WO2021251300A1 - 車両用動力装置および発電機付車輪用軸受 - Google Patents

車両用動力装置および発電機付車輪用軸受 Download PDF

Info

Publication number
WO2021251300A1
WO2021251300A1 PCT/JP2021/021403 JP2021021403W WO2021251300A1 WO 2021251300 A1 WO2021251300 A1 WO 2021251300A1 JP 2021021403 W JP2021021403 W JP 2021021403W WO 2021251300 A1 WO2021251300 A1 WO 2021251300A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner ring
bracket
vehicle
power unit
wheel
Prior art date
Application number
PCT/JP2021/021403
Other languages
English (en)
French (fr)
Inventor
雄司 矢田
健太郎 西川
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP21822985.4A priority Critical patent/EP4163139A1/en
Priority to CN202180041113.4A priority patent/CN115697742A/zh
Publication of WO2021251300A1 publication Critical patent/WO2021251300A1/ja
Priority to US18/074,635 priority patent/US20230098893A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/354Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having separate mechanical assemblies for transmitting drive to the front or to the rear wheels or set of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1737Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • H02K7/088Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly radially supporting the rotor directly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1846Rotary generators structurally associated with wheels or associated parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0047Hubs characterised by functional integration of other elements
    • B60B27/0068Hubs characterised by functional integration of other elements the element being a sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/60Electric Machines, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2410/00Constructional features of vehicle sub-units
    • B60Y2410/102Shaft arrangements; Shaft supports, e.g. bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a technology applied to an automobile or the like with respect to a power unit for a vehicle and a bearing for a wheel with a generator.
  • a vehicle power unit that incorporates a motor inside a wheel is a device that has an integrated structure of a wheel bearing that supports the wheel and a motor that drives and regenerates the wheel. It has many advantages such as posture stabilization by torque control, and demand is expected in the future in combination with the electrification of automobiles.
  • FIG. 17 is a cross-sectional view of a vehicle power unit equipped with a conventional traveling motor with a power generation function.
  • the vehicle power unit equipped with the traveling motor with a power generation function is housed on the inner peripheral side of the sliding portion of the brake rotor 70 (Patent Document 1).
  • the motor stator core 74 is fixed to the suspension device 71 via the wheel bearing outer ring 72 and the motor stator fixing member 73.
  • a motor winding coil 75 for passing an electric current to generate a magnetic force is wound around the motor stator core 74.
  • the motor rotor case 77 and the motor rotor 78 are attached to the wheel bearing flange 76 and rotate around the motor stator core 74.
  • a traveling motor with a power generation function integrated with the wheel bearings drives and regenerates the vehicle according to the traveling state of the vehicle.
  • ⁇ Conventional structure 2> In order to solve the problem of the conventional structure 1, as shown in FIG. 18, a proposal has been made to make the bearing portion for wheels and the traveling motor portion with a power generation function separable (Patent Document 2).
  • a wheel bearing fixing member 80 is provided on the knuckle 79, which is a suspension frame component, and one or both of the outer ring 81 and the stator 82 are detachably fixed to the wheel bearing fixing member 80. Has been done.
  • the wheel bearing, the motor rotor, and the motor stator can be separated without disassembling the wheel bearing.
  • the motor stator 82 is in contact with the outer diameter portion of the wheel bearing fixing member 80, and heat generation (copper loss) due to current flowing through the coil during motor operation and magnetic flux inside the stator core due to rotation are generated. It is accompanied by heat generation (iron loss) due to changes. The generated heat is transferred to the wheel bearing fixing member 80 and the outer ring 81, and the temperature of the bearing internal space rises.
  • the grease inside the bearing, the cage that holds the rolling element 84, the magnetic encoder, and the like deteriorate at an early stage, and there is a possibility that the reliability is lower than before.
  • the fastening portion between the outer ring 81 and the wheel bearing fixing member 80 on the outer diameter portion of the rolling surface there is a fastening portion between the outer ring 81 and the wheel bearing fixing member 80 on the outer diameter portion of the rolling surface, and fixing with a bolt 83 is appropriate to ensure ease of replacement.
  • the fastening portion between the outer ring 81 and the wheel bearing fixing member 80 becomes thicker on the outer diameter side.
  • the occupied space of the motor portion located on the outer diameter side of the fastening portion becomes smaller, and a desired output cannot be obtained.
  • a thinner coil is adopted or a large current is required, and as a result, the heat generated by the motor stator 82 becomes large.
  • An object of the present invention is that when a wheel bearing or the like is replaced, it can be replaced by itself, the labor of replacement and the cost of replacement parts can be reduced, and the heat dissipation of the stator can be improved to improve the reliability of the bearing. It is to provide a vehicle power unit and a bearing for a wheel with a generator that can be secured.
  • the vehicle power unit of the present invention has an inner ring which is a fixed wheel and an outer ring which is a rotary wheel rotatably supported by the inner ring via a rolling element, and a wheel mounting flange for mounting the wheel of the vehicle is attached to the outer ring.
  • a vehicle power unit including a wheel bearing at the end on the outboard side and an electric motor capable of rotationally driving the rotary wheel.
  • a bracket is provided to be attached to the undercarriage frame component in the vehicle, and the bracket is interposed between the undercarriage frame component and the inner ring, and the inner ring is detachably fixed to the bracket base, and the bracket base is out of the bracket base.
  • the motor has a cylindrical bracket cylindrical part that extends to the board side,
  • the motor has a stator that is detachably attached to the inner circumference of the bracket cylindrical portion and a rotor that is attached to the outer ring on the inner circumference of the stator.
  • the fixed ring is the inner ring and the rotary wheel is the outer ring rotation of the outer ring.
  • the inner ring is detachably fixed to the bracket base of the bracket.
  • the stator is detachably fixed to the inner circumference of the cylindrical bracket cylindrical portion extending from the bracket base to the outboard side. Therefore, when the wheel bearing is replaced, the inner ring is separated from the bracket base attached to the undercarriage frame component, so that the wheel bearing assembly or the like can be easily removed from the vehicle power unit. After that, it becomes possible to assemble a new wheel bearing assembly or the like in the reverse procedure of the above.
  • stator of the motor is fixed to the inner circumference of the cylindrical portion of the bracket, a larger space occupied in the radial direction of the motor is secured as compared with the conventional structure having a fastening portion between the outer ring of the bearing for wheels and the bearing fixing member for wheels. can do. Therefore, a desired motor output can be obtained.
  • the stator can be detached from the inner circumference of the bracket cylindrical portion by simply detaching the wheel bearing from the vehicle power unit without disassembling the bearing parts and the like.
  • the motor is an inner rotor type in which the stator is attached to the inner circumference of the cylindrical portion of the bracket and the rotor is attached to the outer ring on the inner circumference of the stator. Therefore, the heat generated in the stator passes through the stator, the bracket cylindrical portion, and the bracket base, and is transferred to the undercarriage frame component. Since the stator and the wheel bearings are not in contact with each other in this way, the heat generated by the stator is not easily transmitted to the inside of the wheel bearings, and the heat generated by the motor can be efficiently dissipated to the undercarriage frame parts of the vehicle. This makes it possible to prevent the grease and the like inside the bearing from deteriorating at an early stage.
  • the wheel bearing may be detachably configured in the bearing axial direction with respect to the bracket base in a state where the bracket is attached to the suspension frame component and the stator is installed in the bracket cylindrical portion.
  • the inner ring has an inner ring main body and a partial inner ring fitted to the outer peripheral surface of the inner ring main body on the inboard side. It has a side protrusion, and the bracket base is formed with an insertion hole that allows the insertion of the inboard side protrusion, and the inboard side protrusion is inserted into the insertion hole of the bracket base and the partial inner ring.
  • a nut may be provided to be screwed into the male screw portion of the inboard side protrusion in a state where the inboard side end surface of the bracket is in contact with the outboard side surface of the bracket base.
  • the assembly of the wheel bearing can be easily detached from the bracket base in the axial direction by detaching the nut from the male threaded portion of the inboard side protrusion. Further, it is possible to assemble a new wheel bearing assembly or the like in the reverse procedure of the above.
  • the inner ring has an inner ring main body and a partial inner ring fixed to the outer peripheral surface of the inner ring main body on the outboard side by fastening or crimping with a nut.
  • the bracket base is formed with an insertion hole that allows the insertion of the inboard side protrusion, and the inboard side protrusion is formed in the insertion hole of the bracket base.
  • a nut may be provided which is inserted and screwed into the male screw portion of the inboard side protruding portion in a state where the inboard side end surface of the inner ring body is in contact with the outboard side surface of the bracket base.
  • the wheel bearing assembly can be easily detached from the bracket base in the axial direction. Since the bearing preload is applied to the partial inner ring by fixing it to the outer peripheral surface of the inner ring body on the outboard side by fastening or crimping with a nut, a means for applying the bearing preload and a means for fixing the inner ring to the bracket base are provided. Can be configured separately. This facilitates the adjustment of the bearing preload and improves the reliability of the bearing.
  • the inner ring has an inner ring main body and a partial inner ring fixed to the outer peripheral surface of the inner ring main body on the outboard side by fastening or crimping with a nut, and a screw hole is formed at the inboat side end of the inner ring main body.
  • the flange portion may be detachably fixed to the bracket base portion by bolts from the inboard side.
  • the wheel bearing assembly can be easily detached from the bracket base in the axial direction by detaching the bolt from the flange portion of the inner ring body. Since the bearing preload is applied to the partial inner ring by fixing it to the outer peripheral surface of the inner ring body on the outboard side by fastening or crimping with a nut, a means for applying the bearing preload and a means for fixing the inner ring to the bracket base are provided. Can be configured separately. This facilitates the adjustment of the bearing preload and improves the reliability of the bearing.
  • the inboard-side protrusion inserted into the insertion hole of the bracket base may be provided with a spline that prevents relative rotation with respect to the bracket base.
  • the spline can suppress the rotation of the inner ring, which is a fixed ring, and the vibration in the rotation direction. This makes it possible to further improve the reliability of the bearing.
  • a rotation detection sensor for detecting the rotation speed of the outer ring with respect to the inner ring is provided on the wheel bearing, and the rotation detection sensor includes a rotation detection sensor rotor installed at the outboard side end of the outer ring and the inner ring. It may have a rotation detection sensor stator installed at the end of the outboard side and detect the rotation detection sensor rotor, and may be provided with an external take-out means for taking out the output cable of the rotation detection sensor to the outside. In this case, the rotation of the electric motor can be controlled by detecting the rotation speed of the outer ring with respect to the inner ring. In addition, since both the rotation detection sensor rotor and the rotation detection sensor stator are installed at the outboard side ends of each wheel, the gap adjustment of the rotation detection sensor can be performed without separating the wheel bearings from the vehicle power unit. Maintenance can be performed.
  • the rotation detection sensor may also function as a wheel speed sensor. In this case, the number of parts can be reduced and the structure can be simplified.
  • a cylindrical member made of a non-magnetic material may be provided between the inner peripheral surface of the rotor and the outer peripheral surface of the outer ring. In this case, it is possible to prevent the magnetism generated from the rotor from adversely affecting the wheel bearings.
  • a heat radiating means for radiating heat generated by the motor to an external space may be provided on the outer periphery of the bracket cylindrical portion.
  • the effect of dissipating the heat generated by the motor to the outside air is high.
  • the heat dissipation means is provided on the outer periphery of the bracket cylindrical portion, a larger heat dissipation effect can be expected.
  • the bearing for a wheel with a generator of the present invention has an inner ring which is a fixed ring and an outer ring which is a rotating wheel rotatably supported by the inner ring via a rolling element, and has a wheel mounting flange for mounting a wheel of a vehicle.
  • a wheel bearing with a generator including a wheel bearing at the outboard side end of the outer ring and a generator that generates power by the rotation of the rotating wheel.
  • a bracket is provided to be attached to the undercarriage frame component in the vehicle, and the bracket is interposed between the undercarriage frame component and the inner ring, and the inner ring is detachably fixed to the bracket base, and the bracket base is out of the bracket base. It has a cylindrical bracket cylindrical part that extends to the board side,
  • the generator has a stator detachably attached to the inner circumference of the bracket cylindrical portion and a rotor attached to the outer ring on the inner circumference of the stator.
  • the inner ring when replacing the wheel bearing, the inner ring is separated from the bracket base attached to the undercarriage frame component, so that the wheel bearing assembly can be easily removed from the wheel bearing with a generator. Is possible. After that, it becomes possible to assemble a new wheel bearing assembly or the like in the reverse procedure of the above.
  • the stator of the generator since the stator of the generator is fixed to the inner circumference of the cylindrical portion of the bracket, the space occupied in the radial direction of the generator is larger than that of the conventional structure having a fastening portion between the outer ring of the bearing for wheels and the bearing fixing member for wheels. It can be secured to a large extent. Therefore, a desired generator output can be obtained.
  • the stator can be detached from the inner circumference of the bracket cylindrical portion only by detaching the wheel bearing from the wheel bearing with the generator without disassembling the bearing parts and the like.
  • the generator is an inner rotor type in which the stator is attached to the inner circumference of the cylindrical portion of the bracket and the rotor is attached to the outer ring on the inner circumference of the stator. Therefore, the heat generated in the stator passes through the stator, the bracket cylindrical portion, and the bracket base, and is transferred to the undercarriage frame component. Since the stator and the wheel bearings are not in contact with each other in this way, the heat generated by the stator is not easily transmitted to the inside of the wheel bearings, and the heat generated by the generator can be efficiently dissipated to the undercarriage frame parts of the vehicle. This makes it possible to prevent the grease and the like inside the bearing from deteriorating at an early stage.
  • FIG. 1 is a sectional view taken along line II of FIG.
  • the vehicle power unit 1 includes a wheel bearing 2, a bracket 24, and a traveling motor 3 with a power generation function, which is an electric motor that also serves as a generator.
  • the vehicle power unit 1 has an inner rotor type traveling motor 3 with a power generation function.
  • the wheel bearing 2 has an outer ring 4 which is a rotating wheel, a double-row rolling element 6, a cage (not shown) for holding the rolling element 6, and an inner ring 5 which is a fixed ring.
  • the wheel bearing 2 is an angular contact ball bearing to which a steel ball is applied as the rolling element 6. Grease is sealed in the bearing space between the outer ring 4 and the inner ring 5.
  • the direction along the rotation axis C1 of the wheel bearing 2 is referred to as "bearing axis direction", and the direction orthogonal to the rotation axis C1 is referred to as the bearing radial direction.
  • the outer ring 4 has an outer ring main body 4a on which a double-row raceway surface is formed, and a wheel mounting flange 7 extending from the outer peripheral surface of the outer ring main body 4a on the outboard side to the outer diameter side.
  • a plurality of hub bolts 13 are inserted through the wheel mounting flange 7.
  • the wheel mounting flange 7 is mounted by the hub bolt 13 with the brake rotor 12 and the wheels of wheels (not shown) overlapping in the axial direction. Tires (not shown) are attached to the outer circumference of the wheel.
  • a screw hole may be formed on the flange surface of the outer ring 4, and the outer ring 4, the brake rotor 12, the wheel, and the tire may be fixed from the outside by a wheel bolt (not shown).
  • the side that is closer to the outside in the vehicle width direction of the vehicle when the vehicle power unit 1 is mounted on the vehicle is called the outboard side, and the side that is closer to the center in the vehicle width direction of the vehicle is in. Called the board side.
  • the inner ring 5 has an inner ring main body 5a and a partial inner ring 5b fitted to the outer peripheral surface of the inner ring main body 5a on the inboard side.
  • the inner ring main body 5a has an inboard side projecting portion 5i projecting toward the inboard side.
  • the inboard side protruding portion 5i is provided coaxially with the inner ring main body 5a and integrally with the inner ring main body 5a, and protrudes toward the inboard side from the arrangement position of the partial inner ring 5b.
  • the "integrally provided” means that the inboard side protrusion 5i and the inner ring body 5a are not a combination of a plurality of elements, but a part of a single material, for example, by forging, machining, or the like. Or it means that it was molded as a whole.
  • the inboard side protruding portion 5i includes the fitting portion 9 and the male screw portion 11 in order from the outboard side to the inboard side.
  • the fitting portion 9 is a fitting portion of the bracket 24 described later, and is connected to the outer peripheral surface of the inner ring main body 5a on the inboard side via a step.
  • the fitting portion 9 has a first fitting portion 9a formed having a diameter slightly smaller than the outer peripheral surface on the inboard side and a second fitting portion 9 located on the outboard side of the first fitting portion 9a.
  • the second fitting portion 9b is formed with a spline Sm that is fitted to a part of the bracket base portion 24a of the bracket 24 (fitted portion 21 (FIG. 4) described later).
  • the spline Sm is composed of a plurality of spline teeth formed at regular intervals in the circumferential direction, and an involute spline is particularly preferable from the viewpoint of suppressing vibration.
  • the outer peripheral surface of the second fitting portion 9b, that is, the outer diameter surface of the spline Sm is formed to have a smaller diameter than the first fitting portion 9a and a larger diameter than the male screw portion 11.
  • the bracket 24 includes a bracket base portion 24a fixed to the knuckle 8 which is a vehicle suspension frame component, and a bracket cylindrical portion 24b extending from the outer diameter side end of the large diameter portion (described later) of the bracket base portion 24a to the outboard side. And have.
  • the bracket base portion 24a and the bracket cylindrical portion 24b are coaxially and integrally formed.
  • the bracket base portion 24a and the bracket cylindrical portion 24b may be composed of separate members.
  • the bracket base portion 24a is interposed between the knuckle 8 and the inner ring 5, and the inner ring 5 is detachably fixed.
  • the bracket base portion 24a has a large diameter portion 24aa on the outboard side and a small diameter portion 24ab connected to the inboard side surface of the large diameter portion 24aa and having a smaller diameter than the large diameter portion 24aa.
  • the large diameter portion 24aa is formed with a fitted portion 20 to be fitted to the first fitting portion 9a, and the small diameter portion 24ab is fitted to the spline Sm which is an involute spline.
  • the fitted portion 21 formed of the spline groove to be formed is formed.
  • the first fitting portion 9a and the fitted portion 20 thereof may be fitted by a clearance fitting, but may be press-fitted in order to further improve the axial center accuracy.
  • the knuckle 8 is formed with a through hole 8b that allows the small diameter portion 24ab to be fitted.
  • a plurality of screw holes in the circumferential direction are formed in the large diameter portion 24aa, and the bracket base portion 24a is attached to the knuckle 8 by a plurality of bolts 22 screwed into these screw holes.
  • the bracket base 24a is a knuckle with the outer peripheral surface of the small diameter portion 24ab fitted to the through hole 8b of the knuckle 8 and the inboard side surface of the large diameter portion 24aa abutting against the outboard side surface 8a of the knuckle 8. It is fixed at 8.
  • the inboard side surface of the partial inner ring 5b is configured to be able to abut and separate from the outboard side surface of the large diameter portion 24aa.
  • the bracket base portion 24a is formed with an insertion hole ha that allows the insertion of the inboard side protrusion 5i. Insertion holes ha are formed by the fitted portions 20 and 21 (FIG. 4). Further, the first fitting portion 9a of the inboard side protrusion 5i and the fitted portion 20 (FIG. 4) of the large diameter portion 24aa are fitted, and the second fitting portion 9b of the inboard side protrusion 5i is fitted. And the fitted portion 21 (FIG. 4) of the small diameter portion 24ab are spline-fitted.
  • the wheel bearing 2 is fixed to the bracket 24 at a torque value at which a predetermined axial force is generated in the bearing portion.
  • the brake 17 is a friction brake including a disc-shaped brake rotor 12 and a brake caliper 16 (FIG. 14).
  • the brake rotor 12 has a flat plate-shaped portion 12a and an outer peripheral portion 12b.
  • the flat plate-shaped portion 12a is an annular and flat plate-shaped member that overlaps the wheel mounting flange 7.
  • the outer peripheral portion 12b has a cylindrical portion 12ba that extends cylindrically from the outer peripheral edge portion of the flat plate-shaped portion 12a to the inboard side, and a flat plate portion 12b that extends in a flat plate shape from the inboard side end of the cylindrical portion 12ba to the outer diameter side.
  • the brake caliper 16 (FIG. 14) may be a hydraulic type or a mechanical type, or may be an electric motor type.
  • the traveling motor 3 with a power generation function of this example generates power by the rotation of the wheels, and the wheels can be rotationally driven by being supplied with power for traveling with a power generation function. It is a motor.
  • the traveling motor 3 with a power generation function is an inner rotor type having a stator 18 detachably attached to the inner circumference of the bracket cylindrical portion 24b and a rotor 19 attached to the outer periphery of the outer ring main body 4a on the inner circumference of the stator 18. be.
  • the traveling motor 3 with a power generation function is a direct drive type in which the rotor 19 is attached to the outer ring 4.
  • the traveling motor 3 with a power generation function is installed inward in the radial direction from the inner diameter of the brake rotor 12, and is installed in the axial range between the wheel mounting flange 7 and the outboard side surface 8a of the knuckle 8. ing.
  • the traveling motor 3 with a power generation function is, for example, a surface magnet type permanent magnet motor, that is, an SPM (Surface Permanent Magnet) synchronous motor (or SPMSM (Surface Permanent Magnet Synchronous Motor)).
  • the traveling motor 3 with a power generation function may be an IPM (Interior Permanent Magnet) synchronous motor (or IPMSM (Interior Permanent Magnet Synchronous Motor)).
  • IPM Interior Permanent Magnet
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • various types such as a switched reluctance motor (abbreviation: SR motor) and an induction motor (abbreviation: IM) can be adopted.
  • SR motor switched reluctance motor
  • IM induction motor
  • distributed winding and centralized winding can be adopted as the winding type of the stator 18.
  • the stator 18 has an annular stator core 18a and a stator coil 18b wound around a tooth portion of the stator core 18a via an insulating material (not shown). A resin bobbin or the like is applied as the insulating material.
  • the stator core 18a is made of, for example, an electromagnetic steel sheet, a dust core, an amorphous alloy, or the like.
  • the stator core 18a is fitted to the inner peripheral surface of the bracket cylindrical portion 24b of the bracket 24.
  • the stator core 18a is fixed to the inner peripheral surface of the bracket cylindrical portion 24b by press fitting, adhesion, restraint by another member, or the like.
  • a plurality of recesses or protrusions are formed on the outer peripheral surface of the stator core 18a at regular intervals in the circumferential direction, and the plurality of recesses or protrusions are fitted on the inner peripheral surface of the bracket cylindrical portion 24b.
  • a plurality of ridges or dents may be formed. As a result, it is possible to suppress the stator core 18 from moving in the rotational direction.
  • the rotor 19 is provided so as to face the stator core 18a inward in the radial direction.
  • the rotor 19 has a cylindrical rotor core 19a fixed to the outer periphery of the outer ring main body 4a, and a permanent magnet 19b fixed to the outer periphery of the rotor core 19a.
  • the rotor core 19a is made of, for example, a soft magnetic material, and is concentric with the outer ring main body 4a and fixed to the outer ring main body 4a by, for example, press fitting, welding, adhesion, or the like.
  • a plurality of recesses are formed on the inner peripheral surface of the rotor core 19a at regular intervals in the circumferential direction, and a permanent magnet 19b is fitted into each recess and fixed by adhesion or the like.
  • the vehicle power unit 1 is provided with a rotation detection sensor 27.
  • the rotation detection sensor 27 detects the rotation angle or rotation speed of the outer ring 4 with respect to the inner ring 5 in order to control the rotation of the traveling motor 3 with a power generation function. This rotation speed is synonymous with the number of rotations per unit time.
  • the rotation detection sensor 27 has a rotation detection sensor rotor 27a, a rotation detection sensor stator 27b for detecting the rotation detection sensor rotor 27a, and an output cable 27c connected to the rotation detection sensor stator 27b.
  • the rotation detection sensor stator 27b is fixed to the outboard side end of the inner ring main body 5a via the sensor fixing member 28.
  • a rotation detection sensor rotor 27a is fixed to the outboard side end of the outer ring 4 via a bottomed cylindrical cap 29.
  • the rotation detection sensor rotor 27a is fixed to the outer peripheral surface of the shaft portion protruding from the bottom of the cap 29 in the bearing axial direction by fitting or the like.
  • the cap 29 is waterproof and prevents water from entering the rotation detection sensor 27 and the wheel bearing portion.
  • a through hole 5aa is formed as an external extraction means for taking out the output cable 27c to the outside (in this example, on the inboard side of the knuckle 8).
  • the through hole 5aa is formed along the axial center of the inner ring main body 5a and penetrates from the outboard side end to the inboard side end of the inner ring main body 5a.
  • a resolver is applied as the rotation detection sensor 27, but the resolver is not limited to the resolver, and for example, an encoder, a pulsar ring, a hall sensor, or the like can be adopted regardless of the type.
  • the wheel speed sensor Sa is a sensor that detects the rotational speed of the wheel, and is, for example, a magnetic encoder ring ER installed at the inboard side end of the outer ring 4 and a partial inner ring separated by a predetermined gap from the magnetic encoder ring ER. It has a sensor unit (not shown) installed on the outer peripheral surface of 5b.
  • the wheel speed sensor Sa is provided independently of the rotation detection sensor 27, but the rotation detection sensor 27 may also function as the wheel speed sensor.
  • the fixed wheel is the inner ring 5 and the rotary wheel is the outer ring rotation of the outer ring 4.
  • the inner ring 5 is detachably fixed to the bracket base portion 24a of the bracket 24.
  • the stator 18 is detachably fixed to the inner circumference of the cylindrical bracket cylindrical portion 24b extending from the bracket base portion 24a toward the outboard side. Therefore, when the wheel bearing 2 is replaced, the inner ring 5 can be easily removed from the vehicle power unit 1 by separating the inner ring 5 from the bracket base 24a attached to the knuckle 8. Will be. After that, it becomes possible to assemble a new assembly of the wheel bearing 2 or the like in the reverse procedure of the above.
  • the stator 18 of the traveling motor 3 with a power generation function is fixed to the inner circumference of the bracket cylindrical portion 24b, the power generation function is higher than that of the conventional structure having a fastening portion between the wheel bearing outer ring and the wheel bearing fixing member. It is possible to secure a large space occupied in the radial direction of the traveling motor 3 with a bearing. Therefore, a desired motor output can be obtained.
  • the stator 18 is detached from the inner circumference of the bracket cylindrical portion 24b by simply detaching the wheel bearing 2 from the vehicle power unit 1 without disassembling the bearing parts and the like. Can be done.
  • the traveling motor 3 with a power generation function is an inner rotor type in which the stator 18 is attached to the inner circumference of the bracket cylindrical portion 24b and the rotor 19 is attached to the outer ring 4 on the inner circumference of the stator 18. Therefore, the heat generated in the stator 18 passes through the stator 18, the bracket cylindrical portion 24b, and the bracket base portion 24a, and is transferred to the knuckle 8. Since the stator 18 and the wheel bearing 2 are not in contact with each other in this way, the heat generated by the stator 18 is difficult to be transmitted to the inside of the wheel bearing 2, and the heat generated by the traveling motor 3 with a power generation function is efficiently transferred to the knuckle 8 of the vehicle. Can dissipate heat.
  • the wheel bearing 2 With the bracket 24 attached to the knuckle 8 and the stator 18 installed on the bracket cylindrical portion 24b, the wheel bearing 2 is detachably configured in the bearing axial direction with respect to the bracket base portion 24a. Therefore, it is possible to remove the assembly of the wheel bearing 2 from the vehicle power unit 1 in the bearing axial direction by omitting the trouble of temporarily removing the entire vehicle power unit from the knuckle 8 when replacing the wheel bearing 2. .. Therefore, the work load can be reduced.
  • a cylindrical member Rb made of a non-magnetic material may be provided between the inner peripheral surface of the rotor 19 and the outer peripheral surface of the outer ring main body 4a. In this case, it is possible to prevent the magnetism generated from the rotor 19 from adversely affecting the wheel bearing 2.
  • heat dissipation means Hs may be provided on the outer periphery of the bracket cylindrical portion 24b to dissipate heat generated by the traveling motor 3 with a power generation function to an external space.
  • the heat radiating means Hs of this example includes a plurality of annular grooves (cooling grooves) 63 formed on the outer peripheral surface of the bracket cylindrical portion 24b. These annular grooves 63 are formed, for example, at regular intervals in the axial direction.
  • Each annular groove 63 has a rectangular groove-like cross section when the bracket cylindrical portion 24b is cut along a plane including the bearing axial direction, but the cross section is not limited to the rectangular groove shape.
  • the heat radiating means Hs may have a configuration having a plurality of recessed portions (cooling grooves) 64 formed on the outer peripheral surface of the bracket cylindrical portion 24b.
  • the plurality of recessed portions 64 are formed on the outer peripheral surface of the bracket cylindrical portion 24b at regular intervals in the circumferential direction.
  • Each recess 64 extends from the outboard side to the inboard side by a predetermined distance in the bearing axial direction on the outer peripheral surface of the bracket cylindrical portion 24b.
  • Each recess 64 has a rectangular groove-like cross section formed by cutting the bracket cylindrical portion 24b in a plane perpendicular to the bearing axis direction, but the recessed portion 64 is not limited to the rectangular groove shape.
  • the heat radiating means Hs is not limited to the examples of FIGS. 6 to 8, and can be changed to various shapes as long as it does not interfere with the brake rotor 12 (FIG. 1).
  • FIG. 9 is a sectional view taken along line IX-IX of FIG.
  • the inner ring 5 is fixed to the inner ring main body 5a and the outer peripheral surface of the inner ring main body 5a on the outboard side by fastening with nuts 58. It has a partial inner ring 5b.
  • the inner ring main body 5a of this example has an inboard side projecting portion 5i projecting toward the inboard side and an outboard side projecting portion 5o projecting toward the outboard side.
  • a male screw portion 59 is formed at the tip of the protrusion 5o on the outboard side, and the nut 58 is screwed into the male screw portion 59 to fix the partial inner ring 5b to the inner ring main body 5a and give a bearing preload. ..
  • the inboard side protrusion 5i is inserted into the insertion hole of the bracket base 24a, and the inboard side end surface of the inner ring body 5a is in contact with the outboard side surface of the bracket base 24a.
  • the nut 25 is screwed.
  • the assembly of the wheel bearing 2 can be easily detached from the bracket base portion 24a in the axial direction. .. Since the bearing preload is given by fixing the partial inner ring 5b to the outer peripheral surface of the inner ring body 5a on the outboard side by fastening with the nut 58, a means for applying the bearing preload and a means for fixing the inner ring 5 to the bracket base 24a. And can be configured separately. This facilitates the adjustment of the bearing preload and improves the reliability of the bearing.
  • the partial inner ring 5b may be fixed to the outer peripheral surface of the inner ring main body 5a on the outboard side by crimping by the crimping portion 60.
  • the number of parts can be reduced as compared with the examples of FIGS. 9 and 10, and the axial length of the inner ring main body 5a can be shortened.
  • FIG. 12 is a sectional view taken along line XII-XII of FIG.
  • the inner ring 5 of this example has an inner ring main body 5a and a partial inner ring 5b fixed to the outer peripheral surface of the inner ring main body 5a on the outboard side by fastening with a nut 58.
  • the inner ring main body 5a has a flange portion 61 in which a screw hole 61a is formed at the inboat side end, and the flange portion 61 is detachably fixed to the bracket base portion 24a from the inboard side by a bolt 62.
  • the partial inner ring 5b may be fixed to the outer peripheral surface of the inner ring main body 5a on the outboard side by crimping with a crimping portion 60 (see FIG. 11).
  • the assembly of the wheel bearing 2 can be easily detached from the bracket base portion 24a in the axial direction. Since the partial inner ring 5b is fixed to the outer peripheral surface of the inner ring main body 5a on the outboard side by fastening or crimping with a nut 58 to give a bearing preload, a means for applying the bearing preload and an inner ring 5 with respect to the bracket base 24a. Can be configured separately from the fixing means of. This facilitates the adjustment of the bearing preload and improves the reliability of the bearing.
  • FIG. 14 is a block diagram showing a conceptual configuration of a vehicle system using the vehicle power unit 1 according to any one of the embodiments.
  • the vehicle power plant 1 in a vehicle having a driven wheel 10 B is a main drive source mechanically unconnected, is mounted against the driven wheel 10 B.
  • Wheel bearing 2 in the vehicle power unit 1 (FIG. 1, etc.) is a bearing supporting the driven wheel 10 B.
  • the main drive source 35 is an internal combustion engine such as a gasoline engine or a diesel engine, a motor generator (motor), or a hybrid type drive source in which both are combined.
  • the "motor generator” refers to an electric motor capable of generating electricity by applying rotation.
  • the vehicle 30 is a front-wheel drive vehicle in which the front wheels are the drive wheels 10 A and the rear wheels are the driven wheels 10 B, and the main drive source 35 is an internal combustion engine 35a and an electric generator 35b on the drive wheel side.
  • It is a hybrid electric vehicle (hereinafter, may be referred to as "HEV”) having the above.
  • Mild hybrids are a type in which the main drive source is an internal combustion engine and the motor mainly assists driving when starting or accelerating. In the (electric vehicle) mode, it is distinguished from the strong hybrid because it can run normally for a while but cannot run for a long time.
  • Internal combustion engine 35a of the example of the figure is connected to the drive shaft of the drive wheel 10 A via the clutch 36 and speed reducer 37, the motor generator 35b of the driving wheel is connected to a reduction gear 37.
  • This vehicle system is provided in the motor generator 3 which is a motor-generator for driving the driven wheel 10 B to rotate, the individual control means 39 for controlling the motor generator, and the upper ECU 40. It is provided with an individual motor generator command means 45 that outputs a command for causing the individual control means 39 to control drive and regeneration.
  • the motor generator 3 is connected to the power storage means.
  • a battery storage battery
  • a capacitor capacitor
  • the type and the mounting position on the vehicle 30 are not limited, but in this embodiment, the low voltage battery 50 mounted on the vehicle 30 and It is said to be a medium voltage battery 49 among the medium voltage batteries 49.
  • the motor generator 3 for the driven wheel is a direct drive motor that does not use a transmission.
  • the motor generator 3 acts as an electric motor by supplying electric power, and also acts as a generator that converts the kinetic energy of the vehicle 30 into electric power. Since the rotor 19 (FIG. 1) is attached to the outer ring 4 (FIG. 1) of the motor generator 3, when a current is applied to the motor generator 3, the outer ring 4 (FIG. 1) is rotationally driven, and conversely, power regeneration occurs. Sometimes regenerative power is obtained by loading an induced voltage.
  • the drive voltage or regenerative voltage for rotational drive of the motor generator 3 is 100 V or less.
  • the upper ECU 40 is a means for performing integrated control of the vehicle 30, and includes a torque command generation means 43.
  • the torque command generating means 43 generates a torque command according to the operation amount signals input from the accelerator operating means 56 such as the accelerator pedal and the brake operating means 57 such as the brake pedal.
  • This vehicle 30 includes an internal combustion engine 35a and a motor generator 35b on the drive wheel side as a main drive source 35, and also includes two motor generators 3 and 3 for driving two driven wheels 10 B and 10 B, respectively.
  • the upper ECU 40 is provided with a torque command distribution means 44 that distributes the torque command according to the rules defined for the drive sources 35a, 35b, 3, and 3.
  • the torque command for the internal combustion engine 35a is transmitted to the internal combustion engine control means 47 and used for valve opening control and the like by the internal combustion engine control means 47.
  • the torque command to the motor generator 35b on the drive wheel side is transmitted to the motor generator control means 48 on the drive wheel side and executed.
  • the torque command for the generators 3 and 3 on the driven wheel side is transmitted to the individual control means 39 and 39.
  • the portion that outputs to the individual control means 39, 39 is referred to as the individual motor generator command means 45.
  • the individual motor generator command means 45 gives a torque command to the individual control means 39, which is a command of the braking force in which the motor generator 3 shares the braking by regenerative braking, with respect to the signal of the operation amount of the brake operation means 57. It also has a function.
  • the individual motor generator command means 45 and the individual control means 39 constitute a control means 68 for controlling the motor generator 3.
  • the individual control means 39 is an inverter device, and includes an inverter 41 that converts the DC power of the medium voltage battery 49 into a three-phase AC voltage, and a control unit 42 that controls the output of the inverter 41 by PWM control or the like by the torque command or the like.
  • the inverter 41 includes a bridge circuit (not shown) using a semiconductor switching element or the like, and a charging circuit (not shown) for charging the regenerative power of the motor generator 3 into the medium voltage battery 49.
  • the individual control means 39 is individually provided for the two motor generators 3 and 3, it is housed in one housing and the control unit 42 is shared by both the individual control means 39 and 39. May be good.
  • FIG. 15 is a power supply system diagram as an example of a vehicle (FIG. 14) equipped with the vehicle system.
  • a low voltage battery 50 and a medium power battery 49 are provided as batteries, and both batteries 49 and 50 are connected via a DC / DC converter 51.
  • the motor generator 35b on the drive wheel side of FIG. 14 is connected to the medium power system in parallel with the motor generator 3 on the driven wheel side.
  • a low voltage load 52 is connected to the low voltage system, and a medium voltage load 53 is connected to the medium voltage system. Although there are a plurality of low voltage loads 52 and medium voltage loads 53, they are represented by one.
  • the low voltage battery 50 is a battery generally used in various automobiles as a power source for a control system or the like, and is, for example, 12V or 24V.
  • the low voltage load 52 includes key components such as a starter motor of an internal combustion engine 35a, lights, an upper ECU 40, and other ECUs (not shown).
  • the low-voltage battery 50 may be referred to as an auxiliary battery for electrical accessories, and the medium-voltage battery 49 may be referred to as an auxiliary battery for an electric system.
  • the medium voltage battery 49 has a higher voltage than the low voltage battery 50 and is lower than the high voltage battery (100 V or more, for example, about 200 to 400 V) used for strong hybrid vehicles and the like, and has an effect on the human body due to electric shock during work. Is a voltage that does not pose a problem, and a 48V battery that has been used in mild hybrids in recent years is preferable.
  • a medium-voltage battery 49 such as a 48V battery can be relatively easily mounted on a vehicle equipped with a conventional internal combustion engine, and as a mild hybrid, fuel consumption can be reduced by power assist and regeneration by electric power.
  • the medium voltage load 53 of the 48V system is an accessory component, such as a power assist motor, an electric pump, an electric power steering, a supercharger, and an air compressor, which are motor generators 35b on the drive wheel side.
  • a power assist motor such as a power assist motor, an electric pump, an electric power steering, a supercharger, and an air compressor, which are motor generators 35b on the drive wheel side.
  • the output of power assist is lower than that of high voltage (strong hybrid vehicles of 100V or more), but the risk of electric shock to occupants and maintenance workers can be reduced. can.
  • the insulating coating of the electric wire can be thinned, the weight and volume of the electric wire can be reduced.
  • a large amount of electric power can be input / output with a current amount smaller than 12V, the volume of the electric motor or the generator can be reduced. From these things, it contributes to the effect of reducing the fuel consumption of the vehicle.
  • This vehicle system is suitable for accessory parts of such mild hybrid vehicles, and is applied as power assist and power regeneration parts.
  • CMG, GMG, belt-driven starter motors (none of which are shown), etc. may be adopted, but all of these are power assists for the internal combustion engine or the power unit. Or because it regenerates, it is affected by the efficiency of transmission devices and speed reducers.
  • the power regeneration In some cases, the kinetic energy of the vehicle body can be used directly. Further, when mounting a CMG, GMG, belt-driven starter motor, etc., it is necessary to incorporate them in consideration from the design stage of the vehicle 30, and it is difficult to retrofit them.
  • motor generator 3 of the system for this vehicle to fit in the driven wheel 10 in the B may be attached even complete vehicles in part exchange the same steps, to complete vehicle internal combustion engine 35a only Even a 48V system can be configured.
  • An existing vehicle equipped with only an internal combustion engine 35a is equipped with the vehicle power unit 1 according to any one embodiment and the medium voltage battery 49 having a drive voltage or a regenerative voltage of 100 V or less as a battery for a motor generator. By doing so, it is possible to make a mild hybrid vehicle without major modification of the vehicle.
  • a vehicle equipped with the vehicle system of this embodiment may be equipped with another motor generator 35b for auxiliary drive as shown in the example of FIG. In that case, the amount of power assist and the amount of regenerative power for the vehicle 30 can be increased, which further contributes to the reduction of fuel consumption.
  • FIG 16 shows an example of the vehicle power system 1 was applied respectively to the driven wheels 10 B which is a driving wheel 10 A and a rear wheel is a front wheel according to any of the embodiments.
  • the drive wheels 10 A are driven by a main drive source 35 composed of an internal combustion engine via a clutch 36 and a speed reducer 37.
  • the power unit 1 is installed for a vehicle.
  • the vehicle power system 1, not only the driven wheels 10 B, can also be applied to the drive wheels 10 A.
  • the vehicle system shown in FIG. 14 has a function of generating electric power, but may be a system that is not rotationally driven by power supply.
  • This vehicle system is equipped with a wheel bearing with a generator including an electric generator 3 that does not also serve as a motor and a wheel bearing 2.
  • This bearing for wheels with a generator has the same configuration as that of the vehicle power unit of any embodiment except for the motor generator 3 which also serves as a motor.
  • braking force can be generated by storing the regenerative power generated by the motor generator 3 in the medium voltage battery 49. Braking performance can also be improved by using it in combination with the mechanical brake operating means 57 or by using it properly.
  • the individual control means 39 can be configured as an AC / DC converter device (not shown) instead of an inverter device.
  • the AC / DC converter device has a function of charging the regenerated power of the motor generator 3 to the medium voltage battery 49 by converting the three-phase AC voltage into a DC voltage, and the control method is easier than that of the inverter. , Miniaturization is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rolling Contact Bearings (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

車両用動力装置(1)は、車輪用軸受(2)と、回転輪である外輪(4)を回転駆動可能な走行用モータ(3)とを備える。さらに車両のナックル(8)に取付けられるブラケット(24)を備える。ブラケット(24)は、ナックル(8)と内輪(5)との間に介在し内輪(5)が着脱可能に固定されるブラケット基部(24a)と、ブラケット基部(24a)からアウトボード側に延びる円筒状のブラケット円筒部(24b)とを有する。走行用モータ(3)は、ブラケット円筒部(24b)の内周に着脱可能に取付けられるステータ(18)と、ステータ(18)の内周で外輪(4)に取付けられるロータ(19)とを有する。

Description

車両用動力装置および発電機付車輪用軸受 関連出願
 本出願は、2020年6月8日出願の特願2020-099184の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、車両用動力装置および発電機付車輪用軸受に関し、自動車等に適用される技術に関する。
 車輪内部にモータを組み込んだ車両用動力装置は、車輪を支持する車輪用軸受と、車輪の駆動および回生を行うモータが一体構造の装置で、車両の駆動アシスト、減速時の回生、各輪のトルク制御による姿勢安定化など多くの利点があり、自動車の電動化と相俟って今後需要が見込まれている。
 <従来構造1>
 図17は、従来の発電機能付き走行用モータを搭載した車両用動力装置の断面図である。同図17に示すように、この発電機能付き走行用モータを搭載した車両用動力装置は、ブレーキロータ70の摺動部よりも内周側に収められる(特許文献1)。懸架装置71に、車輪用軸受外輪72、モータステータ固定部材73を介して、モータステータコア74が固定される。モータステータコア74には、電流を流し磁力を発生させるためのモータ巻線コイル75が巻かれている。一方、車輪用軸受フランジ76にモータロータケース77とモータロータ78が取付けられ、モータステータコア74周りを回転する。この車輪用軸受と一体化された発電機能付き走行用モータによって車両走行状態に合わせて、駆動および回生を行う。
 従来の上記車両用動力装置では、車輪用軸受または発電機能付き走行用モータに異常、劣化が発生した場合、車輪用軸受と発電機能付き走行用モータとを分離することができず、車両用動力装置全体を交換する必要があり、交換作業の難易度が高く、交換部品の費用も高額となる。
 <従来構造2>
 従来構造1の課題を解決するため、図18に示すように、車輪用軸受部と発電機能付き走行用モータ部を分離可能とする提案がなされている(特許文献2)。図18の例では、足回りフレーム部品であるナックル79に車輪用軸受固定部材80が設けられ、車輪用軸受固定部材80に対し、外輪81およびステータ82のいずれか一方または両方が着脱可能に固定されている。
特開2018-52482号公報 特開2019-202570号公報
 従来構造2の場合、車輪用軸受を分解することなく、車輪用軸受、モータロータ、モータステータを分離することが可能となる。しかし、この構造では、車輪用軸受固定部材80の外径部にモータステータ82が接しており、モータ動作時にコイルに電流が流れることによる発熱(銅損)と、回転に伴うステータコア内部の磁束の変化による発熱(鉄損)を伴う。その発生した熱が車輪用軸受固定部材80、外輪81を伝熱して軸受内部空間の温度が上昇する。これによって、軸受内部のグリースおよび転動体84を保持する保持器、磁気エンコーダ等が早期に劣化し、従来よりも信頼性に欠ける可能性があった。
 また、転走面の外径部に外輪81と車輪用軸受固定部材80との締結部があり、交換の容易性を確保するためボルト83での固定が適切である。但し、路面からの荷重に耐えうるボルト強度が必要となるため、外輪81と車輪用軸受固定部材80との締結部は外径側に肉厚となる。これに伴い、締結部の外径側に位置するモータ部の占有空間が小さくなり、所望の出力が得られなくなる。所望の出力を得るには、より細いコイルを採用するか、大きな電流が必要となる結果、モータステータ82の発熱が大きくなる。
 この発明の目的は、車輪用軸受等の交換時に単体での交換が可能となり、交換の手間と交換部品の費用を低減することができると共に、ステータの放熱性を向上させて軸受の信頼性を担保することが可能となる車両用動力装置および発電機付車輪用軸受を提供することである。
 この発明の車両用動力装置は、固定輪である内輪およびこの内輪に転動体を介して回転自在に支持された回転輪である外輪を有し、車両の車輪を取付ける車輪取付フランジを前記外輪のアウトボード側端に有する車輪用軸受と、前記回転輪を回転駆動可能な電動機とを備えた車両用動力装置であって、
 前記車両における足回りフレーム部品に取付けられるブラケットを備え、このブラケットは、前記足回りフレーム部品と前記内輪との間に介在し前記内輪が着脱可能に固定されるブラケット基部と、このブラケット基部からアウトボード側に延びる円筒状のブラケット円筒部とを有し、
 前記電動機は、前記ブラケット円筒部の内周に着脱可能に取付けられるステータと、このステータの内周で前記外輪に取付けられるロータとを有する。
 この構成によると、車輪用軸受は、固定輪が内輪で回転輪が外輪の外輪回転である。さらにブラケットのブラケット基部に対して、内輪が着脱可能に固定される。またブラケット基部からアウトボード側に延びる円筒状のブラケット円筒部の内周に、ステータが着脱可能に固定される。したがって、車輪用軸受の交換時には、足回りフレーム部品に取付けられたブラケット基部に対し内輪を離脱することで、車両用動力装置から車輪用軸受の組立品等を容易に抜き取ることが可能となる。その後、新品の車輪用軸受の組立品等を前記と逆の手順で組立てることが可能となる。また電動機のステータはブラケット円筒部の内周に固定されるため、車輪用軸受外輪と車輪用軸受固定部材間に締結部がある前記従来構造等よりも、電動機の径方向の占有空間を大きく確保することができる。よって所望の電動機出力を得ることができる。電動機を交換する場合、車輪用軸受を車両用動力装置から離脱するだけで、軸受部品等を分解することなくブラケット円筒部の内周からステータを離脱することができる。
 電動機は、ステータがブラケット円筒部の内周に取付けられ、ロータがステータの内周で外輪に取付けられるインナーロータ型である。このため、ステータで発生した熱が、ステータ、ブラケット円筒部およびブラケット基部を通り、足回りフレーム部品に伝熱される。このようにステータと車輪用軸受とが接していないため、ステータでの発熱が車輪用軸受の内部へ伝わり難く、電動機の発熱を効率よく車両の足回りフレーム部品へ放熱できる。これにより、軸受内部のグリース等が早期に劣化することを防ぐことができる。
 したがって、車輪用軸受等の交換時に単体での交換が可能となり、交換の手間と交換部品の費用を低減することができると共に、ステータの放熱性を向上させて軸受の信頼性を担保することが可能となる。
 前記足回りフレーム部品に前記ブラケットが取付けられると共に前記ブラケット円筒部に前記ステータが設置された状態で、前記ブラケット基部に対し前記車輪用軸受が軸受軸方向に着脱可能に構成されてもよい。この場合、車輪用軸受の交換時に車両用動力装置全体を足回りフレーム部品から一旦取り外す手間を省略して、車両用動力装置から車輪用軸受の組立品等を軸受軸方向に抜き取ることができる。したがって、作業負担の低減を図ることができる。
 前記内輪は、内輪本体と、この内輪本体のインボード側の外周面に嵌合された部分内輪とを有し、前記内輪本体はインボード側に突出し先端部に雄ねじ部が形成されるインボード側突出部を有し、前記ブラケット基部には、前記インボード側突出部の挿通を許す挿通孔が形成され、前記インボード側突出部が前記ブラケット基部の前記挿通孔に挿通されかつ前記部分内輪のインボード側端面が前記ブラケット基部のアウトボード側面に当接した状態で前記インボード側突出部の前記雄ねじ部に螺合されるナットが設けられてもよい。この場合、ナットをインボード側突出部の雄ねじ部から離脱することで、ブラケット基部から車輪用軸受の組立品を軸方向に容易に離脱させることができる。また新品の車輪用軸受の組立品等を前記と逆の手順で組立てることが可能となる。
 前記内輪は、内輪本体と、この内輪本体のアウトボード側の外周面にナットによる締結または加締めで固定された部分内輪とを有し、前記内輪本体はインボード側に突出し先端部に雄ねじ部が形成されるインボード側突出部を有し、前記ブラケット基部には、前記インボード側突出部の挿通を許す挿通孔が形成され、前記インボード側突出部が前記ブラケット基部の前記挿通孔に挿通されかつ前記内輪本体のインボード側端面が前記ブラケット基部のアウトボード側面に当接した状態で前記インボード側突出部の前記雄ねじ部に螺合されるナットが設けられてもよい。
 この場合、インボード側のナットをインボード側突出部の雄ねじ部から離脱することで、ブラケット基部から車輪用軸受の組立品を軸方向に容易に離脱させることができる。部分内輪は、内輪本体のアウトボード側の外周面にナットによる締結または加締めで固定されることで軸受予圧が与えられるため、軸受予圧を付与する手段と、ブラケット基部に対する内輪の固定手段とを別々に構成することができる。これにより軸受予圧の調整が容易になり、軸受の信頼性が向上する。
 前記内輪は、内輪本体と、この内輪本体のアウトボード側の外周面にナットによる締結または加締めで固定された部分内輪とを有し、前記内輪本体のインボート側端にねじ孔が形成されるフランジ部を有し、前記フランジ部が前記ブラケット基部にインボード側からボルトにより着脱可能に固定されてもよい。
 この場合、内輪本体のフランジ部からボルトを離脱することで、ブラケット基部から車輪用軸受の組立品を軸方向に容易に離脱させることができる。部分内輪は、内輪本体のアウトボード側の外周面にナットによる締結または加締めで固定されることで軸受予圧が与えられるため、軸受予圧を付与する手段と、ブラケット基部に対する内輪の固定手段とを別々に構成することができる。これにより軸受予圧の調整が容易になり、軸受の信頼性が向上する。
 前記ブラケット基部の前記挿通孔に挿通される前記インボード側突出部には、前記ブラケット基部に対する相対的な回転を防止するスプラインが設けられていてもよい。前記スプラインにより、固定輪である内輪の回転および回転方向への振動を抑制し得る。これにより軸受の信頼性をさらに向上することができる。
 前記内輪に対する前記外輪の回転速度を検出する回転検出センサが前記車輪用軸受に設けられ、前記回転検出センサは、前記外輪のアウトボード側端部に設置される回転検出センサ回転子と、前記内輪のアウトボード側端部に設置され前記回転検出センサ回転子を検出する回転検出センサ固定子とを有し、前記回転検出センサの出力ケーブルを外部に取り出す外部取出手段を備えてもよい。この場合、内輪に対する外輪の回転速度を検出することで、電動機の回転を制御し得る。また、回転検出センサ回転子、回転検出センサ固定子ともに各輪のアウトボード側端部に設置されているため、車輪用軸受を車両用動力装置から離脱することなく回転検出センサのギャップ調整等のメンテナンスを行うことが可能となる。
 前記回転検出センサが車輪速センサとしての機能を兼ねてもよい。この場合、部品点数の低減を図り構造を簡単化することができる。
 前記ロータの内周面と前記外輪の外周面との間に、非磁性材料から成る円筒部材が設けられていてもよい。この場合、ロータから発生する磁気が車輪用軸受に悪影響を及ぼすことを防止することができる。
 前記ブラケット円筒部の外周には、前記電動機で発生した熱を外部空間へ放熱する放熱手段が設けられていてもよい。ステータに接するブラケット円筒部の外周が外気に晒されている場合には、電動機で発生した熱を外気へ放熱する効果が高い。この場合に、ブラケット円筒部の外周に前記放熱手段が設けられていると、より大きな放熱効果を期待できる。
 この発明の発電機付車輪用軸受は、固定輪である内輪およびこの内輪に転動体を介して回転自在に支持された回転輪である外輪を有し、車両の車輪を取付ける車輪取付フランジを前記外輪のアウトボード側端に有する車輪用軸受と、前記回転輪の回転により発電する発電機とを備えた発電機付車輪用軸受であって、
 前記車両における足回りフレーム部品に取付けられるブラケットを備え、このブラケットは、前記足回りフレーム部品と前記内輪との間に介在し前記内輪が着脱可能に固定されるブラケット基部と、このブラケット基部からアウトボード側に延びる円筒状のブラケット円筒部とを有し、
 前記発電機は、前記ブラケット円筒部の内周に着脱可能に取付けられるステータと、このステータの内周で前記外輪に取付けられるロータとを有する。
 この構成によると、車輪用軸受の交換時には、足回りフレーム部品に取付けられたブラケット基部に対し内輪を離脱することで、発電機付車輪用軸受から車輪用軸受の組立品等を容易に抜き取ることが可能となる。その後、新品の車輪用軸受の組立品等を前記と逆の手順で組立てることが可能となる。また発電機のステータはブラケット円筒部の内周に固定されるため、車輪用軸受外輪と車輪用軸受固定部材間に締結部がある前記従来構造等よりも、発電機の径方向の占有空間を大きく確保することができる。よって所望の発電機出力を得ることができる。発電機を交換する場合、車輪用軸受を発電機付車輪用軸受から離脱するだけで、軸受部品等を分解することなくブラケット円筒部の内周からステータを離脱することができる。
 発電機は、ステータがブラケット円筒部の内周に取付けられ、ロータがステータの内周で外輪に取付けられるインナーロータ型である。このため、ステータで発生した熱が、ステータ、ブラケット円筒部およびブラケット基部を通り、足回りフレーム部品に伝熱される。このようにステータと車輪用軸受とが接していないため、ステータでの発熱が車輪用軸受の内部へ伝わり難く、発電機の発熱を効率よく車両の足回りフレーム部品へ放熱できる。これにより、軸受内部のグリース等が早期に劣化することを防ぐことができる。
 したがって、車輪用軸受等の交換時に単体での交換が可能となり、交換の手間と交換部品の費用を低減することができると共に、ステータの放熱性を向上させて軸受の信頼性を担保することが可能となる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る車両用動力装置の断面図である。 同車両用動力装置の側面図である。 図1のIII-III線断面図である。 同車両用動力装置の分解断面図である。 この発明の他の実施形態に係る車両用動力装置の断面図である。 この発明のさらに他の実施形態に係る車両用動力装置の断面図である。 図6の車両用動力装置の斜視図である。 この発明のさらに他の実施形態に係る車両用動力装置の斜視図である。 この発明のさらに他の実施形態に係る車両用動力装置の断面図である。 同車両用動力装置の側面図である。 この発明のさらに他の実施形態に係る車両用動力装置の断面図である。 この発明のさらに他の実施形態に係る車両用動力装置の断面図である。 同車両用動力装置の側面図である。 いずれかの車両用動力装置を備えた車両の車両用システムの概念構成を示すブロック図である。 同車両用システムを搭載した車両の一例となる電源系統図である。 同車両用動力装置を備えた他の車両の車両用システムの概念構成を説明する図である。 従来構造の車両用動力装置の断面図である。 他の従来構造の車両用動力装置の断面図である。
 [第1の実施形態]
 この発明の実施形態に係る車両用動力装置を図1ないし図4と共に説明する。
 図1は、図2のI-I線断面図である。図1に示すように、この車両用動力装置1は、車輪用軸受2と、ブラケット24と、発電機を兼ねる電動機である発電機能付き走行用モータ3とを備える。この車両用動力装置1は、インナーロータ型の発電機能付き走行用モータ3を有する。
 <車輪用軸受2について>
 車輪用軸受2は、回転輪である外輪4と、複列の転動体6と、転動体6を保持する図示外の保持器と、固定輪である内輪5とを有する。この車輪用軸受2は、転動体6として鋼球が適用されるアンギュラ玉軸受である。外輪4と内輪5との間の軸受空間には、グリースが封入されている。車輪用軸受2の回転軸C1に沿った方向を「軸受軸方向」といい、前記回転軸C1に直交する方向を軸受径方向という。
 外輪4は、複列の軌道面が形成された外輪本体4aと、この外輪本体4aのアウトボード側の外周面から外径側に延びる車輪取付フランジ7とを有する。車輪取付フランジ7に、複数のハブボルト13が挿通されている。車輪取付フランジ7には、ブレーキロータ12と図示外の車輪のホイールとが軸方向に重なった状態で、前記ハブボルト13により取付けられている。前記ホイールの外周に図示外のタイヤが取付けられている。
 前記ハブボルト13ではなく、外輪4のフランジ面にねじ孔を形成し、外方よりホイールボルト(図示せず)で外輪4とブレーキロータ12と前記ホイールおよびタイヤとが固定されてもよい。
 なおこの明細書において、車両用動力装置1が車両に搭載された状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の車幅方向の中央寄りとなる側をインボード側と呼ぶ。
 内輪5は、内輪本体5aと、この内輪本体5aのインボード側の外周面に嵌合された部分内輪5bとを有する。内輪本体5aは、インボード側に突出するインボード側突出部5iを有する。インボード側突出部5iは、内輪本体5aと同軸で内輪本体5aと一体に設けられ、且つ、部分内輪5bの配設位置よりもインボード側に突出する。前記「一体に設けられ」とは、インボード側突出部5iと内輪本体5aとが、複数の要素を結合したものではなく単一の材料から例えば鍛造、機械加工等により単独の物の一部または全体として成形されたことを意味する。
 インボード側突出部5iは、アウトボード側からインボード側に向かって順次、嵌合部9および雄ねじ部11を含む。前記嵌合部9は、後述するブラケット24の嵌合部であり、内輪本体5aのインボード側の外周面に段差を介して繋がる。嵌合部9は、インボード側の外周面よりも若干小径に形成される第1の嵌合部9aと、この第1の嵌合部9aのアウトボード側に位置する第2の嵌合部9bとを有する。第2の嵌合部9bには、ブラケット24のブラケット基部24aの一部(後述する被嵌合部21(図4))に嵌合されるスプラインSmが形成されている。スプラインSmは、円周方向一定間隔おきに形成される複数のスプライン歯から成り、特に振動を抑制する観点からインボリュートスプラインが好ましい。この第2の嵌合部9bの外周面つまりスプラインSmの外径面は、第1の嵌合部9aよりも小径で且つ雄ねじ部11よりも大径に形成されている。
 <ブラケット24>
 ブラケット24は、車両の足回りフレーム部品であるナックル8に固定されるブラケット基部24aと、このブラケット基部24aにおける大径部(後述する)の外径側端からアウトボード側に延びるブラケット円筒部24bとを有する。これらブラケット基部24aとブラケット円筒部24bとは、同軸で且つ一体に形成されている。ブラケット基部24aとブラケット円筒部24bは別部材から構成されても良い。ブラケット基部24aは、ナックル8と内輪5との間に介在し内輪5が着脱自在に固定される。ブラケット基部24aは、アウトボード側の大径部24aaと、この大径部24aaのインボード側面に繋がり大径部24aaよりも小径の小径部24abとを有する。
 図4に示すように、大径部24aaには、第1の嵌合部9aに嵌合される被嵌合部20が形成され、小径部24abには、インボリュートスプラインであるスプラインSmに嵌合されるスプライン溝から成る被嵌合部21が形成されている。第1の嵌合部9aとその被嵌合部20との嵌合は、すきま嵌めでよいが、より軸心精度を上げるために圧入してもよい。
 図1および図2に示すように、ナックル8には、小径部24abの嵌合を許す貫通孔8bが形成されている。大径部24aaには円周方向複数のねじ孔が形成され、ブラケット基部24aはこれらねじ孔に螺合される複数のボルト22でナックル8に取付けられる。ナックル8の貫通孔8bに小径部24abの外周面が嵌合された状態で、かつナックル8のアウトボード側面8aに大径部24aaのインボード側面が当接された状態でブラケット基部24aがナックル8に固定される。
 部分内輪5bのインボード側面は、大径部24aaのアウトボード側面に当接離隔可能に構成されている。ブラケット基部24aには、インボード側突出部5iの挿通を許す挿通孔haが形成されている。前記被嵌合部20,21(図4)により挿通孔haが形成される。またインボード側突出部5iの第1の嵌合部9aと大径部24aaの被嵌合部20(図4)が嵌合すると共に、インボード側突出部5iの第2の嵌合部9bと小径部24abの被嵌合部21(図4)がスプライン嵌合する。さらに雄ねじ部11にナット25を螺合することにより、軸受部に所定の軸力が発生するトルク値で車輪用軸受2がブラケット24に固定される。内輪本体5aの第2の嵌合部9bとブラケット24の被嵌合部21(図4)とが互いにスプライン嵌合することで、内輪5の回転、および回転方向への振動を抑制し得る。
  <ブレーキ17について>
 ブレーキ17は、ディスク状のブレーキロータ12と、ブレーキキャリパ16(図14)とを備える摩擦ブレーキである。ブレーキロータ12は、平板状部12aと、外周部12bとを有する。平板状部12aは、車輪取付フランジ7に重なる環状で且つ平板状の部材である。外周部12bは、平板状部12aの外周縁部からインボード側に円筒状に延びる円筒状部12baと、この円筒状部12baのインボード側端から外径側に平板状に延びる平板部12bbとを有する。前記ブレーキキャリパ16(図14)は、油圧式および機械式のいずれであってもよく、また電動モータ式であってもよい。
 <発電機能付き走行用モータ3について>
 図1および図3に示すように、この例の発電機能付き走行用モータ3は、車輪の回転で発電を行い、給電されることによって車輪を回転駆動可能な走行補助用の発電機能付き走行用モータである。発電機能付き走行用モータ3は、ブラケット円筒部24bの内周に着脱可能に取付けられるステータ18と、このステータ18の内周で外輪本体4aの外周に取付けられるロータ19とを有するインナーロータ型である。また、発電機能付き走行用モータ3は、ロータ19が外輪4に取付けられたダイレクトドライブ形式である。
 この発電機能付き走行用モータ3は、ブレーキロータ12の内径よりも半径方向内方に設置され、且つ、車輪取付フランジ7と、ナックル8のアウトボード側面8aとの間の軸方向範囲に設置されている。発電機能付き走行用モータ3は、例えば表面磁石型永久磁石モータ、すなわちSPM(Surface Permanent Magnet)同期モータ(もしくはSPMSM(Surface Permanent Magnet Synchronous Motor)と標記)である。
 もしくは発電機能付き走行用モータ3は、IPM(Interior Permanent Magnet)同期モータ(もしくはIPMSM(Interior Permanent Magnet Synchronous Motor)と標記)でもよい。その他、発電機能付き走行用モータ3は、スイッチトリラクタンスモータ(Switched reluctance motor;略称:SRモータ)、インダクションモータ(Induction Motor;略称:IM)等各種形式が採用できる。各モータ形式において、ステータ18の巻き線形式として分布巻、集中巻の各形式が採用できる。
 <ステータ18>
 ステータ18は、環状のステータコア18aと、このステータコア18aのティース部に図示外の絶縁材を介して巻回されたステータコイル18bとを有する。前記絶縁材として樹脂ボビン等が適用される。ステータコア18aは、例えば、電磁鋼板、圧粉磁心、またはアモルファス合金等から構成される。ブラケット24のブラケット円筒部24bの内周面に、ステータコア18aが嵌合されている。ステータコア18aは、ブラケット円筒部24bの内周面に圧入、接着、別部材による拘束等により固定される。なお、図示しないが、ステータコア18aの外周面に円周方向一定間隔おきに複数の凹み部または凸部が形成され、ブラケット円筒部24bの内周面に、前記複数の凹み部または凸部に嵌まり込む複数の凸部または凹み部が形成されてもよい。これにより、ステータコア18が回転方向に動くことを抑制できる。
 <ロータ19>
 ロータ19は、ステータコア18aに対し径方向内方に対向するように設けられている。ロータ19は、外輪本体4aの外周に固定される円筒形状のロータコア19aと、このロタコア19aの外周に固定される永久磁石19bとを有する。ロータコア19aは、例えば、軟磁性材料から成り、外輪本体4aと同心で外輪本体4aに例えば、圧入、溶接、接着等により固定されている。ロータコア19aの内周面に円周方向一定間隔おきに複数の凹み部が形成され、各凹み部に永久磁石19bが嵌り込んで接着等により固定されている。
 <シール構造について>
 図1に示すように、ブラケット円筒部24bのアウトボード側の内周面と、車輪取付フランジ7の外周面との間には、発電機能付き走行用モータ3および車輪用軸受2内部への水および異物の侵入を防ぐシール部材23が配置されている。
 <回転検出センサ27について>
 この車両用動力装置1には、回転検出センサ27が設けられている。この回転検出センサ27は、発電機能付き走行用モータ3の回転を制御するために、内輪5に対する外輪4の回転角度または回転速度を検出する。この回転速度は、単位時間当たりの回転数と同義である。回転検出センサ27は、回転検出センサ回転子27aと、この回転検出センサ回転子27aを検出する回転検出センサ固定子27bと、この回転検出センサ固定子27bに接続された出力ケーブル27cとを有する。
 内輪本体5aのアウトボード側端部にセンサ固定部材28を介して回転検出センサ固定子27bが固定されている。外輪4のアウトボード側端部に、有底円筒状のキャップ29を介して回転検出センサ回転子27aが固定されている。キャップ29の底部から軸受軸方向に突出する軸部の外周面に、回転検出センサ回転子27aが嵌合等により固定されている。キャップ29は防水性を有し、回転検出センサ27および車輪用軸受部への水の浸入を防止する。
 内輪本体5aの内部には、出力ケーブル27cを外部(この例ではナックル8よりもインボード側)に取り出す外部取出手段としての貫通孔5aaが形成されている。この貫通孔5aaは内輪本体5aの軸心に沿って形成され、内輪本体5aのアウトボード側端からインボード側端に貫通する。この回転検出センサ27として例えばレゾルバが適用されるが、レゾルバに限定されるものではなく、例えば、エンコーダ、パルサーリングあるいはホールセンサなど形式を問わず採用可能である。
 <車輪速センサSa>
 車輪速センサSaは、車輪の回転速度を検出するセンサであって、例えば、外輪4のインボード側端に設置される磁気エンコーダリングERと、この磁気エンコーダリングERに所定隙間を隔てて部分内輪5bの外周面に設置されるセンサ部(図示せず)とを有する。この例では、車輪速センサSaを回転検出センサ27と独立して設けているが、回転検出センサ27が車輪速センサとしての機能を兼ねるようにしてもよい。
 <本実施形態での軸受分離方法>
 車輪用軸受2の交換時の手順について図4と共に説明する。
 ・ナット25をインボード側突出部5iの雄ねじ部11から外す。
 ・車輪用軸受2およびシール部材23をブラケット24から軸受軸方向に抜き取る。
 組立作業は前記と逆の手順で実施する。
 <作用効果>
 以上説明した車両用動力装置1によれば、車輪用軸受2は、固定輪が内輪5で回転輪が外輪4の外輪回転である。さらにブラケット24のブラケット基部24aに対して、内輪5が着脱可能に固定される。またブラケット基部24aからアウトボード側に延びる円筒状のブラケット円筒部24bの内周に、ステータ18が着脱可能に固定される。したがって、車輪用軸受2の交換時には、ナックル8に取付けられたブラケット基部24aに対し内輪5を離脱することで、車両用動力装置1から車輪用軸受2の組立品等を容易に抜き取ることが可能となる。その後、新品の車輪用軸受2の組立品等を前記と逆の手順で組立てることが可能となる。また発電機能付き走行用モータ3のステータ18はブラケット円筒部24bの内周に固定されるため、車輪用軸受外輪と車輪用軸受固定部材間に締結部がある前記従来構造等よりも、発電機能付き走行用モータ3の径方向の占有空間を大きく確保することができる。よって所望の電動機出力を得ることができる。発電機能付き走行用モータ3を交換する場合、車輪用軸受2を車両用動力装置1から離脱するだけで、軸受部品等を分解することなくブラケット円筒部24bの内周からステータ18を離脱することができる。
 発電機能付き走行用モータ3は、ステータ18がブラケット円筒部24bの内周に取付けられ、ロータ19がステータ18の内周で外輪4に取付られるインナーロータ型である。このため、ステータ18で発生した熱が、ステータ18、ブラケット円筒部24bおよびブラケット基部24aを通り、ナックル8に伝熱される。このようにステータ18と車輪用軸受2とが接していないため、ステータ18での発熱が車輪用軸受2の内部へ伝わり難く、発電機能付き走行用モータ3の発熱を効率よく車両のナックル8へ放熱できる。ステータ18に接するブラケット円筒部24bの外周は外気に晒されているため、発電機能付き走行用モータ3で発生した熱を外気へ放熱する効果が高い。これらにより、軸受内部のグリース等が早期に劣化することを防ぐことができる。
 したがって、車輪用軸受2等の交換時に単体での交換が可能となり、交換の手間と交換部品の費用を低減することができると共に、ステータ18の放熱性を向上させて軸受の信頼性を担保することが可能となる。
 ナックル8にブラケット24が取付けられると共にブラケット円筒部24bにステータ18が設置された状態で、ブラケット基部24aに対し車輪用軸受2が軸受軸方向に着脱可能に構成されている。このため、車輪用軸受2の交換時に車両用動力装置全体をナックル8から一旦取り外す手間を省略して、車両用動力装置1から車輪用軸受2の組立品等を軸受軸方向に抜き取ることができる。したがって、作業負担の低減を図ることができる。
 <他の実施形態について>
 次に、他の実施形態等について説明する。以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 [第1の実施形態の変形例:非磁性材料]
 図5に示すように、ロータ19の内周面と外輪本体4aの外周面との間に、非磁性材料から成る円筒部材Rbが設けられてもよい。この場合、ロータ19から発生する磁気が車輪用軸受2に悪影響を及ぼすことを防止することができる。
 [第1の実施形態の変形例:冷却用溝]
 図6および図7に示すように、ブラケット円筒部24bの外周に、発電機能付き走行用モータ3で発生した熱を外部空間へ放熱する放熱手段Hsが設けられてもよい。この例の放熱手段Hsは、ブラケット円筒部24bの外周面に形成された複数の環状溝(冷却用溝)63を含む。これら環状溝63は、例えば、軸方向一定間隔おきに形成されている。各環状溝63は、このブラケット円筒部24bを軸受軸方向を含む平面で切断して見た断面が矩形溝状に形成されているが、矩形溝状に限定されるものではない。ステータ18に接するブラケット円筒部24bの外周が外気に晒されているため、発電機能付き走行用モータ3で発生した熱を外気へ放熱する効果が高い。この場合に、ブラケット円筒部24bの外周に放熱手段Hsが設けられていると、より大きな放熱効果を期待できる。
 [第1の実施形態の変形例:他の冷却用溝]
 図8に示すように、放熱手段Hsは、ブラケット円筒部24bの外周面に形成された複数の凹み部(冷却用溝)64を有する構成であってもよい。前記複数の凹み部64はブラケット円筒部24bの外周面に円周方向一定間隔おきに形成されている。各凹み部64は、ブラケット円筒部24bの外周面において、アウトボード側からインボード側に軸受軸方向に所定距離延びる。各凹み部64は、このブラケット円筒部24bを軸受軸方向に垂直な平面で切断して見た断面が矩形溝状に形成されているが、矩形溝状に限定されるものではない。この場合にも、前述の放熱手段Hs(図6)と同様の作用効果を奏する。なお放熱手段Hsは、図6~図8の例に限定されるものではなく、ブレーキロータ12(図1)と干渉しない範囲で種々の形状に変更可能である。
 [第2の実施形態]
 図9は図10のIX-IX線断面図である。図9および図10に示すように、この実施形態に係る車両用動力装置1では、内輪5は、内輪本体5aと、この内輪本体5aのアウトボード側の外周面にナット58による締結で固定された部分内輪5bとを有する。この例の内輪本体5aは、インボード側に突出するインボード側突出部5iと、アウトボード側に突出するアウトボード側突出部5oとを有する。アウトボード側突出部5oの先端部に雄ねじ部59が形成され、この雄ねじ部59に前記ナット58が螺合されることで、部分内輪5bが内輪本体5aに固定されると共に軸受予圧が与えられる。インボード側突出部5iがブラケット基部24aの挿通孔に挿通されかつ内輪本体5aのインボード側端面がブラケット基部24aのアウトボード側面に当接した状態でインボード側突出部5iの雄ねじ部11にナット25が螺合される。
 この構成によると、インボード側のナット25をインボード側突出部5iの雄ねじ部11から離脱することで、ブラケット基部24aから車輪用軸受2の組立品を軸方向に容易に離脱させることができる。部分内輪5bは、内輪本体5aのアウトボード側の外周面にナット58による締結で固定されることで軸受予圧が与えられるため、軸受予圧を付与する手段と、ブラケット基部24aに対する内輪5の固定手段とを別々に構成することができる。これにより軸受予圧の調整が容易になり、軸受の信頼性が向上する。
 [第2の実施形態の変形例:内輪加締め型]
 図11に示すように、部分内輪5bは、内輪本体5aのアウトボード側の外周面に加締部60による加締めで固定されてもよい。この場合、図9,図10の例よりも部品点数を低減でき、内輪本体5aの軸方向長さを短縮することができる。
 [第3の実施形態]
 図12は図13のXII- XII線断面図である。図12および図13に示すように、この例の内輪5は、内輪本体5aと、この内輪本体5aのアウトボード側の外周面にナット58による締結で固定された部分内輪5bとを有する。内輪本体5aのインボート側端にねじ孔61aが形成されるフランジ部61を有し、フランジ部61がブラケット基部24aにインボード側からボルト62により着脱可能に固定されている。なお図示しないが、部分内輪5bは、内輪本体5aのアウトボード側の外周面に加締部60(図11参照)による加締めで固定されてもよい。
 この構成によれば、内輪本体5aのフランジ部61からボルト62を離脱することで、ブラケット基部24aから車輪用軸受2の組立品を軸方向に容易に離脱させることができる。部分内輪5bは、内輪本体5aのアウトボード側の外周面にナット58による締結または加締めで固定されることで軸受予圧が与えられるため、軸受予圧を付与する手段と、ブラケット基部24aに対する内輪5の固定手段とを別々に構成することができる。これにより軸受予圧の調整が容易になり、軸受の信頼性が向上する。
 <車両用システムについて>
 図14は、いずれかの実施形態に係る車両用動力装置1を用いた車両用システムの概念構成を示すブロック図である。
 この車両用システムにおいて、車両用動力装置1は、主駆動源と機械的に非連結である従動輪10を持つ車両において、従動輪10に対して搭載される。車両用動力装置1における車輪用軸受2(図1等)は、従動輪10を支持する軸受である。
 主駆動源35は、ガソリンエンジンまたはディーゼルエンジン等の内燃機関、または電動発電機(電動モータ)、または両者を組み合わせたハイブリッド型の駆動源である。前記「電動発電機」は、回転付与による発電が可能な電動モータを称す。図示の例では、車両30は、前輪が駆動輪10、後輪が従動輪10となる前輪駆動車であって、主駆動源35が内燃機関35aと駆動輪側の電動発電機35bとを有するハイブッリド車(以下、「HEV」と称することがある)である。
 具体的には、駆動輪側の電動発電機35bが48V等の中電圧で駆動されるマイルドハイブリッド形式である。ハイブリッドはストロングハイブリッドとマイルドハイブリッドとに大別されるが、マイルドハイブリッドは、主要駆動源が内燃機関であって、発進時や加速時等にモータで走行の補助を主に行う形式を言い、EV(電気自動車)モードでは通常の走行を暫くは行えても長時間行うことができないことでストロングハイブリッドと区別される。同図の例の内燃機関35aは、クラッチ36および減速機37を介して駆動輪10のドライブシャフトに接続され、減速機37に駆動輪側の電動発電機35bが接続されている。
 この車両用システムは、従動輪10の回転駆動を行う走行補助用の発電機である電動発電機3と、この電動発電機の制御を行う個別制御手段39と、上位ECU40に設けられて前記個別制御手段39に駆動および回生の制御を行わせる指令を出力する個別電動発電機指令手段45とを備える。電動発電機3は、蓄電手段に接続されている。この蓄電手段は、バッテリー(蓄電池)またはキャパシタ、コンデンサ等を用いることができ、その形式や車両30への搭載位置は問わないが、この実施形態では、車両30に搭載された低電圧バッテリー50および中電圧バッテリー49のうちの中電圧バッテリー49とされている。
 従動輪用の電動発電機3は、変速機を用いないダイレクトドライブモータである。電動発電機3は、電力を供給することで電動機として作用し、また車両30の運動エネルギーを電力に変換する発電機としても作用する。
 電動発電機3は、外輪4(図1)にロータ19(図1)が取付けられているため、電動発電機3に電流を印加すると外輪4(図1)が回転駆動され、逆に電力回生時には誘起電圧を負荷することで回生電力が得られる。この電動発電機3の回転駆動用の駆動電圧または回生電圧が100V以下である。
 <車両30の制御系について>
 上位ECU40は、車両30の統合制御を行う手段であり、トルク指令生成手段43を備える。このトルク指令生成手段43は、アクセルペダル等のアクセル操作手段56およびブレーキペダル等のブレーキ操作手段57からそれぞれ入力される操作量の信号に従ってトルク指令を生成する。この車両30は、主駆動源35として内燃機関35aおよび駆動輪側の電動発電機35bを備え、また二つの従動輪10,10をそれぞれ駆動する二つの電動発電機3,3を備えるため、前記トルク指令を各駆動源35a,35b,3,3に定められた規則によって分配するトルク指令分配手段44が上位ECU40に設けられている。
 内燃機関35aに対するトルク指令は内燃機関制御手段47に伝達され、内燃機関制御手段47によるバルブ開度制御等に用いられる。駆動輪側の発電電動機35bに対するトルク指令は、駆動輪側電動発電機制御手段48に伝達されて実行される。従動輪側の発電機3,3に対するトルク指令は、個別制御手段39,39に伝達される。前記トルク指令分配手段44のうち、個別制御手段39,39へ出力する部分を個別電動発電機指令手段45と称している。この個別電動発電機指令手段45は、ブレーキ操作手段57の操作量の信号に対して、電動発電機3が回生制動により制動を分担する制動力の指令となるトルク指令を個別制御手段39へ与える機能も備える。個別電動発電機指令手段45および個別制御手段39により、電動発電機3を制御する制御手段68が構成される。
 個別制御手段39はインバータ装置であり、中電圧バッテリー49の直流電力を三相の交流電圧に変換するインバータ41と、前記トルク指令等によりインバータ41の出力をPWM制御等で制御する制御部42とを有する。インバータ41は、半導体スイッチング素子等によるブリッジ回路(図示せず)と、電動発電機3の回生電力を中電圧バッテリー49に充電する充電回路(図示せず)とを備える。なお個別制御手段39は、二つの電動発電機3,3に対して個別に設けられるが、一つの筐体内に収められ、制御部42を両個別制御手段39,39で共有する構成であってもよい。
 図15は、前記車両用システムを搭載した車両(図14)の一例となる電源系統図である。同図の例では、バッテリーとして低電圧バッテリー50と中電力バッテリー49とが設けられ、両バッテリー49,50は、DC/DCコンバータ51を介して接続されている。電動発電機3は二つあるが、代表して一つで図示している。図14の駆動輪側の電動発電機35bは、図15では図示を省略しているが、従動輪側の電動発電機3と並列に中電力系統に接続されている。低電圧系統には低電圧負荷52が接続され、中電圧系統には中電圧負荷53が接続される。低電圧負荷52および中電圧負荷53は、それぞれ複数あるが、代表して一つで示している。
 低電圧バッテリー50は、制御系等の電源として各種の自動車一般に用いられているバッテリーであり、例えば12Vまたは24Vとされる。低電圧負荷52としては、内燃機関35aのスタータモータ、灯火類、上位ECU40およびその他のECU(図示せず)等の基幹部品がある。低電圧バッテリー50は電装補機類用補助バッテリーと称し、中電圧バッテリー49は電動システム用補助バッテリー等と称してもよい。
 中電圧バッテリー49は、低電圧バッテリー50よりも電圧が高く、かつストロングハイブリッド車等に用いられる高電圧バッテリー(100V以上、例えば200~400V程度)よりも低く、かつ作業時に感電による人体への影響が問題とならない程度の電圧であり、近年マイルドハイブリッドに用いられている48Vバッテリーが好ましい。48Vバッテリー等の中電圧バッテリー49は、従来の内燃機関を搭載した車両に比較的容易に搭載することができ、マイルドハイブリッドとして電力による動力アシストや回生により、燃費低減することができる。
 前記48V系統の中電圧負荷53は前記アクセサリー部品であり、前記駆動輪側の電動発電機35bである動力アシストモータ、電動ポンプ、電動パワーステアリング、スーパーチャージャ、およびエアーコンプレッサなどである。アクセサリーによる負荷を48V系統で構成することで、高電圧(100V以上のストロングハイブリッド車など)よりも動力アシストの出力が低くなるものの、乗員やメンテナンス作業者への感電の危険性を低くすることができる。電線の絶縁被膜を薄くすることができるので、電線の重量や体積を減らすことができる。また、12Vよりも小さな電流量で大きな電力量を入出力することができるため、電動機または発電機の体積を小さくすることができる。これらのことから、車両の燃費低減効果に寄与する。
 この車両用システムは、こうしたマイルドハイブリッド車のアクセサリー部品に好適であり、動力アシストおよび電力回生部品として適用される。なお、従来よりマイルドハイブリッド車において、CMG、GMG、ベルト駆動式スタータモータ(いずれも図示せず)などが採用されることがあるが、これらはいずれも、内燃機関または動力装置に対して動力アシストまたは回生するため、伝達装置および減速機などの効率の影響を受ける。
 これに対してこの実施形態の車両用システムは従動輪10に対して搭載されるため、内燃機関35aおよび電動モータ(図示せず)等の主駆動源とは切り離されており、電力回生の際には車体の運動エネルギーを直接利用することができる。また、CMG、GMG、ベルト駆動式スタータモータなどを搭載する際には、車両30の設計段階から考慮して組み込む必要があり、後付けすることが難しい。
 これに対して、従動輪10内に収まるこの車両用システムの電動発電機3は、完成車であっても部品交換と同等の工数で取り付けることができ、内燃機関35aのみの完成車に対しても48Vのシステムを構成することができる。内燃機関35aのみ備えた既存の車両に、いずれかの実施形態に係る車両用動力装置1と、電動発電機用のバッテリーとして、駆動電圧または回生電圧が100V以下の前記中電圧バッテリー49とを搭載することで、車両の大幅な改造をすることなく、マイルドハイブリッド車両にすることができる。この実施形態の車両用システムを搭載した車両に、図14の例のように別の補助駆動用の電動発電機35bが搭載されていても構わない。その際は車両30に対する動力アシスト量や回生電力量を増加させることができ、さらに燃費低減に寄与する。
 図16は、いずれかの実施形態に係る車両用動力装置1を、前輪である駆動輪10および後輪である従動輪10にそれぞれ適用した例を示す。駆動輪10は内燃機関からなる主駆動源35により、クラッチ36および減速機37を介して駆動される。この前輪駆動車において、各駆動輪10および従動輪10の支持および補助駆動に、車両用動力装置1が設置されている。このように車両用動力装置1を、従動輪10だけでなく、駆動輪10にも適用し得る。
 図14に示す車両用システムは、発電を行う機能を有するが、給電による回転駆動をしないシステムとしてもよい。この車両用システムには、モータを兼用しない電動発電機3と、車輪用軸受2とを備える発電機付車輪用軸受が搭載される。この発電機付車輪用軸受は、いずれかの実施形態の車両用動力装置に対し、モータを兼用する電動発電機3を除き同一構成である。
 この発電機付車輪用軸受が搭載される車両用システムによれば、電動発電機3が発電した回生電力を中電圧バッテリー49に蓄えることにより、制動力を発生させることができる。機械式のブレーキ操作手段57と併用や使い分けで、制動性能も向上させることができる。このように発電を行う機能に限定した場合、個別制御手段39はインバータ装置ではなく、AC/DCコンバータ装置(図示せず)として構成することができる。前記AC/DCコンバータ装置は、3相交流電圧を直流電圧に変換することで、電動発電機3の回生電力を中電圧バッテリー49に充電する機能を備え、インバータと比較すると制御方法が容易であり、小型化が可能となる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
 1…車両用動力装置、2…車輪用軸受、3…発電機能付き走行用モータ(電動機)、4…外輪、5…内輪、5a…内輪本体、5b…部分内輪、5i…インボード側突出部、6…転動体、7…車輪取付フランジ、8…ナックル(足回りフレーム部品)、11…雄ねじ部、18…ステータ、19…ロータ、24…ブラケット、24a…ブラケット基部、24b…ブラケット円筒部、25,58…ナット、27…回転検出センサ、27a…回転検出センサ回転子、27b…回転検出センサ固定子、27c…出力ケーブル、61…フランジ部、62…ボルト、Hs…放熱手段、Rb…円筒部材、Sm…スプライン

Claims (11)

  1.  固定輪である内輪およびこの内輪に転動体を介して回転自在に支持された回転輪である外輪を有し、車両の車輪を取付ける車輪取付フランジを前記外輪のアウトボード側端に有する車輪用軸受と、前記回転輪を回転駆動可能な電動機とを備えた車両用動力装置であって、
     前記車両における足回りフレーム部品に取付けられるブラケットを備え、このブラケットは、前記足回りフレーム部品と前記内輪との間に介在し前記内輪が着脱可能に固定されるブラケット基部と、このブラケット基部からアウトボード側に延びる円筒状のブラケット円筒部とを有し、
     前記電動機は、前記ブラケット円筒部の内周に着脱可能に取付けられるステータと、このステータの内周で前記外輪に取付けられるロータとを有する、車両用動力装置。
  2.  請求項1に記載の車両用動力装置において、前記足回りフレーム部品に前記ブラケットが取付けられると共に前記ブラケット円筒部に前記ステータが設置された状態で、前記ブラケット基部に対し前記車輪用軸受が軸受軸方向に着脱可能に構成された車両用動力装置。
  3.  請求項1または請求項2に記載の車両用動力装置において、前記内輪は、内輪本体と、この内輪本体のインボード側の外周面に嵌合された部分内輪とを有し、前記内輪本体はインボード側に突出し先端部に雄ねじ部が形成されるインボード側突出部を有し、前記ブラケット基部には、前記インボード側突出部の挿通を許す挿通孔が形成され、前記インボード側突出部が前記ブラケット基部の前記挿通孔に挿通されかつ前記部分内輪のインボード側端面が前記ブラケット基部のアウトボード側面に当接した状態で前記インボード側突出部の前記雄ねじ部に螺合されるナットが設けられた車両用動力装置。
  4.  請求項1または請求項2に記載の車両用動力装置において、前記内輪は、内輪本体と、この内輪本体のアウトボード側の外周面にナットによる締結または加締めで固定された部分内輪とを有し、前記内輪本体はインボード側に突出し先端部に雄ねじ部が形成されるインボード側突出部を有し、前記ブラケット基部には、前記インボード側突出部の挿通を許す挿通孔が形成され、前記インボード側突出部が前記ブラケット基部の前記挿通孔に挿通されかつ前記内輪本体のインボード側端面が前記ブラケット基部のアウトボード側面に当接した状態で前記インボード側突出部の前記雄ねじ部に螺合されるナットが設けられた車両用動力装置。
  5.  請求項1または請求項2に記載の車両用動力装置において、前記内輪は、内輪本体と、この内輪本体のアウトボード側の外周面にナットによる締結または加締めで固定された部分内輪とを有し、前記内輪本体のインボート側端にねじ孔が形成されるフランジ部を有し、前記フランジ部が前記ブラケット基部にインボード側からボルトにより着脱可能に固定される車両用動力装置。
  6.  請求項3または請求項4に記載の車両用動力装置において、前記ブラケット基部の前記挿通孔に挿通される前記インボード側突出部には、前記ブラケット基部に対する相対的な回転を防止するスプラインが設けられている車両用動力装置。
  7.  請求項1ないし請求項6のいずれか1項に記載の車両用動力装置において、前記内輪に対する前記外輪の回転速度を検出する回転検出センサが前記車輪用軸受に設けられ、前記回転検出センサは、前記外輪のアウトボード側端部に設置される回転検出センサ回転子と、前記内輪のアウトボード側端部に設置され前記回転検出センサ回転子を検出する回転検出センサ固定子とを有し、前記回転検出センサの出力ケーブルを外部に取り出す外部取出手段を備えた車両用動力装置。
  8.  請求項7に記載の車両用動力装置において、前記回転検出センサが車輪速センサとしての機能を兼ねる車両用動力装置。
  9.  請求項1ないし請求項8のいずれか1項に記載の車両用動力装置において、前記ロータの内周面と前記外輪の外周面との間に、非磁性材料から成る円筒部材が設けられている車両用動力装置。
  10.  請求項1ないし請求項9のいずれか1項に記載の車両用動力装置において、前記ブラケット円筒部の外周には、前記電動機で発生した熱を外部空間へ放熱する放熱手段が設けられている車両用動力装置。
  11.  固定輪である内輪およびこの内輪に転動体を介して回転自在に支持された回転輪である外輪を有し、車両の車輪を取付ける車輪取付フランジを前記外輪のアウトボード側端に有する車輪用軸受と、前記回転輪の回転により発電する発電機とを備えた発電機付車輪用軸受であって、
     前記車両における足回りフレーム部品に取付けられるブラケットを備え、このブラケットは、前記足回りフレーム部品と前記内輪との間に介在し前記内輪が着脱可能に固定されるブラケット基部と、このブラケット基部からアウトボード側に延びる円筒状のブラケット円筒部とを有し、
     前記発電機は、前記ブラケット円筒部の内周に着脱可能に取付けられるステータと、このステータの内周で前記外輪に取付けられるロータとを有する、発電機付車輪用軸受。
PCT/JP2021/021403 2020-06-08 2021-06-04 車両用動力装置および発電機付車輪用軸受 WO2021251300A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21822985.4A EP4163139A1 (en) 2020-06-08 2021-06-04 Vehicle power device and vehicle bearing with power generator
CN202180041113.4A CN115697742A (zh) 2020-06-08 2021-06-04 车辆用动力装置以及带发电机的车轮用轴承
US18/074,635 US20230098893A1 (en) 2020-06-08 2022-12-05 Vehicle power device and vehicle bearing with power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020099184A JP7349961B2 (ja) 2020-06-08 2020-06-08 車両用動力装置および発電機付車輪用軸受
JP2020-099184 2020-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/074,635 Continuation US20230098893A1 (en) 2020-06-08 2022-12-05 Vehicle power device and vehicle bearing with power generator

Publications (1)

Publication Number Publication Date
WO2021251300A1 true WO2021251300A1 (ja) 2021-12-16

Family

ID=78846249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021403 WO2021251300A1 (ja) 2020-06-08 2021-06-04 車両用動力装置および発電機付車輪用軸受

Country Status (5)

Country Link
US (1) US20230098893A1 (ja)
EP (1) EP4163139A1 (ja)
JP (1) JP7349961B2 (ja)
CN (1) CN115697742A (ja)
WO (1) WO2021251300A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05278476A (ja) * 1992-04-06 1993-10-26 Toyota Motor Corp 電気自動車用ホイールモータ
JP2004190736A (ja) * 2002-12-10 2004-07-08 Ntn Corp 車輪用軸受装置
JP2008126733A (ja) * 2006-11-17 2008-06-05 Ntn Corp インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2008189029A (ja) * 2007-02-01 2008-08-21 Toyo Electric Mfg Co Ltd インホイールモータユニット用治具
JP2018052482A (ja) 2016-09-21 2018-04-05 Ntn株式会社 補助動力装置付き車輪用軸受装置およびその補助動力装置
JP2019048613A (ja) * 2017-09-08 2019-03-28 Ntn株式会社 車輪用軸受装置およびこの車輪用軸受装置を備えた車両
JP2019202570A (ja) 2018-05-21 2019-11-28 Ntn株式会社 車両用動力装置および発電機付車輪用軸受

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278476B2 (ja) 2011-03-30 2013-09-04 Tdk株式会社 積層コンデンサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05278476A (ja) * 1992-04-06 1993-10-26 Toyota Motor Corp 電気自動車用ホイールモータ
JP2004190736A (ja) * 2002-12-10 2004-07-08 Ntn Corp 車輪用軸受装置
JP2008126733A (ja) * 2006-11-17 2008-06-05 Ntn Corp インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2008189029A (ja) * 2007-02-01 2008-08-21 Toyo Electric Mfg Co Ltd インホイールモータユニット用治具
JP2018052482A (ja) 2016-09-21 2018-04-05 Ntn株式会社 補助動力装置付き車輪用軸受装置およびその補助動力装置
JP2019048613A (ja) * 2017-09-08 2019-03-28 Ntn株式会社 車輪用軸受装置およびこの車輪用軸受装置を備えた車両
JP2019202570A (ja) 2018-05-21 2019-11-28 Ntn株式会社 車両用動力装置および発電機付車輪用軸受

Also Published As

Publication number Publication date
EP4163139A1 (en) 2023-04-12
US20230098893A1 (en) 2023-03-30
CN115697742A (zh) 2023-02-03
JP2021192999A (ja) 2021-12-23
JP7349961B2 (ja) 2023-09-25

Similar Documents

Publication Publication Date Title
JP7079582B2 (ja) 補助動力装置付き車輪用軸受装置およびその補助動力装置
JP7156787B2 (ja) 車輪用軸受装置およびこの車輪用軸受装置を備えた車両
US11990822B2 (en) Vehicle power unit and vehicle wheel bearing with generator
WO2021251299A1 (ja) 車両用動力装置および発電機付車輪用軸受
JP7089939B2 (ja) モータおよびこのモータを備えた車両用動力装置、発電機およびこの発電機を備えた発電機付車輪用軸受
US12005785B2 (en) Vehicle power device and wheel bearing device equipped with generator
JP7025176B2 (ja) 車両用動力装置
WO2019138965A1 (ja) 車輪用軸受装置およびこの車輪用軸受装置を備えた車両
WO2018056219A1 (ja) 補助動力装置付き車輪用軸受装置
WO2020162400A1 (ja) 電動機を備えた車両用動力装置および発電機を備えた発電機付車輪用軸受
JP6997571B2 (ja) 発電機付き車輪用軸受装置
WO2019078216A1 (ja) 車両用動力装置および発電機付き車輪用軸受装置
JP2019075976A (ja) 車両用動力装置および発電機付き車輪用軸受装置
WO2021251300A1 (ja) 車両用動力装置および発電機付車輪用軸受
WO2019049973A1 (ja) 車輪用軸受装置およびこの車輪用軸受装置を備えた車両
JP2019048555A (ja) 発電機付き車輪用軸受装置およびこの発電機付き車輪用軸受装置を備えた車両
JP2019049314A (ja) 発電機付き車輪用軸受装置およびこの発電機付き車輪用軸受装置を備えた車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021822985

Country of ref document: EP

Effective date: 20230109