end of the switch SW5 is connected to the drain of the transistor Q11, and the other end is connected to the comparison output node n1.
  • One end of the switch SW6 is connected to the drain of the transistor Q12, and the other end is connected to the comparison output node n1.
  • One end of the switch SW7 is connected to the drain of the transistor Q21, and the other end is connected to the comparison output node n2.
  • One end of the switch SW8 is connected to the drain of the transistor Q22, and the other end is connected to the comparison output node n2.
  • the first differential output signal pair output from the first comparison circuit 2 is supplied to the comparison output node pairs n1 and n2 via the switching circuit 6, and is also output from the second comparison circuit 3.
  • the second differential output signal pair is supplied to the comparative output node pairs n1 and n2 via the switching circuit 6.
  • the first differential output signal pair output from the first comparison circuit 2 is supplied to the comparison output node n1 via the switching circuit 6 and is output from the second comparison circuit 3.
  • the two differential output signal pairs are supplied to the comparison output node n2 via the switching circuit 6.
  • the comparator 1 of FIG. 1 has a first variable capacitance C1 connected between a source of the first transistor pair Q11 and Q12 in the first comparison circuit 2 and a reference potential node (for example, a grounded node), and a second comparison circuit 3. It has a second variable capacitance C2 connected between the source of the second transistor pairs Q21 and Q22 and a reference potential node (for example, a grounded node).
  • the capacitance values of the first variable capacitance C1 and the second variable capacitance C2 can be adjusted by the correction circuit 7.
  • the correction circuit 7 adjusts the capacitance values of the first variable capacitance C1 and the second variable capacitance C2 so that the gain difference between the first comparison circuit 2 and the second comparison circuit 3 becomes smaller.
  • the gain difference is the product gm_in ⁇ Vin_cm of the transconductance gm_in of the first transistor pair Q11 and Q12 and the common voltage Vin_cm of the first differential input signal pair Vin_p and Vin_n, and the second transistor pair Q21 and Q22. It is the difference between the product gm_ns ⁇ Vns_cm of the transistor conductance gm_ns and the common voltage Vns_cm of the second differential input signal pair Vns_p and Vns_n.
  • the correction circuit 7 can individually control the capacitance value of the first variable capacitance C1 and the capacitance value of the second variable capacitance C2.
  • the correction circuit 7 can be provided inside the control circuit in the ADC, which will be described later.
  • the first comparison circuit 2 and the second comparison circuit 3 start the comparison operation when the clock signal Clk transitions from the low potential to the high potential, but the first variable capacitance C1 and the second variable capacitance C2 By variably controlling the capacitance value, it is possible to adjust the timing at which the first comparison circuit 2 and the second comparison circuit 3 start the comparison operation.
  • the correction circuit 7 individually controls the capacitance values of the first variable capacitance C1 and the second variable capacitance C2, so that the discharge rate of one node of the comparative output node vs. n1 and n2 and the discharge rate of the other node are controlled. And can be adjusted individually.
  • the smaller the capacitance value of the second variable capacitance C2 the faster the discharge rate of the comparative output node n2 can be.
  • the logic of the latch output of the latch circuit 5 is determined by the difference in the discharge rate between one node of the comparison output node vs. n1 and n2 and the other node.
  • the gain difference can be obtained by individually controlling the capacitance values of the first variable capacitance C1 and the second variable capacitance C2 by the correction circuit 7.
  • the discharge rate of one node of the comparative output node vs. n1 and n2 and the discharge rate of the other node can be set so as to be smaller.
  • the capacitance value of the second variable capacitance C2 connected to the second comparison circuit 3 is gradually reduced to gradually increase the discharge rate of the comparison output node node n2.
  • the correction process by the correction circuit 7 in the gain comparison mode ends. In this state, the gain difference has disappeared, and then the normal comparison mode is performed so that the first differential input signal vs. Vin_p, Vin_n and the second differential input signal vs. Vns_p, without being affected by the gain difference, Vns_n comparison processing can be performed.
  • FIG. 5 is a circuit diagram of a sequential comparison type ADC 11 including the comparator 1 according to the present embodiment.
  • the sequential comparison type ADC 11 of FIG. 5 shows an example of converting a differential input signal pair Vad_p and Vad_n into a 5-bit digital signal.
  • the number of bits of the sequential comparison type ADC 11 is arbitrary. Further, the circuit configuration of the sequential comparison type ADC 11 is not limited to that shown in FIG.
  • the sequential comparison type ADC 11 of FIG. 5 includes a first sampling switch 12, a second sampling switch 13, a first digital-analog converter (hereinafter, first DAC) 14, and a second digital-analog converter (second DAC). It includes 15, a filter circuit 16, a comparator 1, and a control circuit (SAR logic) 17.
  • first DAC14 and the second DAC15 are collectively referred to as a capacitance DAC18.
  • the first sampling switch 12 switches whether or not to sample one of the differential input signal pair Vad_p and Vad_n signal Vad_p.
  • the second sampling switch 13 switches whether or not to sample the other signal Vad_n of the differential input signal pair Vad_p and Vad_n.
  • the first DAC 14 converts one of the sampled signals Vad_p into a digital signal consisting of a plurality of bits one bit at a time, and outputs a signal with a voltage level corresponding to the unconverted bits.
  • the first DAC 14 has five capacitors C1 to C5 having different capacities by a power of two, and three switches (first to third switches) SW11 to SW13 connected to the capacitors C1 to C5.
  • the first switch SW11 switches whether or not one end of the capacitors C1 to C5 is set to 0V.
  • the second switch SW12 switches whether or not one end of the capacitors C1 to C5 is set to the common voltage Vcom.
  • the third switch SW13 switches whether or not one end of the capacitors C1 to C5 is set to the reference voltage Vref.
  • the common voltage Vcom is, for example, a voltage level of 1/2 of the reference voltage Vref.
  • the first to third switches SW11 to SW13 are switched on or off based on the control signal from the control circuit 17.
  • the control circuit 17 turns on the second switch SW12 at the start of the comparison operation. After that, when the control circuit 17 wants to lower the output node voltage (one of the first differential input signal vs. Vin_p and Vin_n) Vin_p of the first DAC 14, the first switch SW11 is turned on and the output node voltage of the first DAC 14 (the first). 1 Differential input signal pair Vin_p, Vin_n) If you want to increase Vin_p, turn on the third switch SW13.
  • the second DAC 15 sequentially converts the other sampled signal into a digital signal consisting of a plurality of bits one bit at a time, and outputs a signal with a voltage level corresponding to the unconverted bits.
  • the second DAC 15 has the same configuration as the first DAC 14, and switches the first to third switches SW11 to SW13 based on the control signal from the control circuit 17 as in the first DAC 14.
  • the filter circuit 16 samples and outputs the output signal of the first DAC 14 and the output signal of the second DAC 15.
  • the differential output signal pairs output from the filter circuit 16 are the second differential input signal pairs Vns_p and Vns_n.
  • Comparator 1 has the configuration shown in FIG.
  • the comparator 1 has a first differential input signal pair Vin_p, Vin_n that pairs an output signal of the first DAC 14 and an output signal of the second DAC 15, and a second differential input signal pair Vns_p, Vns_n output from the filter circuit 16. Is entered.
  • the comparator 1 outputs the differential output signal pair Vout_p and Vout_n corresponding to the difference signal of the first differential input signal pair Vin_p and Vin_n and the difference signal of the second differential input signal pair Vns_p and Vns_n.
  • the control circuit 17 controls switching between the first to third switches SW11 to SW13 in the first DAC14 and the second DAC15 based on the differential output signal pair of the comparator 1.
  • the control circuit 17 can incorporate the correction circuit 7 shown in FIG. 1 and the like. Hereinafter, an example in which the control circuit 17 incorporates the correction circuit 7 will be described.
  • the control circuit 17 generates a signal Sw_comp, a signal Sw_gain, a signal Comp_end, a signal Gain_cal_in, and a signal Gain_cal_ns based on the differential output signal pair of the comparator 1.
  • the signal Sw_comp is a signal that normally has a high potential in the comparison mode.
  • the signal Sw_gain is a signal that has a high potential in the gain comparison mode.
  • the signal Comp_end is a signal that becomes a high potential when the gain difference disappears in the gain comparison mode.
  • the signal Gain_cal_in is a signal for adjusting the capacitance value of the first variable capacitance C1 after adjustment in the gain comparison mode.
  • the signal Gain_gain_ns is a signal for adjusting the capacitance value of the second variable capacitance C2 after adjustment in the gain comparison mode.
  • the timing of the clock signal Clk input to the comparator 1 is set by the switching signal Clk_smpl of the first sampling switch 12 and the second sampling switch 13, the differential output signal pair of the comparator 1, and the signal Comp_end.
  • the ADC 11 of FIG. 5 includes inverters 31 and 32, NOR gates 33, and AND gates 34 and 35. Note that these logic gates can be replaced with other logic circuit elements.
  • FIG. 6 shows the output node voltage of the first DAC 14 (one of the first differential input signal vs. Vin_p and Vin_n) Vin_p and the output node voltage of the second DAC 15 (the other of the first differential input signal vs. Vin_p and Vin_n). It is a voltage waveform diagram of Vin_n.
  • both the first sampling switch 12 and the second sampling switch 13 are turned on to sample the differential input signal pairs Vad_p and Vad_n.
  • one end of each of the capacitors C1 to C5 is set to the common voltage Vcom of the first differential input signal pair Vin_p and Vin_n via the second switch SW12.
  • Vad_p and Vad_n is accumulated in the capacitive DAC18.
  • the output signal of the first DAC 14 and the output signal of the second DAC 15 constituting the capacitance DAC 18 are the first differential input signal pair Vin_p and Vin_n input to the comparator 1.
  • the differential output signal of the filter circuit 16 is the second differential input signal pair Vns_p and Vns_n input to the comparator 1.
  • both the first sampling switch 12 and the second sampling switch 13 are turned off, and the comparison operation by the comparator 1 is started.
  • the output of the capacitive DAC 18 is controlled so that the potential difference of the first differential input signal becomes smaller in order from the above bits as shown in FIG. 6 according to the difference signal between the sampled differential input signal vs. Vad_p and Vad_n.
  • the potential difference of the first differential input signal gradually approaches zero.
  • the voltage remaining in the capacitance DAC 18 is sampled by the filter circuit 16 to change the output voltage (second differential input signal) of the filter circuit 16.
  • the residual voltage at the completion of control of the capacitance DAC 18 is a very small voltage level, and the filter circuit 16 continues to output a signal with a small voltage level. That is, the state of the difference signal (Vns_p ⁇ Vns_n) ⁇ 0 between the second differential input signal vs. Vns_p and Vns_n is maintained.
  • FIG. 7 is a timing diagram showing the operation timing of the ADC 11 of FIG.
  • the signal Clk_smpl becomes high and the first sampling switch 12 and the second sampling switch 13 are turned on.
  • the first DAC 14 and the second DAC 15 sample the differential input signals Vad_p and Vad_n.
  • the first sampling switch 12 and the second sampling switch 13 are turned off, and sampling of the differential input signals Vad_p and Vad_n ends.
  • the signal Sw_comp transitions to a high potential at time t2, and the switching circuit 6 in the comparator 1 connects the first differential output signal pair output from the first comparison circuit 2 to the comparison output node pairs n1 and n2.
  • the second differential output signal pair output from the second comparator circuit 3 is connected to the comparator output node pairs n1 and n2.
  • the comparator 1 in FIG. 5 starts the comparison operation.
  • the first comparison circuit 2 and the second comparison circuit 3 in the comparator 1 perform a comparison operation only during the period when the clock signal Clk has a high potential.
  • the first DAC 14 and the second DAC 15 convert the sampled differential input voltage into a digital value one bit at a time in order from the most significant bit. More specifically, the first comparison circuit 2 determines whether the difference signal Vin_p-Vin_n between the output voltages of the first DAC 14 and the second DAC 15 (first differential input signal vs.
  • Vin_p, Vin_n is positive or negative, and the determination result is obtained.
  • the control circuit 17 sequentially starts from the most significant bit of the first DAC 14 and the second DAC 15 so that the difference signal Vin_p-Vin_n of the output voltage (second differential input signal vs. Vns_p, Vns_n) of the first DAC 14 and the second DAC 15 approaches zero. Controls the value of the bits. As a result, as shown in FIG. 6, the difference signal between the first differential input signal vs. Vin_p and Vin_n gradually approaches zero.
  • the signal Sw_comp transitions to a low potential and the signal Sw_gain becomes a high potential for a predetermined period.
  • the gain comparison mode is set, and the switching circuit 6 connects the first differential output signal pair output from the first comparison circuit 2 to one of the comparison output node pairs n1 and n2, and the first is 2
  • the second differential output signal pair output from the comparison circuit 3 is connected to the other of the comparison output node pairs n1 and n2.
  • the signal Comp_end becomes a high potential, and after that, the clock signal Clk is not supplied to the first comparison circuit 2 and the second comparison circuit 3.
  • the correction circuit 7 has the capacitance value of the first variable capacitance C1 and the capacitance value of the second variable capacitance C2 so that the difference between gm_in ⁇ Vin_cm and gm_ns ⁇ Vns_cm becomes small. Control the capacity value of.
  • the gain adjustment signal Gain_cal_in is a signal that specifies the capacitance value of the first variable capacitance C1
  • the gain adjustment signal Gain_cal_ns is a signal that specifies the capacitance value of the second variable capacitance C2.
  • the gain adjustment signal Gain_cal_in switches the capacity value setting of the first variable capacitance C1
  • the gain adjustment signal Gain_cal_ns switches the capacitance value setting of the second variable capacitance C2.
  • FIG. 8 is a flowchart showing the processing procedure of the ADC 11 of FIG. 5, and is based on the timing diagram of FIG.
  • the power supply voltage is supplied to the ADC 11, first, the differential input signal pairs Vad_p and Vad_n input from the outside are sampled (step S1). Next, the normal comparison mode is set, and the capacities of the first DAC 14 and the second DAC 15 are controlled based on the sampled voltage, and the most significant bit is converted into a digital value one bit at a time (step S2). Next, the gain comparison mode is set, the gain of the first comparison circuit 2 and the gain of the second comparison circuit 3 are compared (step S3), and the first variable capacitance C1 and the second variable so that the gain difference disappears. The capacity value of the capacity C2 is controlled (step S4). When the gain difference disappears, the processes after step S2 are repeated.
  • FIG. 9 is a flowchart showing a modified example of the processing procedure of the ADC 11 of FIG.
  • the gain comparison mode is set, the gain of the first comparison circuit 2 is compared with the gain of the second comparison circuit 3 (step S11), and the first is to eliminate the gain difference.
  • the capacitance values of the variable capacitance C1 and the second variable capacitance C2 are controlled (step S12).
  • the gain difference disappears, the differential input signal pairs Vad_p and Vad_n input from the outside are sampled (step S13).
  • step S14 the normal comparison mode is set, and the capacities of the first DAC 14 and the second DAC 15 are controlled based on the sampled voltage, and the most significant bit is converted into a digital value one bit at a time.
  • step S11 the processes after step S11 are repeated.
  • FIG. 8 shows that when the power supply voltage is supplied to the ADC 11, first sampling and A / D conversion of the differential input signal pair are performed, and then gain comparison and gain correction are performed
  • FIG. 9 shows FIG. The difference is that first, gain comparison and gain correction are performed, and then sampling and A / D conversion are performed.
  • FIGS. 8 and 9 differ only in the operation immediately after the power supply voltage is supplied to the ADC 11, and are common in that gain comparison and gain correction are performed each time sampling and A / D conversion are performed.
  • the capacitance value of the first variable capacitance C1 and the capacitance value of the second variable capacitance C2 are arranged so that the gain difference between the first comparison circuit 2 and the second comparison circuit 3 in the comparator 1 is eliminated.
  • the capacitance value there is a difference in the transconductance of the first transistor pairs Q11 and Q12 in the first comparator circuit 2 and the transconductance of the second transistor pairs Q21 and Q22 in the second comparator circuit 3 due to manufacturing variations.
  • the common voltage of the first differential input signal pair Vin_p and Vin_n input to the first comparator circuit 2 and the common voltage of the second differential input signal pair Vns_p and Vns_n input to the second comparator circuit 3 Even if there is a difference in voltage, gm_in ⁇ Vin_cm and gm_ns ⁇ Vns_cm can be controlled to be equal, the S / N ratio of the ADC 11 and the comparator 1 can be improved, and the stability is also improved.
  • FIG. 10 is a circuit diagram of the comparator 1a according to the second embodiment.
  • the comparator 1a of FIG. 10 can be used in place of the comparator 1 of FIG. 5, whereby the ADC 11 that performs the same operation as that of FIG. 5 can be configured.
  • the configuration of the switching circuit 6 is partially different from that of the comparator 1 of FIG.
  • the switch SW9 for switching whether or not to short-circuit the gates of the first transistor pair Q11 and Q12, and the second transistor pair Q21 and Q22 It has a switch SW10 for switching whether or not to short-circuit the gates of the above.
  • These switches SW9 and SW10 are normally off in the comparison mode and turned on in the gain comparison mode. When these switches SW9 and SW10 are turned on, the gates of the first transistor pair Q11 and Q12 are short-circuited, and similarly, the gates of the second transistor are short-circuited. Therefore, the gates of the first transistor pair Q11 and Q12 have the same potential, and the gates of the second transistor pair Q21 and Q22 also have the same potential.
  • the difference in common voltage is corrected, and the correction process can be performed even if the gates of the first transistor pair Q11 and Q12 are short-circuited and the gates of the second transistor pair Q21 and Q22 are short-circuited.
  • the gates of the first transistor pair Q11 and Q12 are used.
  • the large voltage is not applied between the gates of the second transistor pair Q21 and Q22, and there is no possibility that the first comparison circuit 2 and the second comparison circuit 3 output an erroneous comparison result.
  • the comparator 1b according to the third embodiment is obtained by reversing the conductive type of the transistor from the comparator 1 according to the first and second embodiments.
  • FIG. 11 is a circuit diagram of the comparator 1b according to the third embodiment.
  • the comparator 1b of FIG. 11 can be used in place of the comparator 1 of FIG. 5, whereby the ADC 11 that performs the same operation as that of FIG. 5 can be configured.
  • the comparator 1b of FIG. 11 has a configuration in which the conductive type of each transistor in the comparator 1 of FIG. 1 is reversed.
  • the first comparison circuit 2 in the comparator 1b of FIG. 11 has first transistor pairs Q11a and Q12a composed of two photoresist transistors.
  • a switch composed of the polyclonal transistor Q13a and a first variable capacitance C1 are connected between the power supply voltage node and the source of the first transistor pair Q11a and Q12a.
  • the second comparison circuit 3 in the comparator 1b of FIG. 11 has a second transistor pair Q21a and Q22a composed of two polyclonal transistors.
  • a switch composed of the polyclonal transistor Q23a and a second variable capacitance C2 are connected between the power supply voltage node and the source of the second transistor pair Q21a and Q22a.
  • a switching circuit 6 is connected between the drain of the first transistor pair Q11a and Q12a and the drain of the second transistor pair Q21a and Q22a and the comparison output node pairs n1 and n2.
  • a pull-down circuit 8 is connected between the switching circuit 6 and the reference voltage node (for example, a ground node).
  • the latch circuit 5 of FIG. 11 has a conductive transistor different from that of the latch circuit 5 of FIG.
  • Comparator 1b in FIG. 11 has the same circuit operation as Comparator 1 in FIG. 1, although the conductive type of the transistor is opposite to that of Comparator 1 in FIG.
  • the first transistor pair Q11a, Q12a and the second transistor pair are controlled due to manufacturing variations. Even if there is a difference in the transistor conduction between Q21a and Q22a, and even if there is a difference between the common voltage of the first differential input signal vs. Vin_p and Vin_n and the common voltage of the second differential input signal vs.
  • Vns_p and Vns_n can be controlled to be equal, the S / N ratio of the ADC 11 can be improved, and the stability can also be improved.
  • connection location of the latch circuit 5 is different from that of the comparator 1 of FIG.
  • FIG. 12 is a circuit diagram of the comparator 1c according to the fourth embodiment.
  • the comparator 1c of FIG. 12 includes a latch circuit 5 connected between the power supply voltage node and the comparative output node pairs n1 and n2.
  • the conductive type of the transistor in the latch circuit 5 is opposite to that of the transistor in the latch circuit 5 of FIG.
  • the comparator 1c of FIG. 12 can be used in place of the comparator 1 of FIG. 5, whereby the ADC 11 that performs the same operation as that of FIG. 5 can be configured.
  • the comparator 1c of FIG. 12 includes a switching circuit 6, a first variable capacitance C1, a second variable capacitance C2, and a correction circuit 7 similar to the comparator 1 of FIG. 1, the gain is similar to that of the comparator 1 of FIG.
  • gm_in ⁇ Vin_cm and gm_ns ⁇ Vns_cm can be controlled to be equal, the S / N ratio of the ADC 11 can be improved, and the stability can also be improved.
  • a fifth embodiment increases the drive capability of the signal transmitted between the comparative output nodes n1 and n2, and speeds up the latch operation of the latch circuit 5.
  • FIG. 13 is a circuit diagram of the comparator 1d according to the fifth embodiment.
  • the comparator 1d in FIG. 13 includes inverters IV1 and IV2 connected to the comparison output node pairs n1 and n2. These inverters IV1 and IV2 invert the logic of the signal and output it, but at that time, perform waveform shaping to make the output signal waveform steep. As described above, these inverters IV1 and IV2 function as waveform shaping circuits. Instead of the inverters IV1 and IV2, various logical operation elements (for example, NAND element, NOR element, etc.) may be used.
  • the comparator 1d of FIG. 13 can be used in place of the comparator 1 of FIG. 5, whereby the ADC 11 that performs the same operation as that of FIG. 5 can be configured.
  • the latch circuit 5 of FIG. 13 has two IGMP transistors Q41 and Q42 having gates connected to the comparative output nodes n1 and n2, and a source and a reference voltage node (for example, a ground node) of these nanotube transistors Q41 and Q42. It has two IGMP transistors Q43 and Q44 connected between them, and epitaxial transistors Q45 to Q48 connected between the drains of these polymerase transistors Q43 and Q44 and the power supply voltage node.
  • the comparator 1d in FIG. 13 connects the inverters IV1 and IV2 to the comparison output node pairs n1 and n2, the waveforms of the signals of the comparison output node pairs n1 and n2 can be shaped, and the latch circuit 5 can perform waveform shaping.
  • the latch operation can be speeded up.
  • the sixth embodiment is provided with alternative means for the first variable capacitance C1 and the second variable capacitance C2.
  • FIG. 14 is a circuit diagram of the comparator 1e according to the sixth embodiment.
  • the comparator 1e of FIG. 14 can be used in place of the comparator 1 of FIG. 5, whereby the ADC 11 that performs the same operation as that of FIG. 5 can be configured.
  • the comparator 1e of FIG. 14 is a first variable delay buffer 21 that controls the timing at which the transistor Q13, which is a switch in the first comparison circuit 2, is turned on instead of the first variable capacitance C1 and the second variable capacitance C2 of FIG.
  • a second variable delay buffer 22 that controls the timing at which the transistor Q23, which is a switch in the second comparator circuit 3, is turned on.
  • the first variable delay buffer 21 variably controls the delay time until the input clock signal Clk is output by the signal Gain_cal_in.
  • the second variable delay buffer 22 variably controls the delay time until the input clock signal Clk is output by the signal Gain_cal_ns.
  • the gain comparison mode the discharge from the comparison output node n1 to the grounded node through the transistor Q11 or Q12 and the transistor Q13 in the first comparison circuit 2 according to the timing when the output of the first variable delay buffer 21 becomes high potential.
  • the discharge rate of the path changes.
  • the comparison output node n2 passes through the transistor Q21 or Q22 in the second comparison circuit 3 and the transistor Q23 to the ground node. The discharge rate of the discharge path leading to is changed.
  • the gain difference between the first comparison circuit 2 and the second comparison circuit 3 can be adjusted to be zero.
  • the correction circuit 7 adjusts the delay times of the first variable delay buffer 21 and the second variable delay buffer 22.
  • the correction circuit 7 adjusts the timing at which the transistors Q13 and Q23, which are switches, are short-circuited to the reference potential node (for example, the ground node) by adjusting the delay times of the first variable delay buffer 21 and the second variable delay buffer 22. Then, the discharge rates of the comparative output nodes n1 and n2 are adjusted.
  • the gain difference is made zero by adjusting the delay time of the first variable delay buffer 21 and the second variable delay buffer 22.
  • the circuit area of the comparator 1e can be reduced as compared with the comparator 1 of 1.
  • the seventh embodiment is provided with alternative means for the first variable capacitance C1 and the second variable capacitance C2.
  • FIG. 15 is a circuit diagram of the comparator 1f according to the seventh embodiment.
  • the comparator 1f of FIG. 15 can be used in place of the comparator 1 of FIG. 5, whereby the ADC 11 that performs the same operation as that of FIG. 5 can be configured.
  • the comparator 1f of FIG. 15 instead of the first variable capacitance C1 and the second variable capacitance C2 of FIG. 1, the first variable current source 23 is provided in the first comparison circuit 2, and the first variable current source 23 is provided in the second comparison circuit 3. 2 A variable current source 24 is provided.
  • the first variable current source 23 is connected between the source of the transistor Q13 in the first comparison circuit 2 and the reference voltage node (for example, a ground node). Further, the second variable current source 24 is connected between the source of the transistor Q23 in the second comparison circuit 3 and the reference voltage node.
  • the current value of the first variable current source 23 is controlled by the signal Gain_cal_in.
  • the current value of the second variable current source 24 is controlled by the signal Gain_cal_ns.
  • the discharge rates of the comparative output nodes n1 and n2 can be adjusted by individually controlling the current values flowing through the first variable current source 23 and the second variable current source 24. Therefore, similarly to the comparator 1f in FIG. 1, gm_in ⁇ Vin_cm and gm_ns ⁇ Vns_cm can be controlled to be equal in the gain comparison mode, the S / N ratio of the ADC 11 can be improved, and the stability can also be improved.
  • the eighth embodiment is provided with alternative means for the first variable capacitance C1 and the second variable capacitance C2.
  • FIG. 16 is a circuit diagram of the comparator 1 g according to the eighth embodiment.
  • the comparator 1g of FIG. 16 can be used in place of the comparator 1 of FIG. 5, whereby the ADC 11 that performs the same operation as that of FIG. 5 can be configured.
  • the comparator 1g of FIG. 16 can variably control the sizes of the first transistor pairs Q11s and Q12s in the first comparison circuit 2 instead of the first variable capacitance C1 and the second variable capacitance C2 of FIG. 1, and the second comparison.
  • the sizes of the second transistor pairs Q21s and Q22s in the circuit 3 can be variably controlled.
  • the size is, for example, the gate width.
  • the comparator 1g of FIG. 16 can be controlled so that gm_in ⁇ Vin_cm and gm_ns ⁇ Vns_cm are equal in the gain comparison mode, the S / N ratio of the ADC 11 can be improved, and the stability is also improved. Can be improved.
  • the latch circuit 5 for the normal comparison mode and the latch circuit 5 for the gain comparison mode are separately provided.
  • FIG. 17 is a circuit diagram of the comparator 1h according to the ninth embodiment.
  • the comparator 1h of FIG. 17 has the same configuration as the comparator 1h of FIG. 1, except that the configuration of the latch circuit 5 is different.
  • the comparator 1h of FIG. 17 can be used in place of the comparator 1 of FIG. 5, whereby the ADC 11 that performs the same operation as that of FIG. 5 can be configured.
  • the comparator 1h in FIG. 17 includes two latch circuits 5 (hereinafter, referred to as a first latch circuit 5a and a second latch circuit 5b) connected to the comparison output node pairs n1 and n2.
  • the internal configuration of the first latch circuit 5a and the second latch circuit 5b is basically the same as that of the latch circuit 5 of FIG. 1, but includes NAND gates 36 and 37 for switching operation.
  • the NAND gate 36 in the first latch circuit 5a inverts and outputs the clock signal Clk when the signal Sw_gain has a high potential, and supplies the clock signal Clk into the first latch circuit 5a.
  • the first latch circuit 5a performs a latch operation when the signal Sw_gain has a high potential.
  • the NAND gate 37 in the second latch circuit 5b inverts and outputs the clock signal Clk when the signal Sw_comp has a high potential, and supplies the clock signal Clk into the second latch circuit 5b.
  • the second latch circuit 5b performs a latch operation when the signal Sw_comp has a high potential.
  • the first latch circuit 5a for the normal comparison mode and the second latch circuit 5b for the gain comparison, the first latch circuit 5a is initialized after the normal comparison mode is completed. Since the latch operation can be performed by the second latch circuit 5b for gain comparison, the normal comparison mode and the gain comparison mode can be quickly switched.
  • the alternative means of the first variable capacitance C1 and the second variable capacitance C2 in FIGS. 15 to 17 described above are not only the comparator 1 of FIG. 1 but also the comparators 1a, 1b, 1c, 1d and 1e of FIGS. 10 to 14. Is also applicable.
  • the present technology can have the following configurations.
  • a first comparison circuit that compares the first differential input signal pair
  • a second comparison circuit that compares the second differential input signal pair
  • the first comparison circuit compares the first differential input signal pair and the second comparison circuit compares the second differential input signal pair, or the first comparison circuit and the second comparison circuit.
  • the comparator according to (1) comprising a correction circuit for correcting the gain of the first comparison circuit and the gain of the second comparison circuit.
  • the comparator according to (2) wherein the correction circuit corrects the gain of the first comparison circuit and the gain of the second comparison circuit so that the gain difference becomes smaller.
  • a comparative output node pair for transmitting a differential signal switched by the switching circuit is provided.
  • the correction circuit includes the discharge rate of the discharge path from one node of the comparison output node pair to the reference potential node through the switching circuit and the first comparison circuit so that the gain difference becomes smaller.
  • the comparator according to (3) wherein the discharge rate of the discharge path from the other node of the comparison output node pair to the reference potential node through the switching circuit and the second comparison circuit is adjusted.
  • a first variable capacitance connected between the first comparison circuit and the reference potential node It comprises a second variable capacitance connected between the second comparison circuit and the reference potential node.
  • the first comparison circuit is The first transistor pair that generates the difference signal of the first differential input signal pair, It has a first switching circuit for switching whether or not to connect the first transistor pair and the reference potential node.
  • the second comparison circuit is The second transistor pair that generates the difference signal of the second differential input signal pair, It has a second switching circuit for switching whether or not to connect the second transistor pair and the reference potential node.
  • the first comparison circuit has a first current source capable of adjusting the current flowing through the reference potential node according to the difference signal of the first differential input signal pair.
  • the second comparison circuit has a second current source capable of adjusting the current flowing through the reference potential node according to the difference signal of the second differential input signal pair.
  • the comparator according to (4), wherein the correction circuit adjusts the discharge rate by adjusting a current flowing from at least one of the first current source and the second current source to the reference potential node.
  • the first comparison circuit has a first transistor pair that generates a first differential output signal pair corresponding to a difference signal of the first differential input signal pair.
  • the second comparison circuit has a second transistor pair that produces a second differential output signal pair corresponding to the difference signal of the second differential input signal pair.
  • the first comparison circuit has a first transistor pair that generates a first differential output signal pair corresponding to a difference signal of the first differential input signal pair.
  • the second comparison circuit has a second transistor pair that produces a second differential output signal pair corresponding to the difference signal of the second differential input signal pair.
  • the gain difference is the product of the transconductance of the first transistor pair and the common voltage of the first differential input signal pair, the transconductance of the second transistor pair, and the second differential input signal pair.
  • the comparator according to any one of (1) to (7), which is the difference from the product with the common voltage.
  • a comparative output node pair that transmits a differential signal switched by the switching circuit and The comparator according to any one of (1) to (3), comprising a latch circuit for holding the differential signal of the comparative output node pair.
  • a first waveform shaping circuit and a second waveform shaping circuit, which are arranged in the comparative output node pair and perform waveform shaping of the differential signal, are provided.
  • the latch circuit is The differential signal on the comparative output node pair when comparing the first differential input signal pair in the first comparison circuit and comparing the second differential input signal pair in the second comparison circuit.
  • the first latch part that holds the (10) to (12) having a second latch portion that holds the differential signal on the comparison output node pair when comparing the gain difference between the first comparator circuit and the second comparator circuit.
  • the comparator according to any one of the above.
  • the switching circuit has a first operation mode in which the first differential input signal pair is compared in the first comparison circuit and the second differential input signal pair is compared in the second comparison circuit.
  • the comparator according to any one of (1) to (14), wherein the second operation mode for comparing the gain difference between the first comparison circuit and the second comparison circuit is alternately repeated.
  • the comparator according to (15) wherein the switching circuit performs the first operation mode at the start of operation, and then repeats the switching operation in the order of the second operation mode and the first operation mode.
  • the comparator according to (15) wherein the switching circuit performs the second operation mode at the start of operation, and then repeats the switching operation in the order of the first operation mode and the second operation mode.
  • the first comparison circuit has a first transistor pair that generates a first differential output signal pair corresponding to a difference signal of the first differential input signal pair.
  • the second comparison circuit has a second transistor pair that produces a second differential output signal pair corresponding to the difference signal of the second differential input signal pair.
  • the switching circuit short-circuits the gates of the first transistor pair and short-circuits the gates of the second transistor pair.
  • the comparator according to any one of (1) to (17).
  • a comparative output node pair for transmitting a differential signal switched by the switching circuit is provided.
  • the first comparison circuit has a first output node and a second output node.
  • the second comparison circuit has a third output node and a fourth output node.
  • the switching circuit compares the first differential input signal pair in the first comparison circuit, and when comparing the second differential input signal pair in the second comparison circuit, the first output.
  • the node and the third output node are connected to one node of the comparative output node pair, and the second output node and the fourth output node are connected to the other node of the comparative output node pair.
  • the first output node and the second output node are connected to one node of the comparison output node pair, and the third output node is connected.
  • the comparator according to any one of (1) to (3), which connects the fourth output node to the other node of the comparative output node pair.
  • a first sampling switch that switches whether to sample one signal of the differential input signal pair, and A first digital-to-analog converter that converts one of the sampled signals into a digital signal consisting of multiple bits in order, one bit at a time, and outputs a signal with a voltage level corresponding to the unconverted bits.
  • a second sampling switch that switches whether to sample the other signal of the differential input signal pair, and A second digital-to-analog converter that converts the other sampled signal into a digital signal consisting of a plurality of bits one bit at a time and outputs a signal with a voltage level corresponding to the unconverted bits.
  • a filter circuit that samples and outputs the output signal of the first digital-to-analog converter and the output signal of the second digital-to-analog converter.
  • the difference signal of the first differential input signal pair that pairs the output signal of the first digital-analog converter and the output signal of the second digital-analog converter, and the second difference output from the filter circuit.
  • a comparator that outputs the difference signal of the dynamic input signal pair and the corresponding signal, and The comparator includes a control circuit for controlling the first digital-to-analog converter and the second digital-to-analog converter based on the output signal of the comparator.
  • a first comparison circuit that compares the first differential input signal pair
  • a second comparison circuit that compares the second differential input signal pair
  • the first comparison circuit compares the first differential input signal pair and the second comparison circuit compares the second differential input signal pair, or the first comparison circuit and the second comparison circuit.
  • An analog-to-digital converter having a switching circuit that switches whether to compare the gain difference with the comparison circuit.

Abstract

[課題]ゲインミスマッチを検出する。 [解決手段]コンパレータは、第1差動入力信号対を比較する第1比較回路と、第2差動入力信号対を比較する第2比較回路と、前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較するか、又は、前記第1比較回路と前記第2比較回路とのゲイン差を比較するかを切り替える切替回路と、を備える。

Description

コンパレータ及びアナログ-デジタル変換器
 本開示は、コンパレータ及びアナログ-デジタル変換器に関する。
 サンプリングスイッチと、2つの差動入力信号対が入力されるコンパレータと、デジタル-アナログ変換器(以下、DAC)とを備えた逐次比較型アナログ-デジタル変換器(以下、逐次比較型ADC)が知られている(非特許文献1参照)。この種のコンパレータは、一方の差動入力信号対の差信号と、他方の差動入力信号対の差信号とに応じた信号を保持する。コンパレータが保持した信号によりDACが制御され、DACの出力信号に基づいて2つの差動入力信号対が生成される。
 コンパレータの内部には、一方の差動入力信号対の差信号を生成する比較器と、他方の差動入力信号対の差信号を生成する比較器とが設けられているが、各比較器を構成するトランジスタの製造ばらつきにより、ゲインミスマッチが生じる。ゲインミスマッチは、一方の差動入力信号対のコモン電圧と、他方の差動入力信号対のコモン電圧とがずれている場合にも生じる。ゲインミスマッチが生じると、ADCのS/N比が低下したり、安定性が悪くなる。
 そこで、本開示では、ゲインミスマッチを検出可能なコンパレータ及びアナログ-デジタル変換器を提供するものである。
 上記の課題を解決するために、本開示によれば、第1差動入力信号対を比較する第1比較回路と、
 第2差動入力信号対を比較する第2比較回路と、
 前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較するか、又は、前記第1比較回路と前記第2比較回路とのゲイン差を比較するかを切り替える切替回路と、を備えるコンパレータが提供される。 
 記第1比較回路のゲイン及び前記第2比較回路のゲインを補正する補正回路を備えてもよい。
 前記補正回路は、前記ゲイン差がより小さくなるように前記第1比較回路のゲイン及び前記第2比較回路のゲインを補正してもよい。
 前記切替回路で切り替えられた差動信号を伝送する比較出力ノード対を備え、
 前記補正回路は、前記ゲイン差がより小さくなるように、前記比較出力ノード対の一方のノードから前記切替回路及び前記第1比較回路を通って基準電位ノードに至る放電経路の放電速度と、前記比較出力ノード対の他方のノードから前記切替回路及び前記第2比較回路を通って前記基準電位ノードに至る放電経路の放電速度とを調整してもよい。
 前記第1比較回路と前記基準電位ノードとの間に接続される第1可変容量と、
 前記第2比較回路と前記基準電位ノードとの間に接続される第2可変容量と、を備え、
 前記補正回路は、前記第1可変容量及び前記第2可変容量の少なくとも一方の容量値を調整することにより、前記放電速度を調整してもよい。
 前記第1比較回路は、
 前記第1差動入力信号対の差信号を生成する第1トランジスタ対と、
 前記第1トランジスタ対と前記基準電位ノードとを接続するか否かを切り替える第1切替回路と、を有し、
 前記第2比較回路は、
 前記第2差動入力信号対の差信号を生成する第2トランジスタ対と、
 前記第2トランジスタ対と前記基準電位ノードとを接続するか否かを切り替える第2切替回路と、を有し、
 前記補正回路は、前記第1切替回路及び前記第2切替回路の少なくとも一方を切り替えるタイミングを調整することにより、前記放電速度を調整してもよい。
 前記第1比較回路は、前記第1差動入力信号対の差信号に応じて前記基準電位ノードに流れる電流を調整可能な第1電流源を有し、
 前記第2比較回路は、前記第2差動入力信号対の差信号に応じて前記基準電位ノードに流れる電流を調整可能な第2電流源を有し、
 前記補正回路は、前記第1電流源及び前記第2電流源の少なくとも一方から前記基準電位ノードに流れる電流を調整することにより、前記放電速度を調整してもよい。
 前記第1比較回路は、前記第1差動入力信号対の差信号に応じた第1差動出力信号対を生成する第1トランジスタ対を有し、
 前記第2比較回路は、前記第2差動入力信号対の差信号に応じた第2差動出力信号対を生成する第2トランジスタ対を有し、
 前記補正回路は、前記第1トランジスタ対及び前記第2トランジスタ対の中の少なくとも一つのトランジスタのゲート幅を調整することにより、前記放電速度を調整してもよい。
 前記第1比較回路は、前記第1差動入力信号対の差信号に応じた第1差動出力信号対を生成する第1トランジスタ対を有し、
 前記第2比較回路は、前記第2差動入力信号対の差信号に応じた第2差動出力信号対を生成する第2トランジスタ対を有し、
 前記ゲイン差は、前記第1トランジスタ対のトランスコンダクタンスと、前記第1差動入力信号対のコモン電圧との積と、前記第2トランジスタ対のトランスコンダクタンスと、前記第2差動入力信号対のコモン電圧との積との差分であってもよい。
 前記切替回路で切り替えられた差動信号を伝送する比較出力ノード対と、
 前記比較出力ノード対の前記差動信号を保持するラッチ回路と、を備えてもよい。
 前記比較出力ノード対にそれぞれ配置され、前記差動信号の波形整形を行う第1波形整形回路及び第2波形整形回路を備え、
 前記ラッチ回路は、前記第1波形整形回路及び前記第2波形整形回路が波形整形した差動信号を保持してもよい。
 前記第1波形整形回路及び前記第2波形整形回路のそれぞれは、インバータであってもよい。
 前記ラッチ回路は、
 前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較する際に前記比較出力ノード対上の前記差動信号を保持する第1ラッチ部と、
 前記第1比較回路と前記第2比較回路とのゲイン差を比較する際に前記比較出力ノード対上の前記差動信号を保持する第2ラッチ部と、を有してもよい。
 前記ラッチ回路は、前記比較出力ノード対よりも電圧レベルの高い電源電圧ノードと、前記比較出力ノード対との間に接続されてもよい。
 前記切替回路は、前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較する第1動作モードと、前記第1比較回路と前記第2比較回路とのゲイン差を比較する第2動作モードとを、交互に繰り返してもよい。
 前記切替回路は、動作開始時に前記第1動作モードを行い、その後、前記第2動作モード及び前記第1動作モードの順に切替動作を繰り返してもよい。
 前記切替回路は、動作開始時に前記第2動作モードを行い、その後、前記第1動作モード及び前記第2動作モードの順に切替動作を繰り返してもよい。
 前記第1比較回路は、前記第1差動入力信号対の差信号に応じた第1差動出力信号対を生成する第1トランジスタ対を有し、
 前記第2比較回路は、前記第2差動入力信号対の差信号に応じた第2差動出力信号対を生成する第2トランジスタ対を有し、
 前記切替回路は、前記第1比較回路と前記第2比較回路とのゲイン差を比較する際には、前記第1トランジスタ対のゲート同士を短絡し、かつ前記第2トランジスタ対のゲート同士を短絡してもよい。
 前記切替回路で切り替えられた差動信号を伝送する比較出力ノード対を備え、
 前記第1比較回路は、第1出力ノード及び第2出力ノードを有し、
 前記第2比較回路は、第3出力ノード及び第4出力ノードを有し、
 前記切替回路は、前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較する際には、前記第1出力ノード及び前記第3出力ノードを前記比較出力ノード対の一方のノードに接続するとともに、前記第2出力ノード及び前記第4出力ノードを前記比較出力ノード対の他方のノードに接続し、前記第1比較回路と前記第2比較回路とのゲイン差を比較する際には、前記第1出力ノード及び前記第2出力ノードを前記比較出力ノード対の一方のノードに接続するとともに、前記第3出力ノード及び前記第4出力ノードを前記比較出力ノード対の他方のノードに接続してもよい。
 本開示の一態様では、差動入力信号対の一方の信号をサンプリングするか否かを切り替える第1サンプリングスイッチと、
 サンプリングされた前記一方の信号を複数ビットからなるデジタル信号に1ビットずつ順に変換するとともに、未変換のビットに応じた電圧レベルの信号を出力する第1デジタル-アナログ変換器と、
 前記差動入力信号対の他方の信号をサンプリングするか否かを切り替える第2サンプリングスイッチと、
 サンプリングされた前記他方の信号を複数ビットからなるデジタル信号に1ビットずつ順に変換するとともに、未変換のビットに応じた電圧レベルの信号を出力する第2デジタル-アナログ変換器と、
 前記第1デジタル-アナログ変換器の出力信号と、前記第2デジタル-アナログ変換器の出力信号とをサンプリングして出力するフィルタ回路と、
 前記第1デジタル-アナログ変換器の出力信号と前記第2デジタル-アナログ変換器の出力信号とを対とする第1差動入力信号対の差信号と、前記フィルタ回路から出力された第2差動入力信号対の差信号と、に応じた信号を出力するコンパレータと、
 前記コンパレータの出力信号に基づいて、前記第1デジタル-アナログ変換器及び前記第2デジタル-アナログ変換器を制御する制御回路と、を備え
 前記コンパレータは、
 前記第1差動入力信号対を比較する第1比較回路と、
 前記第2差動入力信号対を比較する第2比較回路と、
 前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較するか、又は、前記第1比較回路と前記第2比較回路とのゲイン差を比較するかを切り替える切替回路と、を有するアナログ-デジタル変換器が提供される。
 前記第1サンプリングスイッチ及び前記第2サンプリングスイッチによる前記差動入力信号対のサンプリングと、前記第1デジタル-アナログ変換器及び前記第2デジタル-アナログ変換器による前記デジタル信号への変換と、前記ゲイン差の比較と、前記ゲイン差の補正とが順繰りに繰り返し行われてもよい。
第1の実施形態によるコンパレータの回路図。 一比較例によるコンパレータの回路図。 コンパレータの比較動作時の比較出力信号対の波形図。 コンパレータの比較動作時の比較出力信号対の波形図。 第1比較回路のゲインと第2比較回路のゲインとを比較した図。 コンパレータを備えた逐次比較型ADCの回路図。 図5の第1DACの出力ノード電圧と第2DACの出力ノード電圧の電圧波形図。 図6のADCの動作タイミングを示すタイミング図。 図5のADCの処理手順を示すフローチャート。 図5のADCの処理手順の一変形例を示すフローチャート。 第2の実施形態によるコンパレータの回路図。 第3の実施形態によるコンパレータの回路図。 第4の実施形態によるコンパレータの回路図。 第5の実施形態によるコンパレータの回路図。 第6の実施形態によるコンパレータの回路図。 第7の実施形態によるコンパレータの回路図。 第8の実施形態によるコンパレータの回路図。 第9の実施形態によるコンパレータの回路図。
 以下、図面を参照して、コンパレータ及びアナログ-デジタル変換器の実施形態について説明する。以下では、コンパレータ及びアナログ-デジタル変換器の主要な構成部分を中心に説明するが、コンパレータ及びアナログ-デジタル変換器には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。
 (第1の実施形態)
 図1は第1の実施形態によるコンパレータ1の回路図である。図2は一比較例によるコンパレータ101の回路図である。図1及び図2のコンパレータ1、101は、後述するように、例えば逐次比較型ADCで用いられるが、図1及び図2のコンパレータ1、101の用途は必ずしもADCには限らない。図1及び図2のコンパレータ1、101には、2つの差動入力信号対(以下、第1差動入力信号対Vin_p、Vin_nと第2差動入力信号対Vns_p、Vns_nと呼ぶ)が入力される。コンパレータ1、101は、第1差動入力信号対Vin_p、Vin_nの差信号と、第2差動入力信号対Vns_p、Vns_nの差信号とに応じた差動出力信号対Vout_p、Vout_nを出力する。このように、図1及び図2のコンパレータ1、101は、2つの差動入力信号対(Vin_p、Vin_n),(Vns_p、Vns_n)の比較動作を行うダイナミックコンパレータである。
 以下では、図1のコンパレータ1の構成及び動作を説明する前に、図2のコンパレータ101の構成及び動作を説明する。図2のコンパレータ101は、第1比較回路2と、第2比較回路3を備えている。
 第1比較回路2は、第1差動入力信号対Vin_p、Vin_nの差信号に応じた第1差動出力信号対を出力する。第1比較回路2は、第1差動入力信号対Vin_p、Vin_nがゲートに入力される第1トランジスタ対Q11、Q12と、スイッチとして機能するトランジスタQ13とを有する。トランジスタQ13のゲートにはクロック信号Clkが入力されており、クロック信号Clkがハイ電位のときにトランジスタQ13はオンし、第1比較回路2は比較動作を行う。
 第2比較回路3は、第2差動入力信号対Vns_p、Vns_nの差信号に応じた第2差動出力信号対を出力する。第2比較回路3は、第2差動入力信号対Vns_p、Vns_nがゲートに入力される第2トランジスタ対Q21、Q22と、スイッチとして機能するトランジスタQ23とを有する。トランジスタQ23のゲートに入力されるクロック信号Clkがハイ電位のときに第2比較回路3は比較動作を行う。
 第1トランジスタ対Q11、Q12の各ドレインは、比較出力ノード対n1、n2に接続されている。同様に、第2トランジスタ対Q21、Q22の各ドレインも、同じ比較出力ノード対n1、n2に接続されている。本明細書では、比較出力ノード対n1、n2上の電圧信号を、比較出力信号対Vgm_p、Vgm_nと呼ぶ。比較出力ノード対n1、n2には、プルアップ回路4とラッチ回路5が接続されている。
 プルアップ回路4はトランジスタ対Q1、Q2を有し、クロック信号Clkがローレベルのときに、比較出力ノード対n1、n2をハイ電位にプルアップする。このように、プルアップ回路4は、第1比較回路2と第2比較回路3が比較動作を行っていないときに比較出力ノード対n1、n2をハイ電位にプルアップする。
 ラッチ回路5は、トランジスタQ31~Q40を有する。ラッチ回路5は、比較出力ノード対n1、n2の放電速度の差に応じて、ラッチ出力の論理を決定する。より具体的には、比較出力オード対n1、n2のうち、放電速度が速い方のノードがハイ電位に、遅い方のノードがロー電位になる。
 次に、図2のコンパレータ101の動作を説明する。クロック信号Clkがローレベルからハイレベルに遷移すると、図2のコンパレータ101は比較動作を開始する。クロック信号Clkがローレベルの間は、比較出力ノード対n1、n2は、ハイ電位にプルアップされている。クロック信号Clkがハイレベルに遷移すると、比較出力ノード対n1、n2上の電位Vgm_p、Vgm_nは、第1トランジスタ対Q11、Q12の一方のトランジスタと、第2トランジスタ対Q21、Q22の一方のトランジスタがオンすることで、放電により低下していく。
 第1トランジスタ対Q11、Q12の各トランジスタのトランスコンダクタンスをgm_in、第2トランジスタ対Q21、Q22の各トランジスタのトランスコンダクタンスをgm_nsとすると、(Vin_p×gm_in+Vns_p×gm_ns)>(Vin_n×gm_in+Vns_n×gm_ns)のとき、Vgm_pの放電速度>Vgm_nの放電速度となる。逆に、(Vin_p×gm_in+Vns_p×gm_ns)<(Vin_n×gm_in +Vns_n×gm_ns)のとき、Vgm_pの放電速度<Vgm_nの放電速度となる。 
 このように、比較出力信号対Vgm_p、Vgm_nの放電速度は、第1差動入力信号対Vin_p、Vin_n及び第2差動入力信号対Vns_p、Vns_nの電位と、第1トランジスタ対Q11、Q12及び第2トランジスタ対Q21、Q22のトランスコンダクタンスとに依存する。
 図3A及び図3Bはコンパレータ101の比較動作時の比較出力信号対Vgm_pとVgm_nの波形図である。図3Aは(Vin_p×gm_in+Vns_p×gm_ns)>(Vin_n×gm_in +Vns_n×gm_ns)のときの波形図、図3Bは(Vin_p×gm_in+Vns_p×gm_ns)<(Vin_n×gm_in +Vns_n×gm_ns)のときの波形図である。
 比較出力信号対Vgm_p、Vgm_n Vgm_p、Vgm_nの放電速度の差によって、コンパレータ101の後段側のラッチ回路5のラッチ出力の論理が決まる。Vgm_pの放電速度>Vgm_nの放電速度であれば、Vout_p=High/Vout_n=Lowになる。Vgm_pの放電速度<Vgm_nの放電速度であれば、Vout_p=Low/Vout_n=Highになる。
 図1及び図2のコンパレータ1、101は、後述するように逐次比較型ADCの内部で用いることができる。逐次比較型ADCでは、A/D変換を行うべき差動のアナログ入力信号をサンプリングして、最上位ビット側から順にデジタル変換した電圧を第1差動入力信号対Vin_p、Vin_nとし、後述する容量DACに残留した電圧をフィルタリングした後の差動信号を第2差動入力信号対Vns_p、Vns_nとして、コンパレータ1、101で比較動作を行う。
 ところが、図2のコンパレータ101では、第1差動入力信号対Vin_p、Vin_nを比較する第1比較回路2のゲインと、第2差動入力信号対Vns_p、Vns_nを比較する第2比較回路3のゲインとがずれるゲインミスマッチが問題となりうる。
 図4は図2のコンパレータ101における第1比較回路2のゲインと第2比較回路3のゲインとを比較した図である。図4の横軸は第2差動入力信号対Vns_p、Vns_nの電位差、縦軸は第1差動入力信号対Vin_p、Vin_nの電位差である。図4の破線w1は、第1差動入力信号対Vin_p、Vin_nの電位差の絶対値と第2差動入力信号対Vns_p、Vns_nの電位差の絶対値が等しい場合を示している。
 図4の破線w1よりも上の領域は、第1差動入力信号対Vin_p、Vin_nの電位差の絶対値が第2差動入力信号対Vns_p、Vns_nの電位差の絶対値よりも大きい場合であり、この場合はラッチ回路5の出力電位Vout_pはハイ電位、Vout_nはロー電位になる。一方、図4の破線w1よりも下の領域は、第1差動入力信号対Vin_p、Vin_nの電位差の絶対値が第2差動入力信号対Vns_p、Vns_nの電位差の絶対値よりも小さい場合であり、この場合はラッチ回路5の出力電位Vout_pはロー電位、Vout_nはハイ電位になる。
 図4において、第1比較回路2内の第1トランジスタ対Q11、Q12のトランスコンダクタンスgm_inと第1差動入力信号対Vin_p、Vin_nのコモン電圧Vin_cmとの積gm_in×Vin_cmが、第2比較回路3内の第2トランジスタ対Q21、Q22のトランスコンダクタンスgm_nsと第2差動入力信号対Vns_p、Vns_nのコモン電圧Vns_cmとの積gm_ns×Vns_cmと等しければ、図4の破線w1の特性が得られるが、実際にはgm_in×Vin_cmはgm_ns×Vns_cmと同一にはならず、例えば図4の実線w2のような特性になる。
 図4の実線w2の場合、第2差動入力信号対Vns_p、Vns_nの電位差Vns_p-Vns_n=1mVの場合に、Vin_p-Vin_n>-1.1mVであれば、コンパレータ101の出力電圧Vout_pはハイ電位、Vout_nはロー電位になる。Vin_p-Vin_n<1.1mVであれば、Vout_pはロー電位、Vout_nはハイ電位になる。
 図4の実線w2のような特性は、コンパレータ101内の第1比較回路2と第2比較回路3にゲイン差すなわちゲインミスマッチがあるために生じる。ゲイン差とは、より正確には、gm_in×Vin_cmとgm_ns×Vns_cmに差異があることを指す。図4の実線w2のような特性を持つコンパレータ101は、非理想性のコンパレータである。ゲイン差のあるコンパレータは、S/Nなどの性能が低下し、安定性が悪くなるおそれがある。このため、ゲインミスマッチをできるだけ抑えたコンパレータが望ましい。
 ゲイン差が発生する主な要因は、上述したように、gm_in×Vin_cmとgm_ns×Vns_cmが一致しないためである。gm_in×Vin_cmとgm_ns×Vns_cmが一致しない要因は複数考えられる。その要因の一つは、コンパレータ101を半導体基板上に形成する際の製造プロセスのばらつきである。製造プロセスのばらつきにより、第1トランジスタ対Q11、Q12のトランスコンダクタンスgm_inと第2トランジスタ対Q21、Q22のトランスコンダクタンスgm_nsがずれてしまう。
 また、他の要因として、第1差動入力信号対Vin_p、Vin_nのコモン電圧Vin_cmと第2差動入力信号対Vns_p、Vns_nのコモン電圧Vns_cmとがずれることが挙げられる。第1差動入力信号対Vin_p、Vin_nのコモン電圧Vin_cmは、ADCに入力される差動入力信号対のコモン電圧に依存し、第2差動入力信号対Vns_p、Vns_nのコモン電圧Vns_cmは、ADC内のフィルタ回路の特性に依存するため、両コモン電圧が一致する保証はない。
 第1比較回路2内の第1トランジスタ対Q11、Q12と第2比較回路3内の第2トランジスタ対Q21、Q22のトランスコンダクタンスgm_in、gm_nsは、μCox×(W/L)×(Vgs-Vth)という式で表される。μは移動度、Coxはゲート酸化膜厚、Wはゲート幅、Lはゲート長、Vgsはゲート-ソース間電圧、Vthは閾値電圧である。このうち、移動度μ、酸化膜厚Cox、ゲート幅W、ゲート長L、閾値電圧Vthは、製造ばらつきによって変化するパラメータである。ゲート-ソース間電圧Vgsは第1差動入力信号対Vin_p、Vin_nや第2差動入力信号対Vns_p、Vns_nのコモン電圧に依存するパラメータである。
 このように、製造ばらつきやコモン電圧の変動は、コンパレータ101のゲイン差すなわちゲインミスマッチを生じさせ、コンパレータ1のS/N比の低下や安定性の悪化を招くおそれがある。
 図1のコンパレータ1は、製造ばらつきやコモン電圧の変動に対する対策を施したことを特徴としている。以下、図1のコンパレータ1の構成及び動作を説明する。図1のコンパレータ1は、第1比較回路2と、第2比較回路3と、切替回路6とを備えている。
 第1比較回路2は、第1差動入力信号対Vin_p、Vin_nを比較する。第1比較回路2は、第1差動入力信号対Vin_p、Vin_nの差信号に応じた第1差動出力信号対を生成する第1トランジスタ対Q11、Q12を有する。第2比較回路3は、第2差動入力信号対Vns_p、Vns_nを比較する。第2比較回路3は、第2差動入力信号対Vns_p、Vns_nの差信号に応じた第2差動出力信号対を生成する第2トランジスタ対Q21、Q22を有する。
 切替回路6は、第1比較回路2にて第1差動入力信号対Vin_p、Vin_nを比較するとともに第2比較回路3にて第2差動入力信号対Vns_p、Vns_nを比較するか、又は、第1比較回路2と第2比較回路3とのゲイン差を比較するかを切り替える。
 本実施形態によるコンパレータ1は、補正回路7を備えている。補正回路7は、第1比較回路2のゲイン及び第2比較回路3のゲインを補正する。補正回路7は、ゲイン差がより小さくなるように第1比較回路2のゲインと第2比較回路3のゲインを補正する。補正回路7は、後述するように、ADC内の制御回路に内蔵することができる。
 本実施形態によるコンパレータ1は、切替回路6で切り替えられた差動信号を伝送する比較出力ノード対n1、n2を備えている。補正回路7は、ゲイン差がより小さくなるように、比較出力ノード対n1、n2の一方のノードn1の電圧が切替回路6及び第1比較回路2を通って基準電位ノードに放電される際の放電速度と、比較出力ノード対n1、n2の他方のノードn2の電圧が切替回路6及び第2比較回路3を通って基準電位ノードに放電される際の放電速度とを調整する。
 図1の第1比較回路2は、第1差動入力信号対Vin_p、Vin_nの差信号に応じた差動出力信号対を生成する第1トランジスタ対Q11、Q12を有する。第1トランジスタ対Q11、Q12は、例えば一対のNMOSトランジスタである。本明細書では、第1トランジスタ対Q11、Q12を構成する一対のNMOSトランジスタのトランスコンダクタンスgm_inが互いに等しいものとする。
 第1トランジスタ対Q11、Q12のソースと基準電位ノード(例えば接地ノード)との間には、スイッチとして機能するNMOSトランジスタが接続されている。このトランジスタのゲートにはクロック信号Clkが入力されている。
 図1の第2比較回路3は、第2差動入力信号対Vns_p、Vns_nの差信号に応じた差動出力信号対を生成する第2トランジスタ対Q21、Q22を有する。第2トランジスタ対Q21、Q22は、例えば一対のNMOSトランジスタである。本明細書では、第2トランジスタ対Q21、Q22を構成する一対のNMOSトランジスタのトランスコンダクタンスgm_nsが互いに等しいものとする。
 第2トランジスタ対Q21、Q22のソースと基準電位ノード(例えば接地ノード)との間には、スイッチとして機能するNMOSトランジスタが接続されている。このトランジスタのゲートにはクロック信号Clkが入力されている。
 クロック信号Clkがロー電位の間は、第1比較回路2と第2比較回路3は比較動作を行わず、クロック信号Clkがロー電位からハイ電位に遷移すると、第1比較回路2と第2比較回路3は比較動作を開始する。
 図1のコンパレータ1では、第1比較回路2の出力ノード対と第2比較回路3の出力ノード対は、切替回路6を介して比較出力ノード対n1、n2に接続されている。第1比較回路2の出力ノード対からは第1差動出力信号対が出力され、第2比較回路3の出力ノード対からは第2差動出力信号対が出力される。
 図1の切替回路6は、第1比較回路2にて前記第1差動入力信号対Vin_p、Vin_nを比較するとともに前記第2比較回路3にて前記第2差動入力信号対Vns_p、Vns_nを比較する第1動作モード(以下では、通常比較モードとも呼ぶ)と、第1比較回路2と前記第2比較回路3とのゲイン差を比較するかを切り替える第2動作モード(以下では、ゲイン比較モードとも呼ぶ)の切替を行う。
 切替回路6は、第1~第4スイッチ対6a、6b、6c、6dを有する。第1スイッチ対6aを構成する2つのスイッチSW1,SW2と、第2スイッチ対6bを構成する2つのスイッチSW3,SW4は、通常比較モードのときにオンする。スイッチSW1の一端はトランジスタQ11のドレインに接続され、他端は比較出力ノードn1に接続されている。スイッチSW2の一端はトランジスタQ12のドレインに接続され、他端は比較出力ノードn2に接続されている。スイッチSW3の一端はトランジスタQ21のドレインに接続され、他端は比較出力ノードn1に接続されている。スイッチSW4の一端はトランジスタQ22のドレインに接続され、他端は比較出力ノードn2に接続されている。
 第3スイッチ対6cを構成する2つのスイッチSW5,SW6と、第4スイッチ対6dを構成する2つのスイッチSW7,SW8は、ゲイン比較モードのときにオンする。スイッチSW5の一端はトランジスタQ11のドレインに接続され、他端は比較出力ノードn1に接続されている。スイッチSW6の一端はトランジスタQ12のドレインに接続され、他端は比較出力ノードn1に接続されている。スイッチSW7の一端はトランジスタQ21のドレインに接続され、他端は比較出力ノードn2に接続されている。スイッチSW8の一端はトランジスタQ22のドレインに接続され、他端は比較出力ノードn2に接続されている。
 通常比較モードでは、第1比較回路2から出力された第1差動出力信号対は切替回路6を介して比較出力ノード対n1、n2に供給されるとともに、第2比較回路3から出力された第2差動出力信号対は切替回路6を介して比較出力ノード対n1、n2に供給される。
 一方、ゲイン比較モードでは、第1比較回路2から出力された第1差動出力信号対は切替回路6を介して比較出力ノードn1に供給されるとともに、第2比較回路3から出力された第2差動出力信号対は切替回路6を介して比較出力ノードn2に供給される。
 図1のコンパレータ1は、第1比較回路2内の第1トランジスタ対Q11、Q12のソースと基準電位ノード(例えば接地ノード)の間に接続された第1可変容量C1と、第2比較回路3内の第2トランジスタ対Q21、Q22のソースと基準電位ノード(例えば接地ノード)の間に接続された第2可変容量C2とを備えている。これら第1可変容量C1と第2可変容量C2の容量値は、補正回路7により調整可能である。補正回路7は、第1比較回路2と第2比較回路3とのゲイン差がより小さくなるように、第1可変容量C1と第2可変容量C2の容量値を調整する。ここで、ゲイン差とは、第1トランジスタ対Q11、Q12のトランスコンダクタンスgm_inと第1差動入力信号対Vin_p、Vin_nのコモン電圧Vin_cmとの積gm_in×Vin_cmと、第2トランジスタ対Q21、Q22のトランスコンダクタンスgm_nsと第2差動入力信号対Vns_p、Vns_nのコモン電圧Vns_cmとの積gm_ns×Vns_cmとの差分である。
 補正回路7は、第1可変容量C1の容量値と第2可変容量C2の容量値を個別に制御することができる。補正回路7は、後述するADC内の制御回路の内部に設けることができる。上述したように、第1比較回路2と第2比較回路3は、クロック信号Clkがロー電位からハイ電位に遷移すると、比較動作を開始するが、第1可変容量C1と第2可変容量C2の容量値を可変制御することで、第1比較回路2と第2比較回路3が比較動作を開始するタイミングを調整することができる。すなわち、補正回路7が第1可変容量C1と第2可変容量C2の容量値を個別に制御することで、比較出力ノード対n1、n2の一方のノードの放電速度と、他方のノードの放電速度とを個別に調整できる。第1可変容量C1の容量値を小さくするほど、比較出力ノードn1の放電速度を高速化することができる。同様に、第2可変容量C2の容量値を小さくするほど、比較出力ノードn2の放電速度を高速化することができる。
 ラッチ回路5のラッチ出力の論理は、比較出力ノード対n1、n2の一方のノードと他方のノードの放電速度の違いによって大小関係が決まる。第1比較回路2と第2比較回路3に上述したゲイン差がある場合に、補正回路7により第1可変容量C1と第2可変容量C2の容量値を個別に制御することで、ゲイン差がより小さくなるように、比較出力ノード対n1、n2の一方のノードの放電速度と他方のノードの放電速度を設定できる。
 例えば、gm_ns×Vns_cm<gm_in×Vin_cmの場合には、第2比較回路3に接続された第2可変容量C2の容量値を少しずつ小さくして、比較出力ノードノードn2の放電速度を徐々に高速化する。比較出力ノード対n1、n2の放電速度がほぼ等しくなると、ゲイン比較モードでの補正回路7による補正処理を終了する。この状態では、ゲイン差がなくなっており、その後に通常比較モードを行うことで、ゲイン差の影響を受けずに、第1差動入力信号対Vin_p、Vin_n及び第2差動入力信号対Vns_p、Vns_nの比較処理を行うことができる。
 図1のコンパレータ1では、補正回路7により第1可変容量C1の容量値と第2可変容量C2の容量値を制御することにより、図4の破線w1のような特性を持たせることができる。
 図5は本実施形態によるコンパレータ1を備えた逐次比較型ADC11の回路図である。図5の逐次比較型ADC11は、差動入力信号対Vad_p、Vad_nを5ビットのデジタル信号に変換する例を示している。なお、逐次比較型ADC11のビット数は任意である。また、逐次比較型ADC11の回路構成は、図5に示すものに限定されない。
 図5の逐次比較型ADC11は、第1サンプリングスイッチ12と、第2サンプリングスイッチ13と、第1デジタル-アナログ変換器(以下、第1DAC)14と、第2デジタル-アナログ変換器(第2DAC)15と、フィルタ回路16と、コンパレータ1と、制御回路(SARロジック)17とを備えている。本明細書では、第1DAC14と第2DAC15を総称して容量DAC18と呼ぶ。
 第1サンプリングスイッチ12は、差動入力信号対Vad_p、Vad_nの一方の信号Vad_pをサンプリングするか否かを切り替える。第2サンプリングスイッチ13は、差動入力信号対Vad_p、Vad_nの他方の信号Vad_nをサンプリングするか否かを切り替える。
 第1DAC14は、サンプリングされた一方の信号Vad_pを複数ビットからなるデジタル信号に1ビットずつ順に変換するとともに、未変換のビットに応じた電圧レベルの信号を出力する。
 第1DAC14は、2のべき乗倍ずつ容量が異なる5つのキャパシタC1~C5と、各キャパシタC1~C5に接続される3つのスイッチ(第1~第3スイッチ)SW11~SW13とを有する。第1スイッチSW11は、キャパシタC1~C5の一端を0Vに設定するか否かを切り替える。第2スイッチSW12は、キャパシタC1~C5の一端をコモン電圧Vcomに設定するか否かを切り替える。第3スイッチSW13は、キャパシタC1~C5の一端を基準電圧Vrefに設定するか否かを切り替える。コモン電圧Vcomは、例えば基準電圧Vrefの1/2の電圧レベルである。
 第1~第3スイッチSW11~SW13は、制御回路17からの制御信号に基づいて、オン又はオフが切り替えられる。制御回路17は、比較動作の開始時点では第2スイッチSW12をオンする。その後、制御回路17は、第1DAC14の出力ノード電圧(第1差動入力信号対Vin_p、Vin_nの一方)Vin_pを下げたい場合には第1スイッチSW11をオンし、第1DAC14の出力ノード電圧(第1差動入力信号対Vin_p、Vin_nの一方)Vin_pを上げたい場合には第3スイッチSW13をオンする。
 第2DAC15は、サンプリングされた他方の信号を複数ビットからなるデジタル信号に1ビットずつ順に変換するとともに、未変換のビットに応じた電圧レベルの信号を出力する。第2DAC15は、第1DAC14と同様に構成されており、第1DAC14と同様に制御回路17からの制御信号に基づいて第1~第3スイッチSW11~SW13を切り替える。
 フィルタ回路16は、第1DAC14の出力信号と第2DAC15の出力信号とをサンプリングして出力する。フィルタ回路16から出力される差動出力信号対が第2差動入力信号対Vns_p、Vns_nである。
 コンパレータ1は、図1に示す構成を備えている。コンパレータ1には、第1DAC14の出力信号と第2DAC15の出力信号とを対とする第1差動入力信号対Vin_p、Vin_nと、フィルタ回路16から出力された第2差動入力信号対Vns_p、Vns_nとが入力される。コンパレータ1は、第1差動入力信号対Vin_p、Vin_nの差信号と、第2差動入力信号対Vns_p、Vns_nの差信号とに応じた差動出力信号対Vout_p、Vout_nを出力する。
 制御回路17は、コンパレータ1の差動出力信号対に基づいて、第1DAC14及び第2DAC15内の第1~第3スイッチSW11~SW13の切替制御を行う。制御回路17は、図1等に示した補正回路7を内蔵することができる。以下では、制御回路17が補正回路7を内蔵する例を説明する。制御回路17は、コンパレータ1の差動出力信号対に基づいて、信号Sw_comp、信号Sw_gain、信号Comp_end、信号Gain_cal_in、信号Gain_cal_nsを生成する。信号Sw_compは、通常比較モードのときにハイ電位になる信号である。信号Sw_gainは、ゲイン比較モードのときにハイ電位になる信号である。信号Comp_endは、ゲイン比較モード時にゲイン差がなくなったときにハイ電位になる信号である。信号Gain_cal_inは、ゲイン比較モードでの調整後の第1可変容量C1の容量値を調整する信号である。信号Gain_gain_nsは、ゲイン比較モードでの調整後の第2可変容量C2の容量値を調整する信号である。
 コンパレータ1に入力されるクロック信号Clkのタイミングは、第1サンプリングスイッチ12及び第2サンプリングスイッチ13の切替信号Clk_smplと、コンパレータ1の差動出力信号対と、信号Comp_endとによって設定される。クロック信号Clkのタイミングを設定するために、図5のADC11は、インバータ31,32と、NORゲート33と、ANDゲート34,35とを備えている。なお、これらの論理ゲートは、他の論理回路素子に置換可能である。
 図6は、図5の第1DAC14の出力ノード電圧(第1差動入力信号対Vin_p、Vin_nの一方)Vin_pと、第2DAC15の出力ノード電圧(第1差動入力信号対Vin_p、Vin_nの他方)Vin_nの電圧波形図である。まず初めは、第1サンプリングスイッチ12と第2サンプリングスイッチ13をともにオンして、差動入力信号対Vad_p、Vad_nをサンプリングする。このとき、各キャパシタC1~C5の一端は第2スイッチSW12を介して、第1差動入力信号対Vin_p、Vin_nのコモン電圧Vcomに設定される。これにより、容量DAC18には、差動入力信号対Vad_p、Vad_nの差信号に応じた電荷が蓄積される。容量DAC18を構成する第1DAC14の出力信号と第2DAC15の出力信号は、コンパレータ1に入力される第1差動入力信号対Vin_p、Vin_nである。また、フィルタ回路16の差動出力信号は、コンパレータ1に入力される第2差動入力信号対Vns_p、Vns_nである。
 その後、第1サンプリングスイッチ12と第2サンプリングスイッチ13をともにオフにして、コンパレータ1による比較動作を開始する。容量DAC18の出力は、サンプリングされた差動入力信号対Vad_p、Vad_nの差信号に応じて、図6に示すように上記ビットから順に第1差動入力信号の電位差が小さくなるように制御され、第1差動入力信号の電位差は徐々にゼロに近づいていく。
 制御が完了すると、容量DAC18に残留した電圧がフィルタ回路16でサンプリングされて、フィルタ回路16の出力電圧(第2差動入力信号)を変化させる。通常は、容量DAC18の制御完了時の残留電圧は非常に小さい電圧レベルであり、フィルタ回路16は、小さい電圧レベルの信号を出力し続ける。すなわち、第2差動入力信号対Vns_p、Vns_nの差信号(Vns_p-Vns_n)≒0という状態を保持する。
 図7は図6のADC11の動作タイミングを示すタイミング図である。時刻t1~t2では、信号Clk_smplがハイになり、第1サンプリングスイッチ12と第2サンプリングスイッチ13がオンする。これにより、第1DAC14と第2DAC15は、差動入力信号Vad_p、Vad_nをサンプリングする。時刻t2で第1サンプリングスイッチ12と第2サンプリングスイッチ13はオフし、差動入力信号Vad_p、Vad_nのサンプリングは終了する。また、時刻t2で信号Sw_compはハイ電位に遷移し、コンパレータ1内の切替回路6は、第1比較回路2から出力された第1差動出力信号対を比較出力ノード対n1、n2に接続し、第2比較回路3から出力された第2差動出力信号対を比較出力ノード対n1、n2に接続する。
 時刻t3でクロック信号Clkがロー電位からハイ電位に遷移すると、図5のコンパレータ1は比較動作を開始する。コンパレータ1内の第1比較回路2と第2比較回路3は、クロック信号Clkがハイ電位の期間のみ、比較動作を行う。時刻t3以降、クロック信号Clkがロー電位からハイ電位に遷移するたびに、第1DAC14と第2DAC15は、サンプリングされた差動入力電圧を、上位ビットから順に、1ビットずつデジタル値に変換する。より詳細には、第1比較回路2は、第1DAC14と第2DAC15の出力電圧(第1差動入力信号対Vin_p、Vin_n)の差信号Vin_p-Vin_nが正か負かを判別し、その判別結果を示す差動出力信号対を出力する。制御回路17は、第1DAC14と第2DAC15の出力電圧(第2差動入力信号対Vns_p、Vns_n)の差信号Vin_p-Vin_nがゼロに近づくように、第1DAC14と第2DAC15の最上位ビットから順に各ビットの値を制御する。これにより、図6に示したように、第1差動入力信号対Vin_p、Vin_nの差信号は次第にゼロに近づく。
 時刻t4で、第1DAC14と第2DAC15によるD/A変換処理が終了すると、信号Sw_compはロー電位に遷移するとともに、信号Sw_gainが所定の期間だけハイ電位になる。信号Sw_gainがハイ電位になると、ゲイン比較モードになり、切替回路6は、第1比較回路2から出力された第1差動出力信号対を比較出力ノード対n1、n2の一方に接続し、第2比較回路3から出力された第2差動出力信号対を比較出力ノード対n1、n2の他方に接続する。
 時刻t5になると、信号Comp_endがハイ電位になり、それ以降は、第1比較回路2と第2比較回路3にクロック信号Clkが供給されなくなる。
 時刻t6になると、ゲイン比較モードにおける比較結果をもとに、補正回路7は、gm_in×Vin_cm とgm_ns×Vns_cmの差が小さくなるように、第1可変容量C1の容量値と第2可変容量C2の容量値を制御する。ゲイン調整信号Gain_cal_inは第1可変容量C1の容量値を指定する信号であり、ゲイン調整信号Gain_cal_nsは第2可変容量C2の容量値を指定する信号である。時刻t6前後で、ゲイン調整信号Gain_cal_inにて第1可変容量C1の容量値設定が切り替わるとともに、ゲイン調整信号Gain_cal_nsにて第2可変容量C2の容量値設定が切り替わる。その後、時刻t7以降では、時刻t1~t6と同様の動作を繰り返す。
 図8は図5のADC11の処理手順を示すフローチャートであり、図6のタイミング図に準拠したものである。ADC11に電源電圧が供給されると、まず、外部から入力された差動入力信号対Vad_p、Vad_nをサンプリングする(ステップS1)。次に、通常比較モードに設定して、サンプリングされた電圧に基づいて、第1DAC14と第2DAC15の容量を制御して、最上位ビットから1ビットずつ順にデジタル値に変換する(ステップS2)。次に、ゲイン比較モードに設定して、第1比較回路2のゲインと第2比較回路3のゲインを比較して(ステップS3)、ゲイン差がなくなるように第1可変容量C1と第2可変容量C2の容量値を制御する(ステップS4)。ゲイン差がなくなると、ステップS2以降の処理を繰り返す。
 図8の処理順序の一部を入れ替えてもよい。図9は図5のADC11の処理手順の一変形例を示すフローチャートである。ADC11に電源電圧を供給後、まず、ゲイン比較モードに設定して、第1比較回路2のゲインと第2比較回路3のゲインを比較して(ステップS11)、ゲイン差がなくなるように第1可変容量C1と第2可変容量C2の容量値を制御する(ステップS12)。ゲイン差がなくなると、外部から入力された差動入力信号対Vad_p、Vad_nをサンプリングする(ステップS13)。次に、通常比較モードに設定して、サンプリングされた電圧に基づいて、第1DAC14と第2DAC15の容量を制御して、最上位ビットから1ビットずつ順にデジタル値に変換する(ステップS14)。最下位ビットまでデジタル値に変換すると、ステップS11以降の処理を繰り返す。
 このように、図8は、ADC11に電源電圧が供給されると、まず最初に差動入力信号対のサンプリング及びA/D変換を行った後にゲイン比較及びゲイン補正を行うの対し、図9は、まず最初にゲイン比較及びゲイン補正を行った後に、サンプリング及びA/D変換を行う点で異なる。しかしながら、図8と図9は、ADC11に電源電圧が供給された直後の動作が異なるだけで、サンプリング及びA/D変換を行うたびに、ゲイン比較及びゲイン補正を行う点では共通する。
 上述したように、第1の実施形態では、コンパレータ1内の第1比較回路2と第2比較回路3のゲイン差がなくなるように、第1可変容量C1の容量値と第2可変容量C2の容量値を制御するため、製造ばらつきにより、第1比較回路2内の第1トランジスタ対Q11、Q12のトランスコンダクタンスと第2比較回路3内の第2トランジスタ対Q21、Q22のトランスコンダクタンスに差異があっても、また、第1比較回路2に入力される第1差動入力信号対Vin_p、Vin_nのコモン電圧と、第2比較回路3に入力される第2差動入力信号対Vns_p、Vns_nのコモン電圧に差異があっても、gm_in×Vin_cm とgm_ns×Vns_cmが等しくなるように制御でき、ADC11及びコンパレータ1のS/N比を向上でき、かつ安定性も高くなる。
 (第2の実施形態)
 図1のコンパレータ1では、第1比較回路2に入力される第1差動入力信号対Vin_p、Vin_nの電圧レベルが大きい場合や、第2比較回路3に入力される第2差動入力信号対Vns_p、Vns_nの電圧レベルが大きい場合に正しい比較結果を出力しない場合が起こりうる。そこで、第2の実施形態では、このような不具合が起きないようにしたものである。
 図10は第2の実施形態によるコンパレータ1aの回路図である。図10のコンパレータ1aは、図5のコンパレータ1の代わりに用いることができ、これにより図5と同様の動作を行うADC11を構成することができる。
 図10のコンパレータ1aは、切替回路6の構成が図1のコンパレータ1と一部異なっている。図10の切替回路6は、図1の切替回路6のスイッチ構成に加えて、第1トランジスタ対Q11、Q12のゲート同士を短絡するか否かを切り替えるスイッチSW9と、第2トランジスタ対Q21、Q22のゲート同士を短絡するか否かを切り替えるスイッチSW10とを有する。これらスイッチSW9,SW10は、通常比較モード時はオフであり、ゲイン比較モード時にオンする。これらスイッチSW9,SW10がオンすると、第1トランジスタ対Q11、Q12のゲート同士は短絡され、同様に、第2トランジスタのゲート同士は短絡される。よって、第1トランジスタ対Q11、Q12のゲート同士は同電位になり、第2トランジスタ対Q21、Q22のゲート同士も同電位になる。
 ゲイン比較モード時は、第1トランジスタ対Q11、Q12と第2トランジスタ対Q21、Q22のトランスコンダクタンスの違いと、第1差動入力信号対Vin_p、Vin_nと第2差動入力信号対Vns_p、Vns_nのコモン電圧の違いを補正するものであり、第1トランジスタ対Q11、Q12のゲート同士を短絡し、かつ第2トランジスタ対Q21、Q22のゲート同士を短絡しても、補正処理を行うことができる。むしろ、第1差動入力信号対Vin_p、Vin_n同士を短絡し、かつ第2差動入力信号同士を短絡した状態でゲイン比較及びゲイン補正を行うことで、第1トランジスタ対Q11、Q12のゲート間や第2トランジスタ対Q21、Q22のゲート間に大きな電圧が印加されなくなり、第1比較回路2と第2比較回路3が誤った比較結果を出力するおそれがなくなる。
 (第3の実施形態)
 第3の実施形態によるコンパレータ1bは、第1及び第2の実施形態によるコンパレータ1とは、トランジスタの導電型を逆にしたものである。
 図11は第3の実施形態によるコンパレータ1bの回路図である。図11のコンパレータ1bは、図5のコンパレータ1の代わりに用いることができ、これにより図5と同様の動作を行うADC11を構成することができる。
 図11のコンパレータ1bは、図1のコンパレータ1内の各トランジスタの導電型を逆にした構成を有する。図11のコンパレータ1b内の第1比較回路2は、2つのPMOSトランジスタからなる第1トランジスタ対Q11a、Q12aを有する。電源電圧ノードと第1トランジスタ対Q11a、Q12aのソースとの間には、PMOSトランジスタQ13aからなるスイッチと、第1可変容量C1とが接続されている。図11のコンパレータ1b内の第2比較回路3は、2つのPMOSトランジスタからなる第2トランジスタ対Q21a、Q22aを有する。電源電圧ノードと第2トランジスタ対Q21a、Q22aのソースとの間には、PMOSトランジスタQ23aからなるスイッチと、第2可変容量C2とが接続されている。
 第1トランジスタ対Q11a、Q12aのドレイン及び第2トランジスタ対Q21a、Q22aのドレインと比較出力ノード対n1、n2の間には、切替回路6が接続されている。切替回路6と基準電圧ノード(例えば接地ノード)との間には、プルダウン回路8が接続されている。図11のラッチ回路5は、図1のラッチ回路5とは異なる導電型のトランジスタを有する。
 図11のコンパレータ1bは、トランジスタの導電型が図1のコンパレータ1とは逆であるものの、回路の動作としては同じである。ゲイン比較モード時にゲイン差がゼロになるように、第1可変容量C1の容量値と第2可変容量C2の容量値を制御するため、製造ばらつきにより第1トランジスタ対Q11a、Q12aと第2トランジスタ対Q21a、Q22aのトランスコンダクタンスに差異が生じても、また、第1差動入力信号対Vin_p、Vin_nのコモン電圧と第2差動入力信号対Vns_p、Vns_nのコモン電圧にずれがあっても、gm_in×Vin_cm とgm_ns×Vns_cmが等しくなるように制御でき、ADC11のS/N比を向上でき、かつ安定性も向上できる。
 なお、図11のコンパレータ1bと同様に、図10のコンパレータ1a内の各トランジスタの導電型を逆にしてもよい。
 (第4の実施形態)
 第4の実施形態は、ラッチ回路5の接続場所が図1のコンパレータ1とは異なるものである。
 図12は第4の実施形態によるコンパレータ1cの回路図である。図12のコンパレータ1cは、電源電圧ノードと比較出力ノード対n1、n2との間に接続されたラッチ回路5を備えている。ラッチ回路5内のトランジスタの導電型は、図1のラッチ回路5内のトランジスタとは逆になっている。図12のコンパレータ1cは、図5のコンパレータ1の代わりに用いることができ、これにより図5と同様の動作を行うADC11を構成することができる。
 図12のコンパレータ1cは、図1のコンパレータ1と同様の切替回路6、第1可変容量C1、第2可変容量C2及び補正回路7を備えているため、図1のコンパレータ1と同様に、ゲイン比較モード時にgm_in×Vin_cm とgm_ns×Vns_cmが等しくなるように制御でき、ADC11のS/N比を向上でき、かつ安定性も向上できる。
 (第5の実施形態)
 第5の実施形態は、比較出力ノード対n1、n2で伝送される信号のドライブ能力を高めて、ラッチ回路5のラッチ動作を高速化するものである。
 図13は第5の実施形態によるコンパレータ1dの回路図である。図13のコンパレータ1dは、比較出力ノード対n1、n2に接続されたインバータIV1,IV2を備えている。これらインバータIV1,IV2は、信号の論理を反転して出力するが、その際に、出力信号波形を急峻にする波形整形を行う。このように、これらインバータIV1,IV2は、波形整形回路として機能する。インバータIV1,IV2の代わりに、種々の論理演算素子(例えば、NAND素子やNOR素子など)を用いてもよい。図13のコンパレータ1dは、図5のコンパレータ1の代わりに用いることができ、これにより図5と同様の動作を行うADC11を構成することができる。
 図13のように、比較出力ノード対n1、n2にインバータIV1,IV2を設けると、信号の論理が反転するため、ラッチ回路5の内部構成を図1とは異なるものにする必要がある。図13のラッチ回路5は、比較出力ノード対n1、n2に接続されるゲートを有する2つのNMOSトランジスタQ41,Q42と、これらNMOSトランジスタQ41,Q42のソースと基準電圧ノード(例えば接地ノード)との間に接続される2つのNMOSトランジスタQ43,Q44と、これらNMOSトランジスタQ43,Q44のドレインと電源電圧ノードとの間に接続されるPMOSトランジスタQ45~Q48とを有する。
 このように、図13のコンパレータ1dは、比較出力ノード対n1、n2にインバータIV1,IV2を接続するため、比較出力ノード対n1、n2の信号の波形整形を行うことができ、ラッチ回路5のラッチ動作を高速化することができる。
 (第6の実施形態)
 第6の実施形態は、第1可変容量C1及び第2可変容量C2の代替手段を設けたものである。
 図14は第6の実施形態によるコンパレータ1eの回路図である。図14のコンパレータ1eは、図5のコンパレータ1の代わりに用いることができ、これにより図5と同様の動作を行うADC11を構成することができる。図14のコンパレータ1eは、図1の第1可変容量C1及び第2可変容量C2の代わりに、第1比較回路2内のスイッチであるトランジスタQ13がオンするタイミングを制御する第1可変遅延バッファ21と、第2比較回路3内のスイッチであるトランジスタQ23がオンするタイミングを制御する第2可変遅延バッファ22とを備えている。
 第1可変遅延バッファ21は、信号Gain_cal_inにより、入力されたクロック信号Clkを出力するまでの遅延時間を可変制御する。同様に、第2可変遅延バッファ22は、信号Gain_cal_nsにより、入力されたクロック信号Clkを出力するまでの遅延時間を可変制御する。ゲイン比較モード時には、第1可変遅延バッファ21の出力がハイ電位になるタイミングに応じて、比較出力ノードn1から第1比較回路2内のトランジスタQ11又はQ12とトランジスタQ13を通って接地ノードに至る放電経路の放電速度が変化する。同様に、ゲイン比較モード時には、第2可変遅延バッファ22の出力がハイ電位になるタイミングに応じて、比較出力ノードn2から第2比較回路3内のトランジスタQ21又はQ22とトランジスタQ23を通って接地ノードに至る放電経路の放電速度が変化する。
 よって、第1可変遅延バッファ21と第2可変遅延バッファ22の遅延時間を個別に制御することにより、第1比較回路2と第2比較回路3とのゲイン差がゼロになるように調整できる。
 第1可変遅延バッファ21と第2可変遅延バッファ22の遅延時間の調整は補正回路7が行う。補正回路7は、第1可変遅延バッファ21と第2可変遅延バッファ22の遅延時間を調整することにより、スイッチであるトランジスタQ13、Q23が基準電位ノード(例えば接地ノード)に短絡されるタイミングを調整して、比較出力ノードn1、n2の放電速度を調整する。
 図14のコンパレータ1eでは、第1可変容量C1と第2可変容量C2の代わりに、第1可変遅延バッファ21と第2可変遅延バッファ22の遅延時間の調整でゲイン差をゼロにするため、図1のコンパレータ1よりもコンパレータ1eの回路面積を縮小することができる。
 (第7の実施形態)
 第7の実施形態は、第1可変容量C1及び第2可変容量C2の代替手段を設けたものである。
 図15は第7の実施形態によるコンパレータ1fの回路図である。図15のコンパレータ1fは、図5のコンパレータ1の代わりに用いることができ、これにより図5と同様の動作を行うADC11を構成することができる。図15のコンパレータ1fは、図1の第1可変容量C1及び第2可変容量C2の代わりに、第1比較回路2内に第1可変電流源23を設けるとともに、第2比較回路3内に第2可変電流源24を設けている。
 第1可変電流源23は、第1比較回路2内のトランジスタQ13のソースと基準電圧ノード(例えば接地ノード)の間に接続されている。また、第2可変電流源24は、第2比較回路3内のトランジスタQ23のソースと基準電圧ノードとの間に接続されている。第1可変電流源23は、信号Gain_cal_inにより電流値が制御される。第2可変電流源24は、信号Gain_cal_nsにより電流値が制御される。
 図15のコンパレータ1fでは、第1可変電流源23と第2可変電流源24を流れる電流値を個別に制御することにより、比較出力ノード対n1、n2の放電速度を調整できる。よって、図1のコンパレータ1fと同様に、ゲイン比較モード時にgm_in×Vin_cm とgm_ns×Vns_cmが等しくなるように制御でき、ADC11のS/N比を向上でき、かつ安定性も向上できる。
 (第8の実施形態)
 第8の実施形態は、第1可変容量C1及び第2可変容量C2の代替手段を設けたものである。
 図16は第8の実施形態によるコンパレータ1gの回路図である。図16のコンパレータ1gは、図5のコンパレータ1の代わりに用いることができ、これにより図5と同様の動作を行うADC11を構成することができる。図16のコンパレータ1gは、図1の第1可変容量C1及び第2可変容量C2の代わりに、第1比較回路2内の第1トランジスタ対Q11s、Q12sのサイズを可変制御でき、かつ第2比較回路3内の第2トランジスタ対Q21s、Q22sのサイズを可変制御できるようにしている。
 サイズとは、例えばゲート幅である。複数のトランジスタのうち任意の数のトランジスタを選択可能なスイッチを設けて、スイッチの切替により、任意の数のトランジスタを直列又は並列接続した回路を一つのトランジスタとして扱うことで、実質的にトランジスタのゲート幅を可変調整することができる。
 図16のコンパレータ1gにおいても、図1のコンパレータ1gと同様に、ゲイン比較モード時にgm_in×Vin_cm とgm_ns×Vns_cmが等しくなるように制御でき、ADC11のS/N比を向上でき、かつ安定性も向上できる。
 (第9の実施形態)
 第9の実施形態は、通常比較モード用のラッチ回路5と、ゲイン比較モード用のラッチ回路5とを別個に設けるものである。
 図17は第9の実施形態によるコンパレータ1hの回路図である。図17のコンパレータ1hは、ラッチ回路5の構成が異なる他は、図1のコンパレータ1hと同様に構成されている。図17のコンパレータ1hは、図5のコンパレータ1の代わりに用いることができ、これにより図5と同様の動作を行うADC11を構成することができる。
 図17のコンパレータ1hは、比較出力ノード対n1、n2に接続された2つのラッチ回路5(以下、第1ラッチ回路5aと第2ラッチ回路5bと呼ぶ)を備えている。第1ラッチ回路5aと第2ラッチ回路5bの内部構成は、基本的には図1のラッチ回路5と同じであるが、切替動作のためのNANDゲート36,37を有する。
 第1ラッチ回路5a内のNANDゲート36は、信号Sw_gainがハイ電位のときに、クロック信号Clkを反転出力して、第1ラッチ回路5a内に供給する。第1ラッチ回路5aは、信号Sw_gainがハイ電位のときにラッチ動作を行う。
 第2ラッチ回路5b内のNANDゲート37は、信号Sw_compがハイ電位のときに、クロック信号Clkを反転出力して、第2ラッチ回路5b内に供給する。第2ラッチ回路5bは、信号Sw_compがハイ電位のときにラッチ動作を行う。
 図17のように、通常比較モード用の第1ラッチ回路5aと、ゲイン比較用の第2ラッチ回路5bを設けることで、通常比較モードが終了した後、第1ラッチ回路5aを初期化することなく、ゲイン比較用の第2ラッチ回路5bでラッチ動作を行うことができるため、通常比較モードとゲイン比較モードの切替を迅速に行うことができる。
 上述した図15~図17における第1可変容量C1及び第2可変容量C2の代替手段は、図1のコンパレータ1だけでなく、図10~図14のコンパレータ1a、1b、1c、1d、1eにも適用可能である。
 なお、本技術は以下のような構成を取ることができる。
 (1)第1差動入力信号対を比較する第1比較回路と、
 第2差動入力信号対を比較する第2比較回路と、
 前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較するか、又は、前記第1比較回路と前記第2比較回路とのゲイン差を比較するかを切り替える切替回路と、を備えるコンパレータ。
 (2)記第1比較回路のゲイン及び前記第2比較回路のゲインを補正する補正回路を備える、(1)に記載のコンパレータ。
 (3)前記補正回路は、前記ゲイン差がより小さくなるように前記第1比較回路のゲイン及び前記第2比較回路のゲインを補正する、(2)に記載のコンパレータ。
 (4)前記切替回路で切り替えられた差動信号を伝送する比較出力ノード対を備え、
 前記補正回路は、前記ゲイン差がより小さくなるように、前記比較出力ノード対の一方のノードから前記切替回路及び前記第1比較回路を通って基準電位ノードに至る放電経路の放電速度と、前記比較出力ノード対の他方のノードから前記切替回路及び前記第2比較回路を通って前記基準電位ノードに至る放電経路の放電速度とを調整する、(3)に記載のコンパレータ。
 (5)前記第1比較回路と前記基準電位ノードとの間に接続される第1可変容量と、
 前記第2比較回路と前記基準電位ノードとの間に接続される第2可変容量と、を備え、
 前記補正回路は、前記第1可変容量及び前記第2可変容量の少なくとも一方の容量値を調整することにより、前記放電速度を調整する、(4)に記載のコンパレータ。
 (6)前記第1比較回路は、
 前記第1差動入力信号対の差信号を生成する第1トランジスタ対と、
 前記第1トランジスタ対と前記基準電位ノードとを接続するか否かを切り替える第1切替回路と、を有し、
 前記第2比較回路は、
 前記第2差動入力信号対の差信号を生成する第2トランジスタ対と、
 前記第2トランジスタ対と前記基準電位ノードとを接続するか否かを切り替える第2切替回路と、を有し、
 前記補正回路は、前記第1切替回路及び前記第2切替回路の少なくとも一方を切り替えるタイミングを調整することにより、前記放電速度を調整する、(4)に記載のコンパレータ。
 (7)前記第1比較回路は、前記第1差動入力信号対の差信号に応じて前記基準電位ノードに流れる電流を調整可能な第1電流源を有し、
 前記第2比較回路は、前記第2差動入力信号対の差信号に応じて前記基準電位ノードに流れる電流を調整可能な第2電流源を有し、
 前記補正回路は、前記第1電流源及び前記第2電流源の少なくとも一方から前記基準電位ノードに流れる電流を調整することにより、前記放電速度を調整する、(4)に記載のコンパレータ。
 (8)前記第1比較回路は、前記第1差動入力信号対の差信号に応じた第1差動出力信号対を生成する第1トランジスタ対を有し、
 前記第2比較回路は、前記第2差動入力信号対の差信号に応じた第2差動出力信号対を生成する第2トランジスタ対を有し、
 前記補正回路は、前記第1トランジスタ対及び前記第2トランジスタ対の中の少なくとも一つのトランジスタのゲート幅を調整することにより、前記放電速度を調整する、(4)に記載のコンパレータ。
 (9)前記第1比較回路は、前記第1差動入力信号対の差信号に応じた第1差動出力信号対を生成する第1トランジスタ対を有し、
 前記第2比較回路は、前記第2差動入力信号対の差信号に応じた第2差動出力信号対を生成する第2トランジスタ対を有し、
 前記ゲイン差は、前記第1トランジスタ対のトランスコンダクタンスと、前記第1差動入力信号対のコモン電圧との積と、前記第2トランジスタ対のトランスコンダクタンスと、前記第2差動入力信号対のコモン電圧との積との差分である、(1)乃至(7)のいずれか一項に記載のコンパレータ。
 (10)前記切替回路で切り替えられた差動信号を伝送する比較出力ノード対と、
 前記比較出力ノード対の前記差動信号を保持するラッチ回路と、を備える、(1)乃至(3)のいずれか一項に記載のコンパレータ。
 (11)前記比較出力ノード対にそれぞれ配置され、前記差動信号の波形整形を行う第1波形整形回路及び第2波形整形回路を備え、
 前記ラッチ回路は、前記第1波形整形回路及び前記第2波形整形回路が波形整形した差動信号を保持する、(9)に記載のコンパレータ。
 (12)前記第1波形整形回路及び前記第2波形整形回路のそれぞれは、インバータである、(11)に記載のコンパレータ。
 (13)前記ラッチ回路は、
 前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較する際に前記比較出力ノード対上の前記差動信号を保持する第1ラッチ部と、
 前記第1比較回路と前記第2比較回路とのゲイン差を比較する際に前記比較出力ノード対上の前記差動信号を保持する第2ラッチ部と、を有する、(10)乃至(12)のいずれか一項に記載のコンパレータ。
 (14)前記ラッチ回路は、前記比較出力ノード対よりも電圧レベルの高い電源電圧ノードと、前記比較出力ノード対との間に接続される、(13)に記載のコンパレータ。
 (15)前記切替回路は、前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較する第1動作モードと、前記第1比較回路と前記第2比較回路とのゲイン差を比較する第2動作モードとを、交互に繰り返す、(1)乃至(14)のいずれか一項に記載のコンパレータ。
 (16)前記切替回路は、動作開始時に前記第1動作モードを行い、その後、前記第2動作モード及び前記第1動作モードの順に切替動作を繰り返す、(15)に記載のコンパレータ。
 (17)前記切替回路は、動作開始時に前記第2動作モードを行い、その後、前記第1動作モード及び前記第2動作モードの順に切替動作を繰り返す、(15)に記載のコンパレータ。
 (18)前記第1比較回路は、前記第1差動入力信号対の差信号に応じた第1差動出力信号対を生成する第1トランジスタ対を有し、
 前記第2比較回路は、前記第2差動入力信号対の差信号に応じた第2差動出力信号対を生成する第2トランジスタ対を有し、
 前記切替回路は、前記第1比較回路と前記第2比較回路とのゲイン差を比較する際には、前記第1トランジスタ対のゲート同士を短絡し、かつ前記第2トランジスタ対のゲート同士を短絡する、(1)乃至(17)のいずれか一項に記載のコンパレータ。
 (19)前記切替回路で切り替えられた差動信号を伝送する比較出力ノード対を備え、
 前記第1比較回路は、第1出力ノード及び第2出力ノードを有し、
 前記第2比較回路は、第3出力ノード及び第4出力ノードを有し、
 前記切替回路は、前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較する際には、前記第1出力ノード及び前記第3出力ノードを前記比較出力ノード対の一方のノードに接続するとともに、前記第2出力ノード及び前記第4出力ノードを前記比較出力ノード対の他方のノードに接続し、前記第1比較回路と前記第2比較回路とのゲイン差を比較する際には、前記第1出力ノード及び前記第2出力ノードを前記比較出力ノード対の一方のノードに接続するとともに、前記第3出力ノード及び前記第4出力ノードを前記比較出力ノード対の他方のノードに接続する、(1)乃至(3)のいずれか一項に記載のコンパレータ。
 (20)差動入力信号対の一方の信号をサンプリングするか否かを切り替える第1サンプリングスイッチと、
 サンプリングされた前記一方の信号を複数ビットからなるデジタル信号に1ビットずつ順に変換するとともに、未変換のビットに応じた電圧レベルの信号を出力する第1デジタル-アナログ変換器と、
 前記差動入力信号対の他方の信号をサンプリングするか否かを切り替える第2サンプリングスイッチと、
 サンプリングされた前記他方の信号を複数ビットからなるデジタル信号に1ビットずつ順に変換するとともに、未変換のビットに応じた電圧レベルの信号を出力する第2デジタル-アナログ変換器と、
 前記第1デジタル-アナログ変換器の出力信号と、前記第2デジタル-アナログ変換器の出力信号とをサンプリングして出力するフィルタ回路と、
 前記第1デジタル-アナログ変換器の出力信号と前記第2デジタル-アナログ変換器の出力信号とを対とする第1差動入力信号対の差信号と、前記フィルタ回路から出力された第2差動入力信号対の差信号と、に応じた信号を出力するコンパレータと、
 前記コンパレータの出力信号に基づいて、前記第1デジタル-アナログ変換器及び前記第2デジタル-アナログ変換器を制御する制御回路と、を備え
 前記コンパレータは、
 前記第1差動入力信号対を比較する第1比較回路と、
 前記第2差動入力信号対を比較する第2比較回路と、
 前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較するか、又は、前記第1比較回路と前記第2比較回路とのゲイン差を比較するかを切り替える切替回路と、を有するアナログ-デジタル変換器。 (21)前記第1サンプリングスイッチ及び前記第2サンプリングスイッチによる前記差動入力信号対のサンプリングと、前記第1デジタル-アナログ変換器及び前記第2デジタル-アナログ変換器による前記デジタル信号への変換と、前記ゲイン差の比較と、前記ゲイン差の補正とが順繰りに繰り返し行われる、(20)に記載のアナログ-デジタル変換器。
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
 1、1a、1b、1c、1d、1e、1f、1g、1h、101 コンパレータ、2 第1比較回路、3 第2比較回路、4 プルアップ回路、5 ラッチ回路、5a 第1ラッチ回路、5b 第2ラッチ回路、6 切替回路、6a 第1スイッチ対、6b 第2スイッチ対、6c 第3スイッチ対、6d 第4スイッチ対、7 補正回路、11 ADC、12 第1サンプリングスイッチ、13 第2サンプリングスイッチ、14 第1DAC、15 第2DAC、16 フィルタ回路、17 制御回路、18 容量DAC

Claims (21)

  1.  第1差動入力信号対を比較する第1比較回路と、
     第2差動入力信号対を比較する第2比較回路と、
     前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較するか、又は、前記第1比較回路と前記第2比較回路とのゲイン差を比較するかを切り替える切替回路と、を備えるコンパレータ。
  2.  記第1比較回路のゲイン及び前記第2比較回路のゲインを補正する補正回路を備える、請求項1に記載のコンパレータ。
  3.  前記補正回路は、前記ゲイン差がより小さくなるように前記第1比較回路のゲイン及び前記第2比較回路のゲインを補正する、請求項2に記載のコンパレータ。
  4.  前記切替回路で切り替えられた差動信号を伝送する比較出力ノード対を備え、
     前記補正回路は、前記ゲイン差がより小さくなるように、前記比較出力ノード対の一方のノードから前記切替回路及び前記第1比較回路を通って基準電位ノードに至る放電経路の放電速度と、前記比較出力ノード対の他方のノードから前記切替回路及び前記第2比較回路を通って前記基準電位ノードに至る放電経路の放電速度とを調整する、請求項3に記載のコンパレータ。
  5.  前記第1比較回路と前記基準電位ノードとの間に接続される第1可変容量と、
     前記第2比較回路と前記基準電位ノードとの間に接続される第2可変容量と、を備え、
     前記補正回路は、前記第1可変容量及び前記第2可変容量の少なくとも一方の容量値を調整することにより、前記放電速度を調整する、請求項4に記載のコンパレータ。
  6.  前記第1比較回路は、
     前記第1差動入力信号対の差信号を生成する第1トランジスタ対と、
     前記第1トランジスタ対と前記基準電位ノードとを接続するか否かを切り替える第1切替回路と、を有し、
     前記第2比較回路は、
     前記第2差動入力信号対の差信号を生成する第2トランジスタ対と、
     前記第2トランジスタ対と前記基準電位ノードとを接続するか否かを切り替える第2切替回路と、を有し、
     前記補正回路は、前記第1切替回路及び前記第2切替回路の少なくとも一方を切り替えるタイミングを調整することにより、前記放電速度を調整する、請求項4に記載のコンパレータ。
  7.  前記第1比較回路は、前記第1差動入力信号対の差信号に応じて前記基準電位ノードに流れる電流を調整可能な第1電流源を有し、
     前記第2比較回路は、前記第2差動入力信号対の差信号に応じて前記基準電位ノードに流れる電流を調整可能な第2電流源を有し、
     前記補正回路は、前記第1電流源及び前記第2電流源の少なくとも一方から前記基準電位ノードに流れる電流を調整することにより、前記放電速度を調整する、請求項4に記載のコンパレータ。
  8.  前記第1比較回路は、前記第1差動入力信号対の差信号に応じた第1差動出力信号対を生成する第1トランジスタ対を有し、
     前記第2比較回路は、前記第2差動入力信号対の差信号に応じた第2差動出力信号対を生成する第2トランジスタ対を有し、
     前記補正回路は、前記第1トランジスタ対及び前記第2トランジスタ対の中の少なくとも一つのトランジスタのゲート幅を調整することにより、前記放電速度を調整する、請求項4に記載のコンパレータ。
  9.  前記第1比較回路は、前記第1差動入力信号対の差信号に応じた第1差動出力信号対を生成する第1トランジスタ対を有し、
     前記第2比較回路は、前記第2差動入力信号対の差信号に応じた第2差動出力信号対を生成する第2トランジスタ対を有し、
     前記ゲイン差は、前記第1トランジスタ対のトランスコンダクタンスと、前記第1差動入力信号対のコモン電圧との積と、前記第2トランジスタ対のトランスコンダクタンスと、前記第2差動入力信号対のコモン電圧との積との差分である、請求項1に記載のコンパレータ。
  10.  前記切替回路で切り替えられた差動信号を伝送する比較出力ノード対と、
     前記比較出力ノード対の前記差動信号を保持するラッチ回路と、を備える、請求項1に記載のコンパレータ。
  11.  前記比較出力ノード対にそれぞれ配置され、前記差動信号の波形整形を行う第1波形整形回路及び第2波形整形回路を備え、
     前記ラッチ回路は、前記第1波形整形回路及び前記第2波形整形回路が波形整形した差動信号を保持する、請求項10に記載のコンパレータ。
  12.  前記第1波形整形回路及び前記第2波形整形回路のそれぞれは、インバータである、請求項11に記載のコンパレータ。
  13.  前記ラッチ回路は、
     前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較する際に前記比較出力ノード対の前記差動信号を保持する第1ラッチ部と、
     前記第1比較回路と前記第2比較回路とのゲイン差を比較する際に前記比較出力ノード対の前記差動信号を保持する第2ラッチ部と、を有する、請求項10に記載のコンパレータ。
  14.  前記ラッチ回路は、前記比較出力ノード対よりも電圧レベルの高い電源電圧ノードと、前記比較出力ノード対との間に接続される、請求項13に記載のコンパレータ。
  15.  前記切替回路は、前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較する第1動作モードと、前記第1比較回路と前記第2比較回路とのゲイン差を比較する第2動作モードとを、交互に繰り返す、請求項1に記載のコンパレータ。
  16.  前記切替回路は、動作開始時に前記第1動作モードを行い、その後、前記第2動作モード及び前記第1動作モードの順に切替動作を繰り返す、請求項15に記載のコンパレータ。
  17.  前記切替回路は、動作開始時に前記第2動作モードを行い、その後、前記第1動作モード及び前記第2動作モードの順に切替動作を繰り返す、請求項15に記載のコンパレータ。
  18.  前記第1比較回路は、前記第1差動入力信号対の差信号に応じた第1差動出力信号対を生成する第1トランジスタ対を有し、
     前記第2比較回路は、前記第2差動入力信号対の差信号に応じた第2差動出力信号対を生成する第2トランジスタ対を有し、
     前記切替回路は、前記第1比較回路と前記第2比較回路とのゲイン差を比較する際には、前記第1トランジスタ対のゲート同士を短絡し、かつ前記第2トランジスタ対のゲート同士を短絡する、請求項1に記載のコンパレータ。
  19.  前記切替回路で切り替えられた差動信号を伝送する比較出力ノード対を備え、
     前記第1比較回路は、第1出力ノード及び第2出力ノードを有し、
     前記第2比較回路は、第3出力ノード及び第4出力ノードを有し、
     前記切替回路は、前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較する際には、前記第1出力ノード及び前記第3出力ノードを前記比較出力ノード対の一方のノードに接続するとともに、前記第2出力ノード及び前記第4出力ノードを前記比較出力ノード対の他方のノードに接続し、前記第1比較回路と前記第2比較回路とのゲイン差を比較する際には、前記第1出力ノード及び前記第2出力ノードを前記比較出力ノード対の一方のノードに接続するとともに、前記第3出力ノード及び前記第4出力ノードを前記比較出力ノード対の他方のノードに接続する、請求項1に記載のコンパレータ。
  20.  差動入力信号対の一方の信号をサンプリングするか否かを切り替える第1サンプリングスイッチと、
     サンプリングされた前記一方の信号を複数ビットからなるデジタル信号に1ビットずつ順に変換するとともに、未変換のビットに応じた電圧レベルの信号を出力する第1デジタル-アナログ変換器と、
     前記差動入力信号対の他方の信号をサンプリングするか否かを切り替える第2サンプリングスイッチと、
     サンプリングされた前記他方の信号を複数ビットからなるデジタル信号に1ビットずつ順に変換するとともに、未変換のビットに応じた電圧レベルの信号を出力する第2デジタル-アナログ変換器と、
     前記第1デジタル-アナログ変換器の出力信号と、前記第2デジタル-アナログ変換器の出力信号とをサンプリングして出力するフィルタ回路と、
     前記第1デジタル-アナログ変換器の出力信号と前記第2デジタル-アナログ変換器の出力信号とを対とする第1差動入力信号対の差信号と、前記フィルタ回路から出力された第2差動入力信号対の差信号と、に応じた信号を出力するコンパレータと、
     前記コンパレータの出力信号に基づいて、前記第1デジタル-アナログ変換器及び前記第2デジタル-アナログ変換器を制御する制御回路と、を備え
     前記コンパレータは、
     前記第1差動入力信号対を比較する第1比較回路と、
     前記第2差動入力信号対を比較する第2比較回路と、
     前記第1比較回路にて前記第1差動入力信号対を比較するとともに前記第2比較回路にて前記第2差動入力信号対を比較するか、又は、前記第1比較回路と前記第2比較回路とのゲイン差を比較するかを切り替える切替回路と、を有するアナログ-デジタル変換器。
  21.  前記第1サンプリングスイッチ及び前記第2サンプリングスイッチによる前記差動入力信号対のサンプリングと、前記第1デジタル-アナログ変換器及び前記第2デジタル-アナログ変換器による前記デジタル信号への変換と、前記ゲイン差の比較と、前記ゲイン差の補正とが順繰りに繰り返し行われる、請求項20に記載のアナログ-デジタル変換器。
PCT/JP2021/021434 2020-06-11 2021-06-04 コンパレータ及びアナログ-デジタル変換器 WO2021251305A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530538A JPWO2021251305A1 (ja) 2020-06-11 2021-06-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020101636 2020-06-11
JP2020-101636 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021251305A1 true WO2021251305A1 (ja) 2021-12-16

Family

ID=78846260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021434 WO2021251305A1 (ja) 2020-06-11 2021-06-04 コンパレータ及びアナログ-デジタル変換器

Country Status (2)

Country Link
JP (1) JPWO2021251305A1 (ja)
WO (1) WO2021251305A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187695A (ja) * 2012-03-07 2013-09-19 Sony Corp コンパレータおよびad変換器
JP2013258482A (ja) * 2012-06-11 2013-12-26 Denso Corp 受信回路装置
US9602120B1 (en) * 2016-04-04 2017-03-21 International Business Machines Corporation Analog to digital converter with digital reference voltage signal
JP2017229014A (ja) * 2016-06-24 2017-12-28 富士通株式会社 判定帰還型等化回路及び半導体集積回路
WO2018216677A1 (ja) * 2017-05-23 2018-11-29 株式会社村田製作所 比較回路
US20190356325A1 (en) * 2016-06-20 2019-11-21 China Electronic Technology Corporation, 24Th Research Institute Comparator offset voltage self-correction circuit
US20200072900A1 (en) * 2018-08-30 2020-03-05 Nxp B.V. Analog-test-bus apparatuses involving calibration of comparator circuits and methods thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187695A (ja) * 2012-03-07 2013-09-19 Sony Corp コンパレータおよびad変換器
JP2013258482A (ja) * 2012-06-11 2013-12-26 Denso Corp 受信回路装置
US9602120B1 (en) * 2016-04-04 2017-03-21 International Business Machines Corporation Analog to digital converter with digital reference voltage signal
US20190356325A1 (en) * 2016-06-20 2019-11-21 China Electronic Technology Corporation, 24Th Research Institute Comparator offset voltage self-correction circuit
JP2017229014A (ja) * 2016-06-24 2017-12-28 富士通株式会社 判定帰還型等化回路及び半導体集積回路
WO2018216677A1 (ja) * 2017-05-23 2018-11-29 株式会社村田製作所 比較回路
US20200072900A1 (en) * 2018-08-30 2020-03-05 Nxp B.V. Analog-test-bus apparatuses involving calibration of comparator circuits and methods thereof

Also Published As

Publication number Publication date
JPWO2021251305A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
US5262779A (en) Analog to digital converter
US6967611B2 (en) Optimized reference voltage generation using switched capacitor scaling for data converters
US6573853B1 (en) High speed analog to digital converter
US7015841B2 (en) Analog to digital converter circuit of successive approximation type operating at low voltage
US7256725B2 (en) Resistor ladder interpolation for subranging ADC
US7061421B1 (en) Flash ADC with variable LSB
US8289198B2 (en) Low power bit switches and method for high-voltage input SAR ADC
US8264268B2 (en) Offset-voltage calibration circuit
US20060220630A1 (en) Digital pulse width modulated power supply with variable LSB
US9998131B1 (en) Hybrid analog-to-digital converter
US20070279130A1 (en) High speed amplifier with controllable amplification and output impedance and comparator using the same
US10284219B2 (en) Inbuilt threshold comparator
US7154423B2 (en) Successive approximation A/D converter comparing analog input voltage to reference voltages and a comparator for use therein
JP2000341124A (ja) アナログ/ディジタル変換器
JP2017192099A (ja) 逐次比較型a/dコンバータ
WO2021251305A1 (ja) コンパレータ及びアナログ-デジタル変換器
US5955978A (en) A/D converter with auto-zeroed latching comparator and method
US20110032128A1 (en) Analog-digital converter circuit and calibration method
TW202025631A (zh) 比較器及類比數位轉換電路
US20230163777A1 (en) Comparator and analog to digital converter
WO2021200416A1 (ja) コンパレータ及びアナログ-デジタル変換器
US6922163B2 (en) Semiconductor integrated circuit
JPH11112305A (ja) 電圧比較器、演算増幅器、アナログ−デジタル変換器およびアナログ−デジタル変換回路
WO2021106544A1 (ja) コンパレータ回路およびadコンバータ
JP3637936B2 (ja) 比較器及びa/dコンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530538

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821227

Country of ref document: EP

Kind code of ref document: A1